uboot/fs/ubifs/debug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements most of the debugging stuff which is compiled in only
  13 * when it is enabled. But some debugging check functions are implemented in
  14 * corresponding subsystem, just because they are closely related and utilize
  15 * various local functions of those subsystems.
  16 */
  17
  18#include <hexdump.h>
  19#include <log.h>
  20#include <dm/devres.h>
  21
  22#ifndef __UBOOT__
  23#include <linux/module.h>
  24#include <linux/debugfs.h>
  25#include <linux/math64.h>
  26#include <linux/uaccess.h>
  27#include <linux/random.h>
  28#else
  29#include <linux/compat.h>
  30#include <linux/err.h>
  31#endif
  32#include "ubifs.h"
  33
  34#ifndef __UBOOT__
  35static DEFINE_SPINLOCK(dbg_lock);
  36#endif
  37
  38static const char *get_key_fmt(int fmt)
  39{
  40        switch (fmt) {
  41        case UBIFS_SIMPLE_KEY_FMT:
  42                return "simple";
  43        default:
  44                return "unknown/invalid format";
  45        }
  46}
  47
  48static const char *get_key_hash(int hash)
  49{
  50        switch (hash) {
  51        case UBIFS_KEY_HASH_R5:
  52                return "R5";
  53        case UBIFS_KEY_HASH_TEST:
  54                return "test";
  55        default:
  56                return "unknown/invalid name hash";
  57        }
  58}
  59
  60static const char *get_key_type(int type)
  61{
  62        switch (type) {
  63        case UBIFS_INO_KEY:
  64                return "inode";
  65        case UBIFS_DENT_KEY:
  66                return "direntry";
  67        case UBIFS_XENT_KEY:
  68                return "xentry";
  69        case UBIFS_DATA_KEY:
  70                return "data";
  71        case UBIFS_TRUN_KEY:
  72                return "truncate";
  73        default:
  74                return "unknown/invalid key";
  75        }
  76}
  77
  78#ifndef __UBOOT__
  79static const char *get_dent_type(int type)
  80{
  81        switch (type) {
  82        case UBIFS_ITYPE_REG:
  83                return "file";
  84        case UBIFS_ITYPE_DIR:
  85                return "dir";
  86        case UBIFS_ITYPE_LNK:
  87                return "symlink";
  88        case UBIFS_ITYPE_BLK:
  89                return "blkdev";
  90        case UBIFS_ITYPE_CHR:
  91                return "char dev";
  92        case UBIFS_ITYPE_FIFO:
  93                return "fifo";
  94        case UBIFS_ITYPE_SOCK:
  95                return "socket";
  96        default:
  97                return "unknown/invalid type";
  98        }
  99}
 100#endif
 101
 102const char *dbg_snprintf_key(const struct ubifs_info *c,
 103                             const union ubifs_key *key, char *buffer, int len)
 104{
 105        char *p = buffer;
 106        int type = key_type(c, key);
 107
 108        if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
 109                switch (type) {
 110                case UBIFS_INO_KEY:
 111                        len -= snprintf(p, len, "(%lu, %s)",
 112                                        (unsigned long)key_inum(c, key),
 113                                        get_key_type(type));
 114                        break;
 115                case UBIFS_DENT_KEY:
 116                case UBIFS_XENT_KEY:
 117                        len -= snprintf(p, len, "(%lu, %s, %#08x)",
 118                                        (unsigned long)key_inum(c, key),
 119                                        get_key_type(type), key_hash(c, key));
 120                        break;
 121                case UBIFS_DATA_KEY:
 122                        len -= snprintf(p, len, "(%lu, %s, %u)",
 123                                        (unsigned long)key_inum(c, key),
 124                                        get_key_type(type), key_block(c, key));
 125                        break;
 126                case UBIFS_TRUN_KEY:
 127                        len -= snprintf(p, len, "(%lu, %s)",
 128                                        (unsigned long)key_inum(c, key),
 129                                        get_key_type(type));
 130                        break;
 131                default:
 132                        len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
 133                                        key->u32[0], key->u32[1]);
 134                }
 135        } else
 136                len -= snprintf(p, len, "bad key format %d", c->key_fmt);
 137        ubifs_assert(len > 0);
 138        return p;
 139}
 140
 141const char *dbg_ntype(int type)
 142{
 143        switch (type) {
 144        case UBIFS_PAD_NODE:
 145                return "padding node";
 146        case UBIFS_SB_NODE:
 147                return "superblock node";
 148        case UBIFS_MST_NODE:
 149                return "master node";
 150        case UBIFS_REF_NODE:
 151                return "reference node";
 152        case UBIFS_INO_NODE:
 153                return "inode node";
 154        case UBIFS_DENT_NODE:
 155                return "direntry node";
 156        case UBIFS_XENT_NODE:
 157                return "xentry node";
 158        case UBIFS_DATA_NODE:
 159                return "data node";
 160        case UBIFS_TRUN_NODE:
 161                return "truncate node";
 162        case UBIFS_IDX_NODE:
 163                return "indexing node";
 164        case UBIFS_CS_NODE:
 165                return "commit start node";
 166        case UBIFS_ORPH_NODE:
 167                return "orphan node";
 168        default:
 169                return "unknown node";
 170        }
 171}
 172
 173static const char *dbg_gtype(int type)
 174{
 175        switch (type) {
 176        case UBIFS_NO_NODE_GROUP:
 177                return "no node group";
 178        case UBIFS_IN_NODE_GROUP:
 179                return "in node group";
 180        case UBIFS_LAST_OF_NODE_GROUP:
 181                return "last of node group";
 182        default:
 183                return "unknown";
 184        }
 185}
 186
 187const char *dbg_cstate(int cmt_state)
 188{
 189        switch (cmt_state) {
 190        case COMMIT_RESTING:
 191                return "commit resting";
 192        case COMMIT_BACKGROUND:
 193                return "background commit requested";
 194        case COMMIT_REQUIRED:
 195                return "commit required";
 196        case COMMIT_RUNNING_BACKGROUND:
 197                return "BACKGROUND commit running";
 198        case COMMIT_RUNNING_REQUIRED:
 199                return "commit running and required";
 200        case COMMIT_BROKEN:
 201                return "broken commit";
 202        default:
 203                return "unknown commit state";
 204        }
 205}
 206
 207const char *dbg_jhead(int jhead)
 208{
 209        switch (jhead) {
 210        case GCHD:
 211                return "0 (GC)";
 212        case BASEHD:
 213                return "1 (base)";
 214        case DATAHD:
 215                return "2 (data)";
 216        default:
 217                return "unknown journal head";
 218        }
 219}
 220
 221static void dump_ch(const struct ubifs_ch *ch)
 222{
 223        pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
 224        pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
 225        pr_err("\tnode_type      %d (%s)\n", ch->node_type,
 226               dbg_ntype(ch->node_type));
 227        pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
 228               dbg_gtype(ch->group_type));
 229        pr_err("\tsqnum          %llu\n",
 230               (unsigned long long)le64_to_cpu(ch->sqnum));
 231        pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
 232}
 233
 234void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
 235{
 236#ifndef __UBOOT__
 237        const struct ubifs_inode *ui = ubifs_inode(inode);
 238        struct qstr nm = { .name = NULL };
 239        union ubifs_key key;
 240        struct ubifs_dent_node *dent, *pdent = NULL;
 241        int count = 2;
 242
 243        pr_err("Dump in-memory inode:");
 244        pr_err("\tinode          %lu\n", inode->i_ino);
 245        pr_err("\tsize           %llu\n",
 246               (unsigned long long)i_size_read(inode));
 247        pr_err("\tnlink          %u\n", inode->i_nlink);
 248        pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
 249        pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
 250        pr_err("\tatime          %u.%u\n",
 251               (unsigned int)inode->i_atime.tv_sec,
 252               (unsigned int)inode->i_atime.tv_nsec);
 253        pr_err("\tmtime          %u.%u\n",
 254               (unsigned int)inode->i_mtime.tv_sec,
 255               (unsigned int)inode->i_mtime.tv_nsec);
 256        pr_err("\tctime          %u.%u\n",
 257               (unsigned int)inode->i_ctime.tv_sec,
 258               (unsigned int)inode->i_ctime.tv_nsec);
 259        pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
 260        pr_err("\txattr_size     %u\n", ui->xattr_size);
 261        pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
 262        pr_err("\txattr_names    %u\n", ui->xattr_names);
 263        pr_err("\tdirty          %u\n", ui->dirty);
 264        pr_err("\txattr          %u\n", ui->xattr);
 265        pr_err("\tbulk_read      %u\n", ui->xattr);
 266        pr_err("\tsynced_i_size  %llu\n",
 267               (unsigned long long)ui->synced_i_size);
 268        pr_err("\tui_size        %llu\n",
 269               (unsigned long long)ui->ui_size);
 270        pr_err("\tflags          %d\n", ui->flags);
 271        pr_err("\tcompr_type     %d\n", ui->compr_type);
 272        pr_err("\tlast_page_read %lu\n", ui->last_page_read);
 273        pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
 274        pr_err("\tdata_len       %d\n", ui->data_len);
 275
 276        if (!S_ISDIR(inode->i_mode))
 277                return;
 278
 279        pr_err("List of directory entries:\n");
 280        ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
 281
 282        lowest_dent_key(c, &key, inode->i_ino);
 283        while (1) {
 284                dent = ubifs_tnc_next_ent(c, &key, &nm);
 285                if (IS_ERR(dent)) {
 286                        if (PTR_ERR(dent) != -ENOENT)
 287                                pr_err("error %ld\n", PTR_ERR(dent));
 288                        break;
 289                }
 290
 291                pr_err("\t%d: %s (%s)\n",
 292                       count++, dent->name, get_dent_type(dent->type));
 293
 294                nm.name = dent->name;
 295                nm.len = le16_to_cpu(dent->nlen);
 296                kfree(pdent);
 297                pdent = dent;
 298                key_read(c, &dent->key, &key);
 299        }
 300        kfree(pdent);
 301#endif
 302}
 303
 304void ubifs_dump_node(const struct ubifs_info *c, const void *node)
 305{
 306        int i, n;
 307        union ubifs_key key;
 308        const struct ubifs_ch *ch = node;
 309        char key_buf[DBG_KEY_BUF_LEN];
 310
 311        /* If the magic is incorrect, just hexdump the first bytes */
 312        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
 313                pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
 314                print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
 315                               (void *)node, UBIFS_CH_SZ, 1);
 316                return;
 317        }
 318
 319        spin_lock(&dbg_lock);
 320        dump_ch(node);
 321
 322        switch (ch->node_type) {
 323        case UBIFS_PAD_NODE:
 324        {
 325                const struct ubifs_pad_node *pad = node;
 326
 327                pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
 328                break;
 329        }
 330        case UBIFS_SB_NODE:
 331        {
 332                const struct ubifs_sb_node *sup = node;
 333                unsigned int sup_flags = le32_to_cpu(sup->flags);
 334
 335                pr_err("\tkey_hash       %d (%s)\n",
 336                       (int)sup->key_hash, get_key_hash(sup->key_hash));
 337                pr_err("\tkey_fmt        %d (%s)\n",
 338                       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
 339                pr_err("\tflags          %#x\n", sup_flags);
 340                pr_err("\tbig_lpt        %u\n",
 341                       !!(sup_flags & UBIFS_FLG_BIGLPT));
 342                pr_err("\tspace_fixup    %u\n",
 343                       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
 344                pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
 345                pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
 346                pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
 347                pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
 348                pr_err("\tmax_bud_bytes  %llu\n",
 349                       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
 350                pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
 351                pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
 352                pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
 353                pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
 354                pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
 355                pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
 356                pr_err("\tdefault_compr  %u\n",
 357                       (int)le16_to_cpu(sup->default_compr));
 358                pr_err("\trp_size        %llu\n",
 359                       (unsigned long long)le64_to_cpu(sup->rp_size));
 360                pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
 361                pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
 362                pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
 363                pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
 364                pr_err("\tUUID           %pUB\n", sup->uuid);
 365                break;
 366        }
 367        case UBIFS_MST_NODE:
 368        {
 369                const struct ubifs_mst_node *mst = node;
 370
 371                pr_err("\thighest_inum   %llu\n",
 372                       (unsigned long long)le64_to_cpu(mst->highest_inum));
 373                pr_err("\tcommit number  %llu\n",
 374                       (unsigned long long)le64_to_cpu(mst->cmt_no));
 375                pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
 376                pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
 377                pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
 378                pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
 379                pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
 380                pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
 381                pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
 382                pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
 383                pr_err("\tindex_size     %llu\n",
 384                       (unsigned long long)le64_to_cpu(mst->index_size));
 385                pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
 386                pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
 387                pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
 388                pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
 389                pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
 390                pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
 391                pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
 392                pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
 393                pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
 394                pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
 395                pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
 396                pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
 397                pr_err("\ttotal_free     %llu\n",
 398                       (unsigned long long)le64_to_cpu(mst->total_free));
 399                pr_err("\ttotal_dirty    %llu\n",
 400                       (unsigned long long)le64_to_cpu(mst->total_dirty));
 401                pr_err("\ttotal_used     %llu\n",
 402                       (unsigned long long)le64_to_cpu(mst->total_used));
 403                pr_err("\ttotal_dead     %llu\n",
 404                       (unsigned long long)le64_to_cpu(mst->total_dead));
 405                pr_err("\ttotal_dark     %llu\n",
 406                       (unsigned long long)le64_to_cpu(mst->total_dark));
 407                break;
 408        }
 409        case UBIFS_REF_NODE:
 410        {
 411                const struct ubifs_ref_node *ref = node;
 412
 413                pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
 414                pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
 415                pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
 416                break;
 417        }
 418        case UBIFS_INO_NODE:
 419        {
 420                const struct ubifs_ino_node *ino = node;
 421
 422                key_read(c, &ino->key, &key);
 423                pr_err("\tkey            %s\n",
 424                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 425                pr_err("\tcreat_sqnum    %llu\n",
 426                       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
 427                pr_err("\tsize           %llu\n",
 428                       (unsigned long long)le64_to_cpu(ino->size));
 429                pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
 430                pr_err("\tatime          %lld.%u\n",
 431                       (long long)le64_to_cpu(ino->atime_sec),
 432                       le32_to_cpu(ino->atime_nsec));
 433                pr_err("\tmtime          %lld.%u\n",
 434                       (long long)le64_to_cpu(ino->mtime_sec),
 435                       le32_to_cpu(ino->mtime_nsec));
 436                pr_err("\tctime          %lld.%u\n",
 437                       (long long)le64_to_cpu(ino->ctime_sec),
 438                       le32_to_cpu(ino->ctime_nsec));
 439                pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
 440                pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
 441                pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
 442                pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
 443                pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
 444                pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
 445                pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
 446                pr_err("\tcompr_type     %#x\n",
 447                       (int)le16_to_cpu(ino->compr_type));
 448                pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
 449                break;
 450        }
 451        case UBIFS_DENT_NODE:
 452        case UBIFS_XENT_NODE:
 453        {
 454                const struct ubifs_dent_node *dent = node;
 455                int nlen = le16_to_cpu(dent->nlen);
 456
 457                key_read(c, &dent->key, &key);
 458                pr_err("\tkey            %s\n",
 459                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 460                pr_err("\tinum           %llu\n",
 461                       (unsigned long long)le64_to_cpu(dent->inum));
 462                pr_err("\ttype           %d\n", (int)dent->type);
 463                pr_err("\tnlen           %d\n", nlen);
 464                pr_err("\tname           ");
 465
 466                if (nlen > UBIFS_MAX_NLEN)
 467                        pr_err("(bad name length, not printing, bad or corrupted node)");
 468                else {
 469                        for (i = 0; i < nlen && dent->name[i]; i++)
 470                                pr_cont("%c", dent->name[i]);
 471                }
 472                pr_cont("\n");
 473
 474                break;
 475        }
 476        case UBIFS_DATA_NODE:
 477        {
 478                const struct ubifs_data_node *dn = node;
 479                int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
 480
 481                key_read(c, &dn->key, &key);
 482                pr_err("\tkey            %s\n",
 483                       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
 484                pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
 485                pr_err("\tcompr_typ      %d\n",
 486                       (int)le16_to_cpu(dn->compr_type));
 487                pr_err("\tdata size      %d\n", dlen);
 488                pr_err("\tdata:\n");
 489                print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
 490                               (void *)&dn->data, dlen, 0);
 491                break;
 492        }
 493        case UBIFS_TRUN_NODE:
 494        {
 495                const struct ubifs_trun_node *trun = node;
 496
 497                pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
 498                pr_err("\told_size       %llu\n",
 499                       (unsigned long long)le64_to_cpu(trun->old_size));
 500                pr_err("\tnew_size       %llu\n",
 501                       (unsigned long long)le64_to_cpu(trun->new_size));
 502                break;
 503        }
 504        case UBIFS_IDX_NODE:
 505        {
 506                const struct ubifs_idx_node *idx = node;
 507
 508                n = le16_to_cpu(idx->child_cnt);
 509                pr_err("\tchild_cnt      %d\n", n);
 510                pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
 511                pr_err("\tBranches:\n");
 512
 513                for (i = 0; i < n && i < c->fanout - 1; i++) {
 514                        const struct ubifs_branch *br;
 515
 516                        br = ubifs_idx_branch(c, idx, i);
 517                        key_read(c, &br->key, &key);
 518                        pr_err("\t%d: LEB %d:%d len %d key %s\n",
 519                               i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
 520                               le32_to_cpu(br->len),
 521                               dbg_snprintf_key(c, &key, key_buf,
 522                                                DBG_KEY_BUF_LEN));
 523                }
 524                break;
 525        }
 526        case UBIFS_CS_NODE:
 527                break;
 528        case UBIFS_ORPH_NODE:
 529        {
 530                const struct ubifs_orph_node *orph = node;
 531
 532                pr_err("\tcommit number  %llu\n",
 533                       (unsigned long long)
 534                                le64_to_cpu(orph->cmt_no) & LLONG_MAX);
 535                pr_err("\tlast node flag %llu\n",
 536                       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
 537                n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
 538                pr_err("\t%d orphan inode numbers:\n", n);
 539                for (i = 0; i < n; i++)
 540                        pr_err("\t  ino %llu\n",
 541                               (unsigned long long)le64_to_cpu(orph->inos[i]));
 542                break;
 543        }
 544        default:
 545                pr_err("node type %d was not recognized\n",
 546                       (int)ch->node_type);
 547        }
 548        spin_unlock(&dbg_lock);
 549}
 550
 551void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
 552{
 553        spin_lock(&dbg_lock);
 554        pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
 555               req->new_ino, req->dirtied_ino);
 556        pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
 557               req->new_ino_d, req->dirtied_ino_d);
 558        pr_err("\tnew_page    %d, dirtied_page %d\n",
 559               req->new_page, req->dirtied_page);
 560        pr_err("\tnew_dent    %d, mod_dent     %d\n",
 561               req->new_dent, req->mod_dent);
 562        pr_err("\tidx_growth  %d\n", req->idx_growth);
 563        pr_err("\tdata_growth %d dd_growth     %d\n",
 564               req->data_growth, req->dd_growth);
 565        spin_unlock(&dbg_lock);
 566}
 567
 568void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
 569{
 570        spin_lock(&dbg_lock);
 571        pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
 572               current->pid, lst->empty_lebs, lst->idx_lebs);
 573        pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
 574               lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
 575        pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
 576               lst->total_used, lst->total_dark, lst->total_dead);
 577        spin_unlock(&dbg_lock);
 578}
 579
 580#ifndef __UBOOT__
 581void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 582{
 583        int i;
 584        struct rb_node *rb;
 585        struct ubifs_bud *bud;
 586        struct ubifs_gced_idx_leb *idx_gc;
 587        long long available, outstanding, free;
 588
 589        spin_lock(&c->space_lock);
 590        spin_lock(&dbg_lock);
 591        pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
 592               current->pid, bi->data_growth + bi->dd_growth,
 593               bi->data_growth + bi->dd_growth + bi->idx_growth);
 594        pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
 595               bi->data_growth, bi->dd_growth, bi->idx_growth);
 596        pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
 597               bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
 598        pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
 599               bi->page_budget, bi->inode_budget, bi->dent_budget);
 600        pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
 601        pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
 602               c->dark_wm, c->dead_wm, c->max_idx_node_sz);
 603
 604        if (bi != &c->bi)
 605                /*
 606                 * If we are dumping saved budgeting data, do not print
 607                 * additional information which is about the current state, not
 608                 * the old one which corresponded to the saved budgeting data.
 609                 */
 610                goto out_unlock;
 611
 612        pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
 613               c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
 614        pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
 615               atomic_long_read(&c->dirty_pg_cnt),
 616               atomic_long_read(&c->dirty_zn_cnt),
 617               atomic_long_read(&c->clean_zn_cnt));
 618        pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
 619
 620        /* If we are in R/O mode, journal heads do not exist */
 621        if (c->jheads)
 622                for (i = 0; i < c->jhead_cnt; i++)
 623                        pr_err("\tjhead %s\t LEB %d\n",
 624                               dbg_jhead(c->jheads[i].wbuf.jhead),
 625                               c->jheads[i].wbuf.lnum);
 626        for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
 627                bud = rb_entry(rb, struct ubifs_bud, rb);
 628                pr_err("\tbud LEB %d\n", bud->lnum);
 629        }
 630        list_for_each_entry(bud, &c->old_buds, list)
 631                pr_err("\told bud LEB %d\n", bud->lnum);
 632        list_for_each_entry(idx_gc, &c->idx_gc, list)
 633                pr_err("\tGC'ed idx LEB %d unmap %d\n",
 634                       idx_gc->lnum, idx_gc->unmap);
 635        pr_err("\tcommit state %d\n", c->cmt_state);
 636
 637        /* Print budgeting predictions */
 638        available = ubifs_calc_available(c, c->bi.min_idx_lebs);
 639        outstanding = c->bi.data_growth + c->bi.dd_growth;
 640        free = ubifs_get_free_space_nolock(c);
 641        pr_err("Budgeting predictions:\n");
 642        pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
 643               available, outstanding, free);
 644out_unlock:
 645        spin_unlock(&dbg_lock);
 646        spin_unlock(&c->space_lock);
 647}
 648#else
 649void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
 650{
 651}
 652#endif
 653
 654void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
 655{
 656        int i, spc, dark = 0, dead = 0;
 657        struct rb_node *rb;
 658        struct ubifs_bud *bud;
 659
 660        spc = lp->free + lp->dirty;
 661        if (spc < c->dead_wm)
 662                dead = spc;
 663        else
 664                dark = ubifs_calc_dark(c, spc);
 665
 666        if (lp->flags & LPROPS_INDEX)
 667                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
 668                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 669                       lp->flags);
 670        else
 671                pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
 672                       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
 673                       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
 674
 675        if (lp->flags & LPROPS_TAKEN) {
 676                if (lp->flags & LPROPS_INDEX)
 677                        pr_cont("index, taken");
 678                else
 679                        pr_cont("taken");
 680        } else {
 681                const char *s;
 682
 683                if (lp->flags & LPROPS_INDEX) {
 684                        switch (lp->flags & LPROPS_CAT_MASK) {
 685                        case LPROPS_DIRTY_IDX:
 686                                s = "dirty index";
 687                                break;
 688                        case LPROPS_FRDI_IDX:
 689                                s = "freeable index";
 690                                break;
 691                        default:
 692                                s = "index";
 693                        }
 694                } else {
 695                        switch (lp->flags & LPROPS_CAT_MASK) {
 696                        case LPROPS_UNCAT:
 697                                s = "not categorized";
 698                                break;
 699                        case LPROPS_DIRTY:
 700                                s = "dirty";
 701                                break;
 702                        case LPROPS_FREE:
 703                                s = "free";
 704                                break;
 705                        case LPROPS_EMPTY:
 706                                s = "empty";
 707                                break;
 708                        case LPROPS_FREEABLE:
 709                                s = "freeable";
 710                                break;
 711                        default:
 712                                s = NULL;
 713                                break;
 714                        }
 715                }
 716                pr_cont("%s", s);
 717        }
 718
 719        for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
 720                bud = rb_entry(rb, struct ubifs_bud, rb);
 721                if (bud->lnum == lp->lnum) {
 722                        int head = 0;
 723                        for (i = 0; i < c->jhead_cnt; i++) {
 724                                /*
 725                                 * Note, if we are in R/O mode or in the middle
 726                                 * of mounting/re-mounting, the write-buffers do
 727                                 * not exist.
 728                                 */
 729                                if (c->jheads &&
 730                                    lp->lnum == c->jheads[i].wbuf.lnum) {
 731                                        pr_cont(", jhead %s", dbg_jhead(i));
 732                                        head = 1;
 733                                }
 734                        }
 735                        if (!head)
 736                                pr_cont(", bud of jhead %s",
 737                                       dbg_jhead(bud->jhead));
 738                }
 739        }
 740        if (lp->lnum == c->gc_lnum)
 741                pr_cont(", GC LEB");
 742        pr_cont(")\n");
 743}
 744
 745void ubifs_dump_lprops(struct ubifs_info *c)
 746{
 747        int lnum, err;
 748        struct ubifs_lprops lp;
 749        struct ubifs_lp_stats lst;
 750
 751        pr_err("(pid %d) start dumping LEB properties\n", current->pid);
 752        ubifs_get_lp_stats(c, &lst);
 753        ubifs_dump_lstats(&lst);
 754
 755        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 756                err = ubifs_read_one_lp(c, lnum, &lp);
 757                if (err) {
 758                        ubifs_err(c, "cannot read lprops for LEB %d", lnum);
 759                        continue;
 760                }
 761
 762                ubifs_dump_lprop(c, &lp);
 763        }
 764        pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
 765}
 766
 767void ubifs_dump_lpt_info(struct ubifs_info *c)
 768{
 769        int i;
 770
 771        spin_lock(&dbg_lock);
 772        pr_err("(pid %d) dumping LPT information\n", current->pid);
 773        pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
 774        pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
 775        pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
 776        pr_err("\tltab_sz:       %d\n", c->ltab_sz);
 777        pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
 778        pr_err("\tbig_lpt:       %d\n", c->big_lpt);
 779        pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
 780        pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
 781        pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
 782        pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
 783        pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
 784        pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
 785        pr_err("\tspace_bits:    %d\n", c->space_bits);
 786        pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
 787        pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
 788        pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
 789        pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
 790        pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
 791        pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
 792        pr_err("\tLPT head is at %d:%d\n",
 793               c->nhead_lnum, c->nhead_offs);
 794        pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
 795        if (c->big_lpt)
 796                pr_err("\tLPT lsave is at %d:%d\n",
 797                       c->lsave_lnum, c->lsave_offs);
 798        for (i = 0; i < c->lpt_lebs; i++)
 799                pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
 800                       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
 801                       c->ltab[i].tgc, c->ltab[i].cmt);
 802        spin_unlock(&dbg_lock);
 803}
 804
 805void ubifs_dump_sleb(const struct ubifs_info *c,
 806                     const struct ubifs_scan_leb *sleb, int offs)
 807{
 808        struct ubifs_scan_node *snod;
 809
 810        pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
 811               current->pid, sleb->lnum, offs);
 812
 813        list_for_each_entry(snod, &sleb->nodes, list) {
 814                cond_resched();
 815                pr_err("Dumping node at LEB %d:%d len %d\n",
 816                       sleb->lnum, snod->offs, snod->len);
 817                ubifs_dump_node(c, snod->node);
 818        }
 819}
 820
 821void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
 822{
 823        struct ubifs_scan_leb *sleb;
 824        struct ubifs_scan_node *snod;
 825        void *buf;
 826
 827        pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
 828
 829        buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
 830        if (!buf) {
 831                ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
 832                return;
 833        }
 834
 835        sleb = ubifs_scan(c, lnum, 0, buf, 0);
 836        if (IS_ERR(sleb)) {
 837                ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
 838                goto out;
 839        }
 840
 841        pr_err("LEB %d has %d nodes ending at %d\n", lnum,
 842               sleb->nodes_cnt, sleb->endpt);
 843
 844        list_for_each_entry(snod, &sleb->nodes, list) {
 845                cond_resched();
 846                pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
 847                       snod->offs, snod->len);
 848                ubifs_dump_node(c, snod->node);
 849        }
 850
 851        pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
 852        ubifs_scan_destroy(sleb);
 853
 854out:
 855        vfree(buf);
 856        return;
 857}
 858
 859void ubifs_dump_znode(const struct ubifs_info *c,
 860                      const struct ubifs_znode *znode)
 861{
 862        int n;
 863        const struct ubifs_zbranch *zbr;
 864        char key_buf[DBG_KEY_BUF_LEN];
 865
 866        spin_lock(&dbg_lock);
 867        if (znode->parent)
 868                zbr = &znode->parent->zbranch[znode->iip];
 869        else
 870                zbr = &c->zroot;
 871
 872        pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
 873               znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
 874               znode->level, znode->child_cnt, znode->flags);
 875
 876        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
 877                spin_unlock(&dbg_lock);
 878                return;
 879        }
 880
 881        pr_err("zbranches:\n");
 882        for (n = 0; n < znode->child_cnt; n++) {
 883                zbr = &znode->zbranch[n];
 884                if (znode->level > 0)
 885                        pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
 886                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 887                               dbg_snprintf_key(c, &zbr->key, key_buf,
 888                                                DBG_KEY_BUF_LEN));
 889                else
 890                        pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
 891                               n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
 892                               dbg_snprintf_key(c, &zbr->key, key_buf,
 893                                                DBG_KEY_BUF_LEN));
 894        }
 895        spin_unlock(&dbg_lock);
 896}
 897
 898void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
 899{
 900        int i;
 901
 902        pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
 903               current->pid, cat, heap->cnt);
 904        for (i = 0; i < heap->cnt; i++) {
 905                struct ubifs_lprops *lprops = heap->arr[i];
 906
 907                pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
 908                       i, lprops->lnum, lprops->hpos, lprops->free,
 909                       lprops->dirty, lprops->flags);
 910        }
 911        pr_err("(pid %d) finish dumping heap\n", current->pid);
 912}
 913
 914void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
 915                      struct ubifs_nnode *parent, int iip)
 916{
 917        int i;
 918
 919        pr_err("(pid %d) dumping pnode:\n", current->pid);
 920        pr_err("\taddress %zx parent %zx cnext %zx\n",
 921               (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
 922        pr_err("\tflags %lu iip %d level %d num %d\n",
 923               pnode->flags, iip, pnode->level, pnode->num);
 924        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 925                struct ubifs_lprops *lp = &pnode->lprops[i];
 926
 927                pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
 928                       i, lp->free, lp->dirty, lp->flags, lp->lnum);
 929        }
 930}
 931
 932void ubifs_dump_tnc(struct ubifs_info *c)
 933{
 934        struct ubifs_znode *znode;
 935        int level;
 936
 937        pr_err("\n");
 938        pr_err("(pid %d) start dumping TNC tree\n", current->pid);
 939        znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
 940        level = znode->level;
 941        pr_err("== Level %d ==\n", level);
 942        while (znode) {
 943                if (level != znode->level) {
 944                        level = znode->level;
 945                        pr_err("== Level %d ==\n", level);
 946                }
 947                ubifs_dump_znode(c, znode);
 948                znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
 949        }
 950        pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
 951}
 952
 953static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
 954                      void *priv)
 955{
 956        ubifs_dump_znode(c, znode);
 957        return 0;
 958}
 959
 960/**
 961 * ubifs_dump_index - dump the on-flash index.
 962 * @c: UBIFS file-system description object
 963 *
 964 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
 965 * which dumps only in-memory znodes and does not read znodes which from flash.
 966 */
 967void ubifs_dump_index(struct ubifs_info *c)
 968{
 969        dbg_walk_index(c, NULL, dump_znode, NULL);
 970}
 971
 972#ifndef __UBOOT__
 973/**
 974 * dbg_save_space_info - save information about flash space.
 975 * @c: UBIFS file-system description object
 976 *
 977 * This function saves information about UBIFS free space, dirty space, etc, in
 978 * order to check it later.
 979 */
 980void dbg_save_space_info(struct ubifs_info *c)
 981{
 982        struct ubifs_debug_info *d = c->dbg;
 983        int freeable_cnt;
 984
 985        spin_lock(&c->space_lock);
 986        memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
 987        memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
 988        d->saved_idx_gc_cnt = c->idx_gc_cnt;
 989
 990        /*
 991         * We use a dirty hack here and zero out @c->freeable_cnt, because it
 992         * affects the free space calculations, and UBIFS might not know about
 993         * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
 994         * only when we read their lprops, and we do this only lazily, upon the
 995         * need. So at any given point of time @c->freeable_cnt might be not
 996         * exactly accurate.
 997         *
 998         * Just one example about the issue we hit when we did not zero
 999         * @c->freeable_cnt.
1000         * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1001         *    amount of free space in @d->saved_free
1002         * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1003         *    information from flash, where we cache LEBs from various
1004         *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1005         *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1006         *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1007         *    -> 'ubifs_add_to_cat()').
1008         * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1009         *    becomes %1.
1010         * 4. We calculate the amount of free space when the re-mount is
1011         *    finished in 'dbg_check_space_info()' and it does not match
1012         *    @d->saved_free.
1013         */
1014        freeable_cnt = c->freeable_cnt;
1015        c->freeable_cnt = 0;
1016        d->saved_free = ubifs_get_free_space_nolock(c);
1017        c->freeable_cnt = freeable_cnt;
1018        spin_unlock(&c->space_lock);
1019}
1020
1021/**
1022 * dbg_check_space_info - check flash space information.
1023 * @c: UBIFS file-system description object
1024 *
1025 * This function compares current flash space information with the information
1026 * which was saved when the 'dbg_save_space_info()' function was called.
1027 * Returns zero if the information has not changed, and %-EINVAL it it has
1028 * changed.
1029 */
1030int dbg_check_space_info(struct ubifs_info *c)
1031{
1032        struct ubifs_debug_info *d = c->dbg;
1033        struct ubifs_lp_stats lst;
1034        long long free;
1035        int freeable_cnt;
1036
1037        spin_lock(&c->space_lock);
1038        freeable_cnt = c->freeable_cnt;
1039        c->freeable_cnt = 0;
1040        free = ubifs_get_free_space_nolock(c);
1041        c->freeable_cnt = freeable_cnt;
1042        spin_unlock(&c->space_lock);
1043
1044        if (free != d->saved_free) {
1045                ubifs_err(c, "free space changed from %lld to %lld",
1046                          d->saved_free, free);
1047                goto out;
1048        }
1049
1050        return 0;
1051
1052out:
1053        ubifs_msg(c, "saved lprops statistics dump");
1054        ubifs_dump_lstats(&d->saved_lst);
1055        ubifs_msg(c, "saved budgeting info dump");
1056        ubifs_dump_budg(c, &d->saved_bi);
1057        ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1058        ubifs_msg(c, "current lprops statistics dump");
1059        ubifs_get_lp_stats(c, &lst);
1060        ubifs_dump_lstats(&lst);
1061        ubifs_msg(c, "current budgeting info dump");
1062        ubifs_dump_budg(c, &c->bi);
1063        dump_stack();
1064        return -EINVAL;
1065}
1066
1067/**
1068 * dbg_check_synced_i_size - check synchronized inode size.
1069 * @c: UBIFS file-system description object
1070 * @inode: inode to check
1071 *
1072 * If inode is clean, synchronized inode size has to be equivalent to current
1073 * inode size. This function has to be called only for locked inodes (@i_mutex
1074 * has to be locked). Returns %0 if synchronized inode size if correct, and
1075 * %-EINVAL if not.
1076 */
1077int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1078{
1079        int err = 0;
1080        struct ubifs_inode *ui = ubifs_inode(inode);
1081
1082        if (!dbg_is_chk_gen(c))
1083                return 0;
1084        if (!S_ISREG(inode->i_mode))
1085                return 0;
1086
1087        mutex_lock(&ui->ui_mutex);
1088        spin_lock(&ui->ui_lock);
1089        if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1090                ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1091                          ui->ui_size, ui->synced_i_size);
1092                ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1093                          inode->i_mode, i_size_read(inode));
1094                dump_stack();
1095                err = -EINVAL;
1096        }
1097        spin_unlock(&ui->ui_lock);
1098        mutex_unlock(&ui->ui_mutex);
1099        return err;
1100}
1101
1102/*
1103 * dbg_check_dir - check directory inode size and link count.
1104 * @c: UBIFS file-system description object
1105 * @dir: the directory to calculate size for
1106 * @size: the result is returned here
1107 *
1108 * This function makes sure that directory size and link count are correct.
1109 * Returns zero in case of success and a negative error code in case of
1110 * failure.
1111 *
1112 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1113 * calling this function.
1114 */
1115int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1116{
1117        unsigned int nlink = 2;
1118        union ubifs_key key;
1119        struct ubifs_dent_node *dent, *pdent = NULL;
1120        struct qstr nm = { .name = NULL };
1121        loff_t size = UBIFS_INO_NODE_SZ;
1122
1123        if (!dbg_is_chk_gen(c))
1124                return 0;
1125
1126        if (!S_ISDIR(dir->i_mode))
1127                return 0;
1128
1129        lowest_dent_key(c, &key, dir->i_ino);
1130        while (1) {
1131                int err;
1132
1133                dent = ubifs_tnc_next_ent(c, &key, &nm);
1134                if (IS_ERR(dent)) {
1135                        err = PTR_ERR(dent);
1136                        if (err == -ENOENT)
1137                                break;
1138                        return err;
1139                }
1140
1141                nm.name = dent->name;
1142                nm.len = le16_to_cpu(dent->nlen);
1143                size += CALC_DENT_SIZE(nm.len);
1144                if (dent->type == UBIFS_ITYPE_DIR)
1145                        nlink += 1;
1146                kfree(pdent);
1147                pdent = dent;
1148                key_read(c, &dent->key, &key);
1149        }
1150        kfree(pdent);
1151
1152        if (i_size_read(dir) != size) {
1153                ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1154                          dir->i_ino, (unsigned long long)i_size_read(dir),
1155                          (unsigned long long)size);
1156                ubifs_dump_inode(c, dir);
1157                dump_stack();
1158                return -EINVAL;
1159        }
1160        if (dir->i_nlink != nlink) {
1161                ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1162                          dir->i_ino, dir->i_nlink, nlink);
1163                ubifs_dump_inode(c, dir);
1164                dump_stack();
1165                return -EINVAL;
1166        }
1167
1168        return 0;
1169}
1170
1171/**
1172 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1173 * @c: UBIFS file-system description object
1174 * @zbr1: first zbranch
1175 * @zbr2: following zbranch
1176 *
1177 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1178 * names of the direntries/xentries which are referred by the keys. This
1179 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1180 * sure the name of direntry/xentry referred by @zbr1 is less than
1181 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1182 * and a negative error code in case of failure.
1183 */
1184static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1185                               struct ubifs_zbranch *zbr2)
1186{
1187        int err, nlen1, nlen2, cmp;
1188        struct ubifs_dent_node *dent1, *dent2;
1189        union ubifs_key key;
1190        char key_buf[DBG_KEY_BUF_LEN];
1191
1192        ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1193        dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1194        if (!dent1)
1195                return -ENOMEM;
1196        dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1197        if (!dent2) {
1198                err = -ENOMEM;
1199                goto out_free;
1200        }
1201
1202        err = ubifs_tnc_read_node(c, zbr1, dent1);
1203        if (err)
1204                goto out_free;
1205        err = ubifs_validate_entry(c, dent1);
1206        if (err)
1207                goto out_free;
1208
1209        err = ubifs_tnc_read_node(c, zbr2, dent2);
1210        if (err)
1211                goto out_free;
1212        err = ubifs_validate_entry(c, dent2);
1213        if (err)
1214                goto out_free;
1215
1216        /* Make sure node keys are the same as in zbranch */
1217        err = 1;
1218        key_read(c, &dent1->key, &key);
1219        if (keys_cmp(c, &zbr1->key, &key)) {
1220                ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1221                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222                                                       DBG_KEY_BUF_LEN));
1223                ubifs_err(c, "but it should have key %s according to tnc",
1224                          dbg_snprintf_key(c, &zbr1->key, key_buf,
1225                                           DBG_KEY_BUF_LEN));
1226                ubifs_dump_node(c, dent1);
1227                goto out_free;
1228        }
1229
1230        key_read(c, &dent2->key, &key);
1231        if (keys_cmp(c, &zbr2->key, &key)) {
1232                ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1233                          zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1234                                                       DBG_KEY_BUF_LEN));
1235                ubifs_err(c, "but it should have key %s according to tnc",
1236                          dbg_snprintf_key(c, &zbr2->key, key_buf,
1237                                           DBG_KEY_BUF_LEN));
1238                ubifs_dump_node(c, dent2);
1239                goto out_free;
1240        }
1241
1242        nlen1 = le16_to_cpu(dent1->nlen);
1243        nlen2 = le16_to_cpu(dent2->nlen);
1244
1245        cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1246        if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1247                err = 0;
1248                goto out_free;
1249        }
1250        if (cmp == 0 && nlen1 == nlen2)
1251                ubifs_err(c, "2 xent/dent nodes with the same name");
1252        else
1253                ubifs_err(c, "bad order of colliding key %s",
1254                          dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1255
1256        ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1257        ubifs_dump_node(c, dent1);
1258        ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1259        ubifs_dump_node(c, dent2);
1260
1261out_free:
1262        kfree(dent2);
1263        kfree(dent1);
1264        return err;
1265}
1266
1267/**
1268 * dbg_check_znode - check if znode is all right.
1269 * @c: UBIFS file-system description object
1270 * @zbr: zbranch which points to this znode
1271 *
1272 * This function makes sure that znode referred to by @zbr is all right.
1273 * Returns zero if it is, and %-EINVAL if it is not.
1274 */
1275static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1276{
1277        struct ubifs_znode *znode = zbr->znode;
1278        struct ubifs_znode *zp = znode->parent;
1279        int n, err, cmp;
1280
1281        if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1282                err = 1;
1283                goto out;
1284        }
1285        if (znode->level < 0) {
1286                err = 2;
1287                goto out;
1288        }
1289        if (znode->iip < 0 || znode->iip >= c->fanout) {
1290                err = 3;
1291                goto out;
1292        }
1293
1294        if (zbr->len == 0)
1295                /* Only dirty zbranch may have no on-flash nodes */
1296                if (!ubifs_zn_dirty(znode)) {
1297                        err = 4;
1298                        goto out;
1299                }
1300
1301        if (ubifs_zn_dirty(znode)) {
1302                /*
1303                 * If znode is dirty, its parent has to be dirty as well. The
1304                 * order of the operation is important, so we have to have
1305                 * memory barriers.
1306                 */
1307                smp_mb();
1308                if (zp && !ubifs_zn_dirty(zp)) {
1309                        /*
1310                         * The dirty flag is atomic and is cleared outside the
1311                         * TNC mutex, so znode's dirty flag may now have
1312                         * been cleared. The child is always cleared before the
1313                         * parent, so we just need to check again.
1314                         */
1315                        smp_mb();
1316                        if (ubifs_zn_dirty(znode)) {
1317                                err = 5;
1318                                goto out;
1319                        }
1320                }
1321        }
1322
1323        if (zp) {
1324                const union ubifs_key *min, *max;
1325
1326                if (znode->level != zp->level - 1) {
1327                        err = 6;
1328                        goto out;
1329                }
1330
1331                /* Make sure the 'parent' pointer in our znode is correct */
1332                err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1333                if (!err) {
1334                        /* This zbranch does not exist in the parent */
1335                        err = 7;
1336                        goto out;
1337                }
1338
1339                if (znode->iip >= zp->child_cnt) {
1340                        err = 8;
1341                        goto out;
1342                }
1343
1344                if (znode->iip != n) {
1345                        /* This may happen only in case of collisions */
1346                        if (keys_cmp(c, &zp->zbranch[n].key,
1347                                     &zp->zbranch[znode->iip].key)) {
1348                                err = 9;
1349                                goto out;
1350                        }
1351                        n = znode->iip;
1352                }
1353
1354                /*
1355                 * Make sure that the first key in our znode is greater than or
1356                 * equal to the key in the pointing zbranch.
1357                 */
1358                min = &zbr->key;
1359                cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1360                if (cmp == 1) {
1361                        err = 10;
1362                        goto out;
1363                }
1364
1365                if (n + 1 < zp->child_cnt) {
1366                        max = &zp->zbranch[n + 1].key;
1367
1368                        /*
1369                         * Make sure the last key in our znode is less or
1370                         * equivalent than the key in the zbranch which goes
1371                         * after our pointing zbranch.
1372                         */
1373                        cmp = keys_cmp(c, max,
1374                                &znode->zbranch[znode->child_cnt - 1].key);
1375                        if (cmp == -1) {
1376                                err = 11;
1377                                goto out;
1378                        }
1379                }
1380        } else {
1381                /* This may only be root znode */
1382                if (zbr != &c->zroot) {
1383                        err = 12;
1384                        goto out;
1385                }
1386        }
1387
1388        /*
1389         * Make sure that next key is greater or equivalent then the previous
1390         * one.
1391         */
1392        for (n = 1; n < znode->child_cnt; n++) {
1393                cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1394                               &znode->zbranch[n].key);
1395                if (cmp > 0) {
1396                        err = 13;
1397                        goto out;
1398                }
1399                if (cmp == 0) {
1400                        /* This can only be keys with colliding hash */
1401                        if (!is_hash_key(c, &znode->zbranch[n].key)) {
1402                                err = 14;
1403                                goto out;
1404                        }
1405
1406                        if (znode->level != 0 || c->replaying)
1407                                continue;
1408
1409                        /*
1410                         * Colliding keys should follow binary order of
1411                         * corresponding xentry/dentry names.
1412                         */
1413                        err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1414                                                  &znode->zbranch[n]);
1415                        if (err < 0)
1416                                return err;
1417                        if (err) {
1418                                err = 15;
1419                                goto out;
1420                        }
1421                }
1422        }
1423
1424        for (n = 0; n < znode->child_cnt; n++) {
1425                if (!znode->zbranch[n].znode &&
1426                    (znode->zbranch[n].lnum == 0 ||
1427                     znode->zbranch[n].len == 0)) {
1428                        err = 16;
1429                        goto out;
1430                }
1431
1432                if (znode->zbranch[n].lnum != 0 &&
1433                    znode->zbranch[n].len == 0) {
1434                        err = 17;
1435                        goto out;
1436                }
1437
1438                if (znode->zbranch[n].lnum == 0 &&
1439                    znode->zbranch[n].len != 0) {
1440                        err = 18;
1441                        goto out;
1442                }
1443
1444                if (znode->zbranch[n].lnum == 0 &&
1445                    znode->zbranch[n].offs != 0) {
1446                        err = 19;
1447                        goto out;
1448                }
1449
1450                if (znode->level != 0 && znode->zbranch[n].znode)
1451                        if (znode->zbranch[n].znode->parent != znode) {
1452                                err = 20;
1453                                goto out;
1454                        }
1455        }
1456
1457        return 0;
1458
1459out:
1460        ubifs_err(c, "failed, error %d", err);
1461        ubifs_msg(c, "dump of the znode");
1462        ubifs_dump_znode(c, znode);
1463        if (zp) {
1464                ubifs_msg(c, "dump of the parent znode");
1465                ubifs_dump_znode(c, zp);
1466        }
1467        dump_stack();
1468        return -EINVAL;
1469}
1470#else
1471
1472int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1473{
1474        return 0;
1475}
1476
1477void dbg_debugfs_exit_fs(struct ubifs_info *c)
1478{
1479        return;
1480}
1481
1482int ubifs_debugging_init(struct ubifs_info *c)
1483{
1484        return 0;
1485}
1486void ubifs_debugging_exit(struct ubifs_info *c)
1487{
1488}
1489int dbg_check_filesystem(struct ubifs_info *c)
1490{
1491        return 0;
1492}
1493int dbg_debugfs_init_fs(struct ubifs_info *c)
1494{
1495        return 0;
1496}
1497#endif
1498
1499#ifndef __UBOOT__
1500/**
1501 * dbg_check_tnc - check TNC tree.
1502 * @c: UBIFS file-system description object
1503 * @extra: do extra checks that are possible at start commit
1504 *
1505 * This function traverses whole TNC tree and checks every znode. Returns zero
1506 * if everything is all right and %-EINVAL if something is wrong with TNC.
1507 */
1508int dbg_check_tnc(struct ubifs_info *c, int extra)
1509{
1510        struct ubifs_znode *znode;
1511        long clean_cnt = 0, dirty_cnt = 0;
1512        int err, last;
1513
1514        if (!dbg_is_chk_index(c))
1515                return 0;
1516
1517        ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1518        if (!c->zroot.znode)
1519                return 0;
1520
1521        znode = ubifs_tnc_postorder_first(c->zroot.znode);
1522        while (1) {
1523                struct ubifs_znode *prev;
1524                struct ubifs_zbranch *zbr;
1525
1526                if (!znode->parent)
1527                        zbr = &c->zroot;
1528                else
1529                        zbr = &znode->parent->zbranch[znode->iip];
1530
1531                err = dbg_check_znode(c, zbr);
1532                if (err)
1533                        return err;
1534
1535                if (extra) {
1536                        if (ubifs_zn_dirty(znode))
1537                                dirty_cnt += 1;
1538                        else
1539                                clean_cnt += 1;
1540                }
1541
1542                prev = znode;
1543                znode = ubifs_tnc_postorder_next(znode);
1544                if (!znode)
1545                        break;
1546
1547                /*
1548                 * If the last key of this znode is equivalent to the first key
1549                 * of the next znode (collision), then check order of the keys.
1550                 */
1551                last = prev->child_cnt - 1;
1552                if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1553                    !keys_cmp(c, &prev->zbranch[last].key,
1554                              &znode->zbranch[0].key)) {
1555                        err = dbg_check_key_order(c, &prev->zbranch[last],
1556                                                  &znode->zbranch[0]);
1557                        if (err < 0)
1558                                return err;
1559                        if (err) {
1560                                ubifs_msg(c, "first znode");
1561                                ubifs_dump_znode(c, prev);
1562                                ubifs_msg(c, "second znode");
1563                                ubifs_dump_znode(c, znode);
1564                                return -EINVAL;
1565                        }
1566                }
1567        }
1568
1569        if (extra) {
1570                if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1571                        ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1572                                  atomic_long_read(&c->clean_zn_cnt),
1573                                  clean_cnt);
1574                        return -EINVAL;
1575                }
1576                if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1577                        ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1578                                  atomic_long_read(&c->dirty_zn_cnt),
1579                                  dirty_cnt);
1580                        return -EINVAL;
1581                }
1582        }
1583
1584        return 0;
1585}
1586#else
1587int dbg_check_tnc(struct ubifs_info *c, int extra)
1588{
1589        return 0;
1590}
1591#endif
1592
1593/**
1594 * dbg_walk_index - walk the on-flash index.
1595 * @c: UBIFS file-system description object
1596 * @leaf_cb: called for each leaf node
1597 * @znode_cb: called for each indexing node
1598 * @priv: private data which is passed to callbacks
1599 *
1600 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1601 * node and @znode_cb for each indexing node. Returns zero in case of success
1602 * and a negative error code in case of failure.
1603 *
1604 * It would be better if this function removed every znode it pulled to into
1605 * the TNC, so that the behavior more closely matched the non-debugging
1606 * behavior.
1607 */
1608int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1609                   dbg_znode_callback znode_cb, void *priv)
1610{
1611        int err;
1612        struct ubifs_zbranch *zbr;
1613        struct ubifs_znode *znode, *child;
1614
1615        mutex_lock(&c->tnc_mutex);
1616        /* If the root indexing node is not in TNC - pull it */
1617        if (!c->zroot.znode) {
1618                c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1619                if (IS_ERR(c->zroot.znode)) {
1620                        err = PTR_ERR(c->zroot.znode);
1621                        c->zroot.znode = NULL;
1622                        goto out_unlock;
1623                }
1624        }
1625
1626        /*
1627         * We are going to traverse the indexing tree in the postorder manner.
1628         * Go down and find the leftmost indexing node where we are going to
1629         * start from.
1630         */
1631        znode = c->zroot.znode;
1632        while (znode->level > 0) {
1633                zbr = &znode->zbranch[0];
1634                child = zbr->znode;
1635                if (!child) {
1636                        child = ubifs_load_znode(c, zbr, znode, 0);
1637                        if (IS_ERR(child)) {
1638                                err = PTR_ERR(child);
1639                                goto out_unlock;
1640                        }
1641                        zbr->znode = child;
1642                }
1643
1644                znode = child;
1645        }
1646
1647        /* Iterate over all indexing nodes */
1648        while (1) {
1649                int idx;
1650
1651                cond_resched();
1652
1653                if (znode_cb) {
1654                        err = znode_cb(c, znode, priv);
1655                        if (err) {
1656                                ubifs_err(c, "znode checking function returned error %d",
1657                                          err);
1658                                ubifs_dump_znode(c, znode);
1659                                goto out_dump;
1660                        }
1661                }
1662                if (leaf_cb && znode->level == 0) {
1663                        for (idx = 0; idx < znode->child_cnt; idx++) {
1664                                zbr = &znode->zbranch[idx];
1665                                err = leaf_cb(c, zbr, priv);
1666                                if (err) {
1667                                        ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1668                                                  err, zbr->lnum, zbr->offs);
1669                                        goto out_dump;
1670                                }
1671                        }
1672                }
1673
1674                if (!znode->parent)
1675                        break;
1676
1677                idx = znode->iip + 1;
1678                znode = znode->parent;
1679                if (idx < znode->child_cnt) {
1680                        /* Switch to the next index in the parent */
1681                        zbr = &znode->zbranch[idx];
1682                        child = zbr->znode;
1683                        if (!child) {
1684                                child = ubifs_load_znode(c, zbr, znode, idx);
1685                                if (IS_ERR(child)) {
1686                                        err = PTR_ERR(child);
1687                                        goto out_unlock;
1688                                }
1689                                zbr->znode = child;
1690                        }
1691                        znode = child;
1692                } else
1693                        /*
1694                         * This is the last child, switch to the parent and
1695                         * continue.
1696                         */
1697                        continue;
1698
1699                /* Go to the lowest leftmost znode in the new sub-tree */
1700                while (znode->level > 0) {
1701                        zbr = &znode->zbranch[0];
1702                        child = zbr->znode;
1703                        if (!child) {
1704                                child = ubifs_load_znode(c, zbr, znode, 0);
1705                                if (IS_ERR(child)) {
1706                                        err = PTR_ERR(child);
1707                                        goto out_unlock;
1708                                }
1709                                zbr->znode = child;
1710                        }
1711                        znode = child;
1712                }
1713        }
1714
1715        mutex_unlock(&c->tnc_mutex);
1716        return 0;
1717
1718out_dump:
1719        if (znode->parent)
1720                zbr = &znode->parent->zbranch[znode->iip];
1721        else
1722                zbr = &c->zroot;
1723        ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1724        ubifs_dump_znode(c, znode);
1725out_unlock:
1726        mutex_unlock(&c->tnc_mutex);
1727        return err;
1728}
1729
1730/**
1731 * add_size - add znode size to partially calculated index size.
1732 * @c: UBIFS file-system description object
1733 * @znode: znode to add size for
1734 * @priv: partially calculated index size
1735 *
1736 * This is a helper function for 'dbg_check_idx_size()' which is called for
1737 * every indexing node and adds its size to the 'long long' variable pointed to
1738 * by @priv.
1739 */
1740static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1741{
1742        long long *idx_size = priv;
1743        int add;
1744
1745        add = ubifs_idx_node_sz(c, znode->child_cnt);
1746        add = ALIGN(add, 8);
1747        *idx_size += add;
1748        return 0;
1749}
1750
1751/**
1752 * dbg_check_idx_size - check index size.
1753 * @c: UBIFS file-system description object
1754 * @idx_size: size to check
1755 *
1756 * This function walks the UBIFS index, calculates its size and checks that the
1757 * size is equivalent to @idx_size. Returns zero in case of success and a
1758 * negative error code in case of failure.
1759 */
1760int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1761{
1762        int err;
1763        long long calc = 0;
1764
1765        if (!dbg_is_chk_index(c))
1766                return 0;
1767
1768        err = dbg_walk_index(c, NULL, add_size, &calc);
1769        if (err) {
1770                ubifs_err(c, "error %d while walking the index", err);
1771                return err;
1772        }
1773
1774        if (calc != idx_size) {
1775                ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1776                          calc, idx_size);
1777                dump_stack();
1778                return -EINVAL;
1779        }
1780
1781        return 0;
1782}
1783
1784#ifndef __UBOOT__
1785/**
1786 * struct fsck_inode - information about an inode used when checking the file-system.
1787 * @rb: link in the RB-tree of inodes
1788 * @inum: inode number
1789 * @mode: inode type, permissions, etc
1790 * @nlink: inode link count
1791 * @xattr_cnt: count of extended attributes
1792 * @references: how many directory/xattr entries refer this inode (calculated
1793 *              while walking the index)
1794 * @calc_cnt: for directory inode count of child directories
1795 * @size: inode size (read from on-flash inode)
1796 * @xattr_sz: summary size of all extended attributes (read from on-flash
1797 *            inode)
1798 * @calc_sz: for directories calculated directory size
1799 * @calc_xcnt: count of extended attributes
1800 * @calc_xsz: calculated summary size of all extended attributes
1801 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1802 *             inode (read from on-flash inode)
1803 * @calc_xnms: calculated sum of lengths of all extended attribute names
1804 */
1805struct fsck_inode {
1806        struct rb_node rb;
1807        ino_t inum;
1808        umode_t mode;
1809        unsigned int nlink;
1810        unsigned int xattr_cnt;
1811        int references;
1812        int calc_cnt;
1813        long long size;
1814        unsigned int xattr_sz;
1815        long long calc_sz;
1816        long long calc_xcnt;
1817        long long calc_xsz;
1818        unsigned int xattr_nms;
1819        long long calc_xnms;
1820};
1821
1822/**
1823 * struct fsck_data - private FS checking information.
1824 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1825 */
1826struct fsck_data {
1827        struct rb_root inodes;
1828};
1829
1830/**
1831 * add_inode - add inode information to RB-tree of inodes.
1832 * @c: UBIFS file-system description object
1833 * @fsckd: FS checking information
1834 * @ino: raw UBIFS inode to add
1835 *
1836 * This is a helper function for 'check_leaf()' which adds information about
1837 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1838 * case of success and a negative error code in case of failure.
1839 */
1840static struct fsck_inode *add_inode(struct ubifs_info *c,
1841                                    struct fsck_data *fsckd,
1842                                    struct ubifs_ino_node *ino)
1843{
1844        struct rb_node **p, *parent = NULL;
1845        struct fsck_inode *fscki;
1846        ino_t inum = key_inum_flash(c, &ino->key);
1847        struct inode *inode;
1848        struct ubifs_inode *ui;
1849
1850        p = &fsckd->inodes.rb_node;
1851        while (*p) {
1852                parent = *p;
1853                fscki = rb_entry(parent, struct fsck_inode, rb);
1854                if (inum < fscki->inum)
1855                        p = &(*p)->rb_left;
1856                else if (inum > fscki->inum)
1857                        p = &(*p)->rb_right;
1858                else
1859                        return fscki;
1860        }
1861
1862        if (inum > c->highest_inum) {
1863                ubifs_err(c, "too high inode number, max. is %lu",
1864                          (unsigned long)c->highest_inum);
1865                return ERR_PTR(-EINVAL);
1866        }
1867
1868        fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1869        if (!fscki)
1870                return ERR_PTR(-ENOMEM);
1871
1872        inode = ilookup(c->vfs_sb, inum);
1873
1874        fscki->inum = inum;
1875        /*
1876         * If the inode is present in the VFS inode cache, use it instead of
1877         * the on-flash inode which might be out-of-date. E.g., the size might
1878         * be out-of-date. If we do not do this, the following may happen, for
1879         * example:
1880         *   1. A power cut happens
1881         *   2. We mount the file-system R/O, the replay process fixes up the
1882         *      inode size in the VFS cache, but on on-flash.
1883         *   3. 'check_leaf()' fails because it hits a data node beyond inode
1884         *      size.
1885         */
1886        if (!inode) {
1887                fscki->nlink = le32_to_cpu(ino->nlink);
1888                fscki->size = le64_to_cpu(ino->size);
1889                fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1890                fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1891                fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1892                fscki->mode = le32_to_cpu(ino->mode);
1893        } else {
1894                ui = ubifs_inode(inode);
1895                fscki->nlink = inode->i_nlink;
1896                fscki->size = inode->i_size;
1897                fscki->xattr_cnt = ui->xattr_cnt;
1898                fscki->xattr_sz = ui->xattr_size;
1899                fscki->xattr_nms = ui->xattr_names;
1900                fscki->mode = inode->i_mode;
1901                iput(inode);
1902        }
1903
1904        if (S_ISDIR(fscki->mode)) {
1905                fscki->calc_sz = UBIFS_INO_NODE_SZ;
1906                fscki->calc_cnt = 2;
1907        }
1908
1909        rb_link_node(&fscki->rb, parent, p);
1910        rb_insert_color(&fscki->rb, &fsckd->inodes);
1911
1912        return fscki;
1913}
1914
1915/**
1916 * search_inode - search inode in the RB-tree of inodes.
1917 * @fsckd: FS checking information
1918 * @inum: inode number to search
1919 *
1920 * This is a helper function for 'check_leaf()' which searches inode @inum in
1921 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1922 * the inode was not found.
1923 */
1924static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1925{
1926        struct rb_node *p;
1927        struct fsck_inode *fscki;
1928
1929        p = fsckd->inodes.rb_node;
1930        while (p) {
1931                fscki = rb_entry(p, struct fsck_inode, rb);
1932                if (inum < fscki->inum)
1933                        p = p->rb_left;
1934                else if (inum > fscki->inum)
1935                        p = p->rb_right;
1936                else
1937                        return fscki;
1938        }
1939        return NULL;
1940}
1941
1942/**
1943 * read_add_inode - read inode node and add it to RB-tree of inodes.
1944 * @c: UBIFS file-system description object
1945 * @fsckd: FS checking information
1946 * @inum: inode number to read
1947 *
1948 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1949 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1950 * information pointer in case of success and a negative error code in case of
1951 * failure.
1952 */
1953static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1954                                         struct fsck_data *fsckd, ino_t inum)
1955{
1956        int n, err;
1957        union ubifs_key key;
1958        struct ubifs_znode *znode;
1959        struct ubifs_zbranch *zbr;
1960        struct ubifs_ino_node *ino;
1961        struct fsck_inode *fscki;
1962
1963        fscki = search_inode(fsckd, inum);
1964        if (fscki)
1965                return fscki;
1966
1967        ino_key_init(c, &key, inum);
1968        err = ubifs_lookup_level0(c, &key, &znode, &n);
1969        if (!err) {
1970                ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1971                return ERR_PTR(-ENOENT);
1972        } else if (err < 0) {
1973                ubifs_err(c, "error %d while looking up inode %lu",
1974                          err, (unsigned long)inum);
1975                return ERR_PTR(err);
1976        }
1977
1978        zbr = &znode->zbranch[n];
1979        if (zbr->len < UBIFS_INO_NODE_SZ) {
1980                ubifs_err(c, "bad node %lu node length %d",
1981                          (unsigned long)inum, zbr->len);
1982                return ERR_PTR(-EINVAL);
1983        }
1984
1985        ino = kmalloc(zbr->len, GFP_NOFS);
1986        if (!ino)
1987                return ERR_PTR(-ENOMEM);
1988
1989        err = ubifs_tnc_read_node(c, zbr, ino);
1990        if (err) {
1991                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1992                          zbr->lnum, zbr->offs, err);
1993                kfree(ino);
1994                return ERR_PTR(err);
1995        }
1996
1997        fscki = add_inode(c, fsckd, ino);
1998        kfree(ino);
1999        if (IS_ERR(fscki)) {
2000                ubifs_err(c, "error %ld while adding inode %lu node",
2001                          PTR_ERR(fscki), (unsigned long)inum);
2002                return fscki;
2003        }
2004
2005        return fscki;
2006}
2007
2008/**
2009 * check_leaf - check leaf node.
2010 * @c: UBIFS file-system description object
2011 * @zbr: zbranch of the leaf node to check
2012 * @priv: FS checking information
2013 *
2014 * This is a helper function for 'dbg_check_filesystem()' which is called for
2015 * every single leaf node while walking the indexing tree. It checks that the
2016 * leaf node referred from the indexing tree exists, has correct CRC, and does
2017 * some other basic validation. This function is also responsible for building
2018 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2019 * calculates reference count, size, etc for each inode in order to later
2020 * compare them to the information stored inside the inodes and detect possible
2021 * inconsistencies. Returns zero in case of success and a negative error code
2022 * in case of failure.
2023 */
2024static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2025                      void *priv)
2026{
2027        ino_t inum;
2028        void *node;
2029        struct ubifs_ch *ch;
2030        int err, type = key_type(c, &zbr->key);
2031        struct fsck_inode *fscki;
2032
2033        if (zbr->len < UBIFS_CH_SZ) {
2034                ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2035                          zbr->len, zbr->lnum, zbr->offs);
2036                return -EINVAL;
2037        }
2038
2039        node = kmalloc(zbr->len, GFP_NOFS);
2040        if (!node)
2041                return -ENOMEM;
2042
2043        err = ubifs_tnc_read_node(c, zbr, node);
2044        if (err) {
2045                ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2046                          zbr->lnum, zbr->offs, err);
2047                goto out_free;
2048        }
2049
2050        /* If this is an inode node, add it to RB-tree of inodes */
2051        if (type == UBIFS_INO_KEY) {
2052                fscki = add_inode(c, priv, node);
2053                if (IS_ERR(fscki)) {
2054                        err = PTR_ERR(fscki);
2055                        ubifs_err(c, "error %d while adding inode node", err);
2056                        goto out_dump;
2057                }
2058                goto out;
2059        }
2060
2061        if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2062            type != UBIFS_DATA_KEY) {
2063                ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2064                          type, zbr->lnum, zbr->offs);
2065                err = -EINVAL;
2066                goto out_free;
2067        }
2068
2069        ch = node;
2070        if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2071                ubifs_err(c, "too high sequence number, max. is %llu",
2072                          c->max_sqnum);
2073                err = -EINVAL;
2074                goto out_dump;
2075        }
2076
2077        if (type == UBIFS_DATA_KEY) {
2078                long long blk_offs;
2079                struct ubifs_data_node *dn = node;
2080
2081                ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2082
2083                /*
2084                 * Search the inode node this data node belongs to and insert
2085                 * it to the RB-tree of inodes.
2086                 */
2087                inum = key_inum_flash(c, &dn->key);
2088                fscki = read_add_inode(c, priv, inum);
2089                if (IS_ERR(fscki)) {
2090                        err = PTR_ERR(fscki);
2091                        ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2092                                  err, (unsigned long)inum);
2093                        goto out_dump;
2094                }
2095
2096                /* Make sure the data node is within inode size */
2097                blk_offs = key_block_flash(c, &dn->key);
2098                blk_offs <<= UBIFS_BLOCK_SHIFT;
2099                blk_offs += le32_to_cpu(dn->size);
2100                if (blk_offs > fscki->size) {
2101                        ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2102                                  zbr->lnum, zbr->offs, fscki->size);
2103                        err = -EINVAL;
2104                        goto out_dump;
2105                }
2106        } else {
2107                int nlen;
2108                struct ubifs_dent_node *dent = node;
2109                struct fsck_inode *fscki1;
2110
2111                ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2112
2113                err = ubifs_validate_entry(c, dent);
2114                if (err)
2115                        goto out_dump;
2116
2117                /*
2118                 * Search the inode node this entry refers to and the parent
2119                 * inode node and insert them to the RB-tree of inodes.
2120                 */
2121                inum = le64_to_cpu(dent->inum);
2122                fscki = read_add_inode(c, priv, inum);
2123                if (IS_ERR(fscki)) {
2124                        err = PTR_ERR(fscki);
2125                        ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2126                                  err, (unsigned long)inum);
2127                        goto out_dump;
2128                }
2129
2130                /* Count how many direntries or xentries refers this inode */
2131                fscki->references += 1;
2132
2133                inum = key_inum_flash(c, &dent->key);
2134                fscki1 = read_add_inode(c, priv, inum);
2135                if (IS_ERR(fscki1)) {
2136                        err = PTR_ERR(fscki1);
2137                        ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2138                                  err, (unsigned long)inum);
2139                        goto out_dump;
2140                }
2141
2142                nlen = le16_to_cpu(dent->nlen);
2143                if (type == UBIFS_XENT_KEY) {
2144                        fscki1->calc_xcnt += 1;
2145                        fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2146                        fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2147                        fscki1->calc_xnms += nlen;
2148                } else {
2149                        fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2150                        if (dent->type == UBIFS_ITYPE_DIR)
2151                                fscki1->calc_cnt += 1;
2152                }
2153        }
2154
2155out:
2156        kfree(node);
2157        return 0;
2158
2159out_dump:
2160        ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2161        ubifs_dump_node(c, node);
2162out_free:
2163        kfree(node);
2164        return err;
2165}
2166
2167/**
2168 * free_inodes - free RB-tree of inodes.
2169 * @fsckd: FS checking information
2170 */
2171static void free_inodes(struct fsck_data *fsckd)
2172{
2173        struct fsck_inode *fscki, *n;
2174
2175        rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2176                kfree(fscki);
2177}
2178
2179/**
2180 * check_inodes - checks all inodes.
2181 * @c: UBIFS file-system description object
2182 * @fsckd: FS checking information
2183 *
2184 * This is a helper function for 'dbg_check_filesystem()' which walks the
2185 * RB-tree of inodes after the index scan has been finished, and checks that
2186 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2187 * %-EINVAL if not, and a negative error code in case of failure.
2188 */
2189static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2190{
2191        int n, err;
2192        union ubifs_key key;
2193        struct ubifs_znode *znode;
2194        struct ubifs_zbranch *zbr;
2195        struct ubifs_ino_node *ino;
2196        struct fsck_inode *fscki;
2197        struct rb_node *this = rb_first(&fsckd->inodes);
2198
2199        while (this) {
2200                fscki = rb_entry(this, struct fsck_inode, rb);
2201                this = rb_next(this);
2202
2203                if (S_ISDIR(fscki->mode)) {
2204                        /*
2205                         * Directories have to have exactly one reference (they
2206                         * cannot have hardlinks), although root inode is an
2207                         * exception.
2208                         */
2209                        if (fscki->inum != UBIFS_ROOT_INO &&
2210                            fscki->references != 1) {
2211                                ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2212                                          (unsigned long)fscki->inum,
2213                                          fscki->references);
2214                                goto out_dump;
2215                        }
2216                        if (fscki->inum == UBIFS_ROOT_INO &&
2217                            fscki->references != 0) {
2218                                ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2219                                          (unsigned long)fscki->inum,
2220                                          fscki->references);
2221                                goto out_dump;
2222                        }
2223                        if (fscki->calc_sz != fscki->size) {
2224                                ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2225                                          (unsigned long)fscki->inum,
2226                                          fscki->size, fscki->calc_sz);
2227                                goto out_dump;
2228                        }
2229                        if (fscki->calc_cnt != fscki->nlink) {
2230                                ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2231                                          (unsigned long)fscki->inum,
2232                                          fscki->nlink, fscki->calc_cnt);
2233                                goto out_dump;
2234                        }
2235                } else {
2236                        if (fscki->references != fscki->nlink) {
2237                                ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2238                                          (unsigned long)fscki->inum,
2239                                          fscki->nlink, fscki->references);
2240                                goto out_dump;
2241                        }
2242                }
2243                if (fscki->xattr_sz != fscki->calc_xsz) {
2244                        ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2245                                  (unsigned long)fscki->inum, fscki->xattr_sz,
2246                                  fscki->calc_xsz);
2247                        goto out_dump;
2248                }
2249                if (fscki->xattr_cnt != fscki->calc_xcnt) {
2250                        ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2251                                  (unsigned long)fscki->inum,
2252                                  fscki->xattr_cnt, fscki->calc_xcnt);
2253                        goto out_dump;
2254                }
2255                if (fscki->xattr_nms != fscki->calc_xnms) {
2256                        ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2257                                  (unsigned long)fscki->inum, fscki->xattr_nms,
2258                                  fscki->calc_xnms);
2259                        goto out_dump;
2260                }
2261        }
2262
2263        return 0;
2264
2265out_dump:
2266        /* Read the bad inode and dump it */
2267        ino_key_init(c, &key, fscki->inum);
2268        err = ubifs_lookup_level0(c, &key, &znode, &n);
2269        if (!err) {
2270                ubifs_err(c, "inode %lu not found in index",
2271                          (unsigned long)fscki->inum);
2272                return -ENOENT;
2273        } else if (err < 0) {
2274                ubifs_err(c, "error %d while looking up inode %lu",
2275                          err, (unsigned long)fscki->inum);
2276                return err;
2277        }
2278
2279        zbr = &znode->zbranch[n];
2280        ino = kmalloc(zbr->len, GFP_NOFS);
2281        if (!ino)
2282                return -ENOMEM;
2283
2284        err = ubifs_tnc_read_node(c, zbr, ino);
2285        if (err) {
2286                ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2287                          zbr->lnum, zbr->offs, err);
2288                kfree(ino);
2289                return err;
2290        }
2291
2292        ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2293                  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2294        ubifs_dump_node(c, ino);
2295        kfree(ino);
2296        return -EINVAL;
2297}
2298
2299/**
2300 * dbg_check_filesystem - check the file-system.
2301 * @c: UBIFS file-system description object
2302 *
2303 * This function checks the file system, namely:
2304 * o makes sure that all leaf nodes exist and their CRCs are correct;
2305 * o makes sure inode nlink, size, xattr size/count are correct (for all
2306 *   inodes).
2307 *
2308 * The function reads whole indexing tree and all nodes, so it is pretty
2309 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2310 * not, and a negative error code in case of failure.
2311 */
2312int dbg_check_filesystem(struct ubifs_info *c)
2313{
2314        int err;
2315        struct fsck_data fsckd;
2316
2317        if (!dbg_is_chk_fs(c))
2318                return 0;
2319
2320        fsckd.inodes = RB_ROOT;
2321        err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2322        if (err)
2323                goto out_free;
2324
2325        err = check_inodes(c, &fsckd);
2326        if (err)
2327                goto out_free;
2328
2329        free_inodes(&fsckd);
2330        return 0;
2331
2332out_free:
2333        ubifs_err(c, "file-system check failed with error %d", err);
2334        dump_stack();
2335        free_inodes(&fsckd);
2336        return err;
2337}
2338
2339/**
2340 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2341 * @c: UBIFS file-system description object
2342 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2343 *
2344 * This function returns zero if the list of data nodes is sorted correctly,
2345 * and %-EINVAL if not.
2346 */
2347int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2348{
2349        struct list_head *cur;
2350        struct ubifs_scan_node *sa, *sb;
2351
2352        if (!dbg_is_chk_gen(c))
2353                return 0;
2354
2355        for (cur = head->next; cur->next != head; cur = cur->next) {
2356                ino_t inuma, inumb;
2357                uint32_t blka, blkb;
2358
2359                cond_resched();
2360                sa = container_of(cur, struct ubifs_scan_node, list);
2361                sb = container_of(cur->next, struct ubifs_scan_node, list);
2362
2363                if (sa->type != UBIFS_DATA_NODE) {
2364                        ubifs_err(c, "bad node type %d", sa->type);
2365                        ubifs_dump_node(c, sa->node);
2366                        return -EINVAL;
2367                }
2368                if (sb->type != UBIFS_DATA_NODE) {
2369                        ubifs_err(c, "bad node type %d", sb->type);
2370                        ubifs_dump_node(c, sb->node);
2371                        return -EINVAL;
2372                }
2373
2374                inuma = key_inum(c, &sa->key);
2375                inumb = key_inum(c, &sb->key);
2376
2377                if (inuma < inumb)
2378                        continue;
2379                if (inuma > inumb) {
2380                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2381                                  (unsigned long)inuma, (unsigned long)inumb);
2382                        goto error_dump;
2383                }
2384
2385                blka = key_block(c, &sa->key);
2386                blkb = key_block(c, &sb->key);
2387
2388                if (blka > blkb) {
2389                        ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2390                        goto error_dump;
2391                }
2392                if (blka == blkb) {
2393                        ubifs_err(c, "two data nodes for the same block");
2394                        goto error_dump;
2395                }
2396        }
2397
2398        return 0;
2399
2400error_dump:
2401        ubifs_dump_node(c, sa->node);
2402        ubifs_dump_node(c, sb->node);
2403        return -EINVAL;
2404}
2405
2406/**
2407 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2408 * @c: UBIFS file-system description object
2409 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2410 *
2411 * This function returns zero if the list of non-data nodes is sorted correctly,
2412 * and %-EINVAL if not.
2413 */
2414int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2415{
2416        struct list_head *cur;
2417        struct ubifs_scan_node *sa, *sb;
2418
2419        if (!dbg_is_chk_gen(c))
2420                return 0;
2421
2422        for (cur = head->next; cur->next != head; cur = cur->next) {
2423                ino_t inuma, inumb;
2424                uint32_t hasha, hashb;
2425
2426                cond_resched();
2427                sa = container_of(cur, struct ubifs_scan_node, list);
2428                sb = container_of(cur->next, struct ubifs_scan_node, list);
2429
2430                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2431                    sa->type != UBIFS_XENT_NODE) {
2432                        ubifs_err(c, "bad node type %d", sa->type);
2433                        ubifs_dump_node(c, sa->node);
2434                        return -EINVAL;
2435                }
2436                if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2437                    sa->type != UBIFS_XENT_NODE) {
2438                        ubifs_err(c, "bad node type %d", sb->type);
2439                        ubifs_dump_node(c, sb->node);
2440                        return -EINVAL;
2441                }
2442
2443                if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2444                        ubifs_err(c, "non-inode node goes before inode node");
2445                        goto error_dump;
2446                }
2447
2448                if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2449                        continue;
2450
2451                if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2452                        /* Inode nodes are sorted in descending size order */
2453                        if (sa->len < sb->len) {
2454                                ubifs_err(c, "smaller inode node goes first");
2455                                goto error_dump;
2456                        }
2457                        continue;
2458                }
2459
2460                /*
2461                 * This is either a dentry or xentry, which should be sorted in
2462                 * ascending (parent ino, hash) order.
2463                 */
2464                inuma = key_inum(c, &sa->key);
2465                inumb = key_inum(c, &sb->key);
2466
2467                if (inuma < inumb)
2468                        continue;
2469                if (inuma > inumb) {
2470                        ubifs_err(c, "larger inum %lu goes before inum %lu",
2471                                  (unsigned long)inuma, (unsigned long)inumb);
2472                        goto error_dump;
2473                }
2474
2475                hasha = key_block(c, &sa->key);
2476                hashb = key_block(c, &sb->key);
2477
2478                if (hasha > hashb) {
2479                        ubifs_err(c, "larger hash %u goes before %u",
2480                                  hasha, hashb);
2481                        goto error_dump;
2482                }
2483        }
2484
2485        return 0;
2486
2487error_dump:
2488        ubifs_msg(c, "dumping first node");
2489        ubifs_dump_node(c, sa->node);
2490        ubifs_msg(c, "dumping second node");
2491        ubifs_dump_node(c, sb->node);
2492        return -EINVAL;
2493        return 0;
2494}
2495
2496static inline int chance(unsigned int n, unsigned int out_of)
2497{
2498        return !!((prandom_u32() % out_of) + 1 <= n);
2499
2500}
2501
2502static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2503{
2504        struct ubifs_debug_info *d = c->dbg;
2505
2506        ubifs_assert(dbg_is_tst_rcvry(c));
2507
2508        if (!d->pc_cnt) {
2509                /* First call - decide delay to the power cut */
2510                if (chance(1, 2)) {
2511                        unsigned long delay;
2512
2513                        if (chance(1, 2)) {
2514                                d->pc_delay = 1;
2515                                /* Fail within 1 minute */
2516                                delay = prandom_u32() % 60000;
2517                                d->pc_timeout = jiffies;
2518                                d->pc_timeout += msecs_to_jiffies(delay);
2519                                ubifs_warn(c, "failing after %lums", delay);
2520                        } else {
2521                                d->pc_delay = 2;
2522                                delay = prandom_u32() % 10000;
2523                                /* Fail within 10000 operations */
2524                                d->pc_cnt_max = delay;
2525                                ubifs_warn(c, "failing after %lu calls", delay);
2526                        }
2527                }
2528
2529                d->pc_cnt += 1;
2530        }
2531
2532        /* Determine if failure delay has expired */
2533        if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2534                        return 0;
2535        if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2536                        return 0;
2537
2538        if (lnum == UBIFS_SB_LNUM) {
2539                if (write && chance(1, 2))
2540                        return 0;
2541                if (chance(19, 20))
2542                        return 0;
2543                ubifs_warn(c, "failing in super block LEB %d", lnum);
2544        } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2545                if (chance(19, 20))
2546                        return 0;
2547                ubifs_warn(c, "failing in master LEB %d", lnum);
2548        } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2549                if (write && chance(99, 100))
2550                        return 0;
2551                if (chance(399, 400))
2552                        return 0;
2553                ubifs_warn(c, "failing in log LEB %d", lnum);
2554        } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2555                if (write && chance(7, 8))
2556                        return 0;
2557                if (chance(19, 20))
2558                        return 0;
2559                ubifs_warn(c, "failing in LPT LEB %d", lnum);
2560        } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2561                if (write && chance(1, 2))
2562                        return 0;
2563                if (chance(9, 10))
2564                        return 0;
2565                ubifs_warn(c, "failing in orphan LEB %d", lnum);
2566        } else if (lnum == c->ihead_lnum) {
2567                if (chance(99, 100))
2568                        return 0;
2569                ubifs_warn(c, "failing in index head LEB %d", lnum);
2570        } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2571                if (chance(9, 10))
2572                        return 0;
2573                ubifs_warn(c, "failing in GC head LEB %d", lnum);
2574        } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2575                   !ubifs_search_bud(c, lnum)) {
2576                if (chance(19, 20))
2577                        return 0;
2578                ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2579        } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2580                   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2581                if (chance(999, 1000))
2582                        return 0;
2583                ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2584        } else {
2585                if (chance(9999, 10000))
2586                        return 0;
2587                ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2588        }
2589
2590        d->pc_happened = 1;
2591        ubifs_warn(c, "========== Power cut emulated ==========");
2592        dump_stack();
2593        return 1;
2594}
2595
2596static int corrupt_data(const struct ubifs_info *c, const void *buf,
2597                        unsigned int len)
2598{
2599        unsigned int from, to, ffs = chance(1, 2);
2600        unsigned char *p = (void *)buf;
2601
2602        from = prandom_u32() % len;
2603        /* Corruption span max to end of write unit */
2604        to = min(len, ALIGN(from + 1, c->max_write_size));
2605
2606        ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2607                   ffs ? "0xFFs" : "random data");
2608
2609        if (ffs)
2610                memset(p + from, 0xFF, to - from);
2611        else
2612                prandom_bytes(p + from, to - from);
2613
2614        return to;
2615}
2616
2617int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2618                  int offs, int len)
2619{
2620        int err, failing;
2621
2622        if (c->dbg->pc_happened)
2623                return -EROFS;
2624
2625        failing = power_cut_emulated(c, lnum, 1);
2626        if (failing) {
2627                len = corrupt_data(c, buf, len);
2628                ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2629                           len, lnum, offs);
2630        }
2631        err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2632        if (err)
2633                return err;
2634        if (failing)
2635                return -EROFS;
2636        return 0;
2637}
2638
2639int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2640                   int len)
2641{
2642        int err;
2643
2644        if (c->dbg->pc_happened)
2645                return -EROFS;
2646        if (power_cut_emulated(c, lnum, 1))
2647                return -EROFS;
2648        err = ubi_leb_change(c->ubi, lnum, buf, len);
2649        if (err)
2650                return err;
2651        if (power_cut_emulated(c, lnum, 1))
2652                return -EROFS;
2653        return 0;
2654}
2655
2656int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2657{
2658        int err;
2659
2660        if (c->dbg->pc_happened)
2661                return -EROFS;
2662        if (power_cut_emulated(c, lnum, 0))
2663                return -EROFS;
2664        err = ubi_leb_unmap(c->ubi, lnum);
2665        if (err)
2666                return err;
2667        if (power_cut_emulated(c, lnum, 0))
2668                return -EROFS;
2669        return 0;
2670}
2671
2672int dbg_leb_map(struct ubifs_info *c, int lnum)
2673{
2674        int err;
2675
2676        if (c->dbg->pc_happened)
2677                return -EROFS;
2678        if (power_cut_emulated(c, lnum, 0))
2679                return -EROFS;
2680        err = ubi_leb_map(c->ubi, lnum);
2681        if (err)
2682                return err;
2683        if (power_cut_emulated(c, lnum, 0))
2684                return -EROFS;
2685        return 0;
2686}
2687
2688/*
2689 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2690 * contain the stuff specific to particular file-system mounts.
2691 */
2692static struct dentry *dfs_rootdir;
2693
2694static int dfs_file_open(struct inode *inode, struct file *file)
2695{
2696        file->private_data = inode->i_private;
2697        return nonseekable_open(inode, file);
2698}
2699
2700/**
2701 * provide_user_output - provide output to the user reading a debugfs file.
2702 * @val: boolean value for the answer
2703 * @u: the buffer to store the answer at
2704 * @count: size of the buffer
2705 * @ppos: position in the @u output buffer
2706 *
2707 * This is a simple helper function which stores @val boolean value in the user
2708 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2709 * bytes written to @u in case of success and a negative error code in case of
2710 * failure.
2711 */
2712static int provide_user_output(int val, char __user *u, size_t count,
2713                               loff_t *ppos)
2714{
2715        char buf[3];
2716
2717        if (val)
2718                buf[0] = '1';
2719        else
2720                buf[0] = '0';
2721        buf[1] = '\n';
2722        buf[2] = 0x00;
2723
2724        return simple_read_from_buffer(u, count, ppos, buf, 2);
2725}
2726
2727static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2728                             loff_t *ppos)
2729{
2730        struct dentry *dent = file->f_path.dentry;
2731        struct ubifs_info *c = file->private_data;
2732        struct ubifs_debug_info *d = c->dbg;
2733        int val;
2734
2735        if (dent == d->dfs_chk_gen)
2736                val = d->chk_gen;
2737        else if (dent == d->dfs_chk_index)
2738                val = d->chk_index;
2739        else if (dent == d->dfs_chk_orph)
2740                val = d->chk_orph;
2741        else if (dent == d->dfs_chk_lprops)
2742                val = d->chk_lprops;
2743        else if (dent == d->dfs_chk_fs)
2744                val = d->chk_fs;
2745        else if (dent == d->dfs_tst_rcvry)
2746                val = d->tst_rcvry;
2747        else if (dent == d->dfs_ro_error)
2748                val = c->ro_error;
2749        else
2750                return -EINVAL;
2751
2752        return provide_user_output(val, u, count, ppos);
2753}
2754
2755/**
2756 * interpret_user_input - interpret user debugfs file input.
2757 * @u: user-provided buffer with the input
2758 * @count: buffer size
2759 *
2760 * This is a helper function which interpret user input to a boolean UBIFS
2761 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2762 * in case of failure.
2763 */
2764static int interpret_user_input(const char __user *u, size_t count)
2765{
2766        size_t buf_size;
2767        char buf[8];
2768
2769        buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2770        if (copy_from_user(buf, u, buf_size))
2771                return -EFAULT;
2772
2773        if (buf[0] == '1')
2774                return 1;
2775        else if (buf[0] == '0')
2776                return 0;
2777
2778        return -EINVAL;
2779}
2780
2781static ssize_t dfs_file_write(struct file *file, const char __user *u,
2782                              size_t count, loff_t *ppos)
2783{
2784        struct ubifs_info *c = file->private_data;
2785        struct ubifs_debug_info *d = c->dbg;
2786        struct dentry *dent = file->f_path.dentry;
2787        int val;
2788
2789        /*
2790         * TODO: this is racy - the file-system might have already been
2791         * unmounted and we'd oops in this case. The plan is to fix it with
2792         * help of 'iterate_supers_type()' which we should have in v3.0: when
2793         * a debugfs opened, we rember FS's UUID in file->private_data. Then
2794         * whenever we access the FS via a debugfs file, we iterate all UBIFS
2795         * superblocks and fine the one with the same UUID, and take the
2796         * locking right.
2797         *
2798         * The other way to go suggested by Al Viro is to create a separate
2799         * 'ubifs-debug' file-system instead.
2800         */
2801        if (file->f_path.dentry == d->dfs_dump_lprops) {
2802                ubifs_dump_lprops(c);
2803                return count;
2804        }
2805        if (file->f_path.dentry == d->dfs_dump_budg) {
2806                ubifs_dump_budg(c, &c->bi);
2807                return count;
2808        }
2809        if (file->f_path.dentry == d->dfs_dump_tnc) {
2810                mutex_lock(&c->tnc_mutex);
2811                ubifs_dump_tnc(c);
2812                mutex_unlock(&c->tnc_mutex);
2813                return count;
2814        }
2815
2816        val = interpret_user_input(u, count);
2817        if (val < 0)
2818                return val;
2819
2820        if (dent == d->dfs_chk_gen)
2821                d->chk_gen = val;
2822        else if (dent == d->dfs_chk_index)
2823                d->chk_index = val;
2824        else if (dent == d->dfs_chk_orph)
2825                d->chk_orph = val;
2826        else if (dent == d->dfs_chk_lprops)
2827                d->chk_lprops = val;
2828        else if (dent == d->dfs_chk_fs)
2829                d->chk_fs = val;
2830        else if (dent == d->dfs_tst_rcvry)
2831                d->tst_rcvry = val;
2832        else if (dent == d->dfs_ro_error)
2833                c->ro_error = !!val;
2834        else
2835                return -EINVAL;
2836
2837        return count;
2838}
2839
2840static const struct file_operations dfs_fops = {
2841        .open = dfs_file_open,
2842        .read = dfs_file_read,
2843        .write = dfs_file_write,
2844        .owner = THIS_MODULE,
2845        .llseek = no_llseek,
2846};
2847
2848/**
2849 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2850 * @c: UBIFS file-system description object
2851 *
2852 * This function creates all debugfs files for this instance of UBIFS. Returns
2853 * zero in case of success and a negative error code in case of failure.
2854 *
2855 * Note, the only reason we have not merged this function with the
2856 * 'ubifs_debugging_init()' function is because it is better to initialize
2857 * debugfs interfaces at the very end of the mount process, and remove them at
2858 * the very beginning of the mount process.
2859 */
2860int dbg_debugfs_init_fs(struct ubifs_info *c)
2861{
2862        int err, n;
2863        const char *fname;
2864        struct dentry *dent;
2865        struct ubifs_debug_info *d = c->dbg;
2866
2867        if (!IS_ENABLED(CONFIG_DEBUG_FS))
2868                return 0;
2869
2870        n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2871                     c->vi.ubi_num, c->vi.vol_id);
2872        if (n == UBIFS_DFS_DIR_LEN) {
2873                /* The array size is too small */
2874                fname = UBIFS_DFS_DIR_NAME;
2875                dent = ERR_PTR(-EINVAL);
2876                goto out;
2877        }
2878
2879        fname = d->dfs_dir_name;
2880        dent = debugfs_create_dir(fname, dfs_rootdir);
2881        if (IS_ERR_OR_NULL(dent))
2882                goto out;
2883        d->dfs_dir = dent;
2884
2885        fname = "dump_lprops";
2886        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2887        if (IS_ERR_OR_NULL(dent))
2888                goto out_remove;
2889        d->dfs_dump_lprops = dent;
2890
2891        fname = "dump_budg";
2892        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2893        if (IS_ERR_OR_NULL(dent))
2894                goto out_remove;
2895        d->dfs_dump_budg = dent;
2896
2897        fname = "dump_tnc";
2898        dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2899        if (IS_ERR_OR_NULL(dent))
2900                goto out_remove;
2901        d->dfs_dump_tnc = dent;
2902
2903        fname = "chk_general";
2904        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2905                                   &dfs_fops);
2906        if (IS_ERR_OR_NULL(dent))
2907                goto out_remove;
2908        d->dfs_chk_gen = dent;
2909
2910        fname = "chk_index";
2911        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2912                                   &dfs_fops);
2913        if (IS_ERR_OR_NULL(dent))
2914                goto out_remove;
2915        d->dfs_chk_index = dent;
2916
2917        fname = "chk_orphans";
2918        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2919                                   &dfs_fops);
2920        if (IS_ERR_OR_NULL(dent))
2921                goto out_remove;
2922        d->dfs_chk_orph = dent;
2923
2924        fname = "chk_lprops";
2925        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2926                                   &dfs_fops);
2927        if (IS_ERR_OR_NULL(dent))
2928                goto out_remove;
2929        d->dfs_chk_lprops = dent;
2930
2931        fname = "chk_fs";
2932        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2933                                   &dfs_fops);
2934        if (IS_ERR_OR_NULL(dent))
2935                goto out_remove;
2936        d->dfs_chk_fs = dent;
2937
2938        fname = "tst_recovery";
2939        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940                                   &dfs_fops);
2941        if (IS_ERR_OR_NULL(dent))
2942                goto out_remove;
2943        d->dfs_tst_rcvry = dent;
2944
2945        fname = "ro_error";
2946        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947                                   &dfs_fops);
2948        if (IS_ERR_OR_NULL(dent))
2949                goto out_remove;
2950        d->dfs_ro_error = dent;
2951
2952        return 0;
2953
2954out_remove:
2955        debugfs_remove_recursive(d->dfs_dir);
2956out:
2957        err = dent ? PTR_ERR(dent) : -ENODEV;
2958        ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2959                  fname, err);
2960        return err;
2961}
2962
2963/**
2964 * dbg_debugfs_exit_fs - remove all debugfs files.
2965 * @c: UBIFS file-system description object
2966 */
2967void dbg_debugfs_exit_fs(struct ubifs_info *c)
2968{
2969        if (IS_ENABLED(CONFIG_DEBUG_FS))
2970                debugfs_remove_recursive(c->dbg->dfs_dir);
2971}
2972
2973struct ubifs_global_debug_info ubifs_dbg;
2974
2975static struct dentry *dfs_chk_gen;
2976static struct dentry *dfs_chk_index;
2977static struct dentry *dfs_chk_orph;
2978static struct dentry *dfs_chk_lprops;
2979static struct dentry *dfs_chk_fs;
2980static struct dentry *dfs_tst_rcvry;
2981
2982static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2983                                    size_t count, loff_t *ppos)
2984{
2985        struct dentry *dent = file->f_path.dentry;
2986        int val;
2987
2988        if (dent == dfs_chk_gen)
2989                val = ubifs_dbg.chk_gen;
2990        else if (dent == dfs_chk_index)
2991                val = ubifs_dbg.chk_index;
2992        else if (dent == dfs_chk_orph)
2993                val = ubifs_dbg.chk_orph;
2994        else if (dent == dfs_chk_lprops)
2995                val = ubifs_dbg.chk_lprops;
2996        else if (dent == dfs_chk_fs)
2997                val = ubifs_dbg.chk_fs;
2998        else if (dent == dfs_tst_rcvry)
2999                val = ubifs_dbg.tst_rcvry;
3000        else
3001                return -EINVAL;
3002
3003        return provide_user_output(val, u, count, ppos);
3004}
3005
3006static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3007                                     size_t count, loff_t *ppos)
3008{
3009        struct dentry *dent = file->f_path.dentry;
3010        int val;
3011
3012        val = interpret_user_input(u, count);
3013        if (val < 0)
3014                return val;
3015
3016        if (dent == dfs_chk_gen)
3017                ubifs_dbg.chk_gen = val;
3018        else if (dent == dfs_chk_index)
3019                ubifs_dbg.chk_index = val;
3020        else if (dent == dfs_chk_orph)
3021                ubifs_dbg.chk_orph = val;
3022        else if (dent == dfs_chk_lprops)
3023                ubifs_dbg.chk_lprops = val;
3024        else if (dent == dfs_chk_fs)
3025                ubifs_dbg.chk_fs = val;
3026        else if (dent == dfs_tst_rcvry)
3027                ubifs_dbg.tst_rcvry = val;
3028        else
3029                return -EINVAL;
3030
3031        return count;
3032}
3033
3034static const struct file_operations dfs_global_fops = {
3035        .read = dfs_global_file_read,
3036        .write = dfs_global_file_write,
3037        .owner = THIS_MODULE,
3038        .llseek = no_llseek,
3039};
3040
3041/**
3042 * dbg_debugfs_init - initialize debugfs file-system.
3043 *
3044 * UBIFS uses debugfs file-system to expose various debugging knobs to
3045 * user-space. This function creates "ubifs" directory in the debugfs
3046 * file-system. Returns zero in case of success and a negative error code in
3047 * case of failure.
3048 */
3049int dbg_debugfs_init(void)
3050{
3051        int err;
3052        const char *fname;
3053        struct dentry *dent;
3054
3055        if (!IS_ENABLED(CONFIG_DEBUG_FS))
3056                return 0;
3057
3058        fname = "ubifs";
3059        dent = debugfs_create_dir(fname, NULL);
3060        if (IS_ERR_OR_NULL(dent))
3061                goto out;
3062        dfs_rootdir = dent;
3063
3064        fname = "chk_general";
3065        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3066                                   &dfs_global_fops);
3067        if (IS_ERR_OR_NULL(dent))
3068                goto out_remove;
3069        dfs_chk_gen = dent;
3070
3071        fname = "chk_index";
3072        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3073                                   &dfs_global_fops);
3074        if (IS_ERR_OR_NULL(dent))
3075                goto out_remove;
3076        dfs_chk_index = dent;
3077
3078        fname = "chk_orphans";
3079        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3080                                   &dfs_global_fops);
3081        if (IS_ERR_OR_NULL(dent))
3082                goto out_remove;
3083        dfs_chk_orph = dent;
3084
3085        fname = "chk_lprops";
3086        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3087                                   &dfs_global_fops);
3088        if (IS_ERR_OR_NULL(dent))
3089                goto out_remove;
3090        dfs_chk_lprops = dent;
3091
3092        fname = "chk_fs";
3093        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3094                                   &dfs_global_fops);
3095        if (IS_ERR_OR_NULL(dent))
3096                goto out_remove;
3097        dfs_chk_fs = dent;
3098
3099        fname = "tst_recovery";
3100        dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3101                                   &dfs_global_fops);
3102        if (IS_ERR_OR_NULL(dent))
3103                goto out_remove;
3104        dfs_tst_rcvry = dent;
3105
3106        return 0;
3107
3108out_remove:
3109        debugfs_remove_recursive(dfs_rootdir);
3110out:
3111        err = dent ? PTR_ERR(dent) : -ENODEV;
3112        pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3113               current->pid, fname, err);
3114        return err;
3115}
3116
3117/**
3118 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3119 */
3120void dbg_debugfs_exit(void)
3121{
3122        if (IS_ENABLED(CONFIG_DEBUG_FS))
3123                debugfs_remove_recursive(dfs_rootdir);
3124}
3125
3126/**
3127 * ubifs_debugging_init - initialize UBIFS debugging.
3128 * @c: UBIFS file-system description object
3129 *
3130 * This function initializes debugging-related data for the file system.
3131 * Returns zero in case of success and a negative error code in case of
3132 * failure.
3133 */
3134int ubifs_debugging_init(struct ubifs_info *c)
3135{
3136        c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3137        if (!c->dbg)
3138                return -ENOMEM;
3139
3140        return 0;
3141}
3142
3143/**
3144 * ubifs_debugging_exit - free debugging data.
3145 * @c: UBIFS file-system description object
3146 */
3147void ubifs_debugging_exit(struct ubifs_info *c)
3148{
3149        kfree(c->dbg);
3150}
3151#endif
3152