uboot/drivers/spi/nxp_fspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * NXP FlexSPI(FSPI) controller driver.
   4 *
   5 * Copyright (c) 2019 Michael Walle <michael@walle.cc>
   6 * Copyright (c) 2019 NXP
   7 *
   8 * This driver was originally ported from the linux kernel v5.4-rc3, which had
   9 * the following notes:
  10 *
  11 * FlexSPI is a flexsible SPI host controller which supports two SPI
  12 * channels and up to 4 external devices. Each channel supports
  13 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  14 * data lines).
  15 *
  16 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  17 * LUT registers are a look-up-table for sequences of instructions.
  18 * A valid sequence consists of four LUT registers.
  19 * Maximum 32 LUT sequences can be programmed simultaneously.
  20 *
  21 * LUTs are being created at run-time based on the commands passed
  22 * from the spi-mem framework, thus using single LUT index.
  23 *
  24 * Software triggered Flash read/write access by IP Bus.
  25 *
  26 * Memory mapped read access by AHB Bus.
  27 *
  28 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  29 *
  30 * Author:
  31 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  32 *     Boris Brezillon <bbrezillon@kernel.org>
  33 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  34 */
  35
  36#include <common.h>
  37#include <clk.h>
  38#include <dm.h>
  39#include <dm/device_compat.h>
  40#include <malloc.h>
  41#include <spi.h>
  42#include <spi-mem.h>
  43#include <asm/io.h>
  44#ifdef CONFIG_FSL_LAYERSCAPE
  45#include <asm/arch/clock.h>
  46#include <asm/arch/soc.h>
  47#include <asm/arch/speed.h>
  48#endif
  49#include <linux/bitops.h>
  50#include <linux/kernel.h>
  51#include <linux/sizes.h>
  52#include <linux/iopoll.h>
  53#include <linux/bug.h>
  54#include <linux/err.h>
  55
  56/*
  57 * The driver only uses one single LUT entry, that is updated on
  58 * each call of exec_op(). Index 0 is preset at boot with a basic
  59 * read operation, so let's use the last entry (31).
  60 */
  61#define SEQID_LUT                       31
  62
  63/* Registers used by the driver */
  64#define FSPI_MCR0                       0x00
  65#define FSPI_MCR0_AHB_TIMEOUT(x)        ((x) << 24)
  66#define FSPI_MCR0_IP_TIMEOUT(x)         ((x) << 16)
  67#define FSPI_MCR0_LEARN_EN              BIT(15)
  68#define FSPI_MCR0_SCRFRUN_EN            BIT(14)
  69#define FSPI_MCR0_OCTCOMB_EN            BIT(13)
  70#define FSPI_MCR0_DOZE_EN               BIT(12)
  71#define FSPI_MCR0_HSEN                  BIT(11)
  72#define FSPI_MCR0_SERCLKDIV             BIT(8)
  73#define FSPI_MCR0_ATDF_EN               BIT(7)
  74#define FSPI_MCR0_ARDF_EN               BIT(6)
  75#define FSPI_MCR0_RXCLKSRC(x)           ((x) << 4)
  76#define FSPI_MCR0_END_CFG(x)            ((x) << 2)
  77#define FSPI_MCR0_MDIS                  BIT(1)
  78#define FSPI_MCR0_SWRST                 BIT(0)
  79
  80#define FSPI_MCR1                       0x04
  81#define FSPI_MCR1_SEQ_TIMEOUT(x)        ((x) << 16)
  82#define FSPI_MCR1_AHB_TIMEOUT(x)        (x)
  83
  84#define FSPI_MCR2                       0x08
  85#define FSPI_MCR2_IDLE_WAIT(x)          ((x) << 24)
  86#define FSPI_MCR2_SAMEDEVICEEN          BIT(15)
  87#define FSPI_MCR2_CLRLRPHS              BIT(14)
  88#define FSPI_MCR2_ABRDATSZ              BIT(8)
  89#define FSPI_MCR2_ABRLEARN              BIT(7)
  90#define FSPI_MCR2_ABR_READ              BIT(6)
  91#define FSPI_MCR2_ABRWRITE              BIT(5)
  92#define FSPI_MCR2_ABRDUMMY              BIT(4)
  93#define FSPI_MCR2_ABR_MODE              BIT(3)
  94#define FSPI_MCR2_ABRCADDR              BIT(2)
  95#define FSPI_MCR2_ABRRADDR              BIT(1)
  96#define FSPI_MCR2_ABR_CMD               BIT(0)
  97
  98#define FSPI_AHBCR                      0x0c
  99#define FSPI_AHBCR_RDADDROPT            BIT(6)
 100#define FSPI_AHBCR_PREF_EN              BIT(5)
 101#define FSPI_AHBCR_BUFF_EN              BIT(4)
 102#define FSPI_AHBCR_CACH_EN              BIT(3)
 103#define FSPI_AHBCR_CLRTXBUF             BIT(2)
 104#define FSPI_AHBCR_CLRRXBUF             BIT(1)
 105#define FSPI_AHBCR_PAR_EN               BIT(0)
 106
 107#define FSPI_INTEN                      0x10
 108#define FSPI_INTEN_SCLKSBWR             BIT(9)
 109#define FSPI_INTEN_SCLKSBRD             BIT(8)
 110#define FSPI_INTEN_DATALRNFL            BIT(7)
 111#define FSPI_INTEN_IPTXWE               BIT(6)
 112#define FSPI_INTEN_IPRXWA               BIT(5)
 113#define FSPI_INTEN_AHBCMDERR            BIT(4)
 114#define FSPI_INTEN_IPCMDERR             BIT(3)
 115#define FSPI_INTEN_AHBCMDGE             BIT(2)
 116#define FSPI_INTEN_IPCMDGE              BIT(1)
 117#define FSPI_INTEN_IPCMDDONE            BIT(0)
 118
 119#define FSPI_INTR                       0x14
 120#define FSPI_INTR_SCLKSBWR              BIT(9)
 121#define FSPI_INTR_SCLKSBRD              BIT(8)
 122#define FSPI_INTR_DATALRNFL             BIT(7)
 123#define FSPI_INTR_IPTXWE                BIT(6)
 124#define FSPI_INTR_IPRXWA                BIT(5)
 125#define FSPI_INTR_AHBCMDERR             BIT(4)
 126#define FSPI_INTR_IPCMDERR              BIT(3)
 127#define FSPI_INTR_AHBCMDGE              BIT(2)
 128#define FSPI_INTR_IPCMDGE               BIT(1)
 129#define FSPI_INTR_IPCMDDONE             BIT(0)
 130
 131#define FSPI_LUTKEY                     0x18
 132#define FSPI_LUTKEY_VALUE               0x5AF05AF0
 133
 134#define FSPI_LCKCR                      0x1C
 135
 136#define FSPI_LCKER_LOCK                 0x1
 137#define FSPI_LCKER_UNLOCK               0x2
 138
 139#define FSPI_BUFXCR_INVALID_MSTRID      0xE
 140#define FSPI_AHBRX_BUF0CR0              0x20
 141#define FSPI_AHBRX_BUF1CR0              0x24
 142#define FSPI_AHBRX_BUF2CR0              0x28
 143#define FSPI_AHBRX_BUF3CR0              0x2C
 144#define FSPI_AHBRX_BUF4CR0              0x30
 145#define FSPI_AHBRX_BUF5CR0              0x34
 146#define FSPI_AHBRX_BUF6CR0              0x38
 147#define FSPI_AHBRX_BUF7CR0              0x3C
 148#define FSPI_AHBRXBUF0CR7_PREF          BIT(31)
 149
 150#define FSPI_AHBRX_BUF0CR1              0x40
 151#define FSPI_AHBRX_BUF1CR1              0x44
 152#define FSPI_AHBRX_BUF2CR1              0x48
 153#define FSPI_AHBRX_BUF3CR1              0x4C
 154#define FSPI_AHBRX_BUF4CR1              0x50
 155#define FSPI_AHBRX_BUF5CR1              0x54
 156#define FSPI_AHBRX_BUF6CR1              0x58
 157#define FSPI_AHBRX_BUF7CR1              0x5C
 158
 159#define FSPI_FLSHA1CR0                  0x60
 160#define FSPI_FLSHA2CR0                  0x64
 161#define FSPI_FLSHB1CR0                  0x68
 162#define FSPI_FLSHB2CR0                  0x6C
 163#define FSPI_FLSHXCR0_SZ_KB             10
 164#define FSPI_FLSHXCR0_SZ(x)             ((x) >> FSPI_FLSHXCR0_SZ_KB)
 165
 166#define FSPI_FLSHA1CR1                  0x70
 167#define FSPI_FLSHA2CR1                  0x74
 168#define FSPI_FLSHB1CR1                  0x78
 169#define FSPI_FLSHB2CR1                  0x7C
 170#define FSPI_FLSHXCR1_CSINTR(x)         ((x) << 16)
 171#define FSPI_FLSHXCR1_CAS(x)            ((x) << 11)
 172#define FSPI_FLSHXCR1_WA                BIT(10)
 173#define FSPI_FLSHXCR1_TCSH(x)           ((x) << 5)
 174#define FSPI_FLSHXCR1_TCSS(x)           (x)
 175
 176#define FSPI_FLSHA1CR2                  0x80
 177#define FSPI_FLSHA2CR2                  0x84
 178#define FSPI_FLSHB1CR2                  0x88
 179#define FSPI_FLSHB2CR2                  0x8C
 180#define FSPI_FLSHXCR2_CLRINSP           BIT(24)
 181#define FSPI_FLSHXCR2_AWRWAIT           BIT(16)
 182#define FSPI_FLSHXCR2_AWRSEQN_SHIFT     13
 183#define FSPI_FLSHXCR2_AWRSEQI_SHIFT     8
 184#define FSPI_FLSHXCR2_ARDSEQN_SHIFT     5
 185#define FSPI_FLSHXCR2_ARDSEQI_SHIFT     0
 186
 187#define FSPI_IPCR0                      0xA0
 188
 189#define FSPI_IPCR1                      0xA4
 190#define FSPI_IPCR1_IPAREN               BIT(31)
 191#define FSPI_IPCR1_SEQNUM_SHIFT         24
 192#define FSPI_IPCR1_SEQID_SHIFT          16
 193#define FSPI_IPCR1_IDATSZ(x)            (x)
 194
 195#define FSPI_IPCMD                      0xB0
 196#define FSPI_IPCMD_TRG                  BIT(0)
 197
 198#define FSPI_DLPR                       0xB4
 199
 200#define FSPI_IPRXFCR                    0xB8
 201#define FSPI_IPRXFCR_CLR                BIT(0)
 202#define FSPI_IPRXFCR_DMA_EN             BIT(1)
 203#define FSPI_IPRXFCR_WMRK(x)            ((x) << 2)
 204
 205#define FSPI_IPTXFCR                    0xBC
 206#define FSPI_IPTXFCR_CLR                BIT(0)
 207#define FSPI_IPTXFCR_DMA_EN             BIT(1)
 208#define FSPI_IPTXFCR_WMRK(x)            ((x) << 2)
 209
 210#define FSPI_DLLACR                     0xC0
 211#define FSPI_DLLACR_OVRDEN              BIT(8)
 212
 213#define FSPI_DLLBCR                     0xC4
 214#define FSPI_DLLBCR_OVRDEN              BIT(8)
 215
 216#define FSPI_STS0                       0xE0
 217#define FSPI_STS0_DLPHB(x)              ((x) << 8)
 218#define FSPI_STS0_DLPHA(x)              ((x) << 4)
 219#define FSPI_STS0_CMD_SRC(x)            ((x) << 2)
 220#define FSPI_STS0_ARB_IDLE              BIT(1)
 221#define FSPI_STS0_SEQ_IDLE              BIT(0)
 222
 223#define FSPI_STS1                       0xE4
 224#define FSPI_STS1_IP_ERRCD(x)           ((x) << 24)
 225#define FSPI_STS1_IP_ERRID(x)           ((x) << 16)
 226#define FSPI_STS1_AHB_ERRCD(x)          ((x) << 8)
 227#define FSPI_STS1_AHB_ERRID(x)          (x)
 228
 229#define FSPI_AHBSPNST                   0xEC
 230#define FSPI_AHBSPNST_DATLFT(x)         ((x) << 16)
 231#define FSPI_AHBSPNST_BUFID(x)          ((x) << 1)
 232#define FSPI_AHBSPNST_ACTIVE            BIT(0)
 233
 234#define FSPI_IPRXFSTS                   0xF0
 235#define FSPI_IPRXFSTS_RDCNTR(x)         ((x) << 16)
 236#define FSPI_IPRXFSTS_FILL(x)           (x)
 237
 238#define FSPI_IPTXFSTS                   0xF4
 239#define FSPI_IPTXFSTS_WRCNTR(x)         ((x) << 16)
 240#define FSPI_IPTXFSTS_FILL(x)           (x)
 241
 242#define FSPI_RFDR                       0x100
 243#define FSPI_TFDR                       0x180
 244
 245#define FSPI_LUT_BASE                   0x200
 246#define FSPI_LUT_OFFSET                 (SEQID_LUT * 4 * 4)
 247#define FSPI_LUT_REG(idx) \
 248        (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 249
 250/* register map end */
 251
 252/* Instruction set for the LUT register. */
 253#define LUT_STOP                        0x00
 254#define LUT_CMD                         0x01
 255#define LUT_ADDR                        0x02
 256#define LUT_CADDR_SDR                   0x03
 257#define LUT_MODE                        0x04
 258#define LUT_MODE2                       0x05
 259#define LUT_MODE4                       0x06
 260#define LUT_MODE8                       0x07
 261#define LUT_NXP_WRITE                   0x08
 262#define LUT_NXP_READ                    0x09
 263#define LUT_LEARN_SDR                   0x0A
 264#define LUT_DATSZ_SDR                   0x0B
 265#define LUT_DUMMY                       0x0C
 266#define LUT_DUMMY_RWDS_SDR              0x0D
 267#define LUT_JMP_ON_CS                   0x1F
 268#define LUT_CMD_DDR                     0x21
 269#define LUT_ADDR_DDR                    0x22
 270#define LUT_CADDR_DDR                   0x23
 271#define LUT_MODE_DDR                    0x24
 272#define LUT_MODE2_DDR                   0x25
 273#define LUT_MODE4_DDR                   0x26
 274#define LUT_MODE8_DDR                   0x27
 275#define LUT_WRITE_DDR                   0x28
 276#define LUT_READ_DDR                    0x29
 277#define LUT_LEARN_DDR                   0x2A
 278#define LUT_DATSZ_DDR                   0x2B
 279#define LUT_DUMMY_DDR                   0x2C
 280#define LUT_DUMMY_RWDS_DDR              0x2D
 281
 282/*
 283 * Calculate number of required PAD bits for LUT register.
 284 *
 285 * The pad stands for the number of IO lines [0:7].
 286 * For example, the octal read needs eight IO lines,
 287 * so you should use LUT_PAD(8). This macro
 288 * returns 3 i.e. use eight (2^3) IP lines for read.
 289 */
 290#define LUT_PAD(x) (fls(x) - 1)
 291
 292/*
 293 * Macro for constructing the LUT entries with the following
 294 * register layout:
 295 *
 296 *  ---------------------------------------------------
 297 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 298 *  ---------------------------------------------------
 299 */
 300#define PAD_SHIFT               8
 301#define INSTR_SHIFT             10
 302#define OPRND_SHIFT             16
 303
 304/* Macros for constructing the LUT register. */
 305#define LUT_DEF(idx, ins, pad, opr)                       \
 306        ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 307        (opr)) << (((idx) % 2) * OPRND_SHIFT))
 308
 309#define POLL_TOUT               5000
 310#define NXP_FSPI_MAX_CHIPSELECT         4
 311
 312/* Access flash memory using IP bus only */
 313#define FSPI_QUIRK_USE_IP_ONLY          BIT(0)
 314
 315struct nxp_fspi_devtype_data {
 316        unsigned int rxfifo;
 317        unsigned int txfifo;
 318        unsigned int ahb_buf_size;
 319        unsigned int quirks;
 320        bool little_endian;
 321};
 322
 323static struct nxp_fspi_devtype_data lx2160a_data = {
 324        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 325        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 326        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 327        .quirks = 0,
 328        .little_endian = true,  /* little-endian    */
 329};
 330
 331static struct nxp_fspi_devtype_data imx8mm_data = {
 332        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 333        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 334        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 335        .quirks = 0,
 336        .little_endian = true,  /* little-endian    */
 337};
 338
 339struct nxp_fspi {
 340        struct udevice *dev;
 341        void __iomem *iobase;
 342        void __iomem *ahb_addr;
 343        u32 memmap_phy;
 344        u32 memmap_phy_size;
 345        struct clk clk, clk_en;
 346        struct nxp_fspi_devtype_data *devtype_data;
 347};
 348
 349static inline int needs_ip_only(struct nxp_fspi *f)
 350{
 351        return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
 352}
 353
 354/*
 355 * R/W functions for big- or little-endian registers:
 356 * The FSPI controller's endianness is independent of
 357 * the CPU core's endianness. So far, although the CPU
 358 * core is little-endian the FSPI controller can use
 359 * big-endian or little-endian.
 360 */
 361static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 362{
 363        if (f->devtype_data->little_endian)
 364                out_le32(addr, val);
 365        else
 366                out_be32(addr, val);
 367}
 368
 369static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 370{
 371        if (f->devtype_data->little_endian)
 372                return in_le32(addr);
 373        else
 374                return in_be32(addr);
 375}
 376
 377static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 378{
 379        switch (width) {
 380        case 1:
 381        case 2:
 382        case 4:
 383        case 8:
 384                return 0;
 385        }
 386
 387        return -ENOTSUPP;
 388}
 389
 390static bool nxp_fspi_supports_op(struct spi_slave *slave,
 391                                 const struct spi_mem_op *op)
 392{
 393        struct nxp_fspi *f;
 394        struct udevice *bus;
 395        int ret;
 396
 397        bus = slave->dev->parent;
 398        f = dev_get_priv(bus);
 399
 400        ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 401
 402        if (op->addr.nbytes)
 403                ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 404
 405        if (op->dummy.nbytes)
 406                ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 407
 408        if (op->data.nbytes)
 409                ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 410
 411        if (ret)
 412                return false;
 413
 414        /*
 415         * The number of address bytes should be equal to or less than 4 bytes.
 416         */
 417        if (op->addr.nbytes > 4)
 418                return false;
 419
 420        /*
 421         * If requested address value is greater than controller assigned
 422         * memory mapped space, return error as it didn't fit in the range
 423         * of assigned address space.
 424         */
 425        if (op->addr.val >= f->memmap_phy_size)
 426                return false;
 427
 428        /* Max 64 dummy clock cycles supported */
 429        if (op->dummy.buswidth &&
 430            (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 431                return false;
 432
 433        /* Max data length, check controller limits and alignment */
 434        if (op->data.dir == SPI_MEM_DATA_IN &&
 435            (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 436             (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 437              !IS_ALIGNED(op->data.nbytes, 8))))
 438                return false;
 439
 440        if (op->data.dir == SPI_MEM_DATA_OUT &&
 441            op->data.nbytes > f->devtype_data->txfifo)
 442                return false;
 443
 444        return spi_mem_default_supports_op(slave, op);
 445}
 446
 447/* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
 448static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 449                                u32 mask, u32 delay_us,
 450                                u32 timeout_us, bool c)
 451{
 452        u32 reg;
 453
 454        if (!f->devtype_data->little_endian)
 455                mask = (u32)cpu_to_be32(mask);
 456
 457        if (c)
 458                return readl_poll_sleep_timeout(base, reg, (reg & mask),
 459                                                delay_us, timeout_us);
 460        else
 461                return readl_poll_sleep_timeout(base, reg, !(reg & mask),
 462                                                delay_us, timeout_us);
 463}
 464
 465/*
 466 * If the slave device content being changed by Write/Erase, need to
 467 * invalidate the AHB buffer. This can be achieved by doing the reset
 468 * of controller after setting MCR0[SWRESET] bit.
 469 */
 470static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 471{
 472        u32 reg;
 473        int ret;
 474
 475        reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 476        fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 477
 478        /* w1c register, wait unit clear */
 479        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 480                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 481        WARN_ON(ret);
 482}
 483
 484static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 485                                 const struct spi_mem_op *op)
 486{
 487        void __iomem *base = f->iobase;
 488        u32 lutval[4] = {};
 489        int lutidx = 1, i;
 490
 491        /* cmd */
 492        lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 493                             op->cmd.opcode);
 494
 495        /* addr bytes */
 496        if (op->addr.nbytes) {
 497                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 498                                              LUT_PAD(op->addr.buswidth),
 499                                              op->addr.nbytes * 8);
 500                lutidx++;
 501        }
 502
 503        /* dummy bytes, if needed */
 504        if (op->dummy.nbytes) {
 505                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 506                /*
 507                 * Due to FlexSPI controller limitation number of PAD for dummy
 508                 * buswidth needs to be programmed as equal to data buswidth.
 509                 */
 510                                              LUT_PAD(op->data.buswidth),
 511                                              op->dummy.nbytes * 8 /
 512                                              op->dummy.buswidth);
 513                lutidx++;
 514        }
 515
 516        /* read/write data bytes */
 517        if (op->data.nbytes) {
 518                lutval[lutidx / 2] |= LUT_DEF(lutidx,
 519                                              op->data.dir == SPI_MEM_DATA_IN ?
 520                                              LUT_NXP_READ : LUT_NXP_WRITE,
 521                                              LUT_PAD(op->data.buswidth),
 522                                              0);
 523                lutidx++;
 524        }
 525
 526        /* stop condition. */
 527        lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 528
 529        /* unlock LUT */
 530        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 531        fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 532
 533        /* fill LUT */
 534        for (i = 0; i < ARRAY_SIZE(lutval); i++)
 535                fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 536
 537        dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
 538                op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
 539
 540        /* lock LUT */
 541        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 542        fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 543}
 544
 545#if CONFIG_IS_ENABLED(CLK)
 546static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 547{
 548        int ret;
 549
 550        ret = clk_enable(&f->clk_en);
 551        if (ret)
 552                return ret;
 553
 554        ret = clk_enable(&f->clk);
 555        if (ret) {
 556                clk_disable(&f->clk_en);
 557                return ret;
 558        }
 559
 560        return 0;
 561}
 562
 563static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 564{
 565        clk_disable(&f->clk);
 566        clk_disable(&f->clk_en);
 567}
 568#endif
 569
 570/*
 571 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 572 * register and start base address of the slave device.
 573 *
 574 *                                                          (Higher address)
 575 *                              --------    <-- FLSHB2CR0
 576 *                              |  B2  |
 577 *                              |      |
 578 *      B2 start address -->    --------    <-- FLSHB1CR0
 579 *                              |  B1  |
 580 *                              |      |
 581 *      B1 start address -->    --------    <-- FLSHA2CR0
 582 *                              |  A2  |
 583 *                              |      |
 584 *      A2 start address -->    --------    <-- FLSHA1CR0
 585 *                              |  A1  |
 586 *                              |      |
 587 *      A1 start address -->    --------                    (Lower address)
 588 *
 589 *
 590 * Start base address defines the starting address range for given CS and
 591 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 592 *
 593 * But, different targets are having different combinations of number of CS,
 594 * some targets only have single CS or two CS covering controller's full
 595 * memory mapped space area.
 596 * Thus, implementation is being done as independent of the size and number
 597 * of the connected slave device.
 598 * Assign controller memory mapped space size as the size to the connected
 599 * slave device.
 600 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 601 * chip-select Flash configuration register.
 602 *
 603 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 604 * memory mapped size of the controller.
 605 * Value for rest of the CS FLSHxxCR0 register would be zero.
 606 *
 607 */
 608static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
 609{
 610        u64 size_kb;
 611
 612        /* Reset FLSHxxCR0 registers */
 613        fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 614        fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 615        fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 616        fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 617
 618        /* Assign controller memory mapped space as size, KBytes, of flash. */
 619        size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 620
 621        fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 622                    4 * chip_select);
 623
 624        dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
 625}
 626
 627static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 628{
 629        u32 len = op->data.nbytes;
 630
 631        /* Read out the data directly from the AHB buffer. */
 632        memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
 633}
 634
 635static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 636                                 const struct spi_mem_op *op)
 637{
 638        void __iomem *base = f->iobase;
 639        int i, ret;
 640        u8 *buf = (u8 *)op->data.buf.out;
 641
 642        /* clear the TX FIFO. */
 643        fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 644
 645        /*
 646         * Default value of water mark level is 8 bytes, hence in single
 647         * write request controller can write max 8 bytes of data.
 648         */
 649
 650        for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 651                /* Wait for TXFIFO empty */
 652                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 653                                           FSPI_INTR_IPTXWE, 0,
 654                                           POLL_TOUT, true);
 655                WARN_ON(ret);
 656
 657                fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
 658                fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
 659                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 660        }
 661
 662        if (i < op->data.nbytes) {
 663                u32 data = 0;
 664                int j;
 665                /* Wait for TXFIFO empty */
 666                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 667                                           FSPI_INTR_IPTXWE, 0,
 668                                           POLL_TOUT, true);
 669                WARN_ON(ret);
 670
 671                for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 672                        memcpy(&data, buf + i + j, 4);
 673                        fspi_writel(f, data, base + FSPI_TFDR + j);
 674                }
 675                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 676        }
 677}
 678
 679static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 680                                 const struct spi_mem_op *op)
 681{
 682        void __iomem *base = f->iobase;
 683        int i, ret;
 684        int len = op->data.nbytes;
 685        u8 *buf = (u8 *)op->data.buf.in;
 686
 687        /*
 688         * Default value of water mark level is 8 bytes, hence in single
 689         * read request controller can read max 8 bytes of data.
 690         */
 691        for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 692                /* Wait for RXFIFO available */
 693                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 694                                           FSPI_INTR_IPRXWA, 0,
 695                                           POLL_TOUT, true);
 696                WARN_ON(ret);
 697
 698                *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 699                *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 700                /* move the FIFO pointer */
 701                fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 702        }
 703
 704        if (i < len) {
 705                u32 tmp;
 706                int size, j;
 707
 708                buf = op->data.buf.in + i;
 709                /* Wait for RXFIFO available */
 710                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 711                                           FSPI_INTR_IPRXWA, 0,
 712                                           POLL_TOUT, true);
 713                WARN_ON(ret);
 714
 715                len = op->data.nbytes - i;
 716                for (j = 0; j < op->data.nbytes - i; j += 4) {
 717                        tmp = fspi_readl(f, base + FSPI_RFDR + j);
 718                        size = min(len, 4);
 719                        memcpy(buf + j, &tmp, size);
 720                        len -= size;
 721                }
 722        }
 723
 724        /* invalid the RXFIFO */
 725        fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 726        /* move the FIFO pointer */
 727        fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 728}
 729
 730static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 731{
 732        void __iomem *base = f->iobase;
 733        int seqnum = 0;
 734        int err = 0;
 735        u32 reg;
 736
 737        reg = fspi_readl(f, base + FSPI_IPRXFCR);
 738        /* invalid RXFIFO first */
 739        reg &= ~FSPI_IPRXFCR_DMA_EN;
 740        reg = reg | FSPI_IPRXFCR_CLR;
 741        fspi_writel(f, reg, base + FSPI_IPRXFCR);
 742
 743        fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 744        /*
 745         * Always start the sequence at the same index since we update
 746         * the LUT at each exec_op() call. And also specify the DATA
 747         * length, since it's has not been specified in the LUT.
 748         */
 749        fspi_writel(f, op->data.nbytes |
 750                 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 751                 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 752                 base + FSPI_IPCR1);
 753
 754        /* Trigger the LUT now. */
 755        fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 756
 757        /* Wait for the completion. */
 758        err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 759                                   FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
 760
 761        /* Invoke IP data read, if request is of data read. */
 762        if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 763                nxp_fspi_read_rxfifo(f, op);
 764
 765        return err;
 766}
 767
 768static int nxp_fspi_exec_op(struct spi_slave *slave,
 769                            const struct spi_mem_op *op)
 770{
 771        struct nxp_fspi *f;
 772        struct udevice *bus;
 773        int err = 0;
 774
 775        bus = slave->dev->parent;
 776        f = dev_get_priv(bus);
 777
 778        /* Wait for controller being ready. */
 779        err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 780                                   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 781        WARN_ON(err);
 782
 783        nxp_fspi_prepare_lut(f, op);
 784        /*
 785         * If we have large chunks of data, we read them through the AHB bus by
 786         * accessing the mapped memory. In all other cases we use IP commands
 787         * to access the flash. Read via AHB bus may be corrupted due to
 788         * existence of an errata and therefore discard AHB read in such cases.
 789         */
 790        if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 791            op->data.dir == SPI_MEM_DATA_IN &&
 792            !needs_ip_only(f)) {
 793                nxp_fspi_read_ahb(f, op);
 794        } else {
 795                if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 796                        nxp_fspi_fill_txfifo(f, op);
 797
 798                err = nxp_fspi_do_op(f, op);
 799        }
 800
 801        /* Invalidate the data in the AHB buffer. */
 802        nxp_fspi_invalid(f);
 803
 804        return err;
 805}
 806
 807static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
 808                                   struct spi_mem_op *op)
 809{
 810        struct nxp_fspi *f;
 811        struct udevice *bus;
 812
 813        bus = slave->dev->parent;
 814        f = dev_get_priv(bus);
 815
 816        if (op->data.dir == SPI_MEM_DATA_OUT) {
 817                if (op->data.nbytes > f->devtype_data->txfifo)
 818                        op->data.nbytes = f->devtype_data->txfifo;
 819        } else {
 820                if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 821                        op->data.nbytes = f->devtype_data->ahb_buf_size;
 822                else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 823                        op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 824        }
 825
 826        /* Limit data bytes to RX FIFO in case of IP read only */
 827        if (needs_ip_only(f) &&
 828            op->data.dir == SPI_MEM_DATA_IN &&
 829            op->data.nbytes > f->devtype_data->rxfifo)
 830                op->data.nbytes = f->devtype_data->rxfifo;
 831
 832        return 0;
 833}
 834
 835#ifdef CONFIG_FSL_LAYERSCAPE
 836static void erratum_err050568(struct nxp_fspi *f)
 837{
 838        struct sys_info sysinfo;
 839        u32 svr = 0, freq = 0;
 840
 841        /* Check for LS1028A variants */
 842        svr = SVR_SOC_VER(get_svr());
 843        if (svr != SVR_LS1017A ||
 844            svr != SVR_LS1018A ||
 845            svr != SVR_LS1027A ||
 846            svr != SVR_LS1028A) {
 847                dev_dbg(f->dev, "Errata applicable only for LS1028A variants\n");
 848                return;
 849        }
 850
 851        /* Read PLL frequency */
 852        get_sys_info(&sysinfo);
 853        freq = sysinfo.freq_systembus / 1000000; /* Convert to MHz */
 854        dev_dbg(f->dev, "svr: %08x, Frequency: %dMhz\n", svr, freq);
 855
 856        /* Use IP bus only if PLL is 300MHz */
 857        if (freq == 300)
 858                f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
 859}
 860#endif
 861
 862static int nxp_fspi_default_setup(struct nxp_fspi *f)
 863{
 864        void __iomem *base = f->iobase;
 865        int ret, i;
 866        u32 reg;
 867
 868#if CONFIG_IS_ENABLED(CLK)
 869        /* disable and unprepare clock to avoid glitch pass to controller */
 870        nxp_fspi_clk_disable_unprep(f);
 871
 872        /* the default frequency, we will change it later if necessary. */
 873        ret = clk_set_rate(&f->clk, 20000000);
 874        if (ret < 0)
 875                return ret;
 876
 877        ret = nxp_fspi_clk_prep_enable(f);
 878        if (ret)
 879                return ret;
 880#endif
 881
 882#ifdef CONFIG_FSL_LAYERSCAPE
 883        /*
 884         * ERR050568: Flash access by FlexSPI AHB command may not work with
 885         * platform frequency equal to 300 MHz on LS1028A.
 886         * LS1028A reuses LX2160A compatible entry. Make errata applicable for
 887         * Layerscape LS1028A platform family.
 888         */
 889        if (device_is_compatible(f->dev, "nxp,lx2160a-fspi"))
 890                erratum_err050568(f);
 891#endif
 892
 893        /* Reset the module */
 894        /* w1c register, wait unit clear */
 895        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 896                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 897        WARN_ON(ret);
 898
 899        /* Disable the module */
 900        fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
 901
 902        /* Reset the DLL register to default value */
 903        fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
 904        fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
 905
 906        /* enable module */
 907        fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
 908                    base + FSPI_MCR0);
 909
 910        /*
 911         * Disable same device enable bit and configure all slave devices
 912         * independently.
 913         */
 914        reg = fspi_readl(f, f->iobase + FSPI_MCR2);
 915        reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
 916        fspi_writel(f, reg, base + FSPI_MCR2);
 917
 918        /* AHB configuration for access buffer 0~7. */
 919        for (i = 0; i < 7; i++)
 920                fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
 921
 922        /*
 923         * Set ADATSZ with the maximum AHB buffer size to improve the read
 924         * performance.
 925         */
 926        fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
 927                    FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
 928
 929        /* prefetch and no start address alignment limitation */
 930        fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
 931                    base + FSPI_AHBCR);
 932
 933        /* AHB Read - Set lut sequence ID for all CS. */
 934        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
 935        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
 936        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
 937        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
 938
 939        return 0;
 940}
 941
 942static int nxp_fspi_probe(struct udevice *bus)
 943{
 944        struct nxp_fspi *f = dev_get_priv(bus);
 945
 946        f->devtype_data =
 947                (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
 948        nxp_fspi_default_setup(f);
 949
 950        return 0;
 951}
 952
 953static int nxp_fspi_claim_bus(struct udevice *dev)
 954{
 955        struct nxp_fspi *f;
 956        struct udevice *bus;
 957        struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
 958
 959        bus = dev->parent;
 960        f = dev_get_priv(bus);
 961
 962        nxp_fspi_select_mem(f, slave_plat->cs);
 963
 964        return 0;
 965}
 966
 967static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
 968{
 969#if CONFIG_IS_ENABLED(CLK)
 970        struct nxp_fspi *f = dev_get_priv(bus);
 971        int ret;
 972
 973        nxp_fspi_clk_disable_unprep(f);
 974
 975        ret = clk_set_rate(&f->clk, speed);
 976        if (ret < 0)
 977                return ret;
 978
 979        ret = nxp_fspi_clk_prep_enable(f);
 980        if (ret)
 981                return ret;
 982#endif
 983        return 0;
 984}
 985
 986static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
 987{
 988        /* Nothing to do */
 989        return 0;
 990}
 991
 992static int nxp_fspi_of_to_plat(struct udevice *bus)
 993{
 994        struct nxp_fspi *f = dev_get_priv(bus);
 995#if CONFIG_IS_ENABLED(CLK)
 996        int ret;
 997#endif
 998
 999        fdt_addr_t iobase;
1000        fdt_addr_t iobase_size;
1001        fdt_addr_t ahb_addr;
1002        fdt_addr_t ahb_size;
1003
1004        f->dev = bus;
1005
1006        iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
1007        if (iobase == FDT_ADDR_T_NONE) {
1008                dev_err(bus, "fspi_base regs missing\n");
1009                return -ENODEV;
1010        }
1011        f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
1012
1013        ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
1014        if (ahb_addr == FDT_ADDR_T_NONE) {
1015                dev_err(bus, "fspi_mmap regs missing\n");
1016                return -ENODEV;
1017        }
1018        f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
1019        f->memmap_phy_size = ahb_size;
1020
1021#if CONFIG_IS_ENABLED(CLK)
1022        ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
1023        if (ret) {
1024                dev_err(bus, "failed to get fspi_en clock\n");
1025                return ret;
1026        }
1027
1028        ret = clk_get_by_name(bus, "fspi", &f->clk);
1029        if (ret) {
1030                dev_err(bus, "failed to get fspi clock\n");
1031                return ret;
1032        }
1033#endif
1034
1035        dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
1036
1037        return 0;
1038}
1039
1040static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1041        .adjust_op_size = nxp_fspi_adjust_op_size,
1042        .supports_op = nxp_fspi_supports_op,
1043        .exec_op = nxp_fspi_exec_op,
1044};
1045
1046static const struct dm_spi_ops nxp_fspi_ops = {
1047        .claim_bus      = nxp_fspi_claim_bus,
1048        .set_speed      = nxp_fspi_set_speed,
1049        .set_mode       = nxp_fspi_set_mode,
1050        .mem_ops        = &nxp_fspi_mem_ops,
1051};
1052
1053static const struct udevice_id nxp_fspi_ids[] = {
1054        { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
1055        { .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
1056        { }
1057};
1058
1059U_BOOT_DRIVER(nxp_fspi) = {
1060        .name   = "nxp_fspi",
1061        .id     = UCLASS_SPI,
1062        .of_match = nxp_fspi_ids,
1063        .ops    = &nxp_fspi_ops,
1064        .of_to_plat = nxp_fspi_of_to_plat,
1065        .priv_auto      = sizeof(struct nxp_fspi),
1066        .probe  = nxp_fspi_probe,
1067};
1068