uboot/fs/jffs2/mini_inflate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*-------------------------------------------------------------------------
   3 * Filename:      mini_inflate.c
   4 * Version:       $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
   5 * Copyright:     Copyright (C) 2001, Russ Dill
   6 * Author:        Russ Dill <Russ.Dill@asu.edu>
   7 * Description:   Mini inflate implementation (RFC 1951)
   8 *-----------------------------------------------------------------------*/
   9
  10#include <config.h>
  11#include <jffs2/mini_inflate.h>
  12
  13/* The order that the code lengths in section 3.2.7 are in */
  14static unsigned char huffman_order[] = {16, 17, 18,  0,  8,  7,  9,  6, 10,  5,
  15                                        11,  4, 12,  3, 13,  2, 14,  1, 15};
  16
  17static inline void cramfs_memset(int *s, const int c, size n)
  18{
  19        n--;
  20        for (;n > 0; n--) s[n] = c;
  21        s[0] = c;
  22}
  23
  24/* associate a stream with a block of data and reset the stream */
  25static void init_stream(struct bitstream *stream, unsigned char *data,
  26                        void *(*inflate_memcpy)(void *, const void *, size))
  27{
  28        stream->error = NO_ERROR;
  29        stream->memcpy = inflate_memcpy;
  30        stream->decoded = 0;
  31        stream->data = data;
  32        stream->bit = 0;        /* The first bit of the stream is the lsb of the
  33                                 * first byte */
  34
  35        /* really sorry about all this initialization, think of a better way,
  36         * let me know and it will get cleaned up */
  37        stream->codes.bits = 8;
  38        stream->codes.num_symbols = 19;
  39        stream->codes.lengths = stream->code_lengths;
  40        stream->codes.symbols = stream->code_symbols;
  41        stream->codes.count = stream->code_count;
  42        stream->codes.first = stream->code_first;
  43        stream->codes.pos = stream->code_pos;
  44
  45        stream->lengths.bits = 16;
  46        stream->lengths.num_symbols = 288;
  47        stream->lengths.lengths = stream->length_lengths;
  48        stream->lengths.symbols = stream->length_symbols;
  49        stream->lengths.count = stream->length_count;
  50        stream->lengths.first = stream->length_first;
  51        stream->lengths.pos = stream->length_pos;
  52
  53        stream->distance.bits = 16;
  54        stream->distance.num_symbols = 32;
  55        stream->distance.lengths = stream->distance_lengths;
  56        stream->distance.symbols = stream->distance_symbols;
  57        stream->distance.count = stream->distance_count;
  58        stream->distance.first = stream->distance_first;
  59        stream->distance.pos = stream->distance_pos;
  60
  61}
  62
  63/* pull 'bits' bits out of the stream. The last bit pulled it returned as the
  64 * msb. (section 3.1.1)
  65 */
  66static inline unsigned long pull_bits(struct bitstream *stream,
  67                                      const unsigned int bits)
  68{
  69        unsigned long ret;
  70        int i;
  71
  72        ret = 0;
  73        for (i = 0; i < bits; i++) {
  74                ret += ((*(stream->data) >> stream->bit) & 1) << i;
  75
  76                /* if, before incrementing, we are on bit 7,
  77                 * go to the lsb of the next byte */
  78                if (stream->bit++ == 7) {
  79                        stream->bit = 0;
  80                        stream->data++;
  81                }
  82        }
  83        return ret;
  84}
  85
  86static inline int pull_bit(struct bitstream *stream)
  87{
  88        int ret = ((*(stream->data) >> stream->bit) & 1);
  89        if (stream->bit++ == 7) {
  90                stream->bit = 0;
  91                stream->data++;
  92        }
  93        return ret;
  94}
  95
  96/* discard bits up to the next whole byte */
  97static void discard_bits(struct bitstream *stream)
  98{
  99        if (stream->bit != 0) {
 100                stream->bit = 0;
 101                stream->data++;
 102        }
 103}
 104
 105/* No decompression, the data is all literals (section 3.2.4) */
 106static void decompress_none(struct bitstream *stream, unsigned char *dest)
 107{
 108        unsigned int length;
 109
 110        discard_bits(stream);
 111        length = *(stream->data++);
 112        length += *(stream->data++) << 8;
 113        pull_bits(stream, 16);  /* throw away the inverse of the size */
 114
 115        stream->decoded += length;
 116        stream->memcpy(dest, stream->data, length);
 117        stream->data += length;
 118}
 119
 120/* Read in a symbol from the stream (section 3.2.2) */
 121static int read_symbol(struct bitstream *stream, struct huffman_set *set)
 122{
 123        int bits = 0;
 124        int code = 0;
 125        while (!(set->count[bits] && code < set->first[bits] +
 126                                             set->count[bits])) {
 127                code = (code << 1) + pull_bit(stream);
 128                if (++bits > set->bits) {
 129                        /* error decoding (corrupted data?) */
 130                        stream->error = CODE_NOT_FOUND;
 131                        return -1;
 132                }
 133        }
 134        return set->symbols[set->pos[bits] + code - set->first[bits]];
 135}
 136
 137/* decompress a stream of data encoded with the passed length and distance
 138 * huffman codes */
 139static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
 140{
 141        struct huffman_set *lengths = &(stream->lengths);
 142        struct huffman_set *distance = &(stream->distance);
 143
 144        int symbol, length, dist, i;
 145
 146        do {
 147                if ((symbol = read_symbol(stream, lengths)) < 0) return;
 148                if (symbol < 256) {
 149                        *(dest++) = symbol; /* symbol is a literal */
 150                        stream->decoded++;
 151                } else if (symbol > 256) {
 152                        /* Determine the length of the repitition
 153                         * (section 3.2.5) */
 154                        if (symbol < 265) length = symbol - 254;
 155                        else if (symbol == 285) length = 258;
 156                        else {
 157                                length = pull_bits(stream, (symbol - 261) >> 2);
 158                                length += (4 << ((symbol - 261) >> 2)) + 3;
 159                                length += ((symbol - 1) % 4) <<
 160                                          ((symbol - 261) >> 2);
 161                        }
 162
 163                        /* Determine how far back to go */
 164                        if ((symbol = read_symbol(stream, distance)) < 0)
 165                                return;
 166                        if (symbol < 4) dist = symbol + 1;
 167                        else {
 168                                dist = pull_bits(stream, (symbol - 2) >> 1);
 169                                dist += (2 << ((symbol - 2) >> 1)) + 1;
 170                                dist += (symbol % 2) << ((symbol - 2) >> 1);
 171                        }
 172                        stream->decoded += length;
 173                        for (i = 0; i < length; i++) {
 174                                *dest = dest[-dist];
 175                                dest++;
 176                        }
 177                }
 178        } while (symbol != 256); /* 256 is the end of the data block */
 179}
 180
 181/* Fill the lookup tables (section 3.2.2) */
 182static void fill_code_tables(struct huffman_set *set)
 183{
 184        int code = 0, i, length;
 185
 186        /* fill in the first code of each bit length, and the pos pointer */
 187        set->pos[0] = 0;
 188        for (i = 1; i < set->bits; i++) {
 189                code = (code + set->count[i - 1]) << 1;
 190                set->first[i] = code;
 191                set->pos[i] = set->pos[i - 1] + set->count[i - 1];
 192        }
 193
 194        /* Fill in the table of symbols in order of their huffman code */
 195        for (i = 0; i < set->num_symbols; i++) {
 196                if ((length = set->lengths[i]))
 197                        set->symbols[set->pos[length]++] = i;
 198        }
 199
 200        /* reset the pos pointer */
 201        for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
 202}
 203
 204static void init_code_tables(struct huffman_set *set)
 205{
 206        cramfs_memset(set->lengths, 0, set->num_symbols);
 207        cramfs_memset(set->count, 0, set->bits);
 208        cramfs_memset(set->first, 0, set->bits);
 209}
 210
 211/* read in the huffman codes for dynamic decoding (section 3.2.7) */
 212static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
 213{
 214        /* I tried my best to minimize the memory footprint here, while still
 215         * keeping up performance. I really dislike the _lengths[] tables, but
 216         * I see no way of eliminating them without a sizable performance
 217         * impact. The first struct table keeps track of stats on each bit
 218         * length. The _length table keeps a record of the bit length of each
 219         * symbol. The _symbols table is for looking up symbols by the huffman
 220         * code (the pos element points to the first place in the symbol table
 221         * where that bit length occurs). I also hate the initization of these
 222         * structs, if someone knows how to compact these, lemme know. */
 223
 224        struct huffman_set *codes = &(stream->codes);
 225        struct huffman_set *lengths = &(stream->lengths);
 226        struct huffman_set *distance = &(stream->distance);
 227
 228        int hlit = pull_bits(stream, 5) + 257;
 229        int hdist = pull_bits(stream, 5) + 1;
 230        int hclen = pull_bits(stream, 4) + 4;
 231        int length, curr_code, symbol, i, last_code;
 232
 233        last_code = 0;
 234
 235        init_code_tables(codes);
 236        init_code_tables(lengths);
 237        init_code_tables(distance);
 238
 239        /* fill in the count of each bit length' as well as the lengths
 240         * table */
 241        for (i = 0; i < hclen; i++) {
 242                length = pull_bits(stream, 3);
 243                codes->lengths[huffman_order[i]] = length;
 244                if (length) codes->count[length]++;
 245
 246        }
 247        fill_code_tables(codes);
 248
 249        /* Do the same for the length codes, being carefull of wrap through
 250         * to the distance table */
 251        curr_code = 0;
 252        while (curr_code < hlit) {
 253                if ((symbol = read_symbol(stream, codes)) < 0) return;
 254                if (symbol == 0) {
 255                        curr_code++;
 256                        last_code = 0;
 257                } else if (symbol < 16) { /* Literal length */
 258                        lengths->lengths[curr_code] =  last_code = symbol;
 259                        lengths->count[symbol]++;
 260                        curr_code++;
 261                } else if (symbol == 16) { /* repeat the last symbol 3 - 6
 262                                            * times */
 263                        length = 3 + pull_bits(stream, 2);
 264                        for (;length; length--, curr_code++)
 265                                if (curr_code < hlit) {
 266                                        lengths->lengths[curr_code] =
 267                                                last_code;
 268                                        lengths->count[last_code]++;
 269                                } else { /* wrap to the distance table */
 270                                        distance->lengths[curr_code - hlit] =
 271                                                last_code;
 272                                        distance->count[last_code]++;
 273                                }
 274                } else if (symbol == 17) { /* repeat a bit length 0 */
 275                        curr_code += 3 + pull_bits(stream, 3);
 276                        last_code = 0;
 277                } else { /* same, but more times */
 278                        curr_code += 11 + pull_bits(stream, 7);
 279                        last_code = 0;
 280                }
 281        }
 282        fill_code_tables(lengths);
 283
 284        /* Fill the distance table, don't need to worry about wrapthrough
 285         * here */
 286        curr_code -= hlit;
 287        while (curr_code < hdist) {
 288                if ((symbol = read_symbol(stream, codes)) < 0) return;
 289                if (symbol == 0) {
 290                        curr_code++;
 291                        last_code = 0;
 292                } else if (symbol < 16) {
 293                        distance->lengths[curr_code] = last_code = symbol;
 294                        distance->count[symbol]++;
 295                        curr_code++;
 296                } else if (symbol == 16) {
 297                        length = 3 + pull_bits(stream, 2);
 298                        for (;length; length--, curr_code++) {
 299                                distance->lengths[curr_code] =
 300                                        last_code;
 301                                distance->count[last_code]++;
 302                        }
 303                } else if (symbol == 17) {
 304                        curr_code += 3 + pull_bits(stream, 3);
 305                        last_code = 0;
 306                } else {
 307                        curr_code += 11 + pull_bits(stream, 7);
 308                        last_code = 0;
 309                }
 310        }
 311        fill_code_tables(distance);
 312
 313        decompress_huffman(stream, dest);
 314}
 315
 316/* fill in the length and distance huffman codes for fixed encoding
 317 * (section 3.2.6) */
 318static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
 319{
 320        /* let gcc fill in the initial values */
 321        struct huffman_set *lengths = &(stream->lengths);
 322        struct huffman_set *distance = &(stream->distance);
 323
 324        cramfs_memset(lengths->count, 0, 16);
 325        cramfs_memset(lengths->first, 0, 16);
 326        cramfs_memset(lengths->lengths, 8, 144);
 327        cramfs_memset(lengths->lengths + 144, 9, 112);
 328        cramfs_memset(lengths->lengths + 256, 7, 24);
 329        cramfs_memset(lengths->lengths + 280, 8, 8);
 330        lengths->count[7] = 24;
 331        lengths->count[8] = 152;
 332        lengths->count[9] = 112;
 333
 334        cramfs_memset(distance->count, 0, 16);
 335        cramfs_memset(distance->first, 0, 16);
 336        cramfs_memset(distance->lengths, 5, 32);
 337        distance->count[5] = 32;
 338
 339
 340        fill_code_tables(lengths);
 341        fill_code_tables(distance);
 342
 343
 344        decompress_huffman(stream, dest);
 345}
 346
 347/* returns the number of bytes decoded, < 0 if there was an error. Note that
 348 * this function assumes that the block starts on a byte boundry
 349 * (non-compliant, but I don't see where this would happen). section 3.2.3 */
 350long decompress_block(unsigned char *dest, unsigned char *source,
 351                      void *(*inflate_memcpy)(void *, const void *, size))
 352{
 353        int bfinal, btype;
 354        struct bitstream stream;
 355
 356        init_stream(&stream, source, inflate_memcpy);
 357        do {
 358                bfinal = pull_bit(&stream);
 359                btype = pull_bits(&stream, 2);
 360                if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
 361                else if (btype == DYNAMIC_COMP)
 362                        decompress_dynamic(&stream, dest + stream.decoded);
 363                else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
 364                else stream.error = COMP_UNKNOWN;
 365        } while (!bfinal && !stream.error);
 366
 367#if 0
 368        putstr("decompress_block start\r\n");
 369        putLabeledWord("stream.error = ",stream.error);
 370        putLabeledWord("stream.decoded = ",stream.decoded);
 371        putLabeledWord("dest = ",dest);
 372        putstr("decompress_block end\r\n");
 373#endif
 374        return stream.error ? -stream.error : stream.decoded;
 375}
 376