uboot/drivers/ram/stm32mp1/stm32mp1_tuning.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
   4 */
   5
   6#define LOG_CATEGORY UCLASS_RAM
   7
   8#include <common.h>
   9#include <console.h>
  10#include <clk.h>
  11#include <log.h>
  12#include <ram.h>
  13#include <rand.h>
  14#include <reset.h>
  15#include <asm/io.h>
  16#include <linux/bitops.h>
  17#include <linux/delay.h>
  18#include <linux/iopoll.h>
  19
  20#include "stm32mp1_ddr_regs.h"
  21#include "stm32mp1_ddr.h"
  22#include "stm32mp1_tests.h"
  23
  24#define MAX_DQS_PHASE_IDX _144deg
  25#define MAX_DQS_UNIT_IDX 7
  26#define MAX_GSL_IDX 5
  27#define MAX_GPS_IDX 3
  28
  29/* Number of bytes used in this SW. ( min 1--> max 4). */
  30#define NUM_BYTES 4
  31
  32enum dqs_phase_enum {
  33        _36deg = 0,
  34        _54deg = 1,
  35        _72deg = 2,
  36        _90deg = 3,
  37        _108deg = 4,
  38        _126deg = 5,
  39        _144deg = 6
  40};
  41
  42/* BIST Result struct */
  43struct BIST_result {
  44        /* Overall test result:
  45         * 0 Fail (any bit failed) ,
  46         * 1 Success (All bits success)
  47         */
  48        bool test_result;
  49        /* 1: true, all fail /  0: False, not all bits fail */
  50        bool all_bits_fail;
  51        bool bit_i_test_result[8];  /* 0 fail / 1 success */
  52};
  53
  54/* a struct that defines tuning parameters of a byte. */
  55struct tuning_position {
  56        u8 phase; /* DQS phase */
  57        u8 unit; /* DQS unit delay */
  58        u32 bits_delay; /* Bits deskew in this byte */
  59};
  60
  61/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
  62const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
  63
  64static u8 BIST_error_max = 1;
  65static u32 BIST_seed = 0x1234ABCD;
  66
  67static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
  68{
  69        u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
  70        u8 nb_bytes = NUM_BYTES;
  71
  72        switch (data_bus) {
  73        case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
  74                nb_bytes /= 2;
  75                break;
  76        case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
  77                nb_bytes /= 4;
  78                break;
  79        default:
  80                break;
  81        }
  82
  83        return nb_bytes;
  84}
  85
  86static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl)
  87{
  88        /* Count bank address bits */
  89        u8 bits = 0;
  90        u32 reg, val;
  91
  92        reg = readl(&ctl->addrmap1);
  93        /* addrmap1.addrmap_bank_b1 */
  94        val = (reg & GENMASK(5, 0)) >> 0;
  95        if (val <= 31)
  96                bits++;
  97        /* addrmap1.addrmap_bank_b2 */
  98        val = (reg & GENMASK(13, 8)) >> 8;
  99        if (val <= 31)
 100                bits++;
 101        /* addrmap1.addrmap_bank_b3 */
 102        val = (reg & GENMASK(21, 16)) >> 16;
 103        if (val <= 31)
 104                bits++;
 105
 106        return bits;
 107}
 108
 109static u8 get_nb_col(struct stm32mp1_ddrctl *ctl)
 110{
 111        u8 bits;
 112        u32 reg, val;
 113
 114        /* Count column address bits, start at 2 for b0 and b1 (fixed) */
 115        bits = 2;
 116
 117        reg = readl(&ctl->addrmap2);
 118        /* addrmap2.addrmap_col_b2 */
 119        val = (reg & GENMASK(3, 0)) >> 0;
 120        if (val <= 7)
 121                bits++;
 122        /* addrmap2.addrmap_col_b3 */
 123        val = (reg & GENMASK(11, 8)) >> 8;
 124        if (val <= 7)
 125                bits++;
 126        /* addrmap2.addrmap_col_b4 */
 127        val = (reg & GENMASK(19, 16)) >> 16;
 128        if (val <= 7)
 129                bits++;
 130        /* addrmap2.addrmap_col_b5 */
 131        val = (reg & GENMASK(27, 24)) >> 24;
 132        if (val <= 7)
 133                bits++;
 134
 135        reg = readl(&ctl->addrmap3);
 136        /* addrmap3.addrmap_col_b6 */
 137        val = (reg & GENMASK(3, 0)) >> 0;
 138        if (val <= 7)
 139                bits++;
 140        /* addrmap3.addrmap_col_b7 */
 141        val = (reg & GENMASK(11, 8)) >> 8;
 142        if (val <= 7)
 143                bits++;
 144        /* addrmap3.addrmap_col_b8 */
 145        val = (reg & GENMASK(19, 16)) >> 16;
 146        if (val <= 7)
 147                bits++;
 148        /* addrmap3.addrmap_col_b9 */
 149        val = (reg & GENMASK(27, 24)) >> 24;
 150        if (val <= 7)
 151                bits++;
 152
 153        reg = readl(&ctl->addrmap4);
 154        /* addrmap4.addrmap_col_b10 */
 155        val = (reg & GENMASK(3, 0)) >> 0;
 156        if (val <= 7)
 157                bits++;
 158        /* addrmap4.addrmap_col_b11 */
 159        val = (reg & GENMASK(11, 8)) >> 8;
 160        if (val <= 7)
 161                bits++;
 162
 163        return bits;
 164}
 165
 166static u8 get_nb_row(struct stm32mp1_ddrctl *ctl)
 167{
 168        /* Count row address bits */
 169        u8 bits = 0;
 170        u32 reg, val;
 171
 172        reg = readl(&ctl->addrmap5);
 173        /* addrmap5.addrmap_row_b0 */
 174        val = (reg & GENMASK(3, 0)) >> 0;
 175        if (val <= 11)
 176                bits++;
 177        /* addrmap5.addrmap_row_b1 */
 178        val = (reg & GENMASK(11, 8)) >> 8;
 179        if (val <= 11)
 180                bits++;
 181        /* addrmap5.addrmap_row_b2_10 */
 182        val = (reg & GENMASK(19, 16)) >> 16;
 183        if (val <= 11)
 184                bits += 9;
 185        else
 186                printf("warning: addrmap5.addrmap_row_b2_10 not supported\n");
 187        /* addrmap5.addrmap_row_b11 */
 188        val = (reg & GENMASK(27, 24)) >> 24;
 189        if (val <= 11)
 190                bits++;
 191
 192        reg = readl(&ctl->addrmap6);
 193        /* addrmap6.addrmap_row_b12 */
 194        val = (reg & GENMASK(3, 0)) >> 0;
 195        if (val <= 7)
 196                bits++;
 197        /* addrmap6.addrmap_row_b13 */
 198        val = (reg & GENMASK(11, 8)) >> 8;
 199        if (val <= 7)
 200                bits++;
 201        /* addrmap6.addrmap_row_b14 */
 202        val = (reg & GENMASK(19, 16)) >> 16;
 203        if (val <= 7)
 204                bits++;
 205        /* addrmap6.addrmap_row_b15 */
 206        val = (reg & GENMASK(27, 24)) >> 24;
 207        if (val <= 7)
 208                bits++;
 209
 210        return bits;
 211}
 212
 213static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
 214{
 215        stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
 216}
 217
 218/* Read DQ unit delay register and provides the retrieved value for DQS
 219 * We are assuming that we have the same delay when clocking
 220 * by DQS and when clocking by DQSN
 221 */
 222static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
 223{
 224        u32 index;
 225        u32 addr = DXNDQTR(phy, byte);
 226
 227        /* We are assuming that we have the same delay when clocking by DQS
 228         * and when clocking by DQSN : use only the low bits
 229         */
 230        index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
 231                & DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
 232
 233        log_debug("[%x]: %x => DQ unit index = %x\n", addr, readl(addr), index);
 234
 235        return index;
 236}
 237
 238/* Sets the DQS phase delay for a byte lane.
 239 *phase delay is specified by giving the index of the desired delay
 240 * in the dx_dll_phase array.
 241 */
 242static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
 243{
 244        u8 sdphase_val = 0;
 245
 246        /*      Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
 247        sdphase_val = dx_dll_phase[phase_idx];
 248        clrsetbits_le32(DXNDLLCR(phy, byte),
 249                        DDRPHYC_DXNDLLCR_SDPHASE_MASK,
 250                        sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
 251}
 252
 253/* Sets the DQS unit delay for a byte lane.
 254 * unit delay is specified by giving the index of the desired delay
 255 * for dgsdly and dqsndly (same value).
 256 */
 257static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
 258                           u8 byte, u8 unit_dly_idx)
 259{
 260        /* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
 261        clrsetbits_le32(DXNDQSTR(phy, byte),
 262                        DDRPHYC_DXNDQSTR_DQSDLY_MASK |
 263                        DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
 264                        (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
 265                        (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
 266
 267        /* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
 268         * plus PIR.INIT=1) must be issued.
 269         */
 270        stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
 271}
 272
 273/* Sets the DQ unit delay for a bit line in particular byte lane.
 274 * unit delay is specified by giving the desired delay
 275 */
 276static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
 277                              u8 byte, u8 bit,
 278                              u8 dq_delay_index)
 279{
 280        u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
 281
 282        /* same value on delay for clock DQ an DQS_b */
 283        clrsetbits_le32(DXNDQTR(phy, byte),
 284                        DDRPHYC_DXNDQTR_DQDLY_MASK
 285                        << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
 286                        dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
 287}
 288
 289static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
 290                             u8 byte, u8 r0dgsl_idx)
 291{
 292        clrsetbits_le32(DXNDQSTR(phy, byte),
 293                        DDRPHYC_DXNDQSTR_R0DGSL_MASK,
 294                        r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
 295}
 296
 297static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
 298                             u8 byte, u8 r0dgps_idx)
 299{
 300        clrsetbits_le32(DXNDQSTR(phy, byte),
 301                        DDRPHYC_DXNDQSTR_R0DGPS_MASK,
 302                        r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
 303}
 304
 305/* Basic BIST configuration for data lane tests. */
 306static void config_BIST(struct stm32mp1_ddrctl *ctl,
 307                        struct stm32mp1_ddrphy *phy)
 308{
 309        u8 nb_bank = get_nb_bank(ctl);
 310        u8 nb_row = get_nb_row(ctl);
 311        u8 nb_col = get_nb_col(ctl);
 312
 313        /* Selects the SDRAM bank address to be used during BIST. */
 314        u32 bbank = 0;
 315        /* Selects the SDRAM row address to be used during BIST. */
 316        u32 brow = 0;
 317        /* Selects the SDRAM column address to be used during BIST. */
 318        u32 bcol = 0;
 319        /* Selects the value by which the SDRAM address is incremented
 320         * for each write/read access.
 321         */
 322        u32 bainc = 0x00000008;
 323        /* Specifies the maximum SDRAM rank to be used during BIST.
 324         * The default value is set to maximum ranks minus 1.
 325         * must be 0 with single rank
 326         */
 327        u32 bmrank = 0;
 328        /* Selects the SDRAM rank to be used during BIST.
 329         * must be 0 with single rank
 330         */
 331        u32 brank = 0;
 332
 333        /* Specifies the maximum SDRAM bank address to be used during
 334         * BIST before the address & increments to the next rank.
 335         */
 336        u32 bmbank = (1 << nb_bank) - 1;
 337        /* Specifies the maximum SDRAM row address to be used during
 338         * BIST before the address & increments to the next bank.
 339         */
 340        u32 bmrow = (1 << nb_row) - 1;
 341        /* Specifies the maximum SDRAM column address to be used during
 342         * BIST before the address & increments to the next row.
 343         */
 344        u32 bmcol = (1 << nb_col) - 1;
 345
 346        u32 bmode_conf = 0x00000001;  /* DRam mode */
 347        u32 bdxen_conf = 0x00000001;  /* BIST on Data byte */
 348        u32 bdpat_conf = 0x00000002;  /* Select LFSR pattern */
 349
 350        /*Setup BIST for DRAM mode,  and LFSR-random data pattern.*/
 351        /*Write BISTRR.BMODE = 1?b1;*/
 352        /*Write BISTRR.BDXEN = 1?b1;*/
 353        /*Write BISTRR.BDPAT = 2?b10;*/
 354
 355        /* reset BIST */
 356        writel(0x3, &phy->bistrr);
 357
 358        writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
 359               &phy->bistrr);
 360
 361        /*Setup BIST Word Count*/
 362        /*Write BISTWCR.BWCNT = 16?b0008;*/
 363        writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
 364
 365        writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
 366        writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
 367        writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
 368}
 369
 370/* Select the Byte lane to be tested by BIST. */
 371static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
 372{
 373        clrsetbits_le32(&phy->bistrr,
 374                        DDRPHYC_BISTRR_BDXSEL_MASK,
 375                        datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
 376
 377        /*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
 378        /* Write BISTRR.BDXSEL = datx8; */
 379}
 380
 381/* Perform BIST Write_Read test on a byte lane and return test result. */
 382static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
 383                      struct BIST_result *bist)
 384{
 385        bool result = true; /* BIST_SUCCESS */
 386        u32 cnt = 0;
 387        u32 error = 0;
 388        u32 val;
 389        int ret;
 390
 391        bist->test_result = true;
 392
 393run:
 394        itm_soft_reset(phy);
 395
 396        /*Perform BIST Reset*/
 397        /* Write BISTRR.BINST = 3?b011; */
 398        clrsetbits_le32(&phy->bistrr,
 399                        0x00000007,
 400                        0x00000003);
 401
 402        /*Re-seed LFSR*/
 403        /* Write BISTLSR.SEED = 32'h1234ABCD; */
 404        if (BIST_seed)
 405                writel(BIST_seed, &phy->bistlsr);
 406        else
 407                writel(rand(), &phy->bistlsr);
 408
 409        /* some delay to reset BIST */
 410        udelay(10);
 411
 412        /*Perform BIST Run*/
 413        clrsetbits_le32(&phy->bistrr,
 414                        0x00000007,
 415                        0x00000001);
 416        /* Write BISTRR.BINST = 3?b001; */
 417
 418        /* poll on BISTGSR.BDONE and wait max 1000 us */
 419        ret = readl_poll_timeout(&phy->bistgsr, val,
 420                                 val & DDRPHYC_BISTGSR_BDDONE, 1000);
 421
 422        if (ret < 0) {
 423                printf("warning: BIST timeout\n");
 424                result = false; /* BIST_FAIL; */
 425                /*Perform BIST Stop */
 426                clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002);
 427        } else {
 428                /*Check if received correct number of words*/
 429                /* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
 430                if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT)
 431                    == readl(&phy->bistwcr)) {
 432                        /*Determine if there is a data comparison error*/
 433                        /* if (Read BISTGSR.BDXERR = 1?b0) */
 434                        if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
 435                                result = false; /* BIST_FAIL; */
 436                        else
 437                                result = true; /* BIST_SUCCESS; */
 438                } else {
 439                        result = false; /* BIST_FAIL; */
 440                }
 441        }
 442
 443        /* loop while success */
 444        cnt++;
 445        if (result && cnt != 1000)
 446                goto run;
 447
 448        if (!result)
 449                error++;
 450
 451        if (error < BIST_error_max) {
 452                if (cnt != 1000)
 453                        goto run;
 454                bist->test_result = true;
 455        } else {
 456                bist->test_result = false;
 457        }
 458}
 459
 460/* After running the deskew algo, this function applies the new DQ delays
 461 * by reading them from the array "deskew_delay"and writing in PHY registers.
 462 * The bits that are not deskewed parfectly (too much skew on them,
 463 * or data eye very wide) are marked in the array deskew_non_converge.
 464 */
 465static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
 466                                 u8 deskew_delay[NUM_BYTES][8],
 467                                 u8 deskew_non_converge[NUM_BYTES][8])
 468{
 469        u8  bit_i;
 470        u8  index;
 471
 472        for (bit_i = 0; bit_i < 8; bit_i++) {
 473                set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
 474                index = DQ_unit_index(phy, byte, bit_i);
 475                log_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
 476                          byte, bit_i, deskew_delay[byte][bit_i],
 477                          index, index - 3);
 478                printf("Byte %d, bit %d, DQ delay = %d",
 479                       byte, bit_i, deskew_delay[byte][bit_i]);
 480                if (deskew_non_converge[byte][bit_i] == 1)
 481                        log_debug(" - not converged : still more skew");
 482                printf("\n");
 483        }
 484}
 485
 486/* DQ Bit de-skew algorithm.
 487 * Deskews data lines as much as possible.
 488 * 1. Add delay to DQS line until finding the failure
 489 *    (normally a hold time violation)
 490 * 2. Reduce DQS line by small steps until finding the very first time
 491 *    we go back to "Pass" condition.
 492 * 3. For each DQ line, Reduce DQ delay until finding the very first failure
 493 *    (normally a hold time fail)
 494 * 4. When all bits are at their first failure delay, we can consider them
 495 *    aligned.
 496 * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
 497 * at any step)
 498 * TODO Provide a return Status. Improve doc
 499 */
 500static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
 501                                   struct stm32mp1_ddrphy *phy, char *string)
 502{
 503        /* New DQ delay value (index), set during Deskew algo */
 504        u8 deskew_delay[NUM_BYTES][8];
 505        /*If there is still skew on a bit, mark this bit. */
 506        u8 deskew_non_converge[NUM_BYTES][8];
 507        struct BIST_result result;
 508        s8 dqs_unit_delay_index = 0;
 509        u8 datx8 = 0;
 510        u8 bit_i = 0;
 511        s8 phase_idx = 0;
 512        s8 bit_i_delay_index = 0;
 513        u8 success = 0;
 514        struct tuning_position last_right_ok;
 515        u8 force_stop = 0;
 516        u8 fail_found;
 517        u8 error = 0;
 518        u8 nb_bytes = get_nb_bytes(ctl);
 519        /* u8 last_pass_dqs_unit = 0; */
 520
 521        memset(deskew_delay, 0, sizeof(deskew_delay));
 522        memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
 523
 524        /*Disable DQS Drift Compensation*/
 525        clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 526        /*Disable all bytes*/
 527        /* Disable automatic power down of DLL and IOs when disabling
 528         * a byte (To avoid having to add programming and  delay
 529         * for a DLL re-lock when later re-enabling a disabled Byte Lane)
 530         */
 531        clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 532
 533        /* Disable all data bytes */
 534        clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 535        clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 536        clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 537        clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 538
 539        /* Config the BIST block */
 540        config_BIST(ctl, phy);
 541        log_debug("BIST Config done.\n");
 542
 543        /* Train each byte */
 544        for (datx8 = 0; datx8 < nb_bytes; datx8++) {
 545                if (ctrlc()) {
 546                        sprintf(string, "interrupted at byte %d/%d, error=%d",
 547                                datx8 + 1, nb_bytes, error);
 548                        return TEST_FAILED;
 549                }
 550                log_debug("\n======================\n");
 551                log_debug("Start deskew byte %d .\n", datx8);
 552                log_debug("======================\n");
 553                /* Enable Byte (DXNGCR, bit DXEN) */
 554                setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
 555
 556                /* Select the byte lane for comparison of read data */
 557                BIST_datx8_sel(phy, datx8);
 558
 559                /* Set all DQDLYn to maximum value. All bits within the byte
 560                 * will be delayed with DQSTR = 2 instead of max = 3
 561                 * to avoid inter bits fail influence
 562                 */
 563                writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
 564
 565                /* Set the DQS phase delay to 90 DEG (default).
 566                 * What is defined here is the index of the desired config
 567                 * in the PHASE array.
 568                 */
 569                phase_idx = _90deg;
 570
 571                /* Set DQS unit delay to the max value. */
 572                dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
 573                DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
 574                DQS_phase_delay(phy, datx8, phase_idx);
 575
 576                /* Issue a DLL soft reset */
 577                clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
 578                setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
 579
 580                /* Test this typical init condition */
 581                BIST_test(phy, datx8, &result);
 582                success = result.test_result;
 583
 584                /* If the test pass in this typical condition,
 585                 * start the algo with it.
 586                 * Else, look for Pass init condition
 587                 */
 588                if (!success) {
 589                        log_debug("Fail at init condtion. Let's look for a good init condition.\n");
 590                        success = 0; /* init */
 591                        /* Make sure we start with a PASS condition before
 592                         * looking for a fail condition.
 593                         * Find the first PASS PHASE condition
 594                         */
 595
 596                        /* escape if we find a PASS */
 597                        log_debug("increase Phase idx\n");
 598                        while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
 599                                DQS_phase_delay(phy, datx8, phase_idx);
 600                                BIST_test(phy, datx8, &result);
 601                                success = result.test_result;
 602                                phase_idx++;
 603                        }
 604                        /* if ended with success
 605                         * ==>> Restore the fist success condition
 606                         */
 607                        if (success)
 608                                phase_idx--; /* because it ended with ++ */
 609                }
 610                if (ctrlc()) {
 611                        sprintf(string, "interrupted at byte %d/%d, error=%d",
 612                                datx8 + 1, nb_bytes, error);
 613                        return TEST_FAILED;
 614                }
 615                /* We couldn't find a successful condition, its seems
 616                 * we have hold violation, lets try reduce DQS_unit Delay
 617                 */
 618                if (!success) {
 619                        /* We couldn't find a successful condition, its seems
 620                         * we have hold violation, lets try reduce DQS_unit
 621                         * Delay
 622                         */
 623                        log_debug("Still fail. Try decrease DQS Unit delay\n");
 624
 625                        phase_idx = 0;
 626                        dqs_unit_delay_index = 0;
 627                        DQS_phase_delay(phy, datx8, phase_idx);
 628
 629                        /* escape if we find a PASS */
 630                        while (!success &&
 631                               (dqs_unit_delay_index <=
 632                                MAX_DQS_UNIT_IDX)) {
 633                                DQS_unit_delay(phy, datx8,
 634                                               dqs_unit_delay_index);
 635                                BIST_test(phy, datx8, &result);
 636                                success = result.test_result;
 637                                dqs_unit_delay_index++;
 638                        }
 639                        if (success) {
 640                                /* Restore the first success condition*/
 641                                dqs_unit_delay_index--;
 642                                /* last_pass_dqs_unit = dqs_unit_delay_index;*/
 643                                DQS_unit_delay(phy, datx8,
 644                                               dqs_unit_delay_index);
 645                        } else {
 646                                /* No need to continue,
 647                                 * there is no pass region.
 648                                 */
 649                                force_stop = 1;
 650                        }
 651                }
 652
 653                /* There is an initial PASS condition
 654                 * Look for the first failing condition by PHASE stepping.
 655                 * This part of the algo can finish without converging.
 656                 */
 657                if (force_stop) {
 658                        printf("Result: Failed ");
 659                        printf("[Cannot Deskew lines, ");
 660                        printf("there is no PASS region]\n");
 661                        error++;
 662                        continue;
 663                }
 664                if (ctrlc()) {
 665                        sprintf(string, "interrupted at byte %d/%d, error=%d",
 666                                datx8 + 1, nb_bytes, error);
 667                        return TEST_FAILED;
 668                }
 669
 670                log_debug("there is a pass region for phase idx %d\n",
 671                          phase_idx);
 672                log_debug("Step1: Find the first failing condition\n");
 673                /* Look for the first failing condition by PHASE stepping.
 674                 * This part of the algo can finish without converging.
 675                 */
 676
 677                /* escape if we find a fail (hold time violation)
 678                 * condition at any bit or if out of delay range.
 679                 */
 680                while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
 681                        DQS_phase_delay(phy, datx8, phase_idx);
 682                        BIST_test(phy, datx8, &result);
 683                        success = result.test_result;
 684                        phase_idx++;
 685                }
 686                if (ctrlc()) {
 687                        sprintf(string, "interrupted at byte %d/%d, error=%d",
 688                                datx8 + 1, nb_bytes, error);
 689                        return TEST_FAILED;
 690                }
 691
 692                /* if the loop ended with a failing condition at any bit,
 693                 * lets look for the first previous success condition by unit
 694                 * stepping (minimal delay)
 695                 */
 696                if (!success) {
 697                        log_debug("Fail region (PHASE) found phase idx %d\n",
 698                                  phase_idx);
 699                        log_debug("Let's look for first success by DQS Unit steps\n");
 700                        /* This part, the algo always converge */
 701                        phase_idx--;
 702
 703                        /* escape if we find a success condition
 704                         * or if out of delay range.
 705                         */
 706                        while (!success && dqs_unit_delay_index >= 0) {
 707                                DQS_unit_delay(phy, datx8,
 708                                               dqs_unit_delay_index);
 709                                BIST_test(phy, datx8, &result);
 710                                success = result.test_result;
 711                                dqs_unit_delay_index--;
 712                        }
 713                        /* if the loop ended with a success condition,
 714                         * the last delay Right OK (before hold violation)
 715                         *  condition is then defined as following:
 716                         */
 717                        if (success) {
 718                                /* Hold the dely parameters of the the last
 719                                 * delay Right OK condition.
 720                                 * -1 to get back to current condition
 721                                 */
 722                                last_right_ok.phase = phase_idx;
 723                                /*+1 to get back to current condition */
 724                                last_right_ok.unit = dqs_unit_delay_index + 1;
 725                                last_right_ok.bits_delay = 0xFFFFFFFF;
 726                                log_debug("Found %d\n", dqs_unit_delay_index);
 727                        } else {
 728                                /* the last OK condition is then with the
 729                                 * previous phase_idx.
 730                                 * -2 instead of -1 because at the last
 731                                 * iteration of the while(),
 732                                 * we incremented phase_idx
 733                                 */
 734                                last_right_ok.phase = phase_idx - 1;
 735                                /* Nominal+1. Because we want the previous
 736                                 * delay after reducing the phase delay.
 737                                 */
 738                                last_right_ok.unit = 1;
 739                                last_right_ok.bits_delay = 0xFFFFFFFF;
 740                                log_debug("Not Found : try previous phase %d\n",
 741                                          phase_idx - 1);
 742
 743                                DQS_phase_delay(phy, datx8, phase_idx - 1);
 744                                dqs_unit_delay_index = 0;
 745                                success = true;
 746                                while (success &&
 747                                       (dqs_unit_delay_index <
 748                                        MAX_DQS_UNIT_IDX)) {
 749                                        DQS_unit_delay(phy, datx8,
 750                                                       dqs_unit_delay_index);
 751                                        BIST_test(phy, datx8, &result);
 752                                        success = result.test_result;
 753                                        dqs_unit_delay_index++;
 754                                        log_debug("dqs_unit_delay_index = %d, result = %d\n",
 755                                                  dqs_unit_delay_index, success);
 756                                }
 757
 758                                if (!success) {
 759                                        last_right_ok.unit =
 760                                                 dqs_unit_delay_index - 1;
 761                                } else {
 762                                        last_right_ok.unit = 0;
 763                                        log_debug("ERROR: failed region not FOUND");
 764                                }
 765                        }
 766                } else {
 767                        /* we can't find a failing  condition at all bits
 768                         * ==> Just hold the last test condition
 769                         * (the max DQS delay)
 770                         * which is the most likely,
 771                         * the closest to a hold violation
 772                         * If we can't find a Fail condition after
 773                         * the Pass region, stick at this position
 774                         * In order to have max chances to find a fail
 775                         * when reducing DQ delays.
 776                         */
 777                        last_right_ok.phase = MAX_DQS_PHASE_IDX;
 778                        last_right_ok.unit = MAX_DQS_UNIT_IDX;
 779                        last_right_ok.bits_delay = 0xFFFFFFFF;
 780                        log_debug("Can't find the a fail condition\n");
 781                }
 782
 783                /* step 2:
 784                 * if we arrive at this stage, it means that we found the last
 785                 * Right OK condition (by tweeking the DQS delay). Or we simply
 786                 * pushed DQS delay to the max
 787                 * This means that by reducing the delay on some DQ bits,
 788                 * we should find a failing condition.
 789                 */
 790                printf("Byte %d, DQS unit = %d, phase = %d\n",
 791                       datx8, last_right_ok.unit, last_right_ok.phase);
 792                log_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
 793                          last_right_ok.unit, last_right_ok.phase,
 794                          last_right_ok.bits_delay);
 795
 796                /* Restore the last_right_ok condtion. */
 797                DQS_unit_delay(phy, datx8, last_right_ok.unit);
 798                DQS_phase_delay(phy, datx8, last_right_ok.phase);
 799                writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
 800
 801                /* train each bit
 802                 * reduce delay on each bit, and perform a write/read test
 803                 * and stop at the very first time it fails.
 804                 * the goal is the find the first failing condition
 805                 * for each bit.
 806                 * When we achieve this condition<  for all the bits,
 807                 * we are sure they are aligned (+/- step resolution)
 808                 */
 809                fail_found = 0;
 810                for (bit_i = 0; bit_i < 8; bit_i++) {
 811                        if (ctrlc()) {
 812                                sprintf(string,
 813                                        "interrupted at byte %d/%d, error=%d",
 814                                        datx8 + 1, nb_bytes, error);
 815                                return error;
 816                        }
 817                        log_debug("deskewing bit %d:\n", bit_i);
 818                        success = 1; /* init */
 819                        /* Set all DQDLYn to maximum value.
 820                         * Only bit_i will be down-delayed
 821                         * ==> if we have a fail, it will be definitely
 822                         *     from bit_i
 823                         */
 824                        writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
 825                        /* Arriving at this stage,
 826                         * we have a success condition with delay = 3;
 827                         */
 828                        bit_i_delay_index = 3;
 829
 830                        /* escape if bit delay is out of range or
 831                         * if a fatil occurs
 832                         */
 833                        while ((bit_i_delay_index >= 0) && success) {
 834                                set_DQ_unit_delay(phy, datx8,
 835                                                  bit_i,
 836                                                  bit_i_delay_index);
 837                                BIST_test(phy, datx8, &result);
 838                                success = result.test_result;
 839                                bit_i_delay_index--;
 840                        }
 841
 842                        /* if escape with a fail condition
 843                         * ==> save this position for bit_i
 844                         */
 845                        if (!success) {
 846                                /* save the delay position.
 847                                 * Add 1 because the while loop ended with a --,
 848                                 * and that we need to hold the last success
 849                                 *  delay
 850                                 */
 851                                deskew_delay[datx8][bit_i] =
 852                                        bit_i_delay_index + 2;
 853                                if (deskew_delay[datx8][bit_i] > 3)
 854                                        deskew_delay[datx8][bit_i] = 3;
 855
 856                                /* A flag that states we found at least a fail
 857                                 * at one bit.
 858                                 */
 859                                fail_found = 1;
 860                                log_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
 861                                          bit_i, bit_i_delay_index + 1,
 862                                          datx8, bit_i,
 863                                          deskew_delay[datx8][bit_i]);
 864                        } else {
 865                                /* if we can find a success condition by
 866                                 * back-delaying this bit, just set the delay
 867                                 * to 0 (the best deskew
 868                                 * possible) and mark the bit.
 869                                 */
 870                                deskew_delay[datx8][bit_i] = 0;
 871                                /* set a flag that will be used later
 872                                 * in the report.
 873                                 */
 874                                deskew_non_converge[datx8][bit_i] = 1;
 875                                log_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
 876                                          bit_i, datx8, bit_i,
 877                                          deskew_delay[datx8][bit_i]);
 878                        }
 879                }
 880                log_debug("**********byte %d tuning complete************\n",
 881                          datx8);
 882                /* If we can't find any failure by back delaying DQ lines,
 883                 * hold the default values
 884                 */
 885                if (!fail_found) {
 886                        for (bit_i = 0; bit_i < 8; bit_i++)
 887                                deskew_delay[datx8][bit_i] = 0;
 888                        log_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
 889                }
 890
 891                apply_deskew_results(phy, datx8, deskew_delay,
 892                                     deskew_non_converge);
 893                /* Restore nominal value for DQS delay */
 894                DQS_phase_delay(phy, datx8, 3);
 895                DQS_unit_delay(phy, datx8, 3);
 896                /* disable byte after byte bits deskew */
 897                clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
 898        }  /* end of byte deskew */
 899
 900        /* re-enable all data bytes */
 901        setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 902        setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 903        setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 904        setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 905
 906        if (error) {
 907                sprintf(string, "error = %d", error);
 908                return TEST_FAILED;
 909        }
 910
 911        return TEST_PASSED;
 912} /* end function */
 913
 914/* Trim DQS timings and set it in the centre of data eye.
 915 * Look for a PPPPF region, then look for a FPPP region and finally select
 916 * the mid of the FPPPPPF region
 917 */
 918static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
 919                                     struct stm32mp1_ddrphy *phy, char *string)
 920{
 921        /*Stores the DQS trim values (PHASE index, unit index) */
 922        u8 eye_training_val[NUM_BYTES][2];
 923        u8 byte = 0;
 924        struct BIST_result result;
 925        s8 dqs_unit_delay_index = 0;
 926        s8 phase_idx = 0;
 927        s8 dqs_unit_delay_index_pass = 0;
 928        s8 phase_idx_pass = 0;
 929        u8 success = 0;
 930        u8 left_phase_bound_found, right_phase_bound_found;
 931        u8 left_unit_bound_found, right_unit_bound_found;
 932        u8 left_bound_found, right_bound_found;
 933        struct tuning_position left_bound, right_bound;
 934        u8 error = 0;
 935        u8 nb_bytes = get_nb_bytes(ctl);
 936
 937        /*Disable DQS Drift Compensation*/
 938        clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
 939        /*Disable all bytes*/
 940        /* Disable automatic power down of DLL and IOs when disabling a byte
 941         * (To avoid having to add programming and  delay
 942         * for a DLL re-lock when later re-enabling a disabled Byte Lane)
 943         */
 944        clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
 945
 946        /*Disable all data bytes */
 947        clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
 948        clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
 949        clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
 950        clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
 951
 952        /* Config the BIST block */
 953        config_BIST(ctl, phy);
 954
 955        for (byte = 0; byte < nb_bytes; byte++) {
 956                if (ctrlc()) {
 957                        sprintf(string, "interrupted at byte %d/%d, error=%d",
 958                                byte + 1, nb_bytes, error);
 959                        return TEST_FAILED;
 960                }
 961                right_bound.phase = 0;
 962                right_bound.unit = 0;
 963
 964                left_bound.phase = 0;
 965                left_bound.unit = 0;
 966
 967                left_phase_bound_found = 0;
 968                right_phase_bound_found = 0;
 969
 970                left_unit_bound_found = 0;
 971                right_unit_bound_found = 0;
 972
 973                left_bound_found = 0;
 974                right_bound_found = 0;
 975
 976                /* Enable Byte (DXNGCR, bit DXEN) */
 977                setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
 978
 979                /* Select the byte lane for comparison of read data */
 980                BIST_datx8_sel(phy, byte);
 981
 982                /* Set DQS phase delay to the nominal value. */
 983                phase_idx = _90deg;
 984                phase_idx_pass = phase_idx;
 985
 986                /* Set DQS unit delay to the nominal value. */
 987                dqs_unit_delay_index = 3;
 988                dqs_unit_delay_index_pass = dqs_unit_delay_index;
 989                success = 0;
 990
 991                log_debug("STEP0: Find Init delay\n");
 992                /* STEP0: Find Init delay: a delay that put the system
 993                 * in a "Pass" condition then (TODO) update
 994                 * dqs_unit_delay_index_pass & phase_idx_pass
 995                 */
 996                DQS_unit_delay(phy, byte, dqs_unit_delay_index);
 997                DQS_phase_delay(phy, byte, phase_idx);
 998                BIST_test(phy, byte, &result);
 999                success = result.test_result;
1000                /* If we have a fail in the nominal condition */
1001                if (!success) {
1002                        /* Look at the left */
1003                        while (phase_idx >= 0 && !success) {
1004                                phase_idx--;
1005                                DQS_phase_delay(phy, byte, phase_idx);
1006                                BIST_test(phy, byte, &result);
1007                                success = result.test_result;
1008                        }
1009                }
1010                if (!success) {
1011                        /* if we can't find pass condition,
1012                         * then look at the right
1013                         */
1014                        phase_idx = _90deg;
1015                        while (phase_idx <= MAX_DQS_PHASE_IDX &&
1016                               !success) {
1017                                phase_idx++;
1018                                DQS_phase_delay(phy, byte,
1019                                                phase_idx);
1020                                BIST_test(phy, byte, &result);
1021                                success = result.test_result;
1022                        }
1023                }
1024                /* save the pass condition */
1025                if (success) {
1026                        phase_idx_pass = phase_idx;
1027                } else {
1028                        printf("Result: Failed ");
1029                        printf("[Cannot DQS timings, ");
1030                        printf("there is no PASS region]\n");
1031                        error++;
1032                        continue;
1033                }
1034
1035                if (ctrlc()) {
1036                        sprintf(string, "interrupted at byte %d/%d, error=%d",
1037                                byte + 1, nb_bytes, error);
1038                        return TEST_FAILED;
1039                }
1040                log_debug("STEP1: Find LEFT PHASE DQS Bound\n");
1041                /* STEP1: Find LEFT PHASE DQS Bound */
1042                while ((phase_idx >= 0) &&
1043                       (phase_idx <= MAX_DQS_PHASE_IDX) &&
1044                       !left_phase_bound_found) {
1045                        DQS_unit_delay(phy, byte,
1046                                       dqs_unit_delay_index);
1047                        DQS_phase_delay(phy, byte,
1048                                        phase_idx);
1049                        BIST_test(phy, byte, &result);
1050                        success = result.test_result;
1051
1052                        /*TODO: Manage the case were at the beginning
1053                         * there is already a fail
1054                         */
1055                        if (!success) {
1056                                /* the last pass condition */
1057                                left_bound.phase = ++phase_idx;
1058                                left_phase_bound_found = 1;
1059                        } else if (success) {
1060                                phase_idx--;
1061                        }
1062                }
1063                if (!left_phase_bound_found) {
1064                        left_bound.phase = 0;
1065                        phase_idx = 0;
1066                }
1067                /* If not found, lets take 0 */
1068
1069                if (ctrlc()) {
1070                        sprintf(string, "interrupted at byte %d/%d, error=%d",
1071                                byte + 1, nb_bytes, error);
1072                        return TEST_FAILED;
1073                }
1074                log_debug("STEP2: Find UNIT left bound\n");
1075                /* STEP2: Find UNIT left bound */
1076                while ((dqs_unit_delay_index >= 0) &&
1077                       !left_unit_bound_found) {
1078                        DQS_unit_delay(phy, byte,
1079                                       dqs_unit_delay_index);
1080                        DQS_phase_delay(phy, byte, phase_idx);
1081                        BIST_test(phy, byte, &result);
1082                        success = result.test_result;
1083                        if (!success) {
1084                                left_bound.unit =
1085                                        ++dqs_unit_delay_index;
1086                                left_unit_bound_found = 1;
1087                                left_bound_found = 1;
1088                        } else if (success) {
1089                                dqs_unit_delay_index--;
1090                        }
1091                }
1092
1093                /* If not found, lets take 0 */
1094                if (!left_unit_bound_found)
1095                        left_bound.unit = 0;
1096
1097                if (ctrlc()) {
1098                        sprintf(string, "interrupted at byte %d/%d, error=%d",
1099                                byte + 1, nb_bytes, error);
1100                        return TEST_FAILED;
1101                }
1102                log_debug("STEP3: Find PHase right bound\n");
1103                /* STEP3: Find PHase right bound, start with "pass"
1104                 * condition
1105                 */
1106
1107                /* Set DQS phase delay to the pass value. */
1108                phase_idx = phase_idx_pass;
1109
1110                /* Set DQS unit delay to the pass value. */
1111                dqs_unit_delay_index = dqs_unit_delay_index_pass;
1112
1113                while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
1114                       !right_phase_bound_found) {
1115                        DQS_unit_delay(phy, byte,
1116                                       dqs_unit_delay_index);
1117                        DQS_phase_delay(phy, byte, phase_idx);
1118                        BIST_test(phy, byte, &result);
1119                        success = result.test_result;
1120                        if (!success) {
1121                                /* the last pass condition */
1122                                right_bound.phase = --phase_idx;
1123                                right_phase_bound_found = 1;
1124                        } else if (success) {
1125                                phase_idx++;
1126                        }
1127                }
1128
1129                /* If not found, lets take the max value */
1130                if (!right_phase_bound_found) {
1131                        right_bound.phase = MAX_DQS_PHASE_IDX;
1132                        phase_idx = MAX_DQS_PHASE_IDX;
1133                }
1134
1135                if (ctrlc()) {
1136                        sprintf(string, "interrupted at byte %d/%d, error=%d",
1137                                byte + 1, nb_bytes, error);
1138                        return TEST_FAILED;
1139                }
1140                log_debug("STEP4: Find UNIT right bound\n");
1141                /* STEP4: Find UNIT right bound */
1142                while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
1143                       !right_unit_bound_found) {
1144                        DQS_unit_delay(phy, byte,
1145                                       dqs_unit_delay_index);
1146                        DQS_phase_delay(phy, byte, phase_idx);
1147                        BIST_test(phy, byte, &result);
1148                        success = result.test_result;
1149                        if (!success) {
1150                                right_bound.unit =
1151                                        --dqs_unit_delay_index;
1152                                right_unit_bound_found = 1;
1153                                right_bound_found = 1;
1154                        } else if (success) {
1155                                dqs_unit_delay_index++;
1156                        }
1157                }
1158                /* If not found, lets take the max value */
1159                if (!right_unit_bound_found)
1160                        right_bound.unit = MAX_DQS_UNIT_IDX;
1161
1162                /* If we found a regular FAil Pass FAil pattern
1163                 * FFPPPPPPFF
1164                 * OR PPPPPFF  Or FFPPPPP
1165                 */
1166
1167                if (left_bound_found || right_bound_found) {
1168                        eye_training_val[byte][0] = (right_bound.phase +
1169                                                 left_bound.phase) / 2;
1170                        eye_training_val[byte][1] = (right_bound.unit +
1171                                                 left_bound.unit) / 2;
1172
1173                        /* If we already lost 1/2PHASE Tuning,
1174                         * let's try to recover by ++ on unit
1175                         */
1176                        if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
1177                            eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
1178                                eye_training_val[byte][1]++;
1179                        log_debug("** found phase : %d -  %d & unit %d - %d\n",
1180                                  right_bound.phase, left_bound.phase,
1181                                  right_bound.unit, left_bound.unit);
1182                        log_debug("** calculating mid region: phase: %d  unit: %d (nominal is 3)\n",
1183                                  eye_training_val[byte][0],
1184                                  eye_training_val[byte][1]);
1185                } else {
1186                        /* PPPPPPPPPP, we're already good.
1187                         * Set nominal values.
1188                         */
1189                        eye_training_val[byte][0] = 3;
1190                        eye_training_val[byte][1] = 3;
1191                }
1192                DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
1193                DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
1194
1195                printf("Byte %d, DQS unit = %d, phase = %d\n",
1196                       byte,
1197                       eye_training_val[byte][1],
1198                       eye_training_val[byte][0]);
1199        }
1200
1201        if (error) {
1202                sprintf(string, "error = %d", error);
1203                return TEST_FAILED;
1204        }
1205
1206        return TEST_PASSED;
1207}
1208
1209static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
1210{
1211        u8 i = 0;
1212
1213        printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n  ",
1214               byte);
1215
1216        for (i = 0; i < 8; i++)
1217                printf("%d ", DQ_unit_index(phy, byte, i));
1218        printf("\n");
1219
1220        printf("dxndllcr: [%08x] val:%08x\n",
1221               DXNDLLCR(phy, byte),
1222               readl(DXNDLLCR(phy, byte)));
1223        printf("dxnqdstr: [%08x] val:%08x\n",
1224               DXNDQSTR(phy, byte),
1225               readl(DXNDQSTR(phy, byte)));
1226        printf("dxndqtr: [%08x] val:%08x\n",
1227               DXNDQTR(phy, byte),
1228               readl(DXNDQTR(phy, byte)));
1229}
1230
1231/* analyse the dgs gating log table, and determine the midpoint.*/
1232static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
1233                                       u8 dqs_gating[NUM_BYTES]
1234                                                    [MAX_GSL_IDX + 1]
1235                                                    [MAX_GPS_IDX + 1])
1236{
1237        /* stores the dqs gate values (gsl index, gps index) */
1238        u8 dqs_gate_values[NUM_BYTES][2];
1239        u8 gsl_idx, gps_idx = 0;
1240        u8 left_bound_idx[2] = {0, 0};
1241        u8 right_bound_idx[2] = {0, 0};
1242        u8 left_bound_found = 0;
1243        u8 right_bound_found = 0;
1244        u8 intermittent = 0;
1245        u8 value;
1246
1247        for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
1248                for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
1249                        value = dqs_gating[byte][gsl_idx][gps_idx];
1250                        if (value == 1 && left_bound_found == 0) {
1251                                left_bound_idx[0] = gsl_idx;
1252                                left_bound_idx[1] = gps_idx;
1253                                left_bound_found = 1;
1254                        } else if (value == 0 &&
1255                                   left_bound_found == 1 &&
1256                                   !right_bound_found) {
1257                                if (gps_idx == 0) {
1258                                        right_bound_idx[0] = gsl_idx - 1;
1259                                        right_bound_idx[1] = MAX_GPS_IDX;
1260                                } else {
1261                                        right_bound_idx[0] = gsl_idx;
1262                                        right_bound_idx[1] = gps_idx - 1;
1263                                }
1264                                right_bound_found = 1;
1265                        } else if (value == 1 &&
1266                                   right_bound_found == 1) {
1267                                intermittent = 1;
1268                        }
1269                }
1270        }
1271
1272        /* if only ppppppp is found, there is no mid region. */
1273        if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
1274            right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
1275                intermittent = 1;
1276
1277        /*if we found a regular fail pass fail pattern ffppppppff
1278         * or pppppff  or ffppppp
1279         */
1280        if (!intermittent) {
1281                /*if we found a regular fail pass fail pattern ffppppppff
1282                 * or pppppff  or ffppppp
1283                 */
1284                if (left_bound_found || right_bound_found) {
1285                        log_debug("idx0(%d): %d %d      idx1(%d) : %d %d\n",
1286                                  left_bound_found,
1287                                  right_bound_idx[0], left_bound_idx[0],
1288                                  right_bound_found,
1289                                  right_bound_idx[1], left_bound_idx[1]);
1290                        dqs_gate_values[byte][0] =
1291                                (right_bound_idx[0] + left_bound_idx[0]) / 2;
1292                        dqs_gate_values[byte][1] =
1293                                (right_bound_idx[1] + left_bound_idx[1]) / 2;
1294                        /* if we already lost 1/2gsl tuning,
1295                         * let's try to recover by ++ on gps
1296                         */
1297                        if (((right_bound_idx[0] +
1298                              left_bound_idx[0]) % 2 == 1) &&
1299                            dqs_gate_values[byte][1] != MAX_GPS_IDX)
1300                                dqs_gate_values[byte][1]++;
1301                        /* if we already lost 1/2gsl tuning and gps is on max*/
1302                        else if (((right_bound_idx[0] +
1303                                   left_bound_idx[0]) % 2 == 1) &&
1304                                 dqs_gate_values[byte][1] == MAX_GPS_IDX) {
1305                                dqs_gate_values[byte][1] = 0;
1306                                dqs_gate_values[byte][0]++;
1307                        }
1308                        /* if we have gsl left and write limit too close
1309                         * (difference=1)
1310                         */
1311                        if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
1312                                dqs_gate_values[byte][1] = (left_bound_idx[1] +
1313                                                            right_bound_idx[1] +
1314                                                            4) / 2;
1315                                if (dqs_gate_values[byte][1] >= 4) {
1316                                        dqs_gate_values[byte][0] =
1317                                                right_bound_idx[0];
1318                                        dqs_gate_values[byte][1] -= 4;
1319                                } else {
1320                                        dqs_gate_values[byte][0] =
1321                                                left_bound_idx[0];
1322                                }
1323                        }
1324                        log_debug("*******calculating mid region: system latency: %d  phase: %d********\n",
1325                                  dqs_gate_values[byte][0],
1326                                  dqs_gate_values[byte][1]);
1327                        log_debug("*******the nominal values were system latency: 0  phase: 2*******\n");
1328                }
1329        } else {
1330                /* if intermitant, restore defaut values */
1331                log_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
1332                dqs_gate_values[byte][0] = 0;
1333                dqs_gate_values[byte][1] = 2;
1334        }
1335        set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
1336        set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
1337        printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n",
1338               byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]);
1339
1340        /* return 0 if intermittent or if both left_bound
1341         * and right_bound are not found
1342         */
1343        return !(intermittent || (left_bound_found && right_bound_found));
1344}
1345
1346static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
1347                                        struct stm32mp1_ddrphy *phy,
1348                                        char *string)
1349{
1350        /* stores the log of pass/fail */
1351        u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
1352        u8 byte, gsl_idx, gps_idx = 0;
1353        struct BIST_result result;
1354        u8 success = 0;
1355        u8 nb_bytes = get_nb_bytes(ctl);
1356
1357        memset(dqs_gating, 0x0, sizeof(dqs_gating));
1358
1359        /*disable dqs drift compensation*/
1360        clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
1361        /*disable all bytes*/
1362        /* disable automatic power down of dll and ios when disabling a byte
1363         * (to avoid having to add programming and  delay
1364         * for a dll re-lock when later re-enabling a disabled byte lane)
1365         */
1366        clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
1367
1368        /* disable all data bytes */
1369        clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
1370        clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
1371        clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
1372        clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
1373
1374        /* config the bist block */
1375        config_BIST(ctl, phy);
1376
1377        for (byte = 0; byte < nb_bytes; byte++) {
1378                if (ctrlc()) {
1379                        sprintf(string, "interrupted at byte %d/%d",
1380                                byte + 1, nb_bytes);
1381                        return TEST_FAILED;
1382                }
1383                /* enable byte x (dxngcr, bit dxen) */
1384                setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
1385
1386                /* select the byte lane for comparison of read data */
1387                BIST_datx8_sel(phy, byte);
1388                for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
1389                        for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
1390                                if (ctrlc()) {
1391                                        sprintf(string,
1392                                                "interrupted at byte %d/%d",
1393                                                byte + 1, nb_bytes);
1394                                        return TEST_FAILED;
1395                                }
1396                                /* write cfg to dxndqstr */
1397                                set_r0dgsl_delay(phy, byte, gsl_idx);
1398                                set_r0dgps_delay(phy, byte, gps_idx);
1399
1400                                BIST_test(phy, byte, &result);
1401                                success = result.test_result;
1402                                if (success)
1403                                        dqs_gating[byte][gsl_idx][gps_idx] = 1;
1404                                itm_soft_reset(phy);
1405                        }
1406                }
1407                set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
1408                /* dummy reads */
1409                readl(0xc0000000);
1410                readl(0xc0000000);
1411        }
1412
1413        /* re-enable drift compensation */
1414        /* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
1415        return TEST_PASSED;
1416}
1417
1418/****************************************************************
1419 * TEST
1420 ****************************************************************
1421 */
1422static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
1423                                           struct stm32mp1_ddrphy *phy,
1424                                           char *string, int argc,
1425                                           char *argv[])
1426{
1427        u32 rfshctl3 = readl(&ctl->rfshctl3);
1428        u32 pwrctl = readl(&ctl->pwrctl);
1429        u32 derateen = readl(&ctl->derateen);
1430        enum test_result res;
1431
1432        writel(0x0, &ctl->derateen);
1433        stm32mp1_refresh_disable(ctl);
1434
1435        res = read_dqs_gating(ctl, phy, string);
1436
1437        stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
1438        writel(derateen, &ctl->derateen);
1439
1440        return res;
1441}
1442
1443static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
1444                                      struct stm32mp1_ddrphy *phy,
1445                                      char *string, int argc, char *argv[])
1446{
1447        u32 rfshctl3 = readl(&ctl->rfshctl3);
1448        u32 pwrctl = readl(&ctl->pwrctl);
1449        u32 derateen = readl(&ctl->derateen);
1450        enum test_result res;
1451
1452        writel(0x0, &ctl->derateen);
1453        stm32mp1_refresh_disable(ctl);
1454
1455        res = bit_deskew(ctl, phy, string);
1456
1457        stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
1458        writel(derateen, &ctl->derateen);
1459
1460        return res;
1461}
1462
1463static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
1464                                        struct stm32mp1_ddrphy *phy,
1465                                        char *string, int argc, char *argv[])
1466{
1467        u32 rfshctl3 = readl(&ctl->rfshctl3);
1468        u32 pwrctl = readl(&ctl->pwrctl);
1469        u32 derateen = readl(&ctl->derateen);
1470        enum test_result res;
1471
1472        writel(0x0, &ctl->derateen);
1473        stm32mp1_refresh_disable(ctl);
1474
1475        res = eye_training(ctl, phy, string);
1476
1477        stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
1478        writel(derateen, &ctl->derateen);
1479
1480        return res;
1481}
1482
1483static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
1484                                   struct stm32mp1_ddrphy *phy,
1485                                   char *string, int argc, char *argv[])
1486{
1487        int byte;
1488        u8 nb_bytes = get_nb_bytes(ctl);
1489
1490        for (byte = 0; byte < nb_bytes; byte++)
1491                display_reg_results(phy, byte);
1492
1493        return TEST_PASSED;
1494}
1495
1496static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
1497                                       struct stm32mp1_ddrphy *phy,
1498                                       char *string, int argc, char *argv[])
1499{
1500        unsigned long value;
1501
1502        if (argc > 0) {
1503                if (strict_strtoul(argv[0], 0, &value) < 0) {
1504                        sprintf(string, "invalid nbErr %s", argv[0]);
1505                        return TEST_FAILED;
1506                }
1507                BIST_error_max = value;
1508        }
1509        if (argc > 1) {
1510                if (strict_strtoul(argv[1], 0, &value) < 0) {
1511                        sprintf(string, "invalid Seed %s", argv[1]);
1512                        return TEST_FAILED;
1513                }
1514                BIST_seed = value;
1515        }
1516        printf("Bist.nbErr = %d\n", BIST_error_max);
1517        if (BIST_seed)
1518                printf("Bist.Seed = 0x%x\n", BIST_seed);
1519        else
1520                printf("Bist.Seed = random\n");
1521
1522        return TEST_PASSED;
1523}
1524
1525/****************************************************************
1526 * TEST Description
1527 ****************************************************************
1528 */
1529
1530const struct test_desc tuning[] = {
1531        {do_read_dqs_gating, "Read DQS gating",
1532                "software read DQS Gating", "", 0 },
1533        {do_bit_deskew, "Bit de-skew", "", "", 0 },
1534        {do_eye_training, "Eye Training", "or DQS training", "", 0 },
1535        {do_display, "Display registers", "", "", 0 },
1536        {do_bist_config, "Bist config", "[nbErr] [seed]",
1537         "configure Bist test", 2},
1538};
1539
1540const int tuning_nb = ARRAY_SIZE(tuning);
1541