uboot/drivers/mtd/ubi/attach.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
   5 * Author: Artem Bityutskiy (Битюцкий Артём)
   6 */
   7
   8/*
   9 * UBI attaching sub-system.
  10 *
  11 * This sub-system is responsible for attaching MTD devices and it also
  12 * implements flash media scanning.
  13 *
  14 * The attaching information is represented by a &struct ubi_attach_info'
  15 * object. Information about volumes is represented by &struct ubi_ainf_volume
  16 * objects which are kept in volume RB-tree with root at the @volumes field.
  17 * The RB-tree is indexed by the volume ID.
  18 *
  19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  20 * objects are kept in per-volume RB-trees with the root at the corresponding
  21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  22 * per-volume objects and each of these objects is the root of RB-tree of
  23 * per-LEB objects.
  24 *
  25 * Corrupted physical eraseblocks are put to the @corr list, free physical
  26 * eraseblocks are put to the @free list and the physical eraseblock to be
  27 * erased are put to the @erase list.
  28 *
  29 * About corruptions
  30 * ~~~~~~~~~~~~~~~~~
  31 *
  32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  33 * whether the headers are corrupted or not. Sometimes UBI also protects the
  34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  35 * when it moves the contents of a PEB for wear-leveling purposes.
  36 *
  37 * UBI tries to distinguish between 2 types of corruptions.
  38 *
  39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  40 * tries to handle them gracefully, without printing too many warnings and
  41 * error messages. The idea is that we do not lose important data in these
  42 * cases - we may lose only the data which were being written to the media just
  43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  44 * supposed to handle such data losses (e.g., by using the FS journal).
  45 *
  46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  48 * PEBs in the @erase list are scheduled for erasure later.
  49 *
  50 * 2. Unexpected corruptions which are not caused by power cuts. During
  51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  52 * Obviously, this lessens the amount of available PEBs, and if at some  point
  53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  54 * about such PEBs every time the MTD device is attached.
  55 *
  56 * However, it is difficult to reliably distinguish between these types of
  57 * corruptions and UBI's strategy is as follows (in case of attaching by
  58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  59 * the data area does not contain all 0xFFs, and there were no bit-flips or
  60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  61 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  62 * are as follows.
  63 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  64 *     to just erase this PEB - this is corruption type 1.
  65 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  66 *     NAND), it is probably a PEB which was being erased when power cut
  67 *     happened, so this is corruption type 1. However, this is just a guess,
  68 *     which might be wrong.
  69 *   o Otherwise this is corruption type 2.
  70 */
  71
  72#ifndef __UBOOT__
  73#include <log.h>
  74#include <dm/devres.h>
  75#include <linux/err.h>
  76#include <linux/slab.h>
  77#include <linux/crc32.h>
  78#include <linux/random.h>
  79#include <u-boot/crc.h>
  80#else
  81#include <div64.h>
  82#include <linux/bug.h>
  83#include <linux/err.h>
  84#endif
  85
  86#include <linux/math64.h>
  87
  88#include <ubi_uboot.h>
  89#include "ubi.h"
  90
  91static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  92
  93/* Temporary variables used during scanning */
  94static struct ubi_ec_hdr *ech;
  95static struct ubi_vid_hdr *vidh;
  96
  97/**
  98 * add_to_list - add physical eraseblock to a list.
  99 * @ai: attaching information
 100 * @pnum: physical eraseblock number to add
 101 * @vol_id: the last used volume id for the PEB
 102 * @lnum: the last used LEB number for the PEB
 103 * @ec: erase counter of the physical eraseblock
 104 * @to_head: if not zero, add to the head of the list
 105 * @list: the list to add to
 106 *
 107 * This function allocates a 'struct ubi_ainf_peb' object for physical
 108 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 109 * It stores the @lnum and @vol_id alongside, which can both be
 110 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 111 * If @to_head is not zero, PEB will be added to the head of the list, which
 112 * basically means it will be processed first later. E.g., we add corrupted
 113 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 114 * sure we erase them first and get rid of corruptions ASAP. This function
 115 * returns zero in case of success and a negative error code in case of
 116 * failure.
 117 */
 118static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 119                       int lnum, int ec, int to_head, struct list_head *list)
 120{
 121        struct ubi_ainf_peb *aeb;
 122
 123        if (list == &ai->free) {
 124                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 125        } else if (list == &ai->erase) {
 126                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 127        } else if (list == &ai->alien) {
 128                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 129                ai->alien_peb_count += 1;
 130        } else
 131                BUG();
 132
 133        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 134        if (!aeb)
 135                return -ENOMEM;
 136
 137        aeb->pnum = pnum;
 138        aeb->vol_id = vol_id;
 139        aeb->lnum = lnum;
 140        aeb->ec = ec;
 141        if (to_head)
 142                list_add(&aeb->u.list, list);
 143        else
 144                list_add_tail(&aeb->u.list, list);
 145        return 0;
 146}
 147
 148/**
 149 * add_corrupted - add a corrupted physical eraseblock.
 150 * @ai: attaching information
 151 * @pnum: physical eraseblock number to add
 152 * @ec: erase counter of the physical eraseblock
 153 *
 154 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 155 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 156 * was presumably not caused by a power cut. Returns zero in case of success
 157 * and a negative error code in case of failure.
 158 */
 159static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 160{
 161        struct ubi_ainf_peb *aeb;
 162
 163        dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 164
 165        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 166        if (!aeb)
 167                return -ENOMEM;
 168
 169        ai->corr_peb_count += 1;
 170        aeb->pnum = pnum;
 171        aeb->ec = ec;
 172        list_add(&aeb->u.list, &ai->corr);
 173        return 0;
 174}
 175
 176/**
 177 * validate_vid_hdr - check volume identifier header.
 178 * @ubi: UBI device description object
 179 * @vid_hdr: the volume identifier header to check
 180 * @av: information about the volume this logical eraseblock belongs to
 181 * @pnum: physical eraseblock number the VID header came from
 182 *
 183 * This function checks that data stored in @vid_hdr is consistent. Returns
 184 * non-zero if an inconsistency was found and zero if not.
 185 *
 186 * Note, UBI does sanity check of everything it reads from the flash media.
 187 * Most of the checks are done in the I/O sub-system. Here we check that the
 188 * information in the VID header is consistent to the information in other VID
 189 * headers of the same volume.
 190 */
 191static int validate_vid_hdr(const struct ubi_device *ubi,
 192                            const struct ubi_vid_hdr *vid_hdr,
 193                            const struct ubi_ainf_volume *av, int pnum)
 194{
 195        int vol_type = vid_hdr->vol_type;
 196        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 197        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 198        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 199
 200        if (av->leb_count != 0) {
 201                int av_vol_type;
 202
 203                /*
 204                 * This is not the first logical eraseblock belonging to this
 205                 * volume. Ensure that the data in its VID header is consistent
 206                 * to the data in previous logical eraseblock headers.
 207                 */
 208
 209                if (vol_id != av->vol_id) {
 210                        ubi_err(ubi, "inconsistent vol_id");
 211                        goto bad;
 212                }
 213
 214                if (av->vol_type == UBI_STATIC_VOLUME)
 215                        av_vol_type = UBI_VID_STATIC;
 216                else
 217                        av_vol_type = UBI_VID_DYNAMIC;
 218
 219                if (vol_type != av_vol_type) {
 220                        ubi_err(ubi, "inconsistent vol_type");
 221                        goto bad;
 222                }
 223
 224                if (used_ebs != av->used_ebs) {
 225                        ubi_err(ubi, "inconsistent used_ebs");
 226                        goto bad;
 227                }
 228
 229                if (data_pad != av->data_pad) {
 230                        ubi_err(ubi, "inconsistent data_pad");
 231                        goto bad;
 232                }
 233        }
 234
 235        return 0;
 236
 237bad:
 238        ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 239        ubi_dump_vid_hdr(vid_hdr);
 240        ubi_dump_av(av);
 241        return -EINVAL;
 242}
 243
 244/**
 245 * add_volume - add volume to the attaching information.
 246 * @ai: attaching information
 247 * @vol_id: ID of the volume to add
 248 * @pnum: physical eraseblock number
 249 * @vid_hdr: volume identifier header
 250 *
 251 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 252 * present in the attaching information, this function does nothing. Otherwise
 253 * it adds corresponding volume to the attaching information. Returns a pointer
 254 * to the allocated "av" object in case of success and a negative error code in
 255 * case of failure.
 256 */
 257static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 258                                          int vol_id, int pnum,
 259                                          const struct ubi_vid_hdr *vid_hdr)
 260{
 261        struct ubi_ainf_volume *av;
 262        struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 263
 264        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 265
 266        /* Walk the volume RB-tree to look if this volume is already present */
 267        while (*p) {
 268                parent = *p;
 269                av = rb_entry(parent, struct ubi_ainf_volume, rb);
 270
 271                if (vol_id == av->vol_id)
 272                        return av;
 273
 274                if (vol_id > av->vol_id)
 275                        p = &(*p)->rb_left;
 276                else
 277                        p = &(*p)->rb_right;
 278        }
 279
 280        /* The volume is absent - add it */
 281        av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 282        if (!av)
 283                return ERR_PTR(-ENOMEM);
 284
 285        av->highest_lnum = av->leb_count = 0;
 286        av->vol_id = vol_id;
 287        av->root = RB_ROOT;
 288        av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 289        av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 290        av->compat = vid_hdr->compat;
 291        av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 292                                                            : UBI_STATIC_VOLUME;
 293        if (vol_id > ai->highest_vol_id)
 294                ai->highest_vol_id = vol_id;
 295
 296        rb_link_node(&av->rb, parent, p);
 297        rb_insert_color(&av->rb, &ai->volumes);
 298        ai->vols_found += 1;
 299        dbg_bld("added volume %d", vol_id);
 300        return av;
 301}
 302
 303/**
 304 * ubi_compare_lebs - find out which logical eraseblock is newer.
 305 * @ubi: UBI device description object
 306 * @aeb: first logical eraseblock to compare
 307 * @pnum: physical eraseblock number of the second logical eraseblock to
 308 * compare
 309 * @vid_hdr: volume identifier header of the second logical eraseblock
 310 *
 311 * This function compares 2 copies of a LEB and informs which one is newer. In
 312 * case of success this function returns a positive value, in case of failure, a
 313 * negative error code is returned. The success return codes use the following
 314 * bits:
 315 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 316 *       second PEB (described by @pnum and @vid_hdr);
 317 *     o bit 0 is set: the second PEB is newer;
 318 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 319 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 320 *     o bit 2 is cleared: the older LEB is not corrupted;
 321 *     o bit 2 is set: the older LEB is corrupted.
 322 */
 323int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 324                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 325{
 326        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 327        uint32_t data_crc, crc;
 328        struct ubi_vid_hdr *vh = NULL;
 329        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 330
 331        if (sqnum2 == aeb->sqnum) {
 332                /*
 333                 * This must be a really ancient UBI image which has been
 334                 * created before sequence numbers support has been added. At
 335                 * that times we used 32-bit LEB versions stored in logical
 336                 * eraseblocks. That was before UBI got into mainline. We do not
 337                 * support these images anymore. Well, those images still work,
 338                 * but only if no unclean reboots happened.
 339                 */
 340                ubi_err(ubi, "unsupported on-flash UBI format");
 341                return -EINVAL;
 342        }
 343
 344        /* Obviously the LEB with lower sequence counter is older */
 345        second_is_newer = (sqnum2 > aeb->sqnum);
 346
 347        /*
 348         * Now we know which copy is newer. If the copy flag of the PEB with
 349         * newer version is not set, then we just return, otherwise we have to
 350         * check data CRC. For the second PEB we already have the VID header,
 351         * for the first one - we'll need to re-read it from flash.
 352         *
 353         * Note: this may be optimized so that we wouldn't read twice.
 354         */
 355
 356        if (second_is_newer) {
 357                if (!vid_hdr->copy_flag) {
 358                        /* It is not a copy, so it is newer */
 359                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 360                                pnum);
 361                        return 1;
 362                }
 363        } else {
 364                if (!aeb->copy_flag) {
 365                        /* It is not a copy, so it is newer */
 366                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 367                                pnum);
 368                        return bitflips << 1;
 369                }
 370
 371                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 372                if (!vh)
 373                        return -ENOMEM;
 374
 375                pnum = aeb->pnum;
 376                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 377                if (err) {
 378                        if (err == UBI_IO_BITFLIPS)
 379                                bitflips = 1;
 380                        else {
 381                                ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 382                                        pnum, err);
 383                                if (err > 0)
 384                                        err = -EIO;
 385
 386                                goto out_free_vidh;
 387                        }
 388                }
 389
 390                vid_hdr = vh;
 391        }
 392
 393        /* Read the data of the copy and check the CRC */
 394
 395        len = be32_to_cpu(vid_hdr->data_size);
 396
 397        mutex_lock(&ubi->buf_mutex);
 398        err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 399        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 400                goto out_unlock;
 401
 402        data_crc = be32_to_cpu(vid_hdr->data_crc);
 403        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 404        if (crc != data_crc) {
 405                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 406                        pnum, crc, data_crc);
 407                corrupted = 1;
 408                bitflips = 0;
 409                second_is_newer = !second_is_newer;
 410        } else {
 411                dbg_bld("PEB %d CRC is OK", pnum);
 412                bitflips |= !!err;
 413        }
 414        mutex_unlock(&ubi->buf_mutex);
 415
 416        ubi_free_vid_hdr(ubi, vh);
 417
 418        if (second_is_newer)
 419                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 420        else
 421                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 422
 423        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 424
 425out_unlock:
 426        mutex_unlock(&ubi->buf_mutex);
 427out_free_vidh:
 428        ubi_free_vid_hdr(ubi, vh);
 429        return err;
 430}
 431
 432/**
 433 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 434 * @ubi: UBI device description object
 435 * @ai: attaching information
 436 * @pnum: the physical eraseblock number
 437 * @ec: erase counter
 438 * @vid_hdr: the volume identifier header
 439 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 440 *
 441 * This function adds information about a used physical eraseblock to the
 442 * 'used' tree of the corresponding volume. The function is rather complex
 443 * because it has to handle cases when this is not the first physical
 444 * eraseblock belonging to the same logical eraseblock, and the newer one has
 445 * to be picked, while the older one has to be dropped. This function returns
 446 * zero in case of success and a negative error code in case of failure.
 447 */
 448int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 449                  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 450{
 451        int err, vol_id, lnum;
 452        unsigned long long sqnum;
 453        struct ubi_ainf_volume *av;
 454        struct ubi_ainf_peb *aeb;
 455        struct rb_node **p, *parent = NULL;
 456
 457        vol_id = be32_to_cpu(vid_hdr->vol_id);
 458        lnum = be32_to_cpu(vid_hdr->lnum);
 459        sqnum = be64_to_cpu(vid_hdr->sqnum);
 460
 461        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 462                pnum, vol_id, lnum, ec, sqnum, bitflips);
 463
 464        av = add_volume(ai, vol_id, pnum, vid_hdr);
 465        if (IS_ERR(av))
 466                return PTR_ERR(av);
 467
 468        if (ai->max_sqnum < sqnum)
 469                ai->max_sqnum = sqnum;
 470
 471        /*
 472         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 473         * if this is the first instance of this logical eraseblock or not.
 474         */
 475        p = &av->root.rb_node;
 476        while (*p) {
 477                int cmp_res;
 478
 479                parent = *p;
 480                aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 481                if (lnum != aeb->lnum) {
 482                        if (lnum < aeb->lnum)
 483                                p = &(*p)->rb_left;
 484                        else
 485                                p = &(*p)->rb_right;
 486                        continue;
 487                }
 488
 489                /*
 490                 * There is already a physical eraseblock describing the same
 491                 * logical eraseblock present.
 492                 */
 493
 494                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 495                        aeb->pnum, aeb->sqnum, aeb->ec);
 496
 497                /*
 498                 * Make sure that the logical eraseblocks have different
 499                 * sequence numbers. Otherwise the image is bad.
 500                 *
 501                 * However, if the sequence number is zero, we assume it must
 502                 * be an ancient UBI image from the era when UBI did not have
 503                 * sequence numbers. We still can attach these images, unless
 504                 * there is a need to distinguish between old and new
 505                 * eraseblocks, in which case we'll refuse the image in
 506                 * 'ubi_compare_lebs()'. In other words, we attach old clean
 507                 * images, but refuse attaching old images with duplicated
 508                 * logical eraseblocks because there was an unclean reboot.
 509                 */
 510                if (aeb->sqnum == sqnum && sqnum != 0) {
 511                        ubi_err(ubi, "two LEBs with same sequence number %llu",
 512                                sqnum);
 513                        ubi_dump_aeb(aeb, 0);
 514                        ubi_dump_vid_hdr(vid_hdr);
 515                        return -EINVAL;
 516                }
 517
 518                /*
 519                 * Now we have to drop the older one and preserve the newer
 520                 * one.
 521                 */
 522                cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 523                if (cmp_res < 0)
 524                        return cmp_res;
 525
 526                if (cmp_res & 1) {
 527                        /*
 528                         * This logical eraseblock is newer than the one
 529                         * found earlier.
 530                         */
 531                        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 532                        if (err)
 533                                return err;
 534
 535                        err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 536                                          aeb->lnum, aeb->ec, cmp_res & 4,
 537                                          &ai->erase);
 538                        if (err)
 539                                return err;
 540
 541                        aeb->ec = ec;
 542                        aeb->pnum = pnum;
 543                        aeb->vol_id = vol_id;
 544                        aeb->lnum = lnum;
 545                        aeb->scrub = ((cmp_res & 2) || bitflips);
 546                        aeb->copy_flag = vid_hdr->copy_flag;
 547                        aeb->sqnum = sqnum;
 548
 549                        if (av->highest_lnum == lnum)
 550                                av->last_data_size =
 551                                        be32_to_cpu(vid_hdr->data_size);
 552
 553                        return 0;
 554                } else {
 555                        /*
 556                         * This logical eraseblock is older than the one found
 557                         * previously.
 558                         */
 559                        return add_to_list(ai, pnum, vol_id, lnum, ec,
 560                                           cmp_res & 4, &ai->erase);
 561                }
 562        }
 563
 564        /*
 565         * We've met this logical eraseblock for the first time, add it to the
 566         * attaching information.
 567         */
 568
 569        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 570        if (err)
 571                return err;
 572
 573        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 574        if (!aeb)
 575                return -ENOMEM;
 576
 577        aeb->ec = ec;
 578        aeb->pnum = pnum;
 579        aeb->vol_id = vol_id;
 580        aeb->lnum = lnum;
 581        aeb->scrub = bitflips;
 582        aeb->copy_flag = vid_hdr->copy_flag;
 583        aeb->sqnum = sqnum;
 584
 585        if (av->highest_lnum <= lnum) {
 586                av->highest_lnum = lnum;
 587                av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 588        }
 589
 590        av->leb_count += 1;
 591        rb_link_node(&aeb->u.rb, parent, p);
 592        rb_insert_color(&aeb->u.rb, &av->root);
 593        return 0;
 594}
 595
 596/**
 597 * ubi_find_av - find volume in the attaching information.
 598 * @ai: attaching information
 599 * @vol_id: the requested volume ID
 600 *
 601 * This function returns a pointer to the volume description or %NULL if there
 602 * are no data about this volume in the attaching information.
 603 */
 604struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 605                                    int vol_id)
 606{
 607        struct ubi_ainf_volume *av;
 608        struct rb_node *p = ai->volumes.rb_node;
 609
 610        while (p) {
 611                av = rb_entry(p, struct ubi_ainf_volume, rb);
 612
 613                if (vol_id == av->vol_id)
 614                        return av;
 615
 616                if (vol_id > av->vol_id)
 617                        p = p->rb_left;
 618                else
 619                        p = p->rb_right;
 620        }
 621
 622        return NULL;
 623}
 624
 625/**
 626 * ubi_remove_av - delete attaching information about a volume.
 627 * @ai: attaching information
 628 * @av: the volume attaching information to delete
 629 */
 630void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 631{
 632        struct rb_node *rb;
 633        struct ubi_ainf_peb *aeb;
 634
 635        dbg_bld("remove attaching information about volume %d", av->vol_id);
 636
 637        while ((rb = rb_first(&av->root))) {
 638                aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 639                rb_erase(&aeb->u.rb, &av->root);
 640                list_add_tail(&aeb->u.list, &ai->erase);
 641        }
 642
 643        rb_erase(&av->rb, &ai->volumes);
 644        kfree(av);
 645        ai->vols_found -= 1;
 646}
 647
 648/**
 649 * early_erase_peb - erase a physical eraseblock.
 650 * @ubi: UBI device description object
 651 * @ai: attaching information
 652 * @pnum: physical eraseblock number to erase;
 653 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 654 *
 655 * This function erases physical eraseblock 'pnum', and writes the erase
 656 * counter header to it. This function should only be used on UBI device
 657 * initialization stages, when the EBA sub-system had not been yet initialized.
 658 * This function returns zero in case of success and a negative error code in
 659 * case of failure.
 660 */
 661static int early_erase_peb(struct ubi_device *ubi,
 662                           const struct ubi_attach_info *ai, int pnum, int ec)
 663{
 664        int err;
 665        struct ubi_ec_hdr *ec_hdr;
 666
 667        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 668                /*
 669                 * Erase counter overflow. Upgrade UBI and use 64-bit
 670                 * erase counters internally.
 671                 */
 672                ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 673                        pnum, ec);
 674                return -EINVAL;
 675        }
 676
 677        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 678        if (!ec_hdr)
 679                return -ENOMEM;
 680
 681        ec_hdr->ec = cpu_to_be64(ec);
 682
 683        err = ubi_io_sync_erase(ubi, pnum, 0);
 684        if (err < 0)
 685                goto out_free;
 686
 687        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 688
 689out_free:
 690        kfree(ec_hdr);
 691        return err;
 692}
 693
 694/**
 695 * ubi_early_get_peb - get a free physical eraseblock.
 696 * @ubi: UBI device description object
 697 * @ai: attaching information
 698 *
 699 * This function returns a free physical eraseblock. It is supposed to be
 700 * called on the UBI initialization stages when the wear-leveling sub-system is
 701 * not initialized yet. This function picks a physical eraseblocks from one of
 702 * the lists, writes the EC header if it is needed, and removes it from the
 703 * list.
 704 *
 705 * This function returns a pointer to the "aeb" of the found free PEB in case
 706 * of success and an error code in case of failure.
 707 */
 708struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 709                                       struct ubi_attach_info *ai)
 710{
 711        int err = 0;
 712        struct ubi_ainf_peb *aeb, *tmp_aeb;
 713
 714        if (!list_empty(&ai->free)) {
 715                aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 716                list_del(&aeb->u.list);
 717                dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 718                return aeb;
 719        }
 720
 721        /*
 722         * We try to erase the first physical eraseblock from the erase list
 723         * and pick it if we succeed, or try to erase the next one if not. And
 724         * so forth. We don't want to take care about bad eraseblocks here -
 725         * they'll be handled later.
 726         */
 727        list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 728                if (aeb->ec == UBI_UNKNOWN)
 729                        aeb->ec = ai->mean_ec;
 730
 731                err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 732                if (err)
 733                        continue;
 734
 735                aeb->ec += 1;
 736                list_del(&aeb->u.list);
 737                dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 738                return aeb;
 739        }
 740
 741        ubi_err(ubi, "no free eraseblocks");
 742        return ERR_PTR(-ENOSPC);
 743}
 744
 745/**
 746 * check_corruption - check the data area of PEB.
 747 * @ubi: UBI device description object
 748 * @vid_hdr: the (corrupted) VID header of this PEB
 749 * @pnum: the physical eraseblock number to check
 750 *
 751 * This is a helper function which is used to distinguish between VID header
 752 * corruptions caused by power cuts and other reasons. If the PEB contains only
 753 * 0xFF bytes in the data area, the VID header is most probably corrupted
 754 * because of a power cut (%0 is returned in this case). Otherwise, it was
 755 * probably corrupted for some other reasons (%1 is returned in this case). A
 756 * negative error code is returned if a read error occurred.
 757 *
 758 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 759 * Otherwise, it should preserve it to avoid possibly destroying important
 760 * information.
 761 */
 762static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 763                            int pnum)
 764{
 765        int err;
 766
 767        mutex_lock(&ubi->buf_mutex);
 768        memset(ubi->peb_buf, 0x00, ubi->leb_size);
 769
 770        err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 771                          ubi->leb_size);
 772        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 773                /*
 774                 * Bit-flips or integrity errors while reading the data area.
 775                 * It is difficult to say for sure what type of corruption is
 776                 * this, but presumably a power cut happened while this PEB was
 777                 * erased, so it became unstable and corrupted, and should be
 778                 * erased.
 779                 */
 780                err = 0;
 781                goto out_unlock;
 782        }
 783
 784        if (err)
 785                goto out_unlock;
 786
 787        if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 788                goto out_unlock;
 789
 790        ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 791                pnum);
 792        ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 793        ubi_dump_vid_hdr(vid_hdr);
 794        pr_err("hexdump of PEB %d offset %d, length %d",
 795               pnum, ubi->leb_start, ubi->leb_size);
 796        ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
 797                               ubi->peb_buf, ubi->leb_size, 1);
 798        err = 1;
 799
 800out_unlock:
 801        mutex_unlock(&ubi->buf_mutex);
 802        return err;
 803}
 804
 805/**
 806 * scan_peb - scan and process UBI headers of a PEB.
 807 * @ubi: UBI device description object
 808 * @ai: attaching information
 809 * @pnum: the physical eraseblock number
 810 * @vid: The volume ID of the found volume will be stored in this pointer
 811 * @sqnum: The sqnum of the found volume will be stored in this pointer
 812 *
 813 * This function reads UBI headers of PEB @pnum, checks them, and adds
 814 * information about this PEB to the corresponding list or RB-tree in the
 815 * "attaching info" structure. Returns zero if the physical eraseblock was
 816 * successfully handled and a negative error code in case of failure.
 817 */
 818static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 819                    int pnum, int *vid, unsigned long long *sqnum)
 820{
 821        long long uninitialized_var(ec);
 822        int err, bitflips = 0, vol_id = -1, ec_err = 0;
 823
 824        dbg_bld("scan PEB %d", pnum);
 825
 826        /* Skip bad physical eraseblocks */
 827        err = ubi_io_is_bad(ubi, pnum);
 828        if (err < 0)
 829                return err;
 830        else if (err) {
 831                ai->bad_peb_count += 1;
 832                return 0;
 833        }
 834
 835        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 836        if (err < 0)
 837                return err;
 838        switch (err) {
 839        case 0:
 840                break;
 841        case UBI_IO_BITFLIPS:
 842                bitflips = 1;
 843                break;
 844        case UBI_IO_FF:
 845                ai->empty_peb_count += 1;
 846                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 847                                   UBI_UNKNOWN, 0, &ai->erase);
 848        case UBI_IO_FF_BITFLIPS:
 849                ai->empty_peb_count += 1;
 850                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 851                                   UBI_UNKNOWN, 1, &ai->erase);
 852        case UBI_IO_BAD_HDR_EBADMSG:
 853        case UBI_IO_BAD_HDR:
 854                /*
 855                 * We have to also look at the VID header, possibly it is not
 856                 * corrupted. Set %bitflips flag in order to make this PEB be
 857                 * moved and EC be re-created.
 858                 */
 859                ec_err = err;
 860                ec = UBI_UNKNOWN;
 861                bitflips = 1;
 862                break;
 863        default:
 864                ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 865                        err);
 866                return -EINVAL;
 867        }
 868
 869        if (!ec_err) {
 870                int image_seq;
 871
 872                /* Make sure UBI version is OK */
 873                if (ech->version != UBI_VERSION) {
 874                        ubi_err(ubi, "this UBI version is %d, image version is %d",
 875                                UBI_VERSION, (int)ech->version);
 876                        return -EINVAL;
 877                }
 878
 879                ec = be64_to_cpu(ech->ec);
 880                if (ec > UBI_MAX_ERASECOUNTER) {
 881                        /*
 882                         * Erase counter overflow. The EC headers have 64 bits
 883                         * reserved, but we anyway make use of only 31 bit
 884                         * values, as this seems to be enough for any existing
 885                         * flash. Upgrade UBI and use 64-bit erase counters
 886                         * internally.
 887                         */
 888                        ubi_err(ubi, "erase counter overflow, max is %d",
 889                                UBI_MAX_ERASECOUNTER);
 890                        ubi_dump_ec_hdr(ech);
 891                        return -EINVAL;
 892                }
 893
 894                /*
 895                 * Make sure that all PEBs have the same image sequence number.
 896                 * This allows us to detect situations when users flash UBI
 897                 * images incorrectly, so that the flash has the new UBI image
 898                 * and leftovers from the old one. This feature was added
 899                 * relatively recently, and the sequence number was always
 900                 * zero, because old UBI implementations always set it to zero.
 901                 * For this reasons, we do not panic if some PEBs have zero
 902                 * sequence number, while other PEBs have non-zero sequence
 903                 * number.
 904                 */
 905                image_seq = be32_to_cpu(ech->image_seq);
 906                if (!ubi->image_seq)
 907                        ubi->image_seq = image_seq;
 908                if (image_seq && ubi->image_seq != image_seq) {
 909                        ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
 910                                image_seq, pnum, ubi->image_seq);
 911                        ubi_dump_ec_hdr(ech);
 912                        return -EINVAL;
 913                }
 914        }
 915
 916        /* OK, we've done with the EC header, let's look at the VID header */
 917
 918        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 919        if (err < 0)
 920                return err;
 921        switch (err) {
 922        case 0:
 923                break;
 924        case UBI_IO_BITFLIPS:
 925                bitflips = 1;
 926                break;
 927        case UBI_IO_BAD_HDR_EBADMSG:
 928                if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 929                        /*
 930                         * Both EC and VID headers are corrupted and were read
 931                         * with data integrity error, probably this is a bad
 932                         * PEB, bit it is not marked as bad yet. This may also
 933                         * be a result of power cut during erasure.
 934                         */
 935                        ai->maybe_bad_peb_count += 1;
 936        case UBI_IO_BAD_HDR:
 937                if (ec_err)
 938                        /*
 939                         * Both headers are corrupted. There is a possibility
 940                         * that this a valid UBI PEB which has corresponding
 941                         * LEB, but the headers are corrupted. However, it is
 942                         * impossible to distinguish it from a PEB which just
 943                         * contains garbage because of a power cut during erase
 944                         * operation. So we just schedule this PEB for erasure.
 945                         *
 946                         * Besides, in case of NOR flash, we deliberately
 947                         * corrupt both headers because NOR flash erasure is
 948                         * slow and can start from the end.
 949                         */
 950                        err = 0;
 951                else
 952                        /*
 953                         * The EC was OK, but the VID header is corrupted. We
 954                         * have to check what is in the data area.
 955                         */
 956                        err = check_corruption(ubi, vidh, pnum);
 957
 958                if (err < 0)
 959                        return err;
 960                else if (!err)
 961                        /* This corruption is caused by a power cut */
 962                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 963                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 964                else
 965                        /* This is an unexpected corruption */
 966                        err = add_corrupted(ai, pnum, ec);
 967                if (err)
 968                        return err;
 969                goto adjust_mean_ec;
 970        case UBI_IO_FF_BITFLIPS:
 971                err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 972                                  ec, 1, &ai->erase);
 973                if (err)
 974                        return err;
 975                goto adjust_mean_ec;
 976        case UBI_IO_FF:
 977                if (ec_err || bitflips)
 978                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 979                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 980                else
 981                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 982                                          UBI_UNKNOWN, ec, 0, &ai->free);
 983                if (err)
 984                        return err;
 985                goto adjust_mean_ec;
 986        default:
 987                ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
 988                        err);
 989                return -EINVAL;
 990        }
 991
 992        vol_id = be32_to_cpu(vidh->vol_id);
 993        if (vid)
 994                *vid = vol_id;
 995        if (sqnum)
 996                *sqnum = be64_to_cpu(vidh->sqnum);
 997        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 998                int lnum = be32_to_cpu(vidh->lnum);
 999
1000                /* Unsupported internal volume */
1001                switch (vidh->compat) {
1002                case UBI_COMPAT_DELETE:
1003                        if (vol_id != UBI_FM_SB_VOLUME_ID
1004                            && vol_id != UBI_FM_DATA_VOLUME_ID) {
1005                                ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1006                                        vol_id, lnum);
1007                        }
1008                        err = add_to_list(ai, pnum, vol_id, lnum,
1009                                          ec, 1, &ai->erase);
1010                        if (err)
1011                                return err;
1012                        return 0;
1013
1014                case UBI_COMPAT_RO:
1015                        ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1016                                vol_id, lnum);
1017                        ubi->ro_mode = 1;
1018                        break;
1019
1020                case UBI_COMPAT_PRESERVE:
1021                        ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1022                                vol_id, lnum);
1023                        err = add_to_list(ai, pnum, vol_id, lnum,
1024                                          ec, 0, &ai->alien);
1025                        if (err)
1026                                return err;
1027                        return 0;
1028
1029                case UBI_COMPAT_REJECT:
1030                        ubi_err(ubi, "incompatible internal volume %d:%d found",
1031                                vol_id, lnum);
1032                        return -EINVAL;
1033                }
1034        }
1035
1036        if (ec_err)
1037                ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1038                         pnum);
1039        err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1040        if (err)
1041                return err;
1042
1043adjust_mean_ec:
1044        if (!ec_err) {
1045                ai->ec_sum += ec;
1046                ai->ec_count += 1;
1047                if (ec > ai->max_ec)
1048                        ai->max_ec = ec;
1049                if (ec < ai->min_ec)
1050                        ai->min_ec = ec;
1051        }
1052
1053        return 0;
1054}
1055
1056/**
1057 * late_analysis - analyze the overall situation with PEB.
1058 * @ubi: UBI device description object
1059 * @ai: attaching information
1060 *
1061 * This is a helper function which takes a look what PEBs we have after we
1062 * gather information about all of them ("ai" is compete). It decides whether
1063 * the flash is empty and should be formatted of whether there are too many
1064 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1065 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1066 */
1067static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1068{
1069        struct ubi_ainf_peb *aeb;
1070        int max_corr, peb_count;
1071
1072        peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1073        max_corr = peb_count / 20 ?: 8;
1074
1075        /*
1076         * Few corrupted PEBs is not a problem and may be just a result of
1077         * unclean reboots. However, many of them may indicate some problems
1078         * with the flash HW or driver.
1079         */
1080        if (ai->corr_peb_count) {
1081                ubi_err(ubi, "%d PEBs are corrupted and preserved",
1082                        ai->corr_peb_count);
1083                pr_err("Corrupted PEBs are:");
1084                list_for_each_entry(aeb, &ai->corr, u.list)
1085                        pr_cont(" %d", aeb->pnum);
1086                pr_cont("\n");
1087
1088                /*
1089                 * If too many PEBs are corrupted, we refuse attaching,
1090                 * otherwise, only print a warning.
1091                 */
1092                if (ai->corr_peb_count >= max_corr) {
1093                        ubi_err(ubi, "too many corrupted PEBs, refusing");
1094                        return -EINVAL;
1095                }
1096        }
1097
1098        if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1099                /*
1100                 * All PEBs are empty, or almost all - a couple PEBs look like
1101                 * they may be bad PEBs which were not marked as bad yet.
1102                 *
1103                 * This piece of code basically tries to distinguish between
1104                 * the following situations:
1105                 *
1106                 * 1. Flash is empty, but there are few bad PEBs, which are not
1107                 *    marked as bad so far, and which were read with error. We
1108                 *    want to go ahead and format this flash. While formatting,
1109                 *    the faulty PEBs will probably be marked as bad.
1110                 *
1111                 * 2. Flash contains non-UBI data and we do not want to format
1112                 *    it and destroy possibly important information.
1113                 */
1114                if (ai->maybe_bad_peb_count <= 2) {
1115                        ai->is_empty = 1;
1116                        ubi_msg(ubi, "empty MTD device detected");
1117                        get_random_bytes(&ubi->image_seq,
1118                                         sizeof(ubi->image_seq));
1119                } else {
1120                        ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1121                        return -EINVAL;
1122                }
1123
1124        }
1125
1126        return 0;
1127}
1128
1129/**
1130 * destroy_av - free volume attaching information.
1131 * @av: volume attaching information
1132 * @ai: attaching information
1133 *
1134 * This function destroys the volume attaching information.
1135 */
1136static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1137{
1138        struct ubi_ainf_peb *aeb;
1139        struct rb_node *this = av->root.rb_node;
1140
1141        while (this) {
1142                if (this->rb_left)
1143                        this = this->rb_left;
1144                else if (this->rb_right)
1145                        this = this->rb_right;
1146                else {
1147                        aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1148                        this = rb_parent(this);
1149                        if (this) {
1150                                if (this->rb_left == &aeb->u.rb)
1151                                        this->rb_left = NULL;
1152                                else
1153                                        this->rb_right = NULL;
1154                        }
1155
1156                        kmem_cache_free(ai->aeb_slab_cache, aeb);
1157                }
1158        }
1159        kfree(av);
1160}
1161
1162/**
1163 * destroy_ai - destroy attaching information.
1164 * @ai: attaching information
1165 */
1166static void destroy_ai(struct ubi_attach_info *ai)
1167{
1168        struct ubi_ainf_peb *aeb, *aeb_tmp;
1169        struct ubi_ainf_volume *av;
1170        struct rb_node *rb;
1171
1172        list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1173                list_del(&aeb->u.list);
1174                kmem_cache_free(ai->aeb_slab_cache, aeb);
1175        }
1176        list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1177                list_del(&aeb->u.list);
1178                kmem_cache_free(ai->aeb_slab_cache, aeb);
1179        }
1180        list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1181                list_del(&aeb->u.list);
1182                kmem_cache_free(ai->aeb_slab_cache, aeb);
1183        }
1184        list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1185                list_del(&aeb->u.list);
1186                kmem_cache_free(ai->aeb_slab_cache, aeb);
1187        }
1188
1189        /* Destroy the volume RB-tree */
1190        rb = ai->volumes.rb_node;
1191        while (rb) {
1192                if (rb->rb_left)
1193                        rb = rb->rb_left;
1194                else if (rb->rb_right)
1195                        rb = rb->rb_right;
1196                else {
1197                        av = rb_entry(rb, struct ubi_ainf_volume, rb);
1198
1199                        rb = rb_parent(rb);
1200                        if (rb) {
1201                                if (rb->rb_left == &av->rb)
1202                                        rb->rb_left = NULL;
1203                                else
1204                                        rb->rb_right = NULL;
1205                        }
1206
1207                        destroy_av(ai, av);
1208                }
1209        }
1210
1211        kmem_cache_destroy(ai->aeb_slab_cache);
1212
1213        kfree(ai);
1214}
1215
1216/**
1217 * scan_all - scan entire MTD device.
1218 * @ubi: UBI device description object
1219 * @ai: attach info object
1220 * @start: start scanning at this PEB
1221 *
1222 * This function does full scanning of an MTD device and returns complete
1223 * information about it in form of a "struct ubi_attach_info" object. In case
1224 * of failure, an error code is returned.
1225 */
1226static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1227                    int start)
1228{
1229        int err, pnum;
1230        struct rb_node *rb1, *rb2;
1231        struct ubi_ainf_volume *av;
1232        struct ubi_ainf_peb *aeb;
1233
1234        err = -ENOMEM;
1235
1236        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1237        if (!ech)
1238                return err;
1239
1240        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1241        if (!vidh)
1242                goto out_ech;
1243
1244        for (pnum = start; pnum < ubi->peb_count; pnum++) {
1245                cond_resched();
1246
1247                dbg_gen("process PEB %d", pnum);
1248                err = scan_peb(ubi, ai, pnum, NULL, NULL);
1249                if (err < 0)
1250                        goto out_vidh;
1251        }
1252
1253        ubi_msg(ubi, "scanning is finished");
1254
1255        /* Calculate mean erase counter */
1256        if (ai->ec_count)
1257                ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1258
1259        err = late_analysis(ubi, ai);
1260        if (err)
1261                goto out_vidh;
1262
1263        /*
1264         * In case of unknown erase counter we use the mean erase counter
1265         * value.
1266         */
1267        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1268                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1269                        if (aeb->ec == UBI_UNKNOWN)
1270                                aeb->ec = ai->mean_ec;
1271        }
1272
1273        list_for_each_entry(aeb, &ai->free, u.list) {
1274                if (aeb->ec == UBI_UNKNOWN)
1275                        aeb->ec = ai->mean_ec;
1276        }
1277
1278        list_for_each_entry(aeb, &ai->corr, u.list)
1279                if (aeb->ec == UBI_UNKNOWN)
1280                        aeb->ec = ai->mean_ec;
1281
1282        list_for_each_entry(aeb, &ai->erase, u.list)
1283                if (aeb->ec == UBI_UNKNOWN)
1284                        aeb->ec = ai->mean_ec;
1285
1286        err = self_check_ai(ubi, ai);
1287        if (err)
1288                goto out_vidh;
1289
1290        ubi_free_vid_hdr(ubi, vidh);
1291        kfree(ech);
1292
1293        return 0;
1294
1295out_vidh:
1296        ubi_free_vid_hdr(ubi, vidh);
1297out_ech:
1298        kfree(ech);
1299        return err;
1300}
1301
1302static struct ubi_attach_info *alloc_ai(void)
1303{
1304        struct ubi_attach_info *ai;
1305
1306        ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1307        if (!ai)
1308                return ai;
1309
1310        INIT_LIST_HEAD(&ai->corr);
1311        INIT_LIST_HEAD(&ai->free);
1312        INIT_LIST_HEAD(&ai->erase);
1313        INIT_LIST_HEAD(&ai->alien);
1314        ai->volumes = RB_ROOT;
1315        ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1316                                               sizeof(struct ubi_ainf_peb),
1317                                               0, 0, NULL);
1318        if (!ai->aeb_slab_cache) {
1319                kfree(ai);
1320                ai = NULL;
1321        }
1322
1323        return ai;
1324}
1325
1326#ifdef CONFIG_MTD_UBI_FASTMAP
1327
1328/**
1329 * scan_fastmap - try to find a fastmap and attach from it.
1330 * @ubi: UBI device description object
1331 * @ai: attach info object
1332 *
1333 * Returns 0 on success, negative return values indicate an internal
1334 * error.
1335 * UBI_NO_FASTMAP denotes that no fastmap was found.
1336 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1337 */
1338static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1339{
1340        int err, pnum, fm_anchor = -1;
1341        unsigned long long max_sqnum = 0;
1342
1343        err = -ENOMEM;
1344
1345        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1346        if (!ech)
1347                goto out;
1348
1349        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1350        if (!vidh)
1351                goto out_ech;
1352
1353        for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1354                int vol_id = -1;
1355                unsigned long long sqnum = -1;
1356                cond_resched();
1357
1358                dbg_gen("process PEB %d", pnum);
1359                err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1360                if (err < 0)
1361                        goto out_vidh;
1362
1363                if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1364                        max_sqnum = sqnum;
1365                        fm_anchor = pnum;
1366                }
1367        }
1368
1369        ubi_free_vid_hdr(ubi, vidh);
1370        kfree(ech);
1371
1372        if (fm_anchor < 0)
1373                return UBI_NO_FASTMAP;
1374
1375        destroy_ai(*ai);
1376        *ai = alloc_ai();
1377        if (!*ai)
1378                return -ENOMEM;
1379
1380        return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1381
1382out_vidh:
1383        ubi_free_vid_hdr(ubi, vidh);
1384out_ech:
1385        kfree(ech);
1386out:
1387        return err;
1388}
1389
1390#endif
1391
1392/**
1393 * ubi_attach - attach an MTD device.
1394 * @ubi: UBI device descriptor
1395 * @force_scan: if set to non-zero attach by scanning
1396 *
1397 * This function returns zero in case of success and a negative error code in
1398 * case of failure.
1399 */
1400int ubi_attach(struct ubi_device *ubi, int force_scan)
1401{
1402        int err;
1403        struct ubi_attach_info *ai;
1404
1405        ai = alloc_ai();
1406        if (!ai)
1407                return -ENOMEM;
1408
1409#ifdef CONFIG_MTD_UBI_FASTMAP
1410        /* On small flash devices we disable fastmap in any case. */
1411        if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1412                ubi->fm_disabled = 1;
1413                force_scan = 1;
1414        }
1415
1416        if (force_scan)
1417                err = scan_all(ubi, ai, 0);
1418        else {
1419                err = scan_fast(ubi, &ai);
1420                if (err > 0 || mtd_is_eccerr(err)) {
1421                        if (err != UBI_NO_FASTMAP) {
1422                                destroy_ai(ai);
1423                                ai = alloc_ai();
1424                                if (!ai)
1425                                        return -ENOMEM;
1426
1427                                err = scan_all(ubi, ai, 0);
1428                        } else {
1429                                err = scan_all(ubi, ai, UBI_FM_MAX_START);
1430                        }
1431                }
1432        }
1433#else
1434        err = scan_all(ubi, ai, 0);
1435#endif
1436        if (err)
1437                goto out_ai;
1438
1439        ubi->bad_peb_count = ai->bad_peb_count;
1440        ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1441        ubi->corr_peb_count = ai->corr_peb_count;
1442        ubi->max_ec = ai->max_ec;
1443        ubi->mean_ec = ai->mean_ec;
1444        dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1445
1446        err = ubi_read_volume_table(ubi, ai);
1447        if (err)
1448                goto out_ai;
1449
1450        err = ubi_wl_init(ubi, ai);
1451        if (err)
1452                goto out_vtbl;
1453
1454        err = ubi_eba_init(ubi, ai);
1455        if (err)
1456                goto out_wl;
1457
1458#ifdef CONFIG_MTD_UBI_FASTMAP
1459        if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1460                struct ubi_attach_info *scan_ai;
1461
1462                scan_ai = alloc_ai();
1463                if (!scan_ai) {
1464                        err = -ENOMEM;
1465                        goto out_wl;
1466                }
1467
1468                err = scan_all(ubi, scan_ai, 0);
1469                if (err) {
1470                        destroy_ai(scan_ai);
1471                        goto out_wl;
1472                }
1473
1474                err = self_check_eba(ubi, ai, scan_ai);
1475                destroy_ai(scan_ai);
1476
1477                if (err)
1478                        goto out_wl;
1479        }
1480#endif
1481
1482        destroy_ai(ai);
1483        return 0;
1484
1485out_wl:
1486        ubi_wl_close(ubi);
1487out_vtbl:
1488        ubi_free_internal_volumes(ubi);
1489        vfree(ubi->vtbl);
1490out_ai:
1491        destroy_ai(ai);
1492        return err;
1493}
1494
1495/**
1496 * self_check_ai - check the attaching information.
1497 * @ubi: UBI device description object
1498 * @ai: attaching information
1499 *
1500 * This function returns zero if the attaching information is all right, and a
1501 * negative error code if not or if an error occurred.
1502 */
1503static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1504{
1505        int pnum, err, vols_found = 0;
1506        struct rb_node *rb1, *rb2;
1507        struct ubi_ainf_volume *av;
1508        struct ubi_ainf_peb *aeb, *last_aeb;
1509        uint8_t *buf;
1510
1511        if (!ubi_dbg_chk_gen(ubi))
1512                return 0;
1513
1514        /*
1515         * At first, check that attaching information is OK.
1516         */
1517        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1518                int leb_count = 0;
1519
1520                cond_resched();
1521
1522                vols_found += 1;
1523
1524                if (ai->is_empty) {
1525                        ubi_err(ubi, "bad is_empty flag");
1526                        goto bad_av;
1527                }
1528
1529                if (av->vol_id < 0 || av->highest_lnum < 0 ||
1530                    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1531                    av->data_pad < 0 || av->last_data_size < 0) {
1532                        ubi_err(ubi, "negative values");
1533                        goto bad_av;
1534                }
1535
1536                if (av->vol_id >= UBI_MAX_VOLUMES &&
1537                    av->vol_id < UBI_INTERNAL_VOL_START) {
1538                        ubi_err(ubi, "bad vol_id");
1539                        goto bad_av;
1540                }
1541
1542                if (av->vol_id > ai->highest_vol_id) {
1543                        ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1544                                ai->highest_vol_id, av->vol_id);
1545                        goto out;
1546                }
1547
1548                if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1549                    av->vol_type != UBI_STATIC_VOLUME) {
1550                        ubi_err(ubi, "bad vol_type");
1551                        goto bad_av;
1552                }
1553
1554                if (av->data_pad > ubi->leb_size / 2) {
1555                        ubi_err(ubi, "bad data_pad");
1556                        goto bad_av;
1557                }
1558
1559                last_aeb = NULL;
1560                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1561                        cond_resched();
1562
1563                        last_aeb = aeb;
1564                        leb_count += 1;
1565
1566                        if (aeb->pnum < 0 || aeb->ec < 0) {
1567                                ubi_err(ubi, "negative values");
1568                                goto bad_aeb;
1569                        }
1570
1571                        if (aeb->ec < ai->min_ec) {
1572                                ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1573                                        ai->min_ec, aeb->ec);
1574                                goto bad_aeb;
1575                        }
1576
1577                        if (aeb->ec > ai->max_ec) {
1578                                ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1579                                        ai->max_ec, aeb->ec);
1580                                goto bad_aeb;
1581                        }
1582
1583                        if (aeb->pnum >= ubi->peb_count) {
1584                                ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1585                                        aeb->pnum, ubi->peb_count);
1586                                goto bad_aeb;
1587                        }
1588
1589                        if (av->vol_type == UBI_STATIC_VOLUME) {
1590                                if (aeb->lnum >= av->used_ebs) {
1591                                        ubi_err(ubi, "bad lnum or used_ebs");
1592                                        goto bad_aeb;
1593                                }
1594                        } else {
1595                                if (av->used_ebs != 0) {
1596                                        ubi_err(ubi, "non-zero used_ebs");
1597                                        goto bad_aeb;
1598                                }
1599                        }
1600
1601                        if (aeb->lnum > av->highest_lnum) {
1602                                ubi_err(ubi, "incorrect highest_lnum or lnum");
1603                                goto bad_aeb;
1604                        }
1605                }
1606
1607                if (av->leb_count != leb_count) {
1608                        ubi_err(ubi, "bad leb_count, %d objects in the tree",
1609                                leb_count);
1610                        goto bad_av;
1611                }
1612
1613                if (!last_aeb)
1614                        continue;
1615
1616                aeb = last_aeb;
1617
1618                if (aeb->lnum != av->highest_lnum) {
1619                        ubi_err(ubi, "bad highest_lnum");
1620                        goto bad_aeb;
1621                }
1622        }
1623
1624        if (vols_found != ai->vols_found) {
1625                ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1626                        ai->vols_found, vols_found);
1627                goto out;
1628        }
1629
1630        /* Check that attaching information is correct */
1631        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1632                last_aeb = NULL;
1633                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1634                        int vol_type;
1635
1636                        cond_resched();
1637
1638                        last_aeb = aeb;
1639
1640                        err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1641                        if (err && err != UBI_IO_BITFLIPS) {
1642                                ubi_err(ubi, "VID header is not OK (%d)",
1643                                        err);
1644                                if (err > 0)
1645                                        err = -EIO;
1646                                return err;
1647                        }
1648
1649                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1650                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1651                        if (av->vol_type != vol_type) {
1652                                ubi_err(ubi, "bad vol_type");
1653                                goto bad_vid_hdr;
1654                        }
1655
1656                        if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1657                                ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1658                                goto bad_vid_hdr;
1659                        }
1660
1661                        if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1662                                ubi_err(ubi, "bad vol_id %d", av->vol_id);
1663                                goto bad_vid_hdr;
1664                        }
1665
1666                        if (av->compat != vidh->compat) {
1667                                ubi_err(ubi, "bad compat %d", vidh->compat);
1668                                goto bad_vid_hdr;
1669                        }
1670
1671                        if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1672                                ubi_err(ubi, "bad lnum %d", aeb->lnum);
1673                                goto bad_vid_hdr;
1674                        }
1675
1676                        if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1677                                ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1678                                goto bad_vid_hdr;
1679                        }
1680
1681                        if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1682                                ubi_err(ubi, "bad data_pad %d", av->data_pad);
1683                                goto bad_vid_hdr;
1684                        }
1685                }
1686
1687                if (!last_aeb)
1688                        continue;
1689
1690                if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1691                        ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1692                        goto bad_vid_hdr;
1693                }
1694
1695                if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1696                        ubi_err(ubi, "bad last_data_size %d",
1697                                av->last_data_size);
1698                        goto bad_vid_hdr;
1699                }
1700        }
1701
1702        /*
1703         * Make sure that all the physical eraseblocks are in one of the lists
1704         * or trees.
1705         */
1706        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1707        if (!buf)
1708                return -ENOMEM;
1709
1710        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1711                err = ubi_io_is_bad(ubi, pnum);
1712                if (err < 0) {
1713                        kfree(buf);
1714                        return err;
1715                } else if (err)
1716                        buf[pnum] = 1;
1717        }
1718
1719        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1720                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1721                        buf[aeb->pnum] = 1;
1722
1723        list_for_each_entry(aeb, &ai->free, u.list)
1724                buf[aeb->pnum] = 1;
1725
1726        list_for_each_entry(aeb, &ai->corr, u.list)
1727                buf[aeb->pnum] = 1;
1728
1729        list_for_each_entry(aeb, &ai->erase, u.list)
1730                buf[aeb->pnum] = 1;
1731
1732        list_for_each_entry(aeb, &ai->alien, u.list)
1733                buf[aeb->pnum] = 1;
1734
1735        err = 0;
1736        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1737                if (!buf[pnum]) {
1738                        ubi_err(ubi, "PEB %d is not referred", pnum);
1739                        err = 1;
1740                }
1741
1742        kfree(buf);
1743        if (err)
1744                goto out;
1745        return 0;
1746
1747bad_aeb:
1748        ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1749        ubi_dump_aeb(aeb, 0);
1750        ubi_dump_av(av);
1751        goto out;
1752
1753bad_av:
1754        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1755        ubi_dump_av(av);
1756        goto out;
1757
1758bad_vid_hdr:
1759        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1760        ubi_dump_av(av);
1761        ubi_dump_vid_hdr(vidh);
1762
1763out:
1764        dump_stack();
1765        return -EINVAL;
1766}
1767