uboot/drivers/mtd/nand/raw/omap_gpmc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
   4 * Rohit Choraria <rohitkc@ti.com>
   5 */
   6
   7#include <common.h>
   8#include <log.h>
   9#include <asm/io.h>
  10#include <linux/errno.h>
  11#include <asm/arch/mem.h>
  12#include <linux/mtd/omap_gpmc.h>
  13#include <linux/mtd/nand_ecc.h>
  14#include <linux/mtd/rawnand.h>
  15#include <linux/bch.h>
  16#include <linux/compiler.h>
  17#include <nand.h>
  18#include <linux/mtd/omap_elm.h>
  19
  20#define BADBLOCK_MARKER_LENGTH  2
  21#define SECTOR_BYTES            512
  22#define ECCCLEAR                (0x1 << 8)
  23#define ECCRESULTREG1           (0x1 << 0)
  24/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
  25#define BCH4_BIT_PAD            4
  26
  27#ifdef CONFIG_BCH
  28static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
  29                                0x97, 0x79, 0xe5, 0x24, 0xb5};
  30#endif
  31static uint8_t cs_next;
  32static __maybe_unused struct nand_ecclayout omap_ecclayout;
  33
  34#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
  35static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
  36        { CONFIG_NAND_OMAP_GPMC_WSCFG };
  37#else
  38/* wscfg is preset to zero since its a static variable */
  39static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
  40#endif
  41
  42/*
  43 * Driver configurations
  44 */
  45struct omap_nand_info {
  46        struct bch_control *control;
  47        enum omap_ecc ecc_scheme;
  48        uint8_t cs;
  49        uint8_t ws;             /* wait status pin (0,1) */
  50};
  51
  52/* We are wasting a bit of memory but al least we are safe */
  53static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
  54
  55/*
  56 * omap_nand_hwcontrol - Set the address pointers corretly for the
  57 *                      following address/data/command operation
  58 */
  59static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
  60                                uint32_t ctrl)
  61{
  62        register struct nand_chip *this = mtd_to_nand(mtd);
  63        struct omap_nand_info *info = nand_get_controller_data(this);
  64        int cs = info->cs;
  65
  66        /*
  67         * Point the IO_ADDR to DATA and ADDRESS registers instead
  68         * of chip address
  69         */
  70        switch (ctrl) {
  71        case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
  72                this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
  73                break;
  74        case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
  75                this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
  76                break;
  77        case NAND_CTRL_CHANGE | NAND_NCE:
  78                this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
  79                break;
  80        }
  81
  82        if (cmd != NAND_CMD_NONE)
  83                writeb(cmd, this->IO_ADDR_W);
  84}
  85
  86/* Check wait pin as dev ready indicator */
  87static int omap_dev_ready(struct mtd_info *mtd)
  88{
  89        register struct nand_chip *this = mtd_to_nand(mtd);
  90        struct omap_nand_info *info = nand_get_controller_data(this);
  91        return gpmc_cfg->status & (1 << (8 + info->ws));
  92}
  93
  94/*
  95 * gen_true_ecc - This function will generate true ECC value, which
  96 * can be used when correcting data read from NAND flash memory core
  97 *
  98 * @ecc_buf:    buffer to store ecc code
  99 *
 100 * @return:     re-formatted ECC value
 101 */
 102static uint32_t gen_true_ecc(uint8_t *ecc_buf)
 103{
 104        return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
 105                ((ecc_buf[2] & 0x0F) << 8);
 106}
 107
 108/*
 109 * omap_correct_data - Compares the ecc read from nand spare area with ECC
 110 * registers values and corrects one bit error if it has occurred
 111 * Further details can be had from OMAP TRM and the following selected links:
 112 * http://en.wikipedia.org/wiki/Hamming_code
 113 * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
 114 *
 115 * @mtd:                 MTD device structure
 116 * @dat:                 page data
 117 * @read_ecc:            ecc read from nand flash
 118 * @calc_ecc:            ecc read from ECC registers
 119 *
 120 * @return 0 if data is OK or corrected, else returns -1
 121 */
 122static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
 123                                uint8_t *read_ecc, uint8_t *calc_ecc)
 124{
 125        uint32_t orig_ecc, new_ecc, res, hm;
 126        uint16_t parity_bits, byte;
 127        uint8_t bit;
 128
 129        /* Regenerate the orginal ECC */
 130        orig_ecc = gen_true_ecc(read_ecc);
 131        new_ecc = gen_true_ecc(calc_ecc);
 132        /* Get the XOR of real ecc */
 133        res = orig_ecc ^ new_ecc;
 134        if (res) {
 135                /* Get the hamming width */
 136                hm = hweight32(res);
 137                /* Single bit errors can be corrected! */
 138                if (hm == 12) {
 139                        /* Correctable data! */
 140                        parity_bits = res >> 16;
 141                        bit = (parity_bits & 0x7);
 142                        byte = (parity_bits >> 3) & 0x1FF;
 143                        /* Flip the bit to correct */
 144                        dat[byte] ^= (0x1 << bit);
 145                } else if (hm == 1) {
 146                        printf("Error: Ecc is wrong\n");
 147                        /* ECC itself is corrupted */
 148                        return 2;
 149                } else {
 150                        /*
 151                         * hm distance != parity pairs OR one, could mean 2 bit
 152                         * error OR potentially be on a blank page..
 153                         * orig_ecc: contains spare area data from nand flash.
 154                         * new_ecc: generated ecc while reading data area.
 155                         * Note: if the ecc = 0, all data bits from which it was
 156                         * generated are 0xFF.
 157                         * The 3 byte(24 bits) ecc is generated per 512byte
 158                         * chunk of a page. If orig_ecc(from spare area)
 159                         * is 0xFF && new_ecc(computed now from data area)=0x0,
 160                         * this means that data area is 0xFF and spare area is
 161                         * 0xFF. A sure sign of a erased page!
 162                         */
 163                        if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
 164                                return 0;
 165                        printf("Error: Bad compare! failed\n");
 166                        /* detected 2 bit error */
 167                        return -EBADMSG;
 168                }
 169        }
 170        return 0;
 171}
 172
 173/*
 174 * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
 175 * @mtd:        MTD device structure
 176 * @mode:       Read/Write mode
 177 */
 178__maybe_unused
 179static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
 180{
 181        struct nand_chip        *nand   = mtd_to_nand(mtd);
 182        struct omap_nand_info   *info   = nand_get_controller_data(nand);
 183        unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
 184        unsigned int ecc_algo = 0;
 185        unsigned int bch_type = 0;
 186        unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
 187        u32 ecc_size_config_val = 0;
 188        u32 ecc_config_val = 0;
 189        int cs = info->cs;
 190
 191        /* configure GPMC for specific ecc-scheme */
 192        switch (info->ecc_scheme) {
 193        case OMAP_ECC_HAM1_CODE_SW:
 194                return;
 195        case OMAP_ECC_HAM1_CODE_HW:
 196                ecc_algo = 0x0;
 197                bch_type = 0x0;
 198                bch_wrapmode = 0x00;
 199                eccsize0 = 0xFF;
 200                eccsize1 = 0xFF;
 201                break;
 202        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 203        case OMAP_ECC_BCH8_CODE_HW:
 204                ecc_algo = 0x1;
 205                bch_type = 0x1;
 206                if (mode == NAND_ECC_WRITE) {
 207                        bch_wrapmode = 0x01;
 208                        eccsize0 = 0;  /* extra bits in nibbles per sector */
 209                        eccsize1 = 28; /* OOB bits in nibbles per sector */
 210                } else {
 211                        bch_wrapmode = 0x01;
 212                        eccsize0 = 26; /* ECC bits in nibbles per sector */
 213                        eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
 214                }
 215                break;
 216        case OMAP_ECC_BCH16_CODE_HW:
 217                ecc_algo = 0x1;
 218                bch_type = 0x2;
 219                if (mode == NAND_ECC_WRITE) {
 220                        bch_wrapmode = 0x01;
 221                        eccsize0 = 0;  /* extra bits in nibbles per sector */
 222                        eccsize1 = 52; /* OOB bits in nibbles per sector */
 223                } else {
 224                        bch_wrapmode = 0x01;
 225                        eccsize0 = 52; /* ECC bits in nibbles per sector */
 226                        eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
 227                }
 228                break;
 229        default:
 230                return;
 231        }
 232        /* Clear ecc and enable bits */
 233        writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
 234        /* Configure ecc size for BCH */
 235        ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
 236        writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
 237
 238        /* Configure device details for BCH engine */
 239        ecc_config_val = ((ecc_algo << 16)      | /* HAM1 | BCHx */
 240                        (bch_type << 12)        | /* BCH4/BCH8/BCH16 */
 241                        (bch_wrapmode << 8)     | /* wrap mode */
 242                        (dev_width << 7)        | /* bus width */
 243                        (0x0 << 4)              | /* number of sectors */
 244                        (cs <<  1)              | /* ECC CS */
 245                        (0x1));                   /* enable ECC */
 246        writel(ecc_config_val, &gpmc_cfg->ecc_config);
 247}
 248
 249/*
 250 *  omap_calculate_ecc - Read ECC result
 251 *  @mtd:       MTD structure
 252 *  @dat:       unused
 253 *  @ecc_code:  ecc_code buffer
 254 *  Using noninverted ECC can be considered ugly since writing a blank
 255 *  page ie. padding will clear the ECC bytes. This is no problem as
 256 *  long nobody is trying to write data on the seemingly unused page.
 257 *  Reading an erased page will produce an ECC mismatch between
 258 *  generated and read ECC bytes that has to be dealt with separately.
 259 *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
 260 *  is used, the result of read will be 0x0 while the ECC offsets of the
 261 *  spare area will be 0xFF which will result in an ECC mismatch.
 262 */
 263static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
 264                                uint8_t *ecc_code)
 265{
 266        struct nand_chip *chip = mtd_to_nand(mtd);
 267        struct omap_nand_info *info = nand_get_controller_data(chip);
 268        const uint32_t *ptr;
 269        uint32_t val = 0;
 270        int8_t i = 0, j;
 271
 272        switch (info->ecc_scheme) {
 273        case OMAP_ECC_HAM1_CODE_HW:
 274                val = readl(&gpmc_cfg->ecc1_result);
 275                ecc_code[0] = val & 0xFF;
 276                ecc_code[1] = (val >> 16) & 0xFF;
 277                ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
 278                break;
 279#ifdef CONFIG_BCH
 280        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 281#endif
 282        case OMAP_ECC_BCH8_CODE_HW:
 283                ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
 284                val = readl(ptr);
 285                ecc_code[i++] = (val >>  0) & 0xFF;
 286                ptr--;
 287                for (j = 0; j < 3; j++) {
 288                        val = readl(ptr);
 289                        ecc_code[i++] = (val >> 24) & 0xFF;
 290                        ecc_code[i++] = (val >> 16) & 0xFF;
 291                        ecc_code[i++] = (val >>  8) & 0xFF;
 292                        ecc_code[i++] = (val >>  0) & 0xFF;
 293                        ptr--;
 294                }
 295                break;
 296        case OMAP_ECC_BCH16_CODE_HW:
 297                val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
 298                ecc_code[i++] = (val >>  8) & 0xFF;
 299                ecc_code[i++] = (val >>  0) & 0xFF;
 300                val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
 301                ecc_code[i++] = (val >> 24) & 0xFF;
 302                ecc_code[i++] = (val >> 16) & 0xFF;
 303                ecc_code[i++] = (val >>  8) & 0xFF;
 304                ecc_code[i++] = (val >>  0) & 0xFF;
 305                val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
 306                ecc_code[i++] = (val >> 24) & 0xFF;
 307                ecc_code[i++] = (val >> 16) & 0xFF;
 308                ecc_code[i++] = (val >>  8) & 0xFF;
 309                ecc_code[i++] = (val >>  0) & 0xFF;
 310                for (j = 3; j >= 0; j--) {
 311                        val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
 312                                                                        );
 313                        ecc_code[i++] = (val >> 24) & 0xFF;
 314                        ecc_code[i++] = (val >> 16) & 0xFF;
 315                        ecc_code[i++] = (val >>  8) & 0xFF;
 316                        ecc_code[i++] = (val >>  0) & 0xFF;
 317                }
 318                break;
 319        default:
 320                return -EINVAL;
 321        }
 322        /* ECC scheme specific syndrome customizations */
 323        switch (info->ecc_scheme) {
 324        case OMAP_ECC_HAM1_CODE_HW:
 325                break;
 326#ifdef CONFIG_BCH
 327        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 328
 329                for (i = 0; i < chip->ecc.bytes; i++)
 330                        *(ecc_code + i) = *(ecc_code + i) ^
 331                                                bch8_polynomial[i];
 332                break;
 333#endif
 334        case OMAP_ECC_BCH8_CODE_HW:
 335                ecc_code[chip->ecc.bytes - 1] = 0x00;
 336                break;
 337        case OMAP_ECC_BCH16_CODE_HW:
 338                break;
 339        default:
 340                return -EINVAL;
 341        }
 342        return 0;
 343}
 344
 345#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
 346
 347#define PREFETCH_CONFIG1_CS_SHIFT       24
 348#define PREFETCH_FIFOTHRESHOLD_MAX      0x40
 349#define PREFETCH_FIFOTHRESHOLD(val)     ((val) << 8)
 350#define PREFETCH_STATUS_COUNT(val)      (val & 0x00003fff)
 351#define PREFETCH_STATUS_FIFO_CNT(val)   ((val >> 24) & 0x7F)
 352#define ENABLE_PREFETCH                 (1 << 7)
 353
 354/**
 355 * omap_prefetch_enable - configures and starts prefetch transfer
 356 * @fifo_th: fifo threshold to be used for read/ write
 357 * @count: number of bytes to be transferred
 358 * @is_write: prefetch read(0) or write post(1) mode
 359 * @cs: chip select to use
 360 */
 361static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
 362{
 363        uint32_t val;
 364
 365        if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
 366                return -EINVAL;
 367
 368        if (readl(&gpmc_cfg->prefetch_control))
 369                return -EBUSY;
 370
 371        /* Set the amount of bytes to be prefetched */
 372        writel(count, &gpmc_cfg->prefetch_config2);
 373
 374        val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
 375                PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
 376        writel(val, &gpmc_cfg->prefetch_config1);
 377
 378        /*  Start the prefetch engine */
 379        writel(1, &gpmc_cfg->prefetch_control);
 380
 381        return 0;
 382}
 383
 384/**
 385 * omap_prefetch_reset - disables and stops the prefetch engine
 386 */
 387static void omap_prefetch_reset(void)
 388{
 389        writel(0, &gpmc_cfg->prefetch_control);
 390        writel(0, &gpmc_cfg->prefetch_config1);
 391}
 392
 393static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
 394{
 395        int ret;
 396        uint32_t cnt;
 397        struct omap_nand_info *info = nand_get_controller_data(chip);
 398
 399        ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
 400        if (ret < 0)
 401                return ret;
 402
 403        do {
 404                int i;
 405
 406                cnt = readl(&gpmc_cfg->prefetch_status);
 407                cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
 408
 409                for (i = 0; i < cnt / 4; i++) {
 410                        *buf++ = readl(CONFIG_SYS_NAND_BASE);
 411                        len -= 4;
 412                }
 413        } while (len);
 414
 415        omap_prefetch_reset();
 416
 417        return 0;
 418}
 419
 420static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
 421{
 422        struct nand_chip *chip = mtd_to_nand(mtd);
 423
 424        if (chip->options & NAND_BUSWIDTH_16)
 425                nand_read_buf16(mtd, buf, len);
 426        else
 427                nand_read_buf(mtd, buf, len);
 428}
 429
 430static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
 431{
 432        int ret;
 433        uint32_t head, tail;
 434        struct nand_chip *chip = mtd_to_nand(mtd);
 435
 436        /*
 437         * If the destination buffer is unaligned, start with reading
 438         * the overlap byte-wise.
 439         */
 440        head = ((uint32_t) buf) % 4;
 441        if (head) {
 442                omap_nand_read(mtd, buf, head);
 443                buf += head;
 444                len -= head;
 445        }
 446
 447        /*
 448         * Only transfer multiples of 4 bytes in a pre-fetched fashion.
 449         * If there's a residue, care for it byte-wise afterwards.
 450         */
 451        tail = len % 4;
 452
 453        ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
 454        if (ret < 0) {
 455                /* fallback in case the prefetch engine is busy */
 456                omap_nand_read(mtd, buf, len);
 457        } else if (tail) {
 458                buf += len - tail;
 459                omap_nand_read(mtd, buf, tail);
 460        }
 461}
 462#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
 463
 464#ifdef CONFIG_NAND_OMAP_ELM
 465/*
 466 * omap_reverse_list - re-orders list elements in reverse order [internal]
 467 * @list:       pointer to start of list
 468 * @length:     length of list
 469*/
 470static void omap_reverse_list(u8 *list, unsigned int length)
 471{
 472        unsigned int i, j;
 473        unsigned int half_length = length / 2;
 474        u8 tmp;
 475        for (i = 0, j = length - 1; i < half_length; i++, j--) {
 476                tmp = list[i];
 477                list[i] = list[j];
 478                list[j] = tmp;
 479        }
 480}
 481
 482/*
 483 * omap_correct_data_bch - Compares the ecc read from nand spare area
 484 * with ECC registers values and corrects one bit error if it has occurred
 485 *
 486 * @mtd:        MTD device structure
 487 * @dat:        page data
 488 * @read_ecc:   ecc read from nand flash (ignored)
 489 * @calc_ecc:   ecc read from ECC registers
 490 *
 491 * @return 0 if data is OK or corrected, else returns -1
 492 */
 493static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
 494                                uint8_t *read_ecc, uint8_t *calc_ecc)
 495{
 496        struct nand_chip *chip = mtd_to_nand(mtd);
 497        struct omap_nand_info *info = nand_get_controller_data(chip);
 498        struct nand_ecc_ctrl *ecc = &chip->ecc;
 499        uint32_t error_count = 0, error_max;
 500        uint32_t error_loc[ELM_MAX_ERROR_COUNT];
 501        enum bch_level bch_type;
 502        uint32_t i, ecc_flag = 0;
 503        uint8_t count;
 504        uint32_t byte_pos, bit_pos;
 505        int err = 0;
 506
 507        /* check calculated ecc */
 508        for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
 509                if (calc_ecc[i] != 0x00)
 510                        ecc_flag = 1;
 511        }
 512        if (!ecc_flag)
 513                return 0;
 514
 515        /* check for whether its a erased-page */
 516        ecc_flag = 0;
 517        for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
 518                if (read_ecc[i] != 0xff)
 519                        ecc_flag = 1;
 520        }
 521        if (!ecc_flag)
 522                return 0;
 523
 524        /*
 525         * while reading ECC result we read it in big endian.
 526         * Hence while loading to ELM we have rotate to get the right endian.
 527         */
 528        switch (info->ecc_scheme) {
 529        case OMAP_ECC_BCH8_CODE_HW:
 530                bch_type = BCH_8_BIT;
 531                omap_reverse_list(calc_ecc, ecc->bytes - 1);
 532                break;
 533        case OMAP_ECC_BCH16_CODE_HW:
 534                bch_type = BCH_16_BIT;
 535                omap_reverse_list(calc_ecc, ecc->bytes);
 536                break;
 537        default:
 538                return -EINVAL;
 539        }
 540        /* use elm module to check for errors */
 541        elm_config(bch_type);
 542        err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
 543        if (err)
 544                return err;
 545
 546        /* correct bch error */
 547        for (count = 0; count < error_count; count++) {
 548                switch (info->ecc_scheme) {
 549                case OMAP_ECC_BCH8_CODE_HW:
 550                        /* 14th byte in ECC is reserved to match ROM layout */
 551                        error_max = SECTOR_BYTES + (ecc->bytes - 1);
 552                        break;
 553                case OMAP_ECC_BCH16_CODE_HW:
 554                        error_max = SECTOR_BYTES + ecc->bytes;
 555                        break;
 556                default:
 557                        return -EINVAL;
 558                }
 559                byte_pos = error_max - (error_loc[count] / 8) - 1;
 560                bit_pos  = error_loc[count] % 8;
 561                if (byte_pos < SECTOR_BYTES) {
 562                        dat[byte_pos] ^= 1 << bit_pos;
 563                        debug("nand: bit-flip corrected @data=%d\n", byte_pos);
 564                } else if (byte_pos < error_max) {
 565                        read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
 566                        debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
 567                                                                SECTOR_BYTES);
 568                } else {
 569                        err = -EBADMSG;
 570                        printf("nand: error: invalid bit-flip location\n");
 571                }
 572        }
 573        return (err) ? err : error_count;
 574}
 575
 576/**
 577 * omap_read_page_bch - hardware ecc based page read function
 578 * @mtd:        mtd info structure
 579 * @chip:       nand chip info structure
 580 * @buf:        buffer to store read data
 581 * @oob_required: caller expects OOB data read to chip->oob_poi
 582 * @page:       page number to read
 583 *
 584 */
 585static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
 586                                uint8_t *buf, int oob_required, int page)
 587{
 588        int i, eccsize = chip->ecc.size;
 589        int eccbytes = chip->ecc.bytes;
 590        int eccsteps = chip->ecc.steps;
 591        uint8_t *p = buf;
 592        uint8_t *ecc_calc = chip->buffers->ecccalc;
 593        uint8_t *ecc_code = chip->buffers->ecccode;
 594        uint32_t *eccpos = chip->ecc.layout->eccpos;
 595        uint8_t *oob = chip->oob_poi;
 596        uint32_t data_pos;
 597        uint32_t oob_pos;
 598
 599        data_pos = 0;
 600        /* oob area start */
 601        oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
 602        oob += chip->ecc.layout->eccpos[0];
 603
 604        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
 605                                oob += eccbytes) {
 606                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 607                /* read data */
 608                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
 609                chip->read_buf(mtd, p, eccsize);
 610
 611                /* read respective ecc from oob area */
 612                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
 613                chip->read_buf(mtd, oob, eccbytes);
 614                /* read syndrome */
 615                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 616
 617                data_pos += eccsize;
 618                oob_pos += eccbytes;
 619        }
 620
 621        for (i = 0; i < chip->ecc.total; i++)
 622                ecc_code[i] = chip->oob_poi[eccpos[i]];
 623
 624        eccsteps = chip->ecc.steps;
 625        p = buf;
 626
 627        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 628                int stat;
 629
 630                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 631                if (stat < 0)
 632                        mtd->ecc_stats.failed++;
 633                else
 634                        mtd->ecc_stats.corrected += stat;
 635        }
 636        return 0;
 637}
 638#endif /* CONFIG_NAND_OMAP_ELM */
 639
 640/*
 641 * OMAP3 BCH8 support (with BCH library)
 642 */
 643#ifdef CONFIG_BCH
 644/**
 645 * omap_correct_data_bch_sw - Decode received data and correct errors
 646 * @mtd: MTD device structure
 647 * @data: page data
 648 * @read_ecc: ecc read from nand flash
 649 * @calc_ecc: ecc read from HW ECC registers
 650 */
 651static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
 652                                 u_char *read_ecc, u_char *calc_ecc)
 653{
 654        int i, count;
 655        /* cannot correct more than 8 errors */
 656        unsigned int errloc[8];
 657        struct nand_chip *chip = mtd_to_nand(mtd);
 658        struct omap_nand_info *info = nand_get_controller_data(chip);
 659
 660        count = decode_bch(info->control, NULL, SECTOR_BYTES,
 661                                read_ecc, calc_ecc, NULL, errloc);
 662        if (count > 0) {
 663                /* correct errors */
 664                for (i = 0; i < count; i++) {
 665                        /* correct data only, not ecc bytes */
 666                        if (errloc[i] < SECTOR_BYTES << 3)
 667                                data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
 668                        debug("corrected bitflip %u\n", errloc[i]);
 669#ifdef DEBUG
 670                        puts("read_ecc: ");
 671                        /*
 672                         * BCH8 have 13 bytes of ECC; BCH4 needs adoption
 673                         * here!
 674                         */
 675                        for (i = 0; i < 13; i++)
 676                                printf("%02x ", read_ecc[i]);
 677                        puts("\n");
 678                        puts("calc_ecc: ");
 679                        for (i = 0; i < 13; i++)
 680                                printf("%02x ", calc_ecc[i]);
 681                        puts("\n");
 682#endif
 683                }
 684        } else if (count < 0) {
 685                puts("ecc unrecoverable error\n");
 686        }
 687        return count;
 688}
 689
 690/**
 691 * omap_free_bch - Release BCH ecc resources
 692 * @mtd: MTD device structure
 693 */
 694static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
 695{
 696        struct nand_chip *chip = mtd_to_nand(mtd);
 697        struct omap_nand_info *info = nand_get_controller_data(chip);
 698
 699        if (info->control) {
 700                free_bch(info->control);
 701                info->control = NULL;
 702        }
 703}
 704#endif /* CONFIG_BCH */
 705
 706/**
 707 * omap_select_ecc_scheme - configures driver for particular ecc-scheme
 708 * @nand: NAND chip device structure
 709 * @ecc_scheme: ecc scheme to configure
 710 * @pagesize: number of main-area bytes per page of NAND device
 711 * @oobsize: number of OOB/spare bytes per page of NAND device
 712 */
 713static int omap_select_ecc_scheme(struct nand_chip *nand,
 714        enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
 715        struct omap_nand_info   *info           = nand_get_controller_data(nand);
 716        struct nand_ecclayout   *ecclayout      = &omap_ecclayout;
 717        int eccsteps = pagesize / SECTOR_BYTES;
 718        int i;
 719
 720        switch (ecc_scheme) {
 721        case OMAP_ECC_HAM1_CODE_SW:
 722                debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
 723                /* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
 724                 * initialized in nand_scan_tail(), so just set ecc.mode */
 725                info->control           = NULL;
 726                nand->ecc.mode          = NAND_ECC_SOFT;
 727                nand->ecc.layout        = NULL;
 728                nand->ecc.size          = 0;
 729                break;
 730
 731        case OMAP_ECC_HAM1_CODE_HW:
 732                debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
 733                /* check ecc-scheme requirements before updating ecc info */
 734                if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 735                        printf("nand: error: insufficient OOB: require=%d\n", (
 736                                (3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 737                        return -EINVAL;
 738                }
 739                info->control           = NULL;
 740                /* populate ecc specific fields */
 741                memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 742                nand->ecc.mode          = NAND_ECC_HW;
 743                nand->ecc.strength      = 1;
 744                nand->ecc.size          = SECTOR_BYTES;
 745                nand->ecc.bytes         = 3;
 746                nand->ecc.hwctl         = omap_enable_hwecc;
 747                nand->ecc.correct       = omap_correct_data;
 748                nand->ecc.calculate     = omap_calculate_ecc;
 749                /* define ecc-layout */
 750                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 751                for (i = 0; i < ecclayout->eccbytes; i++) {
 752                        if (nand->options & NAND_BUSWIDTH_16)
 753                                ecclayout->eccpos[i] = i + 2;
 754                        else
 755                                ecclayout->eccpos[i] = i + 1;
 756                }
 757                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 758                ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 759                                                BADBLOCK_MARKER_LENGTH;
 760                break;
 761
 762        case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
 763#ifdef CONFIG_BCH
 764                debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
 765                /* check ecc-scheme requirements before updating ecc info */
 766                if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 767                        printf("nand: error: insufficient OOB: require=%d\n", (
 768                                (13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 769                        return -EINVAL;
 770                }
 771                /* check if BCH S/W library can be used for error detection */
 772                info->control = init_bch(13, 8, 0x201b);
 773                if (!info->control) {
 774                        printf("nand: error: could not init_bch()\n");
 775                        return -ENODEV;
 776                }
 777                /* populate ecc specific fields */
 778                memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 779                nand->ecc.mode          = NAND_ECC_HW;
 780                nand->ecc.strength      = 8;
 781                nand->ecc.size          = SECTOR_BYTES;
 782                nand->ecc.bytes         = 13;
 783                nand->ecc.hwctl         = omap_enable_hwecc;
 784                nand->ecc.correct       = omap_correct_data_bch_sw;
 785                nand->ecc.calculate     = omap_calculate_ecc;
 786                /* define ecc-layout */
 787                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 788                ecclayout->eccpos[0]    = BADBLOCK_MARKER_LENGTH;
 789                for (i = 1; i < ecclayout->eccbytes; i++) {
 790                        if (i % nand->ecc.bytes)
 791                                ecclayout->eccpos[i] =
 792                                                ecclayout->eccpos[i - 1] + 1;
 793                        else
 794                                ecclayout->eccpos[i] =
 795                                                ecclayout->eccpos[i - 1] + 2;
 796                }
 797                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 798                ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 799                                                BADBLOCK_MARKER_LENGTH;
 800                break;
 801#else
 802                printf("nand: error: CONFIG_BCH required for ECC\n");
 803                return -EINVAL;
 804#endif
 805
 806        case OMAP_ECC_BCH8_CODE_HW:
 807#ifdef CONFIG_NAND_OMAP_ELM
 808                debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
 809                /* check ecc-scheme requirements before updating ecc info */
 810                if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 811                        printf("nand: error: insufficient OOB: require=%d\n", (
 812                                (14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 813                        return -EINVAL;
 814                }
 815                /* intialize ELM for ECC error detection */
 816                elm_init();
 817                info->control           = NULL;
 818                /* populate ecc specific fields */
 819                memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
 820                nand->ecc.mode          = NAND_ECC_HW;
 821                nand->ecc.strength      = 8;
 822                nand->ecc.size          = SECTOR_BYTES;
 823                nand->ecc.bytes         = 14;
 824                nand->ecc.hwctl         = omap_enable_hwecc;
 825                nand->ecc.correct       = omap_correct_data_bch;
 826                nand->ecc.calculate     = omap_calculate_ecc;
 827                nand->ecc.read_page     = omap_read_page_bch;
 828                /* define ecc-layout */
 829                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 830                for (i = 0; i < ecclayout->eccbytes; i++)
 831                        ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
 832                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 833                ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
 834                                                BADBLOCK_MARKER_LENGTH;
 835                break;
 836#else
 837                printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
 838                return -EINVAL;
 839#endif
 840
 841        case OMAP_ECC_BCH16_CODE_HW:
 842#ifdef CONFIG_NAND_OMAP_ELM
 843                debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
 844                /* check ecc-scheme requirements before updating ecc info */
 845                if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
 846                        printf("nand: error: insufficient OOB: require=%d\n", (
 847                                (26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
 848                        return -EINVAL;
 849                }
 850                /* intialize ELM for ECC error detection */
 851                elm_init();
 852                /* populate ecc specific fields */
 853                nand->ecc.mode          = NAND_ECC_HW;
 854                nand->ecc.size          = SECTOR_BYTES;
 855                nand->ecc.bytes         = 26;
 856                nand->ecc.strength      = 16;
 857                nand->ecc.hwctl         = omap_enable_hwecc;
 858                nand->ecc.correct       = omap_correct_data_bch;
 859                nand->ecc.calculate     = omap_calculate_ecc;
 860                nand->ecc.read_page     = omap_read_page_bch;
 861                /* define ecc-layout */
 862                ecclayout->eccbytes     = nand->ecc.bytes * eccsteps;
 863                for (i = 0; i < ecclayout->eccbytes; i++)
 864                        ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
 865                ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
 866                ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
 867                                                BADBLOCK_MARKER_LENGTH;
 868                break;
 869#else
 870                printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
 871                return -EINVAL;
 872#endif
 873        default:
 874                debug("nand: error: ecc scheme not enabled or supported\n");
 875                return -EINVAL;
 876        }
 877
 878        /* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
 879        if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
 880                nand->ecc.layout = ecclayout;
 881
 882        info->ecc_scheme = ecc_scheme;
 883        return 0;
 884}
 885
 886#ifndef CONFIG_SPL_BUILD
 887/*
 888 * omap_nand_switch_ecc - switch the ECC operation between different engines
 889 * (h/w and s/w) and different algorithms (hamming and BCHx)
 890 *
 891 * @hardware            - true if one of the HW engines should be used
 892 * @eccstrength         - the number of bits that could be corrected
 893 *                        (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
 894 */
 895int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
 896{
 897        struct nand_chip *nand;
 898        struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
 899        int err = 0;
 900
 901        if (!mtd) {
 902                printf("nand: error: no NAND devices found\n");
 903                return -ENODEV;
 904        }
 905
 906        nand = mtd_to_nand(mtd);
 907        nand->options |= NAND_OWN_BUFFERS;
 908        nand->options &= ~NAND_SUBPAGE_READ;
 909        /* Setup the ecc configurations again */
 910        if (hardware) {
 911                if (eccstrength == 1) {
 912                        err = omap_select_ecc_scheme(nand,
 913                                        OMAP_ECC_HAM1_CODE_HW,
 914                                        mtd->writesize, mtd->oobsize);
 915                } else if (eccstrength == 8) {
 916                        err = omap_select_ecc_scheme(nand,
 917                                        OMAP_ECC_BCH8_CODE_HW,
 918                                        mtd->writesize, mtd->oobsize);
 919                } else if (eccstrength == 16) {
 920                        err = omap_select_ecc_scheme(nand,
 921                                        OMAP_ECC_BCH16_CODE_HW,
 922                                        mtd->writesize, mtd->oobsize);
 923                } else {
 924                        printf("nand: error: unsupported ECC scheme\n");
 925                        return -EINVAL;
 926                }
 927        } else {
 928                if (eccstrength == 1) {
 929                        err = omap_select_ecc_scheme(nand,
 930                                        OMAP_ECC_HAM1_CODE_SW,
 931                                        mtd->writesize, mtd->oobsize);
 932                } else if (eccstrength == 8) {
 933                        err = omap_select_ecc_scheme(nand,
 934                                        OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
 935                                        mtd->writesize, mtd->oobsize);
 936                } else {
 937                        printf("nand: error: unsupported ECC scheme\n");
 938                        return -EINVAL;
 939                }
 940        }
 941
 942        /* Update NAND handling after ECC mode switch */
 943        if (!err)
 944                err = nand_scan_tail(mtd);
 945        return err;
 946}
 947#endif /* CONFIG_SPL_BUILD */
 948
 949/*
 950 * Board-specific NAND initialization. The following members of the
 951 * argument are board-specific:
 952 * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
 953 * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
 954 * - cmd_ctrl: hardwarespecific function for accesing control-lines
 955 * - waitfunc: hardwarespecific function for accesing device ready/busy line
 956 * - ecc.hwctl: function to enable (reset) hardware ecc generator
 957 * - ecc.mode: mode of ecc, see defines
 958 * - chip_delay: chip dependent delay for transfering data from array to
 959 *   read regs (tR)
 960 * - options: various chip options. They can partly be set to inform
 961 *   nand_scan about special functionality. See the defines for further
 962 *   explanation
 963 */
 964int board_nand_init(struct nand_chip *nand)
 965{
 966        int32_t gpmc_config = 0;
 967        int cs = cs_next++;
 968        int err = 0;
 969        /*
 970         * xloader/Uboot's gpmc configuration would have configured GPMC for
 971         * nand type of memory. The following logic scans and latches on to the
 972         * first CS with NAND type memory.
 973         * TBD: need to make this logic generic to handle multiple CS NAND
 974         * devices.
 975         */
 976        while (cs < GPMC_MAX_CS) {
 977                /* Check if NAND type is set */
 978                if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
 979                        /* Found it!! */
 980                        break;
 981                }
 982                cs++;
 983        }
 984        if (cs >= GPMC_MAX_CS) {
 985                printf("nand: error: Unable to find NAND settings in "
 986                        "GPMC Configuration - quitting\n");
 987                return -ENODEV;
 988        }
 989
 990        gpmc_config = readl(&gpmc_cfg->config);
 991        /* Disable Write protect */
 992        gpmc_config |= 0x10;
 993        writel(gpmc_config, &gpmc_cfg->config);
 994
 995        nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
 996        nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
 997        omap_nand_info[cs].control = NULL;
 998        omap_nand_info[cs].cs = cs;
 999        omap_nand_info[cs].ws = wscfg[cs];
1000        nand_set_controller_data(nand, &omap_nand_info[cs]);
1001        nand->cmd_ctrl  = omap_nand_hwcontrol;
1002        nand->options   |= NAND_NO_PADDING | NAND_CACHEPRG;
1003        nand->chip_delay = 100;
1004        nand->ecc.layout = &omap_ecclayout;
1005
1006        /* configure driver and controller based on NAND device bus-width */
1007        gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1008#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1009        nand->options |= NAND_BUSWIDTH_16;
1010        writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1011#else
1012        nand->options &= ~NAND_BUSWIDTH_16;
1013        writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1014#endif
1015        /* select ECC scheme */
1016#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1017        err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1018                        CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1019#else
1020        /* pagesize and oobsize are not required to configure sw ecc-scheme */
1021        err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1022                        0, 0);
1023#endif
1024        if (err)
1025                return err;
1026
1027#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1028        nand->read_buf = omap_nand_read_prefetch;
1029#else
1030        if (nand->options & NAND_BUSWIDTH_16)
1031                nand->read_buf = nand_read_buf16;
1032        else
1033                nand->read_buf = nand_read_buf;
1034#endif
1035
1036        nand->dev_ready = omap_dev_ready;
1037
1038        return 0;
1039}
1040