uboot/drivers/mtd/nand/raw/rockchip_nfc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Rockchip NAND Flash controller driver.
   4 * Copyright (C) 2021 Rockchip Inc.
   5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
   6 */
   7
   8#include <common.h>
   9#include <asm/io.h>
  10#include <clk.h>
  11#include <dm.h>
  12#include <dm/device_compat.h>
  13#include <dm/devres.h>
  14#include <fdtdec.h>
  15#include <inttypes.h>
  16#include <linux/delay.h>
  17#include <linux/dma-direction.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/io.h>
  20#include <linux/kernel.h>
  21#include <linux/mtd/mtd.h>
  22#include <linux/mtd/nand.h>
  23#include <linux/mtd/partitions.h>
  24#include <linux/mtd/rawnand.h>
  25#include <memalign.h>
  26#include <nand.h>
  27
  28/*
  29 * NFC Page Data Layout:
  30 *      1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
  31 *      1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
  32 *      ......
  33 * NAND Page Data Layout:
  34 *      1024 * n data + m Bytes oob
  35 * Original Bad Block Mask Location:
  36 *      First byte of oob(spare).
  37 * nand_chip->oob_poi data layout:
  38 *      4Bytes sys data + .... + 4Bytes sys data + ECC data.
  39 */
  40
  41/* NAND controller register definition */
  42#define NFC_READ                        (0)
  43#define NFC_WRITE                       (1)
  44
  45#define NFC_FMCTL                       (0x00)
  46#define   FMCTL_CE_SEL_M                0xFF
  47#define   FMCTL_CE_SEL(x)               (1 << (x))
  48#define   FMCTL_WP                      BIT(8)
  49#define   FMCTL_RDY                     BIT(9)
  50
  51#define NFC_FMWAIT                      (0x04)
  52#define   FLCTL_RST                     BIT(0)
  53#define   FLCTL_WR                      (1)     /* 0: read, 1: write */
  54#define   FLCTL_XFER_ST                 BIT(2)
  55#define   FLCTL_XFER_EN                 BIT(3)
  56#define   FLCTL_ACORRECT                BIT(10) /* Auto correct error bits. */
  57#define   FLCTL_XFER_READY              BIT(20)
  58#define   FLCTL_XFER_SECTOR             (22)
  59#define   FLCTL_TOG_FIX                 BIT(29)
  60
  61#define   BCHCTL_BANK_M                 (7 << 5)
  62#define   BCHCTL_BANK                   (5)
  63
  64#define   DMA_ST                        BIT(0)
  65#define   DMA_WR                        (1)     /* 0: write, 1: read */
  66#define   DMA_EN                        BIT(2)
  67#define   DMA_AHB_SIZE                  (3)     /* 0: 1, 1: 2, 2: 4 */
  68#define   DMA_BURST_SIZE                (6)     /* 0: 1, 3: 4, 5: 8, 7: 16 */
  69#define   DMA_INC_NUM                   (9)     /* 1 - 16 */
  70
  71#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
  72                (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
  73#define   INT_DMA                       BIT(0)
  74#define NFC_BANK                        (0x800)
  75#define NFC_BANK_STEP                   (0x100)
  76#define   BANK_DATA                     (0x00)
  77#define   BANK_ADDR                     (0x04)
  78#define   BANK_CMD                      (0x08)
  79#define NFC_SRAM0                       (0x1000)
  80#define NFC_SRAM1                       (0x1400)
  81#define NFC_SRAM_SIZE                   (0x400)
  82#define NFC_TIMEOUT_MS                  (500)
  83#define NFC_MAX_OOB_PER_STEP            128
  84#define NFC_MIN_OOB_PER_STEP            64
  85#define MAX_DATA_SIZE                   0xFFFC
  86#define MAX_ADDRESS_CYC                 6
  87#define NFC_ECC_MAX_MODES               4
  88#define NFC_RB_DELAY_US                 50
  89#define NFC_MAX_PAGE_SIZE               (16 * 1024)
  90#define NFC_MAX_OOB_SIZE                (16 * 128)
  91#define NFC_MAX_NSELS                   (8) /* Some Socs only have 1 or 2 CSs. */
  92#define NFC_SYS_DATA_SIZE               (4) /* 4 bytes sys data in oob pre 1024 data.*/
  93#define RK_DEFAULT_CLOCK_RATE           (150 * 1000 * 1000) /* 150 Mhz */
  94#define ACCTIMING(csrw, rwpw, rwcs)     ((csrw) << 12 | (rwpw) << 5 | (rwcs))
  95
  96enum nfc_type {
  97        NFC_V6,
  98        NFC_V8,
  99        NFC_V9,
 100};
 101
 102/**
 103 * struct rk_ecc_cnt_status: represent a ecc status data.
 104 * @err_flag_bit: error flag bit index at register.
 105 * @low: ECC count low bit index at register.
 106 * @low_mask: mask bit.
 107 * @low_bn: ECC count low bit number.
 108 * @high: ECC count high bit index at register.
 109 * @high_mask: mask bit
 110 */
 111struct ecc_cnt_status {
 112        u8 err_flag_bit;
 113        u8 low;
 114        u8 low_mask;
 115        u8 low_bn;
 116        u8 high;
 117        u8 high_mask;
 118};
 119
 120/**
 121 * @type: NFC version
 122 * @ecc_strengths: ECC strengths
 123 * @ecc_cfgs: ECC config values
 124 * @flctl_off: FLCTL register offset
 125 * @bchctl_off: BCHCTL register offset
 126 * @dma_data_buf_off: DMA_DATA_BUF register offset
 127 * @dma_oob_buf_off: DMA_OOB_BUF register offset
 128 * @dma_cfg_off: DMA_CFG register offset
 129 * @dma_st_off: DMA_ST register offset
 130 * @bch_st_off: BCG_ST register offset
 131 * @randmz_off: RANDMZ register offset
 132 * @int_en_off: interrupt enable register offset
 133 * @int_clr_off: interrupt clean register offset
 134 * @int_st_off: interrupt status register offset
 135 * @oob0_off: oob0 register offset
 136 * @oob1_off: oob1 register offset
 137 * @ecc0: represent ECC0 status data
 138 * @ecc1: represent ECC1 status data
 139 */
 140struct nfc_cfg {
 141        enum nfc_type type;
 142        u8 ecc_strengths[NFC_ECC_MAX_MODES];
 143        u32 ecc_cfgs[NFC_ECC_MAX_MODES];
 144        u32 flctl_off;
 145        u32 bchctl_off;
 146        u32 dma_cfg_off;
 147        u32 dma_data_buf_off;
 148        u32 dma_oob_buf_off;
 149        u32 dma_st_off;
 150        u32 bch_st_off;
 151        u32 randmz_off;
 152        u32 int_en_off;
 153        u32 int_clr_off;
 154        u32 int_st_off;
 155        u32 oob0_off;
 156        u32 oob1_off;
 157        struct ecc_cnt_status ecc0;
 158        struct ecc_cnt_status ecc1;
 159};
 160
 161struct rk_nfc_nand_chip {
 162        struct nand_chip chip;
 163
 164        u16 boot_blks;
 165        u16 metadata_size;
 166        u32 boot_ecc;
 167        u32 timing;
 168
 169        u8 nsels;
 170        u8 sels[0];
 171        /* Nothing after this field. */
 172};
 173
 174struct rk_nfc {
 175        struct nand_hw_control controller;
 176        const struct nfc_cfg *cfg;
 177        struct udevice *dev;
 178
 179        struct clk *nfc_clk;
 180        struct clk *ahb_clk;
 181        void __iomem *regs;
 182
 183        int selected_bank;
 184        u32 band_offset;
 185        u32 cur_ecc;
 186        u32 cur_timing;
 187
 188        u8 *page_buf;
 189        u32 *oob_buf;
 190
 191        unsigned long assigned_cs;
 192};
 193
 194static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
 195{
 196        return container_of(chip, struct rk_nfc_nand_chip, chip);
 197}
 198
 199static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
 200{
 201        return (u8 *)p + i * chip->ecc.size;
 202}
 203
 204static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
 205{
 206        u8 *poi;
 207
 208        poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
 209
 210        return poi;
 211}
 212
 213static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
 214{
 215        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 216        u8 *poi;
 217
 218        poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
 219
 220        return poi;
 221}
 222
 223static inline int rk_nfc_data_len(struct nand_chip *chip)
 224{
 225        return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
 226}
 227
 228static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
 229{
 230        struct rk_nfc *nfc = nand_get_controller_data(chip);
 231
 232        return nfc->page_buf + i * rk_nfc_data_len(chip);
 233}
 234
 235static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
 236{
 237        struct rk_nfc *nfc = nand_get_controller_data(chip);
 238
 239        return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
 240}
 241
 242static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
 243{
 244        struct rk_nfc *nfc = nand_get_controller_data(chip);
 245        u32 reg, i;
 246
 247        for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
 248                if (strength == nfc->cfg->ecc_strengths[i]) {
 249                        reg = nfc->cfg->ecc_cfgs[i];
 250                        break;
 251                }
 252        }
 253
 254        if (i >= NFC_ECC_MAX_MODES)
 255                return -EINVAL;
 256
 257        writel(reg, nfc->regs + nfc->cfg->bchctl_off);
 258
 259        /* Save chip ECC setting */
 260        nfc->cur_ecc = strength;
 261
 262        return 0;
 263}
 264
 265static void rk_nfc_select_chip(struct mtd_info *mtd, int cs)
 266{
 267        struct nand_chip *chip = mtd_to_nand(mtd);
 268        struct rk_nfc *nfc = nand_get_controller_data(chip);
 269        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 270        struct nand_ecc_ctrl *ecc = &chip->ecc;
 271        u32 val;
 272
 273        if (cs < 0) {
 274                nfc->selected_bank = -1;
 275                /* Deselect the currently selected target. */
 276                val = readl(nfc->regs + NFC_FMCTL);
 277                val &= ~FMCTL_CE_SEL_M;
 278                writel(val, nfc->regs + NFC_FMCTL);
 279                return;
 280        }
 281
 282        nfc->selected_bank = rknand->sels[cs];
 283        nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
 284
 285        val = readl(nfc->regs + NFC_FMCTL);
 286        val &= ~FMCTL_CE_SEL_M;
 287        val |= FMCTL_CE_SEL(nfc->selected_bank);
 288
 289        writel(val, nfc->regs + NFC_FMCTL);
 290
 291        /*
 292         * Compare current chip timing with selected chip timing and
 293         * change if needed.
 294         */
 295        if (nfc->cur_timing != rknand->timing) {
 296                writel(rknand->timing, nfc->regs + NFC_FMWAIT);
 297                nfc->cur_timing = rknand->timing;
 298        }
 299
 300        /*
 301         * Compare current chip ECC setting with selected chip ECC setting and
 302         * change if needed.
 303         */
 304        if (nfc->cur_ecc != ecc->strength)
 305                rk_nfc_hw_ecc_setup(chip, ecc->strength);
 306}
 307
 308static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
 309{
 310        u32 timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000;
 311        u32 time_start;
 312
 313        time_start = get_timer(0);
 314        do {
 315                if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY)
 316                        return 0;
 317        } while (get_timer(time_start) < timeout);
 318
 319        dev_err(nfc->dev, "wait for io ready timedout\n");
 320        return -ETIMEDOUT;
 321}
 322
 323static void rk_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 324{
 325        struct nand_chip *chip = mtd_to_nand(mtd);
 326        struct rk_nfc *nfc = nand_get_controller_data(chip);
 327        void __iomem *bank_base;
 328        int i = 0;
 329
 330        bank_base = nfc->regs + nfc->band_offset + BANK_DATA;
 331
 332        for (i = 0; i < len; i++)
 333                buf[i] = readl(bank_base);
 334}
 335
 336static void rk_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 337{
 338        struct nand_chip *chip = mtd_to_nand(mtd);
 339        struct rk_nfc *nfc = nand_get_controller_data(chip);
 340        void __iomem *bank_base;
 341        int i = 0;
 342
 343        bank_base = nfc->regs + nfc->band_offset + BANK_DATA;
 344
 345        for (i = 0; i < len; i++)
 346                writel(buf[i], bank_base);
 347}
 348
 349static void rk_nfc_cmd(struct mtd_info *mtd, int dat, unsigned int ctrl)
 350{
 351        struct nand_chip *chip = mtd_to_nand(mtd);
 352        struct rk_nfc *nfc = nand_get_controller_data(chip);
 353        void __iomem *bank_base;
 354
 355        bank_base = nfc->regs + nfc->band_offset;
 356
 357        if (ctrl & NAND_CTRL_CHANGE) {
 358                if (ctrl & NAND_ALE)
 359                        bank_base += BANK_ADDR;
 360                else if (ctrl & NAND_CLE)
 361                        bank_base += BANK_CMD;
 362                chip->IO_ADDR_W = bank_base;
 363        }
 364
 365        if (dat != NAND_CMD_NONE)
 366                writel(dat & 0xFF, chip->IO_ADDR_W);
 367}
 368
 369static uint8_t rockchip_nand_read_byte(struct mtd_info *mtd)
 370{
 371        uint8_t ret;
 372
 373        rk_nfc_read_buf(mtd, &ret, 1);
 374
 375        return ret;
 376}
 377
 378static int rockchip_nand_dev_ready(struct mtd_info *mtd)
 379{
 380        struct nand_chip *chip = mtd_to_nand(mtd);
 381        struct rk_nfc *nfc = nand_get_controller_data(chip);
 382
 383        if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY)
 384                return 1;
 385
 386        return 0;
 387}
 388
 389static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
 390                              dma_addr_t dma_data, dma_addr_t dma_oob)
 391{
 392        u32 dma_reg, fl_reg, bch_reg;
 393
 394        dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
 395              (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
 396
 397        fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
 398                 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
 399
 400        if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
 401                bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
 402                bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
 403                          (nfc->selected_bank << BCHCTL_BANK);
 404                writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
 405        }
 406
 407        writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
 408        writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
 409        writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
 410        writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
 411        fl_reg |= FLCTL_XFER_ST;
 412        writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
 413}
 414
 415static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
 416{
 417        unsigned long timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000;
 418        void __iomem *ptr = nfc->regs + nfc->cfg->flctl_off;
 419        u32 time_start;
 420
 421        time_start = get_timer(0);
 422
 423        do {
 424                if (readl(ptr) & FLCTL_XFER_READY)
 425                        return 0;
 426        } while (get_timer(time_start) < timeout);
 427
 428        dev_err(nfc->dev, "wait for io ready timedout\n");
 429        return -ETIMEDOUT;
 430}
 431
 432static int rk_nfc_write_page_raw(struct mtd_info *mtd,
 433                                 struct nand_chip *chip,
 434                                 const u8 *buf,
 435                                 int oob_required,
 436                                 int page)
 437{
 438        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 439        struct rk_nfc *nfc = nand_get_controller_data(chip);
 440        struct nand_ecc_ctrl *ecc = &chip->ecc;
 441        int i, pages_per_blk;
 442
 443        pages_per_blk = mtd->erasesize / mtd->writesize;
 444        if ((page < (pages_per_blk * rknand->boot_blks)) &&
 445            rknand->boot_ecc != ecc->strength) {
 446                /*
 447                 * There's currently no method to notify the MTD framework that
 448                 * a different ECC strength is in use for the boot blocks.
 449                 */
 450                return -EIO;
 451        }
 452
 453        if (!buf)
 454                memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
 455
 456        for (i = 0; i < ecc->steps; i++) {
 457                /* Copy data to the NFC buffer. */
 458                if (buf)
 459                        memcpy(rk_nfc_data_ptr(chip, i),
 460                               rk_nfc_buf_to_data_ptr(chip, buf, i),
 461                               ecc->size);
 462                /*
 463                 * The first four bytes of OOB are reserved for the
 464                 * boot ROM. In some debugging cases, such as with a
 465                 * read, erase and write back test these 4 bytes stored
 466                 * in OOB also need to be written back.
 467                 *
 468                 * The function nand_block_bad detects bad blocks like:
 469                 *
 470                 * bad = chip->oob_poi[chip->badblockpos];
 471                 *
 472                 * chip->badblockpos == 0 for a large page NAND Flash,
 473                 * so chip->oob_poi[0] is the bad block mask (BBM).
 474                 *
 475                 * The OOB data layout on the NFC is:
 476                 *
 477                 *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
 478                 *
 479                 * or
 480                 *
 481                 *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
 482                 *
 483                 * The code here just swaps the first 4 bytes with the last
 484                 * 4 bytes without losing any data.
 485                 *
 486                 * The chip->oob_poi data layout:
 487                 *
 488                 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
 489                 *
 490                 * The rk_nfc_ooblayout_free() function already has reserved
 491                 * these 4 bytes with:
 492                 *
 493                 * oob_region->offset = NFC_SYS_DATA_SIZE + 2;
 494                 */
 495                if (!i)
 496                        memcpy(rk_nfc_oob_ptr(chip, i),
 497                               rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
 498                               NFC_SYS_DATA_SIZE);
 499                else
 500                        memcpy(rk_nfc_oob_ptr(chip, i),
 501                               rk_nfc_buf_to_oob_ptr(chip, i - 1),
 502                               NFC_SYS_DATA_SIZE);
 503                /* Copy ECC data to the NFC buffer. */
 504                memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
 505                       rk_nfc_buf_to_oob_ecc_ptr(chip, i),
 506                       ecc->bytes);
 507        }
 508
 509        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 510        rk_nfc_write_buf(mtd, buf, mtd->writesize + mtd->oobsize);
 511        return nand_prog_page_end_op(chip);
 512}
 513
 514static int rk_nfc_write_page_hwecc(struct mtd_info *mtd,
 515                                   struct nand_chip *chip,
 516                                   const u8 *buf,
 517                                   int oob_required,
 518                                   int page)
 519{
 520        struct rk_nfc *nfc = nand_get_controller_data(chip);
 521        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 522        struct nand_ecc_ctrl *ecc = &chip->ecc;
 523        int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
 524                        NFC_MIN_OOB_PER_STEP;
 525        int pages_per_blk = mtd->erasesize / mtd->writesize;
 526        int ret = 0, i, boot_rom_mode = 0;
 527        dma_addr_t dma_data, dma_oob;
 528        u32 reg;
 529        u8 *oob;
 530
 531        nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 532
 533        if (buf)
 534                memcpy(nfc->page_buf, buf, mtd->writesize);
 535        else
 536                memset(nfc->page_buf, 0xFF, mtd->writesize);
 537
 538        /*
 539         * The first blocks (4, 8 or 16 depending on the device) are used
 540         * by the boot ROM and the first 32 bits of OOB need to link to
 541         * the next page address in the same block. We can't directly copy
 542         * OOB data from the MTD framework, because this page address
 543         * conflicts for example with the bad block marker (BBM),
 544         * so we shift all OOB data including the BBM with 4 byte positions.
 545         * As a consequence the OOB size available to the MTD framework is
 546         * also reduced with 4 bytes.
 547         *
 548         *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
 549         *
 550         * If a NAND is not a boot medium or the page is not a boot block,
 551         * the first 4 bytes are left untouched by writing 0xFF to them.
 552         *
 553         *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
 554         *
 555         * Configure the ECC algorithm supported by the boot ROM.
 556         */
 557        if (page < (pages_per_blk * rknand->boot_blks)) {
 558                boot_rom_mode = 1;
 559                if (rknand->boot_ecc != ecc->strength)
 560                        rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
 561        }
 562
 563        for (i = 0; i < ecc->steps; i++) {
 564                if (!i) {
 565                        reg = 0xFFFFFFFF;
 566                } else {
 567                        oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
 568                        reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
 569                              oob[3] << 24;
 570                }
 571
 572                if (!i && boot_rom_mode)
 573                        reg = (page & (pages_per_blk - 1)) * 4;
 574
 575                if (nfc->cfg->type == NFC_V9)
 576                        nfc->oob_buf[i] = reg;
 577                else
 578                        nfc->oob_buf[i * (oob_step / 4)] = reg;
 579        }
 580
 581        dma_data = dma_map_single((void *)nfc->page_buf,
 582                                  mtd->writesize, DMA_TO_DEVICE);
 583        dma_oob = dma_map_single(nfc->oob_buf,
 584                                 ecc->steps * oob_step,
 585                                 DMA_TO_DEVICE);
 586
 587        rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
 588                          dma_oob);
 589        ret = rk_nfc_wait_for_xfer_done(nfc);
 590
 591        dma_unmap_single(dma_data, mtd->writesize,
 592                         DMA_TO_DEVICE);
 593        dma_unmap_single(dma_oob, ecc->steps * oob_step,
 594                         DMA_TO_DEVICE);
 595
 596        if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
 597                rk_nfc_hw_ecc_setup(chip, ecc->strength);
 598
 599        if (ret) {
 600                dev_err(nfc->dev, "write: wait transfer done timeout.\n");
 601                return -ETIMEDOUT;
 602        }
 603
 604        return nand_prog_page_end_op(chip);
 605}
 606
 607static int rk_nfc_write_oob(struct mtd_info *mtd,
 608                            struct nand_chip *chip, int page)
 609{
 610        return rk_nfc_write_page_hwecc(mtd, chip, NULL, 1, page);
 611}
 612
 613static int rk_nfc_read_page_raw(struct mtd_info *mtd,
 614                                struct nand_chip *chip,
 615                                u8 *buf,
 616                                int oob_required,
 617                                int page)
 618{
 619        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 620        struct rk_nfc *nfc = nand_get_controller_data(chip);
 621        struct nand_ecc_ctrl *ecc = &chip->ecc;
 622        int i, pages_per_blk;
 623
 624        pages_per_blk = mtd->erasesize / mtd->writesize;
 625        if ((page < (pages_per_blk * rknand->boot_blks)) &&
 626            nfc->selected_bank == 0 &&
 627            rknand->boot_ecc != ecc->strength) {
 628                /*
 629                 * There's currently no method to notify the MTD framework that
 630                 * a different ECC strength is in use for the boot blocks.
 631                 */
 632                return -EIO;
 633        }
 634
 635        nand_read_page_op(chip, page, 0, NULL, 0);
 636        rk_nfc_read_buf(mtd, nfc->page_buf, mtd->writesize + mtd->oobsize);
 637        for (i = 0; i < ecc->steps; i++) {
 638                /*
 639                 * The first four bytes of OOB are reserved for the
 640                 * boot ROM. In some debugging cases, such as with a read,
 641                 * erase and write back test, these 4 bytes also must be
 642                 * saved somewhere, otherwise this information will be
 643                 * lost during a write back.
 644                 */
 645                if (!i)
 646                        memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
 647                               rk_nfc_oob_ptr(chip, i),
 648                               NFC_SYS_DATA_SIZE);
 649                else
 650                        memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
 651                               rk_nfc_oob_ptr(chip, i),
 652                               NFC_SYS_DATA_SIZE);
 653
 654                /* Copy ECC data from the NFC buffer. */
 655                memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
 656                       rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
 657                       ecc->bytes);
 658
 659                /* Copy data from the NFC buffer. */
 660                if (buf)
 661                        memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
 662                               rk_nfc_data_ptr(chip, i),
 663                               ecc->size);
 664        }
 665
 666        return 0;
 667}
 668
 669static int rk_nfc_read_page_hwecc(struct mtd_info *mtd,
 670                                  struct nand_chip *chip,
 671                                  u8 *buf,
 672                                  int oob_required,
 673                                  int page)
 674{
 675        struct rk_nfc *nfc = nand_get_controller_data(chip);
 676        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 677        struct nand_ecc_ctrl *ecc = &chip->ecc;
 678        int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
 679                        NFC_MIN_OOB_PER_STEP;
 680        int pages_per_blk = mtd->erasesize / mtd->writesize;
 681        dma_addr_t dma_data, dma_oob;
 682        int ret = 0, i, cnt, boot_rom_mode = 0;
 683        int max_bitflips = 0, bch_st, ecc_fail = 0;
 684        u8 *oob;
 685        u32 tmp;
 686
 687        nand_read_page_op(chip, page, 0, NULL, 0);
 688
 689        dma_data = dma_map_single(nfc->page_buf,
 690                                  mtd->writesize,
 691                                  DMA_FROM_DEVICE);
 692        dma_oob = dma_map_single(nfc->oob_buf,
 693                                 ecc->steps * oob_step,
 694                                 DMA_FROM_DEVICE);
 695
 696        /*
 697         * The first blocks (4, 8 or 16 depending on the device)
 698         * are used by the boot ROM.
 699         * Configure the ECC algorithm supported by the boot ROM.
 700         */
 701        if (page < (pages_per_blk * rknand->boot_blks) &&
 702            nfc->selected_bank == 0) {
 703                boot_rom_mode = 1;
 704                if (rknand->boot_ecc != ecc->strength)
 705                        rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
 706        }
 707
 708        rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
 709                          dma_oob);
 710        ret = rk_nfc_wait_for_xfer_done(nfc);
 711
 712        dma_unmap_single(dma_data, mtd->writesize,
 713                         DMA_FROM_DEVICE);
 714        dma_unmap_single(dma_oob, ecc->steps * oob_step,
 715                         DMA_FROM_DEVICE);
 716
 717        if (ret) {
 718                ret = -ETIMEDOUT;
 719                dev_err(nfc->dev, "read: wait transfer done timeout.\n");
 720                goto timeout_err;
 721        }
 722
 723        for (i = 1; i < ecc->steps; i++) {
 724                oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
 725                if (nfc->cfg->type == NFC_V9)
 726                        tmp = nfc->oob_buf[i];
 727                else
 728                        tmp = nfc->oob_buf[i * (oob_step / 4)];
 729                *oob++ = (u8)tmp;
 730                *oob++ = (u8)(tmp >> 8);
 731                *oob++ = (u8)(tmp >> 16);
 732                *oob++ = (u8)(tmp >> 24);
 733        }
 734
 735        for (i = 0; i < (ecc->steps / 2); i++) {
 736                bch_st = readl_relaxed(nfc->regs +
 737                                       nfc->cfg->bch_st_off + i * 4);
 738                if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
 739                    bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
 740                        mtd->ecc_stats.failed++;
 741                        ecc_fail = 1;
 742                } else {
 743                        cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
 744                        mtd->ecc_stats.corrected += cnt;
 745                        max_bitflips = max_t(u32, max_bitflips, cnt);
 746
 747                        cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
 748                        mtd->ecc_stats.corrected += cnt;
 749                        max_bitflips = max_t(u32, max_bitflips, cnt);
 750                }
 751        }
 752
 753        if (buf)
 754                memcpy(buf, nfc->page_buf, mtd->writesize);
 755
 756timeout_err:
 757        if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
 758                rk_nfc_hw_ecc_setup(chip, ecc->strength);
 759
 760        if (ret)
 761                return ret;
 762
 763        if (ecc_fail) {
 764                dev_err(nfc->dev, "read page: %x ecc error!\n", page);
 765                return 0;
 766        }
 767
 768        return max_bitflips;
 769}
 770
 771static int rk_nfc_read_oob(struct mtd_info *mtd,
 772                           struct nand_chip *chip, int page)
 773{
 774        return rk_nfc_read_page_hwecc(mtd, chip, NULL, 1, page);
 775}
 776
 777static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
 778{
 779        /* Disable flash wp. */
 780        writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
 781        /* Config default timing 40ns at 150 Mhz NFC clock. */
 782        writel(0x1081, nfc->regs + NFC_FMWAIT);
 783        nfc->cur_timing = 0x1081;
 784        /* Disable randomizer and DMA. */
 785        writel(0, nfc->regs + nfc->cfg->randmz_off);
 786        writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
 787        writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
 788}
 789
 790static int rk_nfc_enable_clks(struct udevice *dev, struct rk_nfc *nfc)
 791{
 792        int ret;
 793
 794        if (!IS_ERR(nfc->nfc_clk)) {
 795                ret = clk_prepare_enable(nfc->nfc_clk);
 796                if (ret)
 797                        dev_err(dev, "failed to enable NFC clk\n");
 798        }
 799
 800        ret = clk_prepare_enable(nfc->ahb_clk);
 801        if (ret) {
 802                dev_err(dev, "failed to enable ahb clk\n");
 803                if (!IS_ERR(nfc->nfc_clk))
 804                        clk_disable_unprepare(nfc->nfc_clk);
 805        }
 806
 807        return 0;
 808}
 809
 810static void rk_nfc_disable_clks(struct rk_nfc *nfc)
 811{
 812        if (!IS_ERR(nfc->nfc_clk))
 813                clk_disable_unprepare(nfc->nfc_clk);
 814        clk_disable_unprepare(nfc->ahb_clk);
 815}
 816
 817static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
 818                                 struct mtd_oob_region *oob_region)
 819{
 820        struct nand_chip *chip = mtd_to_nand(mtd);
 821        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 822
 823        if (section)
 824                return -ERANGE;
 825
 826        /*
 827         * The beginning of the OOB area stores the reserved data for the NFC,
 828         * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
 829         */
 830        oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
 831        oob_region->offset = NFC_SYS_DATA_SIZE + 2;
 832
 833        return 0;
 834}
 835
 836static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
 837                                struct mtd_oob_region *oob_region)
 838{
 839        struct nand_chip *chip = mtd_to_nand(mtd);
 840        struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
 841
 842        if (section)
 843                return -ERANGE;
 844
 845        oob_region->length = mtd->oobsize - rknand->metadata_size;
 846        oob_region->offset = rknand->metadata_size;
 847
 848        return 0;
 849}
 850
 851static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
 852        .rfree = rk_nfc_ooblayout_free,
 853        .ecc = rk_nfc_ooblayout_ecc,
 854};
 855
 856static int rk_nfc_ecc_init(struct rk_nfc *nfc, struct nand_chip *chip)
 857{
 858        const u8 *strengths = nfc->cfg->ecc_strengths;
 859        struct mtd_info *mtd = nand_to_mtd(chip);
 860        struct nand_ecc_ctrl *ecc = &chip->ecc;
 861        u8 max_strength, nfc_max_strength;
 862        int i;
 863
 864        nfc_max_strength = nfc->cfg->ecc_strengths[0];
 865        /* If optional dt settings not present. */
 866        if (!ecc->size || !ecc->strength ||
 867            ecc->strength > nfc_max_strength) {
 868                chip->ecc.size = 1024;
 869                ecc->steps = mtd->writesize / ecc->size;
 870
 871                /*
 872                 * HW ECC always requests the number of ECC bytes per 1024 byte
 873                 * blocks. The first 4 OOB bytes are reserved for sys data.
 874                 */
 875                max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
 876                                 fls(8 * 1024);
 877                if (max_strength > nfc_max_strength)
 878                        max_strength = nfc_max_strength;
 879
 880                for (i = 0; i < 4; i++) {
 881                        if (max_strength >= strengths[i])
 882                                break;
 883                }
 884
 885                if (i >= 4) {
 886                        dev_err(nfc->dev, "unsupported ECC strength\n");
 887                        return -EOPNOTSUPP;
 888                }
 889
 890                ecc->strength = strengths[i];
 891        }
 892        ecc->steps = mtd->writesize / ecc->size;
 893        ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
 894
 895        return 0;
 896}
 897
 898static int rk_nfc_nand_chip_init(ofnode node, struct rk_nfc *nfc, int devnum)
 899{
 900        struct rk_nfc_nand_chip *rknand;
 901        struct udevice *dev = nfc->dev;
 902        struct nand_ecc_ctrl *ecc;
 903        struct nand_chip *chip;
 904        struct mtd_info *mtd;
 905        u32 cs[NFC_MAX_NSELS];
 906        int nsels, i, ret;
 907        u32 tmp;
 908
 909        if (!ofnode_get_property(node, "reg", &nsels))
 910                return -ENODEV;
 911        nsels /= sizeof(u32);
 912        if (!nsels || nsels > NFC_MAX_NSELS) {
 913                dev_err(dev, "invalid reg property size %d\n", nsels);
 914                return -EINVAL;
 915        }
 916
 917        rknand = kzalloc(sizeof(*rknand) + nsels * sizeof(u8), GFP_KERNEL);
 918        if (!rknand)
 919                return -ENOMEM;
 920
 921        rknand->nsels = nsels;
 922        rknand->timing = nfc->cur_timing;
 923
 924        ret = ofnode_read_u32_array(node, "reg", cs, nsels);
 925        if (ret < 0) {
 926                dev_err(dev, "Could not retrieve reg property\n");
 927                return -EINVAL;
 928        }
 929
 930        for (i = 0; i < nsels; i++) {
 931                if (cs[i] >= NFC_MAX_NSELS) {
 932                        dev_err(dev, "invalid CS: %u\n", cs[i]);
 933                        return -EINVAL;
 934                }
 935
 936                if (test_and_set_bit(cs[i], &nfc->assigned_cs)) {
 937                        dev_err(dev, "CS %u already assigned\n", cs[i]);
 938                        return -EINVAL;
 939                }
 940
 941                rknand->sels[i] = cs[i];
 942        }
 943
 944        chip = &rknand->chip;
 945        ecc = &chip->ecc;
 946        ecc->mode = NAND_ECC_HW_SYNDROME;
 947
 948        ret = ofnode_read_u32(node, "nand-ecc-strength", &tmp);
 949        ecc->strength = ret ? 0 : tmp;
 950
 951        ret = ofnode_read_u32(node, "nand-ecc-step-size", &tmp);
 952        ecc->size = ret ? 0 : tmp;
 953
 954        mtd = nand_to_mtd(chip);
 955        mtd->owner = THIS_MODULE;
 956        mtd->dev->parent = dev;
 957
 958        nand_set_controller_data(chip, nfc);
 959
 960        chip->chip_delay = NFC_RB_DELAY_US;
 961        chip->select_chip = rk_nfc_select_chip;
 962        chip->cmd_ctrl = rk_nfc_cmd;
 963        chip->read_buf = rk_nfc_read_buf;
 964        chip->write_buf = rk_nfc_write_buf;
 965        chip->read_byte = rockchip_nand_read_byte;
 966        chip->dev_ready = rockchip_nand_dev_ready;
 967        chip->controller = &nfc->controller;
 968
 969        chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
 970        chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
 971
 972        mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
 973        rk_nfc_hw_init(nfc);
 974        ret = nand_scan_ident(mtd, nsels, NULL);
 975        if (ret)
 976                return ret;
 977
 978        ret = rk_nfc_ecc_init(nfc, chip);
 979        if (ret) {
 980                dev_err(dev, "rk_nfc_ecc_init failed: %d\n", ret);
 981                return ret;
 982        }
 983
 984        ret = ofnode_read_u32(node, "rockchip,boot-blks", &tmp);
 985        rknand->boot_blks = ret ? 0 : tmp;
 986
 987        ret = ofnode_read_u32(node, "rockchip,boot-ecc-strength", &tmp);
 988        rknand->boot_ecc = ret ? ecc->strength : tmp;
 989
 990        rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
 991
 992        if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
 993                dev_err(dev,
 994                        "driver needs at least %d bytes of meta data\n",
 995                        NFC_SYS_DATA_SIZE + 2);
 996                return -EIO;
 997        }
 998
 999        if (!nfc->page_buf) {
1000                nfc->page_buf = kzalloc(NFC_MAX_PAGE_SIZE, GFP_KERNEL);
1001                if (!nfc->page_buf)
1002                        return -ENOMEM;
1003        }
1004
1005        if (!nfc->oob_buf) {
1006                nfc->oob_buf = kzalloc(NFC_MAX_OOB_SIZE, GFP_KERNEL);
1007                if (!nfc->oob_buf) {
1008                        kfree(nfc->page_buf);
1009                        nfc->page_buf = NULL;
1010                        return -ENOMEM;
1011                }
1012        }
1013
1014        ecc->read_page = rk_nfc_read_page_hwecc;
1015        ecc->read_page_raw = rk_nfc_read_page_raw;
1016        ecc->read_oob = rk_nfc_read_oob;
1017        ecc->write_page = rk_nfc_write_page_hwecc;
1018        ecc->write_page_raw = rk_nfc_write_page_raw;
1019        ecc->write_oob = rk_nfc_write_oob;
1020
1021        ret = nand_scan_tail(mtd);
1022        if (ret) {
1023                dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1024                return ret;
1025        }
1026
1027        return nand_register(devnum, mtd);
1028}
1029
1030static int rk_nfc_nand_chips_init(struct udevice *dev, struct rk_nfc *nfc)
1031{
1032        int ret, i = 0;
1033        ofnode child;
1034
1035        ofnode_for_each_subnode(child, dev_ofnode(dev)) {
1036                ret = rk_nfc_nand_chip_init(child, nfc, i++);
1037                if (ret)
1038                        return ret;
1039        }
1040
1041        return 0;
1042}
1043
1044static struct nfc_cfg nfc_v6_cfg = {
1045                .type                   = NFC_V6,
1046                .ecc_strengths          = {60, 40, 24, 16},
1047                .ecc_cfgs               = {
1048                        0x00040011, 0x00040001, 0x00000011, 0x00000001,
1049                },
1050                .flctl_off              = 0x08,
1051                .bchctl_off             = 0x0C,
1052                .dma_cfg_off            = 0x10,
1053                .dma_data_buf_off       = 0x14,
1054                .dma_oob_buf_off        = 0x18,
1055                .dma_st_off             = 0x1C,
1056                .bch_st_off             = 0x20,
1057                .randmz_off             = 0x150,
1058                .int_en_off             = 0x16C,
1059                .int_clr_off            = 0x170,
1060                .int_st_off             = 0x174,
1061                .oob0_off               = 0x200,
1062                .oob1_off               = 0x230,
1063                .ecc0                   = {
1064                        .err_flag_bit   = 2,
1065                        .low            = 3,
1066                        .low_mask       = 0x1F,
1067                        .low_bn         = 5,
1068                        .high           = 27,
1069                        .high_mask      = 0x1,
1070                },
1071                .ecc1                   = {
1072                        .err_flag_bit   = 15,
1073                        .low            = 16,
1074                        .low_mask       = 0x1F,
1075                        .low_bn         = 5,
1076                        .high           = 29,
1077                        .high_mask      = 0x1,
1078                },
1079};
1080
1081static struct nfc_cfg nfc_v8_cfg = {
1082                .type                   = NFC_V8,
1083                .ecc_strengths          = {16, 16, 16, 16},
1084                .ecc_cfgs               = {
1085                        0x00000001, 0x00000001, 0x00000001, 0x00000001,
1086                },
1087                .flctl_off              = 0x08,
1088                .bchctl_off             = 0x0C,
1089                .dma_cfg_off            = 0x10,
1090                .dma_data_buf_off       = 0x14,
1091                .dma_oob_buf_off        = 0x18,
1092                .dma_st_off             = 0x1C,
1093                .bch_st_off             = 0x20,
1094                .randmz_off             = 0x150,
1095                .int_en_off             = 0x16C,
1096                .int_clr_off            = 0x170,
1097                .int_st_off             = 0x174,
1098                .oob0_off               = 0x200,
1099                .oob1_off               = 0x230,
1100                .ecc0                   = {
1101                        .err_flag_bit   = 2,
1102                        .low            = 3,
1103                        .low_mask       = 0x1F,
1104                        .low_bn         = 5,
1105                        .high           = 27,
1106                        .high_mask      = 0x1,
1107                },
1108                .ecc1                   = {
1109                        .err_flag_bit   = 15,
1110                        .low            = 16,
1111                        .low_mask       = 0x1F,
1112                        .low_bn         = 5,
1113                        .high           = 29,
1114                        .high_mask      = 0x1,
1115                },
1116};
1117
1118static struct nfc_cfg nfc_v9_cfg = {
1119                .type                   = NFC_V9,
1120                .ecc_strengths          = {70, 60, 40, 16},
1121                .ecc_cfgs               = {
1122                        0x00000001, 0x06000001, 0x04000001, 0x02000001,
1123                },
1124                .flctl_off              = 0x10,
1125                .bchctl_off             = 0x20,
1126                .dma_cfg_off            = 0x30,
1127                .dma_data_buf_off       = 0x34,
1128                .dma_oob_buf_off        = 0x38,
1129                .dma_st_off             = 0x3C,
1130                .bch_st_off             = 0x150,
1131                .randmz_off             = 0x208,
1132                .int_en_off             = 0x120,
1133                .int_clr_off            = 0x124,
1134                .int_st_off             = 0x128,
1135                .oob0_off               = 0x200,
1136                .oob1_off               = 0x204,
1137                .ecc0                   = {
1138                        .err_flag_bit   = 2,
1139                        .low            = 3,
1140                        .low_mask       = 0x7F,
1141                        .low_bn         = 7,
1142                        .high           = 0,
1143                        .high_mask      = 0x0,
1144                },
1145                .ecc1                   = {
1146                        .err_flag_bit   = 18,
1147                        .low            = 19,
1148                        .low_mask       = 0x7F,
1149                        .low_bn         = 7,
1150                        .high           = 0,
1151                        .high_mask      = 0x0,
1152                },
1153};
1154
1155static const struct udevice_id rk_nfc_id_table[] = {
1156        {
1157                .compatible = "rockchip,px30-nfc",
1158                .data = (unsigned long)&nfc_v9_cfg
1159        },
1160        {
1161                .compatible = "rockchip,rk2928-nfc",
1162                .data = (unsigned long)&nfc_v6_cfg
1163        },
1164        {
1165                .compatible = "rockchip,rv1108-nfc",
1166                .data = (unsigned long)&nfc_v8_cfg
1167        },
1168        {
1169                .compatible = "rockchip,rk3308-nfc",
1170                .data = (unsigned long)&nfc_v8_cfg
1171        },
1172        { /* sentinel */ }
1173};
1174
1175static int rk_nfc_probe(struct udevice *dev)
1176{
1177        struct rk_nfc *nfc = dev_get_priv(dev);
1178        int ret = 0;
1179
1180        nfc->cfg = (void *)dev_get_driver_data(dev);
1181        nfc->dev = dev;
1182
1183        nfc->regs = (void *)dev_read_addr(dev);
1184        if (IS_ERR(nfc->regs)) {
1185                ret = PTR_ERR(nfc->regs);
1186                goto release_nfc;
1187        }
1188
1189        nfc->nfc_clk = devm_clk_get(dev, "nfc");
1190        if (IS_ERR(nfc->nfc_clk)) {
1191                dev_dbg(dev, "no NFC clk\n");
1192                /* Some earlier models, such as rk3066, have no NFC clk. */
1193        }
1194
1195        nfc->ahb_clk = devm_clk_get(dev, "ahb");
1196        if (IS_ERR(nfc->ahb_clk)) {
1197                dev_err(dev, "no ahb clk\n");
1198                ret = PTR_ERR(nfc->ahb_clk);
1199                goto release_nfc;
1200        }
1201
1202        ret = rk_nfc_enable_clks(dev, nfc);
1203        if (ret)
1204                goto release_nfc;
1205
1206        spin_lock_init(&nfc->controller.lock);
1207        init_waitqueue_head(&nfc->controller.wq);
1208
1209        rk_nfc_hw_init(nfc);
1210
1211        ret = rk_nfc_nand_chips_init(dev, nfc);
1212        if (ret) {
1213                dev_err(dev, "failed to init NAND chips\n");
1214                goto clk_disable;
1215        }
1216        return 0;
1217
1218clk_disable:
1219        rk_nfc_disable_clks(nfc);
1220release_nfc:
1221        return ret;
1222}
1223
1224U_BOOT_DRIVER(rockchip_nfc) = {
1225        .name = "rockchip_nfc",
1226        .id = UCLASS_MTD,
1227        .of_match = rk_nfc_id_table,
1228        .probe = rk_nfc_probe,
1229        .priv_auto = sizeof(struct rk_nfc),
1230};
1231
1232void board_nand_init(void)
1233{
1234        struct udevice *dev;
1235        int ret;
1236
1237        ret = uclass_get_device_by_driver(UCLASS_MTD,
1238                                          DM_DRIVER_GET(rockchip_nfc),
1239                                          &dev);
1240        if (ret && ret != -ENODEV)
1241                log_err("Failed to initialize ROCKCHIP NAND controller. (error %d)\n",
1242                        ret);
1243}
1244
1245int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
1246{
1247        struct mtd_info *mtd;
1248        size_t length = size;
1249
1250        mtd = get_nand_dev_by_index(0);
1251        return nand_read_skip_bad(mtd, offs, &length, NULL, size, (u_char *)dst);
1252}
1253
1254void nand_deselect(void) {}
1255