uboot/drivers/mtd/nand/raw/atmel_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2007-2008
   4 * Stelian Pop <stelian@popies.net>
   5 * Lead Tech Design <www.leadtechdesign.com>
   6 *
   7 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
   8 *
   9 * Add Programmable Multibit ECC support for various AT91 SoC
  10 *     (C) Copyright 2012 ATMEL, Hong Xu
  11 */
  12
  13#include <common.h>
  14#include <log.h>
  15#include <asm/gpio.h>
  16#include <asm/arch/gpio.h>
  17#include <dm/device_compat.h>
  18#include <dm/devres.h>
  19#include <linux/bitops.h>
  20#include <linux/bug.h>
  21#include <linux/delay.h>
  22
  23#include <malloc.h>
  24#include <nand.h>
  25#include <watchdog.h>
  26#include <linux/mtd/nand_ecc.h>
  27#include <linux/mtd/rawnand.h>
  28
  29#ifdef CONFIG_ATMEL_NAND_HWECC
  30
  31/* Register access macros */
  32#define ecc_readl(add, reg)                             \
  33        readl(add + ATMEL_ECC_##reg)
  34#define ecc_writel(add, reg, value)                     \
  35        writel((value), add + ATMEL_ECC_##reg)
  36
  37#include "atmel_nand_ecc.h"     /* Hardware ECC registers */
  38
  39#ifdef CONFIG_ATMEL_NAND_HW_PMECC
  40
  41#ifdef CONFIG_SPL_BUILD
  42#undef CONFIG_SYS_NAND_ONFI_DETECTION
  43#endif
  44
  45struct atmel_nand_host {
  46        struct pmecc_regs __iomem *pmecc;
  47        struct pmecc_errloc_regs __iomem *pmerrloc;
  48        void __iomem            *pmecc_rom_base;
  49
  50        u8              pmecc_corr_cap;
  51        u16             pmecc_sector_size;
  52        u32             pmecc_index_table_offset;
  53        u32             pmecc_version;
  54
  55        int             pmecc_bytes_per_sector;
  56        int             pmecc_sector_number;
  57        int             pmecc_degree;   /* Degree of remainders */
  58        int             pmecc_cw_len;   /* Length of codeword */
  59
  60        /* lookup table for alpha_to and index_of */
  61        void __iomem    *pmecc_alpha_to;
  62        void __iomem    *pmecc_index_of;
  63
  64        /* data for pmecc computation */
  65        int16_t *pmecc_smu;
  66        int16_t *pmecc_partial_syn;
  67        int16_t *pmecc_si;
  68        int16_t *pmecc_lmu; /* polynomal order */
  69        int     *pmecc_mu;
  70        int     *pmecc_dmu;
  71        int     *pmecc_delta;
  72};
  73
  74static struct atmel_nand_host pmecc_host;
  75static struct nand_ecclayout atmel_pmecc_oobinfo;
  76
  77/*
  78 * Return number of ecc bytes per sector according to sector size and
  79 * correction capability
  80 *
  81 * Following table shows what at91 PMECC supported:
  82 * Correction Capability        Sector_512_bytes        Sector_1024_bytes
  83 * =====================        ================        =================
  84 *                2-bits                 4-bytes                  4-bytes
  85 *                4-bits                 7-bytes                  7-bytes
  86 *                8-bits                13-bytes                 14-bytes
  87 *               12-bits                20-bytes                 21-bytes
  88 *               24-bits                39-bytes                 42-bytes
  89 *               32-bits                52-bytes                 56-bytes
  90 */
  91static int pmecc_get_ecc_bytes(int cap, int sector_size)
  92{
  93        int m = 12 + sector_size / 512;
  94        return (m * cap + 7) / 8;
  95}
  96
  97static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
  98        int oobsize, int ecc_len)
  99{
 100        int i;
 101
 102        layout->eccbytes = ecc_len;
 103
 104        /* ECC will occupy the last ecc_len bytes continuously */
 105        for (i = 0; i < ecc_len; i++)
 106                layout->eccpos[i] = oobsize - ecc_len + i;
 107
 108        layout->oobfree[0].offset = 2;
 109        layout->oobfree[0].length =
 110                oobsize - ecc_len - layout->oobfree[0].offset;
 111}
 112
 113static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 114{
 115        int table_size;
 116
 117        table_size = host->pmecc_sector_size == 512 ?
 118                PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
 119
 120        /* the ALPHA lookup table is right behind the INDEX lookup table. */
 121        return host->pmecc_rom_base + host->pmecc_index_table_offset +
 122                        table_size * sizeof(int16_t);
 123}
 124
 125static void pmecc_data_free(struct atmel_nand_host *host)
 126{
 127        free(host->pmecc_partial_syn);
 128        free(host->pmecc_si);
 129        free(host->pmecc_lmu);
 130        free(host->pmecc_smu);
 131        free(host->pmecc_mu);
 132        free(host->pmecc_dmu);
 133        free(host->pmecc_delta);
 134}
 135
 136static int pmecc_data_alloc(struct atmel_nand_host *host)
 137{
 138        const int cap = host->pmecc_corr_cap;
 139        int size;
 140
 141        size = (2 * cap + 1) * sizeof(int16_t);
 142        host->pmecc_partial_syn = malloc(size);
 143        host->pmecc_si = malloc(size);
 144        host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
 145        host->pmecc_smu = malloc((cap + 2) * size);
 146
 147        size = (cap + 1) * sizeof(int);
 148        host->pmecc_mu = malloc(size);
 149        host->pmecc_dmu = malloc(size);
 150        host->pmecc_delta = malloc(size);
 151
 152        if (host->pmecc_partial_syn &&
 153                        host->pmecc_si &&
 154                        host->pmecc_lmu &&
 155                        host->pmecc_smu &&
 156                        host->pmecc_mu &&
 157                        host->pmecc_dmu &&
 158                        host->pmecc_delta)
 159                return 0;
 160
 161        /* error happened */
 162        pmecc_data_free(host);
 163        return -ENOMEM;
 164
 165}
 166
 167static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 168{
 169        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 170        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 171        int i;
 172        uint32_t value;
 173
 174        /* Fill odd syndromes */
 175        for (i = 0; i < host->pmecc_corr_cap; i++) {
 176                value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
 177                if (i & 1)
 178                        value >>= 16;
 179                value &= 0xffff;
 180                host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 181        }
 182}
 183
 184static void pmecc_substitute(struct mtd_info *mtd)
 185{
 186        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 187        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 188        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 189        int16_t __iomem *index_of = host->pmecc_index_of;
 190        int16_t *partial_syn = host->pmecc_partial_syn;
 191        const int cap = host->pmecc_corr_cap;
 192        int16_t *si;
 193        int i, j;
 194
 195        /* si[] is a table that holds the current syndrome value,
 196         * an element of that table belongs to the field
 197         */
 198        si = host->pmecc_si;
 199
 200        memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 201
 202        /* Computation 2t syndromes based on S(x) */
 203        /* Odd syndromes */
 204        for (i = 1; i < 2 * cap; i += 2) {
 205                for (j = 0; j < host->pmecc_degree; j++) {
 206                        if (partial_syn[i] & (0x1 << j))
 207                                si[i] = readw(alpha_to + i * j) ^ si[i];
 208                }
 209        }
 210        /* Even syndrome = (Odd syndrome) ** 2 */
 211        for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 212                if (si[j] == 0) {
 213                        si[i] = 0;
 214                } else {
 215                        int16_t tmp;
 216
 217                        tmp = readw(index_of + si[j]);
 218                        tmp = (tmp * 2) % host->pmecc_cw_len;
 219                        si[i] = readw(alpha_to + tmp);
 220                }
 221        }
 222}
 223
 224/*
 225 * This function defines a Berlekamp iterative procedure for
 226 * finding the value of the error location polynomial.
 227 * The input is si[], initialize by pmecc_substitute().
 228 * The output is smu[][].
 229 *
 230 * This function is written according to chip datasheet Chapter:
 231 * Find the Error Location Polynomial Sigma(x) of Section:
 232 * Programmable Multibit ECC Control (PMECC).
 233 */
 234static void pmecc_get_sigma(struct mtd_info *mtd)
 235{
 236        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 237        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 238
 239        int16_t *lmu = host->pmecc_lmu;
 240        int16_t *si = host->pmecc_si;
 241        int *mu = host->pmecc_mu;
 242        int *dmu = host->pmecc_dmu;     /* Discrepancy */
 243        int *delta = host->pmecc_delta; /* Delta order */
 244        int cw_len = host->pmecc_cw_len;
 245        const int16_t cap = host->pmecc_corr_cap;
 246        const int num = 2 * cap + 1;
 247        int16_t __iomem *index_of = host->pmecc_index_of;
 248        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 249        int i, j, k;
 250        uint32_t dmu_0_count, tmp;
 251        int16_t *smu = host->pmecc_smu;
 252
 253        /* index of largest delta */
 254        int ro;
 255        int largest;
 256        int diff;
 257
 258        /* Init the Sigma(x) */
 259        memset(smu, 0, sizeof(int16_t) * num * (cap + 2));
 260
 261        dmu_0_count = 0;
 262
 263        /* First Row */
 264
 265        /* Mu */
 266        mu[0] = -1;
 267
 268        smu[0] = 1;
 269
 270        /* discrepancy set to 1 */
 271        dmu[0] = 1;
 272        /* polynom order set to 0 */
 273        lmu[0] = 0;
 274        /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
 275        delta[0] = -1;
 276
 277        /* Second Row */
 278
 279        /* Mu */
 280        mu[1] = 0;
 281        /* Sigma(x) set to 1 */
 282        smu[num] = 1;
 283
 284        /* discrepancy set to S1 */
 285        dmu[1] = si[1];
 286
 287        /* polynom order set to 0 */
 288        lmu[1] = 0;
 289
 290        /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
 291        delta[1] = 0;
 292
 293        for (i = 1; i <= cap; i++) {
 294                mu[i + 1] = i << 1;
 295                /* Begin Computing Sigma (Mu+1) and L(mu) */
 296                /* check if discrepancy is set to 0 */
 297                if (dmu[i] == 0) {
 298                        dmu_0_count++;
 299
 300                        tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 301                        if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 302                                tmp += 2;
 303                        else
 304                                tmp += 1;
 305
 306                        if (dmu_0_count == tmp) {
 307                                for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 308                                        smu[(cap + 1) * num + j] =
 309                                                        smu[i * num + j];
 310
 311                                lmu[cap + 1] = lmu[i];
 312                                return;
 313                        }
 314
 315                        /* copy polynom */
 316                        for (j = 0; j <= lmu[i] >> 1; j++)
 317                                smu[(i + 1) * num + j] = smu[i * num + j];
 318
 319                        /* copy previous polynom order to the next */
 320                        lmu[i + 1] = lmu[i];
 321                } else {
 322                        ro = 0;
 323                        largest = -1;
 324                        /* find largest delta with dmu != 0 */
 325                        for (j = 0; j < i; j++) {
 326                                if ((dmu[j]) && (delta[j] > largest)) {
 327                                        largest = delta[j];
 328                                        ro = j;
 329                                }
 330                        }
 331
 332                        /* compute difference */
 333                        diff = (mu[i] - mu[ro]);
 334
 335                        /* Compute degree of the new smu polynomial */
 336                        if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 337                                lmu[i + 1] = lmu[i];
 338                        else
 339                                lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 340
 341                        /* Init smu[i+1] with 0 */
 342                        for (k = 0; k < num; k++)
 343                                smu[(i + 1) * num + k] = 0;
 344
 345                        /* Compute smu[i+1] */
 346                        for (k = 0; k <= lmu[ro] >> 1; k++) {
 347                                int16_t a, b, c;
 348
 349                                if (!(smu[ro * num + k] && dmu[i]))
 350                                        continue;
 351                                a = readw(index_of + dmu[i]);
 352                                b = readw(index_of + dmu[ro]);
 353                                c = readw(index_of + smu[ro * num + k]);
 354                                tmp = a + (cw_len - b) + c;
 355                                a = readw(alpha_to + tmp % cw_len);
 356                                smu[(i + 1) * num + (k + diff)] = a;
 357                        }
 358
 359                        for (k = 0; k <= lmu[i] >> 1; k++)
 360                                smu[(i + 1) * num + k] ^= smu[i * num + k];
 361                }
 362
 363                /* End Computing Sigma (Mu+1) and L(mu) */
 364                /* In either case compute delta */
 365                delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 366
 367                /* Do not compute discrepancy for the last iteration */
 368                if (i >= cap)
 369                        continue;
 370
 371                for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 372                        tmp = 2 * (i - 1);
 373                        if (k == 0) {
 374                                dmu[i + 1] = si[tmp + 3];
 375                        } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 376                                int16_t a, b, c;
 377                                a = readw(index_of +
 378                                                smu[(i + 1) * num + k]);
 379                                b = si[2 * (i - 1) + 3 - k];
 380                                c = readw(index_of + b);
 381                                tmp = a + c;
 382                                tmp %= cw_len;
 383                                dmu[i + 1] = readw(alpha_to + tmp) ^
 384                                        dmu[i + 1];
 385                        }
 386                }
 387        }
 388}
 389
 390static int pmecc_err_location(struct mtd_info *mtd)
 391{
 392        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 393        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 394        const int cap = host->pmecc_corr_cap;
 395        const int num = 2 * cap + 1;
 396        int sector_size = host->pmecc_sector_size;
 397        int err_nbr = 0;        /* number of error */
 398        int roots_nbr;          /* number of roots */
 399        int i;
 400        uint32_t val;
 401        int16_t *smu = host->pmecc_smu;
 402        int timeout = PMECC_MAX_TIMEOUT_US;
 403
 404        pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
 405
 406        for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 407                pmecc_writel(host->pmerrloc, sigma[i],
 408                             smu[(cap + 1) * num + i]);
 409                err_nbr++;
 410        }
 411
 412        val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
 413        if (sector_size == 1024)
 414                val |= PMERRLOC_ELCFG_SECTOR_1024;
 415
 416        pmecc_writel(host->pmerrloc, elcfg, val);
 417        pmecc_writel(host->pmerrloc, elen,
 418                     sector_size * 8 + host->pmecc_degree * cap);
 419
 420        while (--timeout) {
 421                if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
 422                        break;
 423                WATCHDOG_RESET();
 424                udelay(1);
 425        }
 426
 427        if (!timeout) {
 428                dev_err(mtd->dev,
 429                        "Timeout to calculate PMECC error location\n");
 430                return -1;
 431        }
 432
 433        roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
 434                        >> 8;
 435        /* Number of roots == degree of smu hence <= cap */
 436        if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 437                return err_nbr - 1;
 438
 439        /* Number of roots does not match the degree of smu
 440         * unable to correct error */
 441        return -1;
 442}
 443
 444static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 445                int sector_num, int extra_bytes, int err_nbr)
 446{
 447        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 448        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 449        int i = 0;
 450        int byte_pos, bit_pos, sector_size, pos;
 451        uint32_t tmp;
 452        uint8_t err_byte;
 453
 454        sector_size = host->pmecc_sector_size;
 455
 456        while (err_nbr) {
 457                tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
 458                byte_pos = tmp / 8;
 459                bit_pos  = tmp % 8;
 460
 461                if (byte_pos >= (sector_size + extra_bytes))
 462                        BUG();  /* should never happen */
 463
 464                if (byte_pos < sector_size) {
 465                        err_byte = *(buf + byte_pos);
 466                        *(buf + byte_pos) ^= (1 << bit_pos);
 467
 468                        pos = sector_num * host->pmecc_sector_size + byte_pos;
 469                        dev_dbg(mtd->dev,
 470                                "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 471                                pos, bit_pos, err_byte, *(buf + byte_pos));
 472                } else {
 473                        /* Bit flip in OOB area */
 474                        tmp = sector_num * host->pmecc_bytes_per_sector
 475                                        + (byte_pos - sector_size);
 476                        err_byte = ecc[tmp];
 477                        ecc[tmp] ^= (1 << bit_pos);
 478
 479                        pos = tmp + nand_chip->ecc.layout->eccpos[0];
 480                        dev_dbg(mtd->dev,
 481                                "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 482                                pos, bit_pos, err_byte, ecc[tmp]);
 483                }
 484
 485                i++;
 486                err_nbr--;
 487        }
 488
 489        return;
 490}
 491
 492static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 493        u8 *ecc)
 494{
 495        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 496        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 497        int i, err_nbr;
 498        u8 *buf_pos, *ecc_pos;
 499
 500        for (i = 0; i < host->pmecc_sector_number; i++) {
 501                err_nbr = 0;
 502                if (pmecc_stat & 0x1) {
 503                        buf_pos = buf + i * host->pmecc_sector_size;
 504
 505                        pmecc_gen_syndrome(mtd, i);
 506                        pmecc_substitute(mtd);
 507                        pmecc_get_sigma(mtd);
 508
 509                        err_nbr = pmecc_err_location(mtd);
 510                        if (err_nbr >= 0) {
 511                                pmecc_correct_data(mtd, buf_pos, ecc, i,
 512                                                   host->pmecc_bytes_per_sector,
 513                                                   err_nbr);
 514                        } else if (host->pmecc_version < PMECC_VERSION_SAMA5D4) {
 515                                ecc_pos = ecc + i * host->pmecc_bytes_per_sector;
 516
 517                                err_nbr = nand_check_erased_ecc_chunk(
 518                                        buf_pos, host->pmecc_sector_size,
 519                                        ecc_pos, host->pmecc_bytes_per_sector,
 520                                        NULL, 0, host->pmecc_corr_cap);
 521                        }
 522
 523                        if (err_nbr < 0) {
 524                                dev_err(mtd->dev, "PMECC: Too many errors\n");
 525                                mtd->ecc_stats.failed++;
 526                                return -EBADMSG;
 527                        }
 528
 529                        mtd->ecc_stats.corrected += err_nbr;
 530                }
 531                pmecc_stat >>= 1;
 532        }
 533
 534        return 0;
 535}
 536
 537static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 538        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 539{
 540        struct atmel_nand_host *host = nand_get_controller_data(chip);
 541        int eccsize = chip->ecc.size;
 542        uint8_t *oob = chip->oob_poi;
 543        uint32_t *eccpos = chip->ecc.layout->eccpos;
 544        uint32_t stat;
 545        int timeout = PMECC_MAX_TIMEOUT_US;
 546
 547        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 548        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 549        pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
 550                & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
 551
 552        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 553        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 554
 555        chip->read_buf(mtd, buf, eccsize);
 556        chip->read_buf(mtd, oob, mtd->oobsize);
 557
 558        while (--timeout) {
 559                if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 560                        break;
 561                WATCHDOG_RESET();
 562                udelay(1);
 563        }
 564
 565        if (!timeout) {
 566                dev_err(mtd->dev, "Timeout to read PMECC page\n");
 567                return -1;
 568        }
 569
 570        stat = pmecc_readl(host->pmecc, isr);
 571        if (stat != 0)
 572                if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
 573                        return -EBADMSG;
 574
 575        return 0;
 576}
 577
 578static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 579                struct nand_chip *chip, const uint8_t *buf,
 580                int oob_required, int page)
 581{
 582        struct atmel_nand_host *host = nand_get_controller_data(chip);
 583        uint32_t *eccpos = chip->ecc.layout->eccpos;
 584        int i, j;
 585        int timeout = PMECC_MAX_TIMEOUT_US;
 586
 587        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 588        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 589
 590        pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
 591                PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
 592
 593        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 594        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
 595
 596        chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 597
 598        while (--timeout) {
 599                if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
 600                        break;
 601                WATCHDOG_RESET();
 602                udelay(1);
 603        }
 604
 605        if (!timeout) {
 606                dev_err(mtd->dev,
 607                        "Timeout to read PMECC status, fail to write PMECC in oob\n");
 608                goto out;
 609        }
 610
 611        for (i = 0; i < host->pmecc_sector_number; i++) {
 612                for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
 613                        int pos;
 614
 615                        pos = i * host->pmecc_bytes_per_sector + j;
 616                        chip->oob_poi[eccpos[pos]] =
 617                                pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
 618                }
 619        }
 620        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 621out:
 622        return 0;
 623}
 624
 625static void atmel_pmecc_core_init(struct mtd_info *mtd)
 626{
 627        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 628        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 629        uint32_t val = 0;
 630        struct nand_ecclayout *ecc_layout;
 631
 632        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
 633        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
 634
 635        switch (host->pmecc_corr_cap) {
 636        case 2:
 637                val = PMECC_CFG_BCH_ERR2;
 638                break;
 639        case 4:
 640                val = PMECC_CFG_BCH_ERR4;
 641                break;
 642        case 8:
 643                val = PMECC_CFG_BCH_ERR8;
 644                break;
 645        case 12:
 646                val = PMECC_CFG_BCH_ERR12;
 647                break;
 648        case 24:
 649                val = PMECC_CFG_BCH_ERR24;
 650                break;
 651        case 32:
 652                val = PMECC_CFG_BCH_ERR32;
 653                break;
 654        }
 655
 656        if (host->pmecc_sector_size == 512)
 657                val |= PMECC_CFG_SECTOR512;
 658        else if (host->pmecc_sector_size == 1024)
 659                val |= PMECC_CFG_SECTOR1024;
 660
 661        switch (host->pmecc_sector_number) {
 662        case 1:
 663                val |= PMECC_CFG_PAGE_1SECTOR;
 664                break;
 665        case 2:
 666                val |= PMECC_CFG_PAGE_2SECTORS;
 667                break;
 668        case 4:
 669                val |= PMECC_CFG_PAGE_4SECTORS;
 670                break;
 671        case 8:
 672                val |= PMECC_CFG_PAGE_8SECTORS;
 673                break;
 674        }
 675
 676        val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
 677                | PMECC_CFG_AUTO_DISABLE);
 678        pmecc_writel(host->pmecc, cfg, val);
 679
 680        ecc_layout = nand_chip->ecc.layout;
 681        pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
 682        pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
 683        pmecc_writel(host->pmecc, eaddr,
 684                        ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
 685        /* See datasheet about PMECC Clock Control Register */
 686        pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
 687        pmecc_writel(host->pmecc, idr, 0xff);
 688        pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
 689}
 690
 691#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
 692/*
 693 * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
 694 *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
 695 *                    ONFI ECC parameters.
 696 * @host: point to an atmel_nand_host structure.
 697 *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
 698 *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
 699 * @chip: point to an nand_chip structure.
 700 * @cap: store the ONFI ECC correct bits capbility
 701 * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
 702 *
 703 * Return 0 if success. otherwise return the error code.
 704 */
 705static int pmecc_choose_ecc(struct atmel_nand_host *host,
 706                struct nand_chip *chip,
 707                int *cap, int *sector_size)
 708{
 709        /* Get ECC requirement from ONFI parameters */
 710        *cap = *sector_size = 0;
 711        if (chip->onfi_version) {
 712                *cap = chip->ecc_strength_ds;
 713                *sector_size = chip->ecc_step_ds;
 714                pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
 715                         *cap, *sector_size);
 716        }
 717
 718        if (*cap == 0 && *sector_size == 0) {
 719                /* Non-ONFI compliant */
 720                dev_info(chip->mtd.dev,
 721                         "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
 722                *cap = 2;
 723                *sector_size = 512;
 724        }
 725
 726        /* If head file doesn't specify then use the one in ONFI parameters */
 727        if (host->pmecc_corr_cap == 0) {
 728                /* use the most fitable ecc bits (the near bigger one ) */
 729                if (*cap <= 2)
 730                        host->pmecc_corr_cap = 2;
 731                else if (*cap <= 4)
 732                        host->pmecc_corr_cap = 4;
 733                else if (*cap <= 8)
 734                        host->pmecc_corr_cap = 8;
 735                else if (*cap <= 12)
 736                        host->pmecc_corr_cap = 12;
 737                else if (*cap <= 24)
 738                        host->pmecc_corr_cap = 24;
 739                else
 740#ifdef CONFIG_SAMA5D2
 741                        host->pmecc_corr_cap = 32;
 742#else
 743                        host->pmecc_corr_cap = 24;
 744#endif
 745        }
 746        if (host->pmecc_sector_size == 0) {
 747                /* use the most fitable sector size (the near smaller one ) */
 748                if (*sector_size >= 1024)
 749                        host->pmecc_sector_size = 1024;
 750                else if (*sector_size >= 512)
 751                        host->pmecc_sector_size = 512;
 752                else
 753                        return -EINVAL;
 754        }
 755        return 0;
 756}
 757#endif
 758
 759#if defined(NO_GALOIS_TABLE_IN_ROM)
 760static uint16_t *pmecc_galois_table;
 761static inline int deg(unsigned int poly)
 762{
 763        /* polynomial degree is the most-significant bit index */
 764        return fls(poly) - 1;
 765}
 766
 767static int build_gf_tables(int mm, unsigned int poly,
 768                           int16_t *index_of, int16_t *alpha_to)
 769{
 770        unsigned int i, x = 1;
 771        const unsigned int k = 1 << deg(poly);
 772        unsigned int nn = (1 << mm) - 1;
 773
 774        /* primitive polynomial must be of degree m */
 775        if (k != (1u << mm))
 776                return -EINVAL;
 777
 778        for (i = 0; i < nn; i++) {
 779                alpha_to[i] = x;
 780                index_of[x] = i;
 781                if (i && (x == 1))
 782                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
 783                        return -EINVAL;
 784                x <<= 1;
 785                if (x & k)
 786                        x ^= poly;
 787        }
 788
 789        alpha_to[nn] = 1;
 790        index_of[0] = 0;
 791
 792        return 0;
 793}
 794
 795static uint16_t *create_lookup_table(int sector_size)
 796{
 797        int degree = (sector_size == 512) ?
 798                        PMECC_GF_DIMENSION_13 :
 799                        PMECC_GF_DIMENSION_14;
 800        unsigned int poly = (sector_size == 512) ?
 801                        PMECC_GF_13_PRIMITIVE_POLY :
 802                        PMECC_GF_14_PRIMITIVE_POLY;
 803        int table_size = (sector_size == 512) ?
 804                        PMECC_INDEX_TABLE_SIZE_512 :
 805                        PMECC_INDEX_TABLE_SIZE_1024;
 806
 807        int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
 808        if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
 809                return NULL;
 810
 811        return (uint16_t *)addr;
 812}
 813#endif
 814
 815static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
 816                struct mtd_info *mtd)
 817{
 818        struct atmel_nand_host *host;
 819        int cap, sector_size;
 820
 821        host = &pmecc_host;
 822        nand_set_controller_data(nand, host);
 823
 824        nand->ecc.mode = NAND_ECC_HW;
 825        nand->ecc.calculate = NULL;
 826        nand->ecc.correct = NULL;
 827        nand->ecc.hwctl = NULL;
 828
 829#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
 830        host->pmecc_corr_cap = host->pmecc_sector_size = 0;
 831
 832#ifdef CONFIG_PMECC_CAP
 833        host->pmecc_corr_cap = CONFIG_PMECC_CAP;
 834#endif
 835#ifdef CONFIG_PMECC_SECTOR_SIZE
 836        host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
 837#endif
 838        /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
 839         * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
 840         * from ONFI.
 841         */
 842        if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
 843                dev_err(mtd->dev,
 844                        "Required ECC %d bits in %d bytes not supported!\n",
 845                        cap, sector_size);
 846                return -EINVAL;
 847        }
 848
 849        if (cap > host->pmecc_corr_cap)
 850                dev_info(mtd->dev,
 851                         "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
 852                         host->pmecc_corr_cap, cap);
 853        if (sector_size < host->pmecc_sector_size)
 854                dev_info(mtd->dev,
 855                         "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
 856                         host->pmecc_sector_size, sector_size);
 857#else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
 858        host->pmecc_corr_cap = CONFIG_PMECC_CAP;
 859        host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
 860#endif
 861
 862        cap = host->pmecc_corr_cap;
 863        sector_size = host->pmecc_sector_size;
 864
 865        /* TODO: need check whether cap & sector_size is validate */
 866#if defined(NO_GALOIS_TABLE_IN_ROM)
 867        /*
 868         * As pmecc_rom_base is the begin of the gallois field table, So the
 869         * index offset just set as 0.
 870         */
 871        host->pmecc_index_table_offset = 0;
 872#else
 873        if (host->pmecc_sector_size == 512)
 874                host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
 875        else
 876                host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
 877#endif
 878
 879        pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
 880                 cap, sector_size);
 881
 882        host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
 883        host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
 884                        ATMEL_BASE_PMERRLOC;
 885#if defined(NO_GALOIS_TABLE_IN_ROM)
 886        pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
 887        if (!pmecc_galois_table) {
 888                dev_err(mtd->dev, "out of memory\n");
 889                return -ENOMEM;
 890        }
 891
 892        host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
 893#else
 894        host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
 895#endif
 896
 897        /* ECC is calculated for the whole page (1 step) */
 898        nand->ecc.size = mtd->writesize;
 899
 900        /* set ECC page size and oob layout */
 901        switch (mtd->writesize) {
 902        case 2048:
 903        case 4096:
 904        case 8192:
 905                host->pmecc_degree = (sector_size == 512) ?
 906                        PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
 907                host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
 908                host->pmecc_sector_number = mtd->writesize / sector_size;
 909                host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
 910                        cap, sector_size);
 911                host->pmecc_alpha_to = pmecc_get_alpha_to(host);
 912                host->pmecc_index_of = host->pmecc_rom_base +
 913                        host->pmecc_index_table_offset;
 914
 915                nand->ecc.steps = 1;
 916                nand->ecc.bytes = host->pmecc_bytes_per_sector *
 917                                       host->pmecc_sector_number;
 918
 919                if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
 920                        dev_err(mtd->dev,
 921                                "too large eccpos entries. max support ecc.bytes is %d\n",
 922                                MTD_MAX_ECCPOS_ENTRIES_LARGE);
 923                        return -EINVAL;
 924                }
 925
 926                if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
 927                        dev_err(mtd->dev, "No room for ECC bytes\n");
 928                        return -EINVAL;
 929                }
 930                pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
 931                                        mtd->oobsize,
 932                                        nand->ecc.bytes);
 933                nand->ecc.layout = &atmel_pmecc_oobinfo;
 934                break;
 935        case 512:
 936        case 1024:
 937                /* TODO */
 938                dev_err(mtd->dev,
 939                        "Unsupported page size for PMECC, use Software ECC\n");
 940        default:
 941                /* page size not handled by HW ECC */
 942                /* switching back to soft ECC */
 943                nand->ecc.mode = NAND_ECC_SOFT;
 944                nand->ecc.read_page = NULL;
 945                nand->ecc.postpad = 0;
 946                nand->ecc.prepad = 0;
 947                nand->ecc.bytes = 0;
 948                return 0;
 949        }
 950
 951        /* Allocate data for PMECC computation */
 952        if (pmecc_data_alloc(host)) {
 953                dev_err(mtd->dev,
 954                        "Cannot allocate memory for PMECC computation!\n");
 955                return -ENOMEM;
 956        }
 957
 958        nand->options |= NAND_NO_SUBPAGE_WRITE;
 959        nand->ecc.read_page = atmel_nand_pmecc_read_page;
 960        nand->ecc.write_page = atmel_nand_pmecc_write_page;
 961        nand->ecc.strength = cap;
 962
 963        /* Check the PMECC ip version */
 964        host->pmecc_version = pmecc_readl(host->pmerrloc, version);
 965        dev_dbg(mtd->dev, "PMECC IP version is: %x\n", host->pmecc_version);
 966
 967        atmel_pmecc_core_init(mtd);
 968
 969        return 0;
 970}
 971
 972#else
 973
 974/* oob layout for large page size
 975 * bad block info is on bytes 0 and 1
 976 * the bytes have to be consecutives to avoid
 977 * several NAND_CMD_RNDOUT during read
 978 */
 979static struct nand_ecclayout atmel_oobinfo_large = {
 980        .eccbytes = 4,
 981        .eccpos = {60, 61, 62, 63},
 982        .oobfree = {
 983                {2, 58}
 984        },
 985};
 986
 987/* oob layout for small page size
 988 * bad block info is on bytes 4 and 5
 989 * the bytes have to be consecutives to avoid
 990 * several NAND_CMD_RNDOUT during read
 991 */
 992static struct nand_ecclayout atmel_oobinfo_small = {
 993        .eccbytes = 4,
 994        .eccpos = {0, 1, 2, 3},
 995        .oobfree = {
 996                {6, 10}
 997        },
 998};
 999
1000/*
1001 * Calculate HW ECC
1002 *
1003 * function called after a write
1004 *
1005 * mtd:        MTD block structure
1006 * dat:        raw data (unused)
1007 * ecc_code:   buffer for ECC
1008 */
1009static int atmel_nand_calculate(struct mtd_info *mtd,
1010                const u_char *dat, unsigned char *ecc_code)
1011{
1012        unsigned int ecc_value;
1013
1014        /* get the first 2 ECC bytes */
1015        ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
1016
1017        ecc_code[0] = ecc_value & 0xFF;
1018        ecc_code[1] = (ecc_value >> 8) & 0xFF;
1019
1020        /* get the last 2 ECC bytes */
1021        ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1022
1023        ecc_code[2] = ecc_value & 0xFF;
1024        ecc_code[3] = (ecc_value >> 8) & 0xFF;
1025
1026        return 0;
1027}
1028
1029/*
1030 * HW ECC read page function
1031 *
1032 * mtd:        mtd info structure
1033 * chip:       nand chip info structure
1034 * buf:        buffer to store read data
1035 * oob_required:    caller expects OOB data read to chip->oob_poi
1036 */
1037static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1038                                uint8_t *buf, int oob_required, int page)
1039{
1040        int eccsize = chip->ecc.size;
1041        int eccbytes = chip->ecc.bytes;
1042        uint32_t *eccpos = chip->ecc.layout->eccpos;
1043        uint8_t *p = buf;
1044        uint8_t *oob = chip->oob_poi;
1045        uint8_t *ecc_pos;
1046        int stat;
1047
1048        /* read the page */
1049        chip->read_buf(mtd, p, eccsize);
1050
1051        /* move to ECC position if needed */
1052        if (eccpos[0] != 0) {
1053                /* This only works on large pages
1054                 * because the ECC controller waits for
1055                 * NAND_CMD_RNDOUTSTART after the
1056                 * NAND_CMD_RNDOUT.
1057                 * anyway, for small pages, the eccpos[0] == 0
1058                 */
1059                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1060                                mtd->writesize + eccpos[0], -1);
1061        }
1062
1063        /* the ECC controller needs to read the ECC just after the data */
1064        ecc_pos = oob + eccpos[0];
1065        chip->read_buf(mtd, ecc_pos, eccbytes);
1066
1067        /* check if there's an error */
1068        stat = chip->ecc.correct(mtd, p, oob, NULL);
1069
1070        if (stat < 0)
1071                mtd->ecc_stats.failed++;
1072        else
1073                mtd->ecc_stats.corrected += stat;
1074
1075        /* get back to oob start (end of page) */
1076        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1077
1078        /* read the oob */
1079        chip->read_buf(mtd, oob, mtd->oobsize);
1080
1081        return 0;
1082}
1083
1084/*
1085 * HW ECC Correction
1086 *
1087 * function called after a read
1088 *
1089 * mtd:        MTD block structure
1090 * dat:        raw data read from the chip
1091 * read_ecc:   ECC from the chip (unused)
1092 * isnull:     unused
1093 *
1094 * Detect and correct a 1 bit error for a page
1095 */
1096static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1097                u_char *read_ecc, u_char *isnull)
1098{
1099        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1100        unsigned int ecc_status;
1101        unsigned int ecc_word, ecc_bit;
1102
1103        /* get the status from the Status Register */
1104        ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1105
1106        /* if there's no error */
1107        if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1108                return 0;
1109
1110        /* get error bit offset (4 bits) */
1111        ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1112        /* get word address (12 bits) */
1113        ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1114        ecc_word >>= 4;
1115
1116        /* if there are multiple errors */
1117        if (ecc_status & ATMEL_ECC_MULERR) {
1118                /* check if it is a freshly erased block
1119                 * (filled with 0xff) */
1120                if ((ecc_bit == ATMEL_ECC_BITADDR)
1121                                && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1122                        /* the block has just been erased, return OK */
1123                        return 0;
1124                }
1125                /* it doesn't seems to be a freshly
1126                 * erased block.
1127                 * We can't correct so many errors */
1128                dev_warn(mtd->dev,
1129                         "multiple errors detected. Unable to correct.\n");
1130                return -EBADMSG;
1131        }
1132
1133        /* if there's a single bit error : we can correct it */
1134        if (ecc_status & ATMEL_ECC_ECCERR) {
1135                /* there's nothing much to do here.
1136                 * the bit error is on the ECC itself.
1137                 */
1138                dev_warn(mtd->dev,
1139                         "one bit error on ECC code. Nothing to correct\n");
1140                return 0;
1141        }
1142
1143        dev_warn(mtd->dev,
1144                 "one bit error on data. (word offset in the page : 0x%x bit offset : 0x%x)\n",
1145                 ecc_word, ecc_bit);
1146        /* correct the error */
1147        if (nand_chip->options & NAND_BUSWIDTH_16) {
1148                /* 16 bits words */
1149                ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1150        } else {
1151                /* 8 bits words */
1152                dat[ecc_word] ^= (1 << ecc_bit);
1153        }
1154        dev_warn(mtd->dev, "error corrected\n");
1155        return 1;
1156}
1157
1158/*
1159 * Enable HW ECC : unused on most chips
1160 */
1161static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1162{
1163}
1164
1165int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1166{
1167        nand->ecc.mode = NAND_ECC_HW;
1168        nand->ecc.calculate = atmel_nand_calculate;
1169        nand->ecc.correct = atmel_nand_correct;
1170        nand->ecc.hwctl = atmel_nand_hwctl;
1171        nand->ecc.read_page = atmel_nand_read_page;
1172        nand->ecc.bytes = 4;
1173        nand->ecc.strength = 4;
1174
1175        if (nand->ecc.mode == NAND_ECC_HW) {
1176                /* ECC is calculated for the whole page (1 step) */
1177                nand->ecc.size = mtd->writesize;
1178
1179                /* set ECC page size and oob layout */
1180                switch (mtd->writesize) {
1181                case 512:
1182                        nand->ecc.layout = &atmel_oobinfo_small;
1183                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1184                                        ATMEL_ECC_PAGESIZE_528);
1185                        break;
1186                case 1024:
1187                        nand->ecc.layout = &atmel_oobinfo_large;
1188                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1189                                        ATMEL_ECC_PAGESIZE_1056);
1190                        break;
1191                case 2048:
1192                        nand->ecc.layout = &atmel_oobinfo_large;
1193                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1194                                        ATMEL_ECC_PAGESIZE_2112);
1195                        break;
1196                case 4096:
1197                        nand->ecc.layout = &atmel_oobinfo_large;
1198                        ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1199                                        ATMEL_ECC_PAGESIZE_4224);
1200                        break;
1201                default:
1202                        /* page size not handled by HW ECC */
1203                        /* switching back to soft ECC */
1204                        nand->ecc.mode = NAND_ECC_SOFT;
1205                        nand->ecc.calculate = NULL;
1206                        nand->ecc.correct = NULL;
1207                        nand->ecc.hwctl = NULL;
1208                        nand->ecc.read_page = NULL;
1209                        nand->ecc.postpad = 0;
1210                        nand->ecc.prepad = 0;
1211                        nand->ecc.bytes = 0;
1212                        break;
1213                }
1214        }
1215
1216        return 0;
1217}
1218
1219#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1220
1221#endif /* CONFIG_ATMEL_NAND_HWECC */
1222
1223static void at91_nand_hwcontrol(struct mtd_info *mtd,
1224                                         int cmd, unsigned int ctrl)
1225{
1226        struct nand_chip *this = mtd_to_nand(mtd);
1227
1228        if (ctrl & NAND_CTRL_CHANGE) {
1229                ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1230                IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1231                             | CONFIG_SYS_NAND_MASK_CLE);
1232
1233                if (ctrl & NAND_CLE)
1234                        IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1235                if (ctrl & NAND_ALE)
1236                        IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1237
1238#ifdef CONFIG_SYS_NAND_ENABLE_PIN
1239                at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1240                                    !(ctrl & NAND_NCE));
1241#endif
1242                this->IO_ADDR_W = (void *) IO_ADDR_W;
1243        }
1244
1245        if (cmd != NAND_CMD_NONE)
1246                writeb(cmd, this->IO_ADDR_W);
1247}
1248
1249#ifdef CONFIG_SYS_NAND_READY_PIN
1250static int at91_nand_ready(struct mtd_info *mtd)
1251{
1252        return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1253}
1254#endif
1255
1256#ifdef CONFIG_SPL_BUILD
1257/* The following code is for SPL */
1258static struct mtd_info *mtd;
1259static struct nand_chip nand_chip;
1260
1261static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1262{
1263        struct nand_chip *this = mtd_to_nand(mtd);
1264        int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1265        void (*hwctrl)(struct mtd_info *mtd, int cmd,
1266                        unsigned int ctrl) = this->cmd_ctrl;
1267
1268        while (!this->dev_ready(mtd))
1269                ;
1270
1271        if (cmd == NAND_CMD_READOOB) {
1272                offs += CONFIG_SYS_NAND_PAGE_SIZE;
1273                cmd = NAND_CMD_READ0;
1274        }
1275
1276        hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1277
1278        if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1279                offs >>= 1;
1280
1281        hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1282        hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1283        hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1284        hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1285#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1286        hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1287#endif
1288        hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1289
1290        hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1291        hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1292
1293        while (!this->dev_ready(mtd))
1294                ;
1295
1296        return 0;
1297}
1298
1299static int nand_is_bad_block(int block)
1300{
1301        struct nand_chip *this = mtd_to_nand(mtd);
1302
1303        nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1304
1305        if (this->options & NAND_BUSWIDTH_16) {
1306                if (readw(this->IO_ADDR_R) != 0xffff)
1307                        return 1;
1308        } else {
1309                if (readb(this->IO_ADDR_R) != 0xff)
1310                        return 1;
1311        }
1312
1313        return 0;
1314}
1315
1316#ifdef CONFIG_SPL_NAND_ECC
1317static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1318#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1319                  CONFIG_SYS_NAND_ECCSIZE)
1320#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1321
1322static int nand_read_page(int block, int page, void *dst)
1323{
1324        struct nand_chip *this = mtd_to_nand(mtd);
1325        u_char ecc_calc[ECCTOTAL];
1326        u_char ecc_code[ECCTOTAL];
1327        u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1328        int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1329        int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1330        int eccsteps = ECCSTEPS;
1331        int i;
1332        uint8_t *p = dst;
1333        nand_command(block, page, 0, NAND_CMD_READ0);
1334
1335        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1336                if (this->ecc.mode != NAND_ECC_SOFT)
1337                        this->ecc.hwctl(mtd, NAND_ECC_READ);
1338                this->read_buf(mtd, p, eccsize);
1339                this->ecc.calculate(mtd, p, &ecc_calc[i]);
1340        }
1341        this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1342
1343        for (i = 0; i < ECCTOTAL; i++)
1344                ecc_code[i] = oob_data[nand_ecc_pos[i]];
1345
1346        eccsteps = ECCSTEPS;
1347        p = dst;
1348
1349        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1350                this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1351
1352        return 0;
1353}
1354
1355int spl_nand_erase_one(int block, int page)
1356{
1357        struct nand_chip *this = mtd_to_nand(mtd);
1358        void (*hwctrl)(struct mtd_info *mtd, int cmd,
1359                        unsigned int ctrl) = this->cmd_ctrl;
1360        int page_addr;
1361
1362        if (nand_chip.select_chip)
1363                nand_chip.select_chip(mtd, 0);
1364
1365        page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1366        hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1367        /* Row address */
1368        hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1369        hwctrl(mtd, ((page_addr >> 8) & 0xff),
1370               NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1371#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1372        /* One more address cycle for devices > 128MiB */
1373        hwctrl(mtd, (page_addr >> 16) & 0x0f,
1374               NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1375#endif
1376        hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1377
1378        while (!this->dev_ready(mtd))
1379                ;
1380
1381        nand_deselect();
1382
1383        return 0;
1384}
1385#else
1386static int nand_read_page(int block, int page, void *dst)
1387{
1388        struct nand_chip *this = mtd_to_nand(mtd);
1389
1390        nand_command(block, page, 0, NAND_CMD_READ0);
1391        atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1392
1393        return 0;
1394}
1395#endif /* CONFIG_SPL_NAND_ECC */
1396
1397int at91_nand_wait_ready(struct mtd_info *mtd)
1398{
1399        struct nand_chip *this = mtd_to_nand(mtd);
1400
1401        udelay(this->chip_delay);
1402
1403        return 1;
1404}
1405
1406int board_nand_init(struct nand_chip *nand)
1407{
1408        int ret = 0;
1409
1410        nand->ecc.mode = NAND_ECC_SOFT;
1411#ifdef CONFIG_SYS_NAND_DBW_16
1412        nand->options = NAND_BUSWIDTH_16;
1413        nand->read_buf = nand_read_buf16;
1414#else
1415        nand->read_buf = nand_read_buf;
1416#endif
1417        nand->cmd_ctrl = at91_nand_hwcontrol;
1418#ifdef CONFIG_SYS_NAND_READY_PIN
1419        nand->dev_ready = at91_nand_ready;
1420#else
1421        nand->dev_ready = at91_nand_wait_ready;
1422#endif
1423        nand->chip_delay = 20;
1424#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1425        nand->bbt_options |= NAND_BBT_USE_FLASH;
1426#endif
1427
1428#ifdef CONFIG_ATMEL_NAND_HWECC
1429#ifdef CONFIG_ATMEL_NAND_HW_PMECC
1430        ret = atmel_pmecc_nand_init_params(nand, mtd);
1431#endif
1432#endif
1433
1434        return ret;
1435}
1436
1437void nand_init(void)
1438{
1439        mtd = nand_to_mtd(&nand_chip);
1440        mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1441        mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1442        nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1443        nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1444        board_nand_init(&nand_chip);
1445
1446#ifdef CONFIG_SPL_NAND_ECC
1447        if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1448                nand_chip.ecc.calculate = nand_calculate_ecc;
1449                nand_chip.ecc.correct = nand_correct_data;
1450        }
1451#endif
1452
1453        if (nand_chip.select_chip)
1454                nand_chip.select_chip(mtd, 0);
1455}
1456
1457void nand_deselect(void)
1458{
1459        if (nand_chip.select_chip)
1460                nand_chip.select_chip(mtd, -1);
1461}
1462
1463#include "nand_spl_loaders.c"
1464
1465#else
1466
1467#ifndef CONFIG_SYS_NAND_BASE_LIST
1468#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1469#endif
1470static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1471static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1472
1473int atmel_nand_chip_init(int devnum, ulong base_addr)
1474{
1475        int ret;
1476        struct nand_chip *nand = &nand_chip[devnum];
1477        struct mtd_info *mtd = nand_to_mtd(nand);
1478
1479        nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1480
1481#ifdef CONFIG_NAND_ECC_BCH
1482        nand->ecc.mode = NAND_ECC_SOFT_BCH;
1483#else
1484        nand->ecc.mode = NAND_ECC_SOFT;
1485#endif
1486#ifdef CONFIG_SYS_NAND_DBW_16
1487        nand->options = NAND_BUSWIDTH_16;
1488#endif
1489        nand->cmd_ctrl = at91_nand_hwcontrol;
1490#ifdef CONFIG_SYS_NAND_READY_PIN
1491        nand->dev_ready = at91_nand_ready;
1492#endif
1493        nand->chip_delay = 75;
1494#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1495        nand->bbt_options |= NAND_BBT_USE_FLASH;
1496#endif
1497
1498        ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1499        if (ret)
1500                return ret;
1501
1502#ifdef CONFIG_ATMEL_NAND_HWECC
1503#ifdef CONFIG_ATMEL_NAND_HW_PMECC
1504        ret = atmel_pmecc_nand_init_params(nand, mtd);
1505#else
1506        ret = atmel_hwecc_nand_init_param(nand, mtd);
1507#endif
1508        if (ret)
1509                return ret;
1510#endif
1511
1512        ret = nand_scan_tail(mtd);
1513        if (!ret)
1514                nand_register(devnum, mtd);
1515
1516        return ret;
1517}
1518
1519void board_nand_init(void)
1520{
1521        int i;
1522        for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1523                if (atmel_nand_chip_init(i, base_addr[i]))
1524                        log_err("atmel_nand: Fail to initialize #%d chip", i);
1525}
1526#endif /* CONFIG_SPL_BUILD */
1527