uboot/drivers/mtd/ubi/crc32.c
<<
>>
Prefs
   1/*
   2 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
   3 * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
   4 * Code was from the public domain, copyright abandoned.  Code was
   5 * subsequently included in the kernel, thus was re-licensed under the
   6 * GNU GPL v2.
   7 *
   8 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
   9 * Same crc32 function was used in 5 other places in the kernel.
  10 * I made one version, and deleted the others.
  11 * There are various incantations of crc32().  Some use a seed of 0 or ~0.
  12 * Some xor at the end with ~0.  The generic crc32() function takes
  13 * seed as an argument, and doesn't xor at the end.  Then individual
  14 * users can do whatever they need.
  15 *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
  16 *   fs/jffs2 uses seed 0, doesn't xor with ~0.
  17 *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
  18 *
  19 * This source code is licensed under the GNU General Public License,
  20 * Version 2.  See the file COPYING for more details.
  21 */
  22
  23#ifndef __UBOOT__
  24#include <linux/crc32.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/compiler.h>
  28#include <u-boot/crc.h>
  29#endif
  30#include <linux/types.h>
  31
  32#include <asm/byteorder.h>
  33
  34#ifndef __UBOOT__
  35#include <linux/slab.h>
  36#include <linux/init.h>
  37#include <asm/atomic.h>
  38#endif
  39#include "crc32defs.h"
  40#define CRC_LE_BITS 8
  41
  42#if CRC_LE_BITS == 8
  43#define tole(x) cpu_to_le32(x)
  44#define tobe(x) cpu_to_be32(x)
  45#else
  46#define tole(x) (x)
  47#define tobe(x) (x)
  48#endif
  49#include "crc32table.h"
  50#ifndef __UBOOT__
  51MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
  52MODULE_DESCRIPTION("Ethernet CRC32 calculations");
  53MODULE_LICENSE("GPL");
  54#endif
  55/**
  56 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
  57 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
  58 *      other uses, or the previous crc32 value if computing incrementally.
  59 * @p: pointer to buffer over which CRC is run
  60 * @len: length of buffer @p
  61 */
  62u32  crc32_le(u32 crc, unsigned char const *p, size_t len);
  63
  64#if CRC_LE_BITS == 1
  65/*
  66 * In fact, the table-based code will work in this case, but it can be
  67 * simplified by inlining the table in ?: form.
  68 */
  69
  70u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
  71{
  72        int i;
  73        while (len--) {
  74                crc ^= *p++;
  75                for (i = 0; i < 8; i++)
  76                        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
  77        }
  78        return crc;
  79}
  80#else                           /* Table-based approach */
  81
  82u32 crc32_le(u32 crc, unsigned char const *p, size_t len)
  83{
  84# if CRC_LE_BITS == 8
  85        const u32      *b =(u32 *)p;
  86        const u32      *tab = crc32table_le;
  87
  88# ifdef __LITTLE_ENDIAN
  89#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
  90# else
  91#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
  92# endif
  93        /* printf("Crc32_le crc=%x\n",crc); */
  94        crc = __cpu_to_le32(crc);
  95        /* Align it */
  96        if((((long)b)&3 && len)){
  97                do {
  98                        u8 *p = (u8 *)b;
  99                        DO_CRC(*p++);
 100                        b = (void *)p;
 101                } while ((--len) && ((long)b)&3 );
 102        }
 103        if((len >= 4)){
 104                /* load data 32 bits wide, xor data 32 bits wide. */
 105                size_t save_len = len & 3;
 106                len = len >> 2;
 107                --b; /* use pre increment below(*++b) for speed */
 108                do {
 109                        crc ^= *++b;
 110                        DO_CRC(0);
 111                        DO_CRC(0);
 112                        DO_CRC(0);
 113                        DO_CRC(0);
 114                } while (--len);
 115                b++; /* point to next byte(s) */
 116                len = save_len;
 117        }
 118        /* And the last few bytes */
 119        if(len){
 120                do {
 121                        u8 *p = (u8 *)b;
 122                        DO_CRC(*p++);
 123                        b = (void *)p;
 124                } while (--len);
 125        }
 126
 127        return __le32_to_cpu(crc);
 128#undef ENDIAN_SHIFT
 129#undef DO_CRC
 130
 131# elif CRC_LE_BITS == 4
 132        while (len--) {
 133                crc ^= *p++;
 134                crc = (crc >> 4) ^ crc32table_le[crc & 15];
 135                crc = (crc >> 4) ^ crc32table_le[crc & 15];
 136        }
 137        return crc;
 138# elif CRC_LE_BITS == 2
 139        while (len--) {
 140                crc ^= *p++;
 141                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 142                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 143                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 144                crc = (crc >> 2) ^ crc32table_le[crc & 3];
 145        }
 146        return crc;
 147# endif
 148}
 149#endif
 150#ifndef __UBOOT__
 151/**
 152 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
 153 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
 154 *      other uses, or the previous crc32 value if computing incrementally.
 155 * @p: pointer to buffer over which CRC is run
 156 * @len: length of buffer @p
 157 */
 158u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len);
 159
 160#if CRC_BE_BITS == 1
 161/*
 162 * In fact, the table-based code will work in this case, but it can be
 163 * simplified by inlining the table in ?: form.
 164 */
 165
 166u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
 167{
 168        int i;
 169        while (len--) {
 170                crc ^= *p++ << 24;
 171                for (i = 0; i < 8; i++)
 172                        crc =
 173                            (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
 174                                          0);
 175        }
 176        return crc;
 177}
 178
 179#else                           /* Table-based approach */
 180u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
 181{
 182# if CRC_BE_BITS == 8
 183        const u32      *b =(u32 *)p;
 184        const u32      *tab = crc32table_be;
 185
 186# ifdef __LITTLE_ENDIAN
 187#  define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
 188# else
 189#  define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
 190# endif
 191
 192        crc = __cpu_to_be32(crc);
 193        /* Align it */
 194        if(unlikely(((long)b)&3 && len)){
 195                do {
 196                        u8 *p = (u8 *)b;
 197                        DO_CRC(*p++);
 198                        b = (u32 *)p;
 199                } while ((--len) && ((long)b)&3 );
 200        }
 201        if(likely(len >= 4)){
 202                /* load data 32 bits wide, xor data 32 bits wide. */
 203                size_t save_len = len & 3;
 204                len = len >> 2;
 205                --b; /* use pre increment below(*++b) for speed */
 206                do {
 207                        crc ^= *++b;
 208                        DO_CRC(0);
 209                        DO_CRC(0);
 210                        DO_CRC(0);
 211                        DO_CRC(0);
 212                } while (--len);
 213                b++; /* point to next byte(s) */
 214                len = save_len;
 215        }
 216        /* And the last few bytes */
 217        if(len){
 218                do {
 219                        u8 *p = (u8 *)b;
 220                        DO_CRC(*p++);
 221                        b = (void *)p;
 222                } while (--len);
 223        }
 224        return __be32_to_cpu(crc);
 225#undef ENDIAN_SHIFT
 226#undef DO_CRC
 227
 228# elif CRC_BE_BITS == 4
 229        while (len--) {
 230                crc ^= *p++ << 24;
 231                crc = (crc << 4) ^ crc32table_be[crc >> 28];
 232                crc = (crc << 4) ^ crc32table_be[crc >> 28];
 233        }
 234        return crc;
 235# elif CRC_BE_BITS == 2
 236        while (len--) {
 237                crc ^= *p++ << 24;
 238                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 239                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 240                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 241                crc = (crc << 2) ^ crc32table_be[crc >> 30];
 242        }
 243        return crc;
 244# endif
 245}
 246#endif
 247
 248EXPORT_SYMBOL(crc32_le);
 249EXPORT_SYMBOL(crc32_be);
 250#endif
 251/*
 252 * A brief CRC tutorial.
 253 *
 254 * A CRC is a long-division remainder.  You add the CRC to the message,
 255 * and the whole thing (message+CRC) is a multiple of the given
 256 * CRC polynomial.  To check the CRC, you can either check that the
 257 * CRC matches the recomputed value, *or* you can check that the
 258 * remainder computed on the message+CRC is 0.  This latter approach
 259 * is used by a lot of hardware implementations, and is why so many
 260 * protocols put the end-of-frame flag after the CRC.
 261 *
 262 * It's actually the same long division you learned in school, except that
 263 * - We're working in binary, so the digits are only 0 and 1, and
 264 * - When dividing polynomials, there are no carries.  Rather than add and
 265 *   subtract, we just xor.  Thus, we tend to get a bit sloppy about
 266 *   the difference between adding and subtracting.
 267 *
 268 * A 32-bit CRC polynomial is actually 33 bits long.  But since it's
 269 * 33 bits long, bit 32 is always going to be set, so usually the CRC
 270 * is written in hex with the most significant bit omitted.  (If you're
 271 * familiar with the IEEE 754 floating-point format, it's the same idea.)
 272 *
 273 * Note that a CRC is computed over a string of *bits*, so you have
 274 * to decide on the endianness of the bits within each byte.  To get
 275 * the best error-detecting properties, this should correspond to the
 276 * order they're actually sent.  For example, standard RS-232 serial is
 277 * little-endian; the most significant bit (sometimes used for parity)
 278 * is sent last.  And when appending a CRC word to a message, you should
 279 * do it in the right order, matching the endianness.
 280 *
 281 * Just like with ordinary division, the remainder is always smaller than
 282 * the divisor (the CRC polynomial) you're dividing by.  Each step of the
 283 * division, you take one more digit (bit) of the dividend and append it
 284 * to the current remainder.  Then you figure out the appropriate multiple
 285 * of the divisor to subtract to being the remainder back into range.
 286 * In binary, it's easy - it has to be either 0 or 1, and to make the
 287 * XOR cancel, it's just a copy of bit 32 of the remainder.
 288 *
 289 * When computing a CRC, we don't care about the quotient, so we can
 290 * throw the quotient bit away, but subtract the appropriate multiple of
 291 * the polynomial from the remainder and we're back to where we started,
 292 * ready to process the next bit.
 293 *
 294 * A big-endian CRC written this way would be coded like:
 295 * for (i = 0; i < input_bits; i++) {
 296 *      multiple = remainder & 0x80000000 ? CRCPOLY : 0;
 297 *      remainder = (remainder << 1 | next_input_bit()) ^ multiple;
 298 * }
 299 * Notice how, to get at bit 32 of the shifted remainder, we look
 300 * at bit 31 of the remainder *before* shifting it.
 301 *
 302 * But also notice how the next_input_bit() bits we're shifting into
 303 * the remainder don't actually affect any decision-making until
 304 * 32 bits later.  Thus, the first 32 cycles of this are pretty boring.
 305 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
 306 * the end, so we have to add 32 extra cycles shifting in zeros at the
 307 * end of every message,
 308 *
 309 * So the standard trick is to rearrage merging in the next_input_bit()
 310 * until the moment it's needed.  Then the first 32 cycles can be precomputed,
 311 * and merging in the final 32 zero bits to make room for the CRC can be
 312 * skipped entirely.
 313 * This changes the code to:
 314 * for (i = 0; i < input_bits; i++) {
 315 *      remainder ^= next_input_bit() << 31;
 316 *      multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
 317 *      remainder = (remainder << 1) ^ multiple;
 318 * }
 319 * With this optimization, the little-endian code is simpler:
 320 * for (i = 0; i < input_bits; i++) {
 321 *      remainder ^= next_input_bit();
 322 *      multiple = (remainder & 1) ? CRCPOLY : 0;
 323 *      remainder = (remainder >> 1) ^ multiple;
 324 * }
 325 *
 326 * Note that the other details of endianness have been hidden in CRCPOLY
 327 * (which must be bit-reversed) and next_input_bit().
 328 *
 329 * However, as long as next_input_bit is returning the bits in a sensible
 330 * order, we can actually do the merging 8 or more bits at a time rather
 331 * than one bit at a time:
 332 * for (i = 0; i < input_bytes; i++) {
 333 *      remainder ^= next_input_byte() << 24;
 334 *      for (j = 0; j < 8; j++) {
 335 *              multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
 336 *              remainder = (remainder << 1) ^ multiple;
 337 *      }
 338 * }
 339 * Or in little-endian:
 340 * for (i = 0; i < input_bytes; i++) {
 341 *      remainder ^= next_input_byte();
 342 *      for (j = 0; j < 8; j++) {
 343 *              multiple = (remainder & 1) ? CRCPOLY : 0;
 344 *              remainder = (remainder << 1) ^ multiple;
 345 *      }
 346 * }
 347 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
 348 * word at a time and increase the inner loop count to 32.
 349 *
 350 * You can also mix and match the two loop styles, for example doing the
 351 * bulk of a message byte-at-a-time and adding bit-at-a-time processing
 352 * for any fractional bytes at the end.
 353 *
 354 * The only remaining optimization is to the byte-at-a-time table method.
 355 * Here, rather than just shifting one bit of the remainder to decide
 356 * in the correct multiple to subtract, we can shift a byte at a time.
 357 * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
 358 * but again the multiple of the polynomial to subtract depends only on
 359 * the high bits, the high 8 bits in this case.
 360 *
 361 * The multile we need in that case is the low 32 bits of a 40-bit
 362 * value whose high 8 bits are given, and which is a multiple of the
 363 * generator polynomial.  This is simply the CRC-32 of the given
 364 * one-byte message.
 365 *
 366 * Two more details: normally, appending zero bits to a message which
 367 * is already a multiple of a polynomial produces a larger multiple of that
 368 * polynomial.  To enable a CRC to detect this condition, it's common to
 369 * invert the CRC before appending it.  This makes the remainder of the
 370 * message+crc come out not as zero, but some fixed non-zero value.
 371 *
 372 * The same problem applies to zero bits prepended to the message, and
 373 * a similar solution is used.  Instead of starting with a remainder of
 374 * 0, an initial remainder of all ones is used.  As long as you start
 375 * the same way on decoding, it doesn't make a difference.
 376 */
 377
 378#ifdef UNITTEST
 379
 380#include <stdlib.h>
 381#include <stdio.h>
 382
 383#ifndef __UBOOT__
 384static void
 385buf_dump(char const *prefix, unsigned char const *buf, size_t len)
 386{
 387        fputs(prefix, stdout);
 388        while (len--)
 389                printf(" %02x", *buf++);
 390        putchar('\n');
 391
 392}
 393#endif
 394
 395static void bytereverse(unsigned char *buf, size_t len)
 396{
 397        while (len--) {
 398                unsigned char x = bitrev8(*buf);
 399                *buf++ = x;
 400        }
 401}
 402
 403static void random_garbage(unsigned char *buf, size_t len)
 404{
 405        while (len--)
 406                *buf++ = (unsigned char) random();
 407}
 408
 409#ifndef __UBOOT__
 410static void store_le(u32 x, unsigned char *buf)
 411{
 412        buf[0] = (unsigned char) x;
 413        buf[1] = (unsigned char) (x >> 8);
 414        buf[2] = (unsigned char) (x >> 16);
 415        buf[3] = (unsigned char) (x >> 24);
 416}
 417#endif
 418
 419static void store_be(u32 x, unsigned char *buf)
 420{
 421        buf[0] = (unsigned char) (x >> 24);
 422        buf[1] = (unsigned char) (x >> 16);
 423        buf[2] = (unsigned char) (x >> 8);
 424        buf[3] = (unsigned char) x;
 425}
 426
 427/*
 428 * This checks that CRC(buf + CRC(buf)) = 0, and that
 429 * CRC commutes with bit-reversal.  This has the side effect
 430 * of bytewise bit-reversing the input buffer, and returns
 431 * the CRC of the reversed buffer.
 432 */
 433static u32 test_step(u32 init, unsigned char *buf, size_t len)
 434{
 435        u32 crc1, crc2;
 436        size_t i;
 437
 438        crc1 = crc32_be(init, buf, len);
 439        store_be(crc1, buf + len);
 440        crc2 = crc32_be(init, buf, len + 4);
 441        if (crc2)
 442                printf("\nCRC cancellation fail: 0x%08x should be 0\n",
 443                       crc2);
 444
 445        for (i = 0; i <= len + 4; i++) {
 446                crc2 = crc32_be(init, buf, i);
 447                crc2 = crc32_be(crc2, buf + i, len + 4 - i);
 448                if (crc2)
 449                        printf("\nCRC split fail: 0x%08x\n", crc2);
 450        }
 451
 452        /* Now swap it around for the other test */
 453
 454        bytereverse(buf, len + 4);
 455        init = bitrev32(init);
 456        crc2 = bitrev32(crc1);
 457        if (crc1 != bitrev32(crc2))
 458                printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
 459                       crc1, crc2, bitrev32(crc2));
 460        crc1 = crc32_le(init, buf, len);
 461        if (crc1 != crc2)
 462                printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
 463                       crc2);
 464        crc2 = crc32_le(init, buf, len + 4);
 465        if (crc2)
 466                printf("\nCRC cancellation fail: 0x%08x should be 0\n",
 467                       crc2);
 468
 469        for (i = 0; i <= len + 4; i++) {
 470                crc2 = crc32_le(init, buf, i);
 471                crc2 = crc32_le(crc2, buf + i, len + 4 - i);
 472                if (crc2)
 473                        printf("\nCRC split fail: 0x%08x\n", crc2);
 474        }
 475
 476        return crc1;
 477}
 478
 479#define SIZE 64
 480#define INIT1 0
 481#define INIT2 0
 482
 483int main(void)
 484{
 485        unsigned char buf1[SIZE + 4];
 486        unsigned char buf2[SIZE + 4];
 487        unsigned char buf3[SIZE + 4];
 488        int i, j;
 489        u32 crc1, crc2, crc3;
 490
 491        for (i = 0; i <= SIZE; i++) {
 492                printf("\rTesting length %d...", i);
 493                fflush(stdout);
 494                random_garbage(buf1, i);
 495                random_garbage(buf2, i);
 496                for (j = 0; j < i; j++)
 497                        buf3[j] = buf1[j] ^ buf2[j];
 498
 499                crc1 = test_step(INIT1, buf1, i);
 500                crc2 = test_step(INIT2, buf2, i);
 501                /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
 502                crc3 = test_step(INIT1 ^ INIT2, buf3, i);
 503                if (crc3 != (crc1 ^ crc2))
 504                        printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
 505                               crc3, crc1, crc2);
 506        }
 507        printf("\nAll test complete.  No failures expected.\n");
 508        return 0;
 509}
 510
 511#endif                          /* UNITTEST */
 512