uboot/fs/ubifs/io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
   7 *
   8 * Authors: Artem Bityutskiy (Битюцкий Артём)
   9 *          Adrian Hunter
  10 *          Zoltan Sogor
  11 */
  12
  13/*
  14 * This file implements UBIFS I/O subsystem which provides various I/O-related
  15 * helper functions (reading/writing/checking/validating nodes) and implements
  16 * write-buffering support. Write buffers help to save space which otherwise
  17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
  18 * Instead, data first goes to the write-buffer and is flushed when the
  19 * buffer is full or when it is not used for some time (by timer). This is
  20 * similar to the mechanism is used by JFFS2.
  21 *
  22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
  23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
  24 * the underlying flash is able to program at a time, and writing in
  25 * @c->max_write_size units should presumably be faster. Obviously,
  26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
  27 * @c->max_write_size bytes in size for maximum performance. However, when a
  28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
  29 * boundary) which contains data is written, not the whole write-buffer,
  30 * because this is more space-efficient.
  31 *
  32 * This optimization adds few complications to the code. Indeed, on the one
  33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
  34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
  35 * other hand, we do not want to waste space when synchronizing the write
  36 * buffer, so during synchronization we writes in smaller chunks. And this makes
  37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
  38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
  39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
  40 * write-buffer size (@wbuf->size).
  41 *
  42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
  43 * mutexes defined inside these objects. Since sometimes upper-level code
  44 * has to lock the write-buffer (e.g. journal space reservation code), many
  45 * functions related to write-buffers have "nolock" suffix which means that the
  46 * caller has to lock the write-buffer before calling this function.
  47 *
  48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
  49 * aligned, UBIFS starts the next node from the aligned address, and the padded
  50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
  51 * bytes in those small gaps. Common headers of nodes store real node lengths,
  52 * not aligned lengths. Indexing nodes also store real lengths in branches.
  53 *
  54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
  55 * uses padding nodes or padding bytes, if the padding node does not fit.
  56 *
  57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
  58 * they are read from the flash media.
  59 */
  60
  61#ifndef __UBOOT__
  62#include <init.h>
  63#include <log.h>
  64#include <dm/devres.h>
  65#include <linux/crc32.h>
  66#include <linux/slab.h>
  67#include <u-boot/crc.h>
  68#else
  69#include <linux/compat.h>
  70#include <linux/err.h>
  71#endif
  72#include "ubifs.h"
  73
  74/**
  75 * ubifs_ro_mode - switch UBIFS to read read-only mode.
  76 * @c: UBIFS file-system description object
  77 * @err: error code which is the reason of switching to R/O mode
  78 */
  79void ubifs_ro_mode(struct ubifs_info *c, int err)
  80{
  81        if (!c->ro_error) {
  82                c->ro_error = 1;
  83                c->no_chk_data_crc = 0;
  84                c->vfs_sb->s_flags |= MS_RDONLY;
  85                ubifs_warn(c, "switched to read-only mode, error %d", err);
  86                dump_stack();
  87        }
  88}
  89
  90/*
  91 * Below are simple wrappers over UBI I/O functions which include some
  92 * additional checks and UBIFS debugging stuff. See corresponding UBI function
  93 * for more information.
  94 */
  95
  96int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
  97                   int len, int even_ebadmsg)
  98{
  99        int err;
 100
 101        err = ubi_read(c->ubi, lnum, buf, offs, len);
 102        /*
 103         * In case of %-EBADMSG print the error message only if the
 104         * @even_ebadmsg is true.
 105         */
 106        if (err && (err != -EBADMSG || even_ebadmsg)) {
 107                ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
 108                          len, lnum, offs, err);
 109                dump_stack();
 110        }
 111        return err;
 112}
 113
 114int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
 115                    int len)
 116{
 117        int err = 0;
 118
 119        ubifs_assert(!c->ro_media && !c->ro_mount);
 120        if (c->ro_error)
 121                return -EROFS;
 122        if (!dbg_is_tst_rcvry(c))
 123                err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
 124#ifndef __UBOOT__
 125        else
 126                err = dbg_leb_write(c, lnum, buf, offs, len);
 127#endif
 128        if (err) {
 129                ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
 130                          len, lnum, offs, err);
 131                ubifs_ro_mode(c, err);
 132                dump_stack();
 133        }
 134        return err;
 135}
 136
 137int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
 138{
 139        int err = 0;
 140
 141        ubifs_assert(!c->ro_media && !c->ro_mount);
 142        if (c->ro_error)
 143                return -EROFS;
 144        if (!dbg_is_tst_rcvry(c))
 145                err = ubi_leb_change(c->ubi, lnum, buf, len);
 146#ifndef __UBOOT__
 147        else
 148                err = dbg_leb_change(c, lnum, buf, len);
 149#endif
 150        if (err) {
 151                ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
 152                          len, lnum, err);
 153                ubifs_ro_mode(c, err);
 154                dump_stack();
 155        }
 156        return err;
 157}
 158
 159int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
 160{
 161        int err = 0;
 162
 163        ubifs_assert(!c->ro_media && !c->ro_mount);
 164        if (c->ro_error)
 165                return -EROFS;
 166        if (!dbg_is_tst_rcvry(c))
 167                err = ubi_leb_unmap(c->ubi, lnum);
 168#ifndef __UBOOT__
 169        else
 170                err = dbg_leb_unmap(c, lnum);
 171#endif
 172        if (err) {
 173                ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
 174                ubifs_ro_mode(c, err);
 175                dump_stack();
 176        }
 177        return err;
 178}
 179
 180int ubifs_leb_map(struct ubifs_info *c, int lnum)
 181{
 182        int err = 0;
 183
 184        ubifs_assert(!c->ro_media && !c->ro_mount);
 185        if (c->ro_error)
 186                return -EROFS;
 187        if (!dbg_is_tst_rcvry(c))
 188                err = ubi_leb_map(c->ubi, lnum);
 189#ifndef __UBOOT__
 190        else
 191                err = dbg_leb_map(c, lnum);
 192#endif
 193        if (err) {
 194                ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
 195                ubifs_ro_mode(c, err);
 196                dump_stack();
 197        }
 198        return err;
 199}
 200
 201int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
 202{
 203        int err;
 204
 205        err = ubi_is_mapped(c->ubi, lnum);
 206        if (err < 0) {
 207                ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
 208                          lnum, err);
 209                dump_stack();
 210        }
 211        return err;
 212}
 213
 214/**
 215 * ubifs_check_node - check node.
 216 * @c: UBIFS file-system description object
 217 * @buf: node to check
 218 * @lnum: logical eraseblock number
 219 * @offs: offset within the logical eraseblock
 220 * @quiet: print no messages
 221 * @must_chk_crc: indicates whether to always check the CRC
 222 *
 223 * This function checks node magic number and CRC checksum. This function also
 224 * validates node length to prevent UBIFS from becoming crazy when an attacker
 225 * feeds it a file-system image with incorrect nodes. For example, too large
 226 * node length in the common header could cause UBIFS to read memory outside of
 227 * allocated buffer when checking the CRC checksum.
 228 *
 229 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
 230 * true, which is controlled by corresponding UBIFS mount option. However, if
 231 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
 232 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
 233 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
 234 * is checked. This is because during mounting or re-mounting from R/O mode to
 235 * R/W mode we may read journal nodes (when replying the journal or doing the
 236 * recovery) and the journal nodes may potentially be corrupted, so checking is
 237 * required.
 238 *
 239 * This function returns zero in case of success and %-EUCLEAN in case of bad
 240 * CRC or magic.
 241 */
 242int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
 243                     int offs, int quiet, int must_chk_crc)
 244{
 245        int err = -EINVAL, type, node_len;
 246        uint32_t crc, node_crc, magic;
 247        const struct ubifs_ch *ch = buf;
 248
 249        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 250        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 251
 252        magic = le32_to_cpu(ch->magic);
 253        if (magic != UBIFS_NODE_MAGIC) {
 254                if (!quiet)
 255                        ubifs_err(c, "bad magic %#08x, expected %#08x",
 256                                  magic, UBIFS_NODE_MAGIC);
 257                err = -EUCLEAN;
 258                goto out;
 259        }
 260
 261        type = ch->node_type;
 262        if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
 263                if (!quiet)
 264                        ubifs_err(c, "bad node type %d", type);
 265                goto out;
 266        }
 267
 268        node_len = le32_to_cpu(ch->len);
 269        if (node_len + offs > c->leb_size)
 270                goto out_len;
 271
 272        if (c->ranges[type].max_len == 0) {
 273                if (node_len != c->ranges[type].len)
 274                        goto out_len;
 275        } else if (node_len < c->ranges[type].min_len ||
 276                   node_len > c->ranges[type].max_len)
 277                goto out_len;
 278
 279        if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
 280            !c->remounting_rw && c->no_chk_data_crc)
 281                return 0;
 282
 283        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 284        node_crc = le32_to_cpu(ch->crc);
 285        if (crc != node_crc) {
 286                if (!quiet)
 287                        ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
 288                                  crc, node_crc);
 289                err = -EUCLEAN;
 290                goto out;
 291        }
 292
 293        return 0;
 294
 295out_len:
 296        if (!quiet)
 297                ubifs_err(c, "bad node length %d", node_len);
 298out:
 299        if (!quiet) {
 300                ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
 301                ubifs_dump_node(c, buf);
 302                dump_stack();
 303        }
 304        return err;
 305}
 306
 307/**
 308 * ubifs_pad - pad flash space.
 309 * @c: UBIFS file-system description object
 310 * @buf: buffer to put padding to
 311 * @pad: how many bytes to pad
 312 *
 313 * The flash media obliges us to write only in chunks of %c->min_io_size and
 314 * when we have to write less data we add padding node to the write-buffer and
 315 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
 316 * media is being scanned. If the amount of wasted space is not enough to fit a
 317 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
 318 * pattern (%UBIFS_PADDING_BYTE).
 319 *
 320 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
 321 * used.
 322 */
 323void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
 324{
 325        uint32_t crc;
 326
 327        ubifs_assert(pad >= 0 && !(pad & 7));
 328
 329        if (pad >= UBIFS_PAD_NODE_SZ) {
 330                struct ubifs_ch *ch = buf;
 331                struct ubifs_pad_node *pad_node = buf;
 332
 333                ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 334                ch->node_type = UBIFS_PAD_NODE;
 335                ch->group_type = UBIFS_NO_NODE_GROUP;
 336                ch->padding[0] = ch->padding[1] = 0;
 337                ch->sqnum = 0;
 338                ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
 339                pad -= UBIFS_PAD_NODE_SZ;
 340                pad_node->pad_len = cpu_to_le32(pad);
 341                crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
 342                ch->crc = cpu_to_le32(crc);
 343                memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
 344        } else if (pad > 0)
 345                /* Too little space, padding node won't fit */
 346                memset(buf, UBIFS_PADDING_BYTE, pad);
 347}
 348
 349/**
 350 * next_sqnum - get next sequence number.
 351 * @c: UBIFS file-system description object
 352 */
 353static unsigned long long next_sqnum(struct ubifs_info *c)
 354{
 355        unsigned long long sqnum;
 356
 357        spin_lock(&c->cnt_lock);
 358        sqnum = ++c->max_sqnum;
 359        spin_unlock(&c->cnt_lock);
 360
 361        if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
 362                if (sqnum >= SQNUM_WATERMARK) {
 363                        ubifs_err(c, "sequence number overflow %llu, end of life",
 364                                  sqnum);
 365                        ubifs_ro_mode(c, -EINVAL);
 366                }
 367                ubifs_warn(c, "running out of sequence numbers, end of life soon");
 368        }
 369
 370        return sqnum;
 371}
 372
 373/**
 374 * ubifs_prepare_node - prepare node to be written to flash.
 375 * @c: UBIFS file-system description object
 376 * @node: the node to pad
 377 * @len: node length
 378 * @pad: if the buffer has to be padded
 379 *
 380 * This function prepares node at @node to be written to the media - it
 381 * calculates node CRC, fills the common header, and adds proper padding up to
 382 * the next minimum I/O unit if @pad is not zero.
 383 */
 384void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
 385{
 386        uint32_t crc;
 387        struct ubifs_ch *ch = node;
 388        unsigned long long sqnum = next_sqnum(c);
 389
 390        ubifs_assert(len >= UBIFS_CH_SZ);
 391
 392        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 393        ch->len = cpu_to_le32(len);
 394        ch->group_type = UBIFS_NO_NODE_GROUP;
 395        ch->sqnum = cpu_to_le64(sqnum);
 396        ch->padding[0] = ch->padding[1] = 0;
 397        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 398        ch->crc = cpu_to_le32(crc);
 399
 400        if (pad) {
 401                len = ALIGN(len, 8);
 402                pad = ALIGN(len, c->min_io_size) - len;
 403                ubifs_pad(c, node + len, pad);
 404        }
 405}
 406
 407/**
 408 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
 409 * @c: UBIFS file-system description object
 410 * @node: the node to pad
 411 * @len: node length
 412 * @last: indicates the last node of the group
 413 *
 414 * This function prepares node at @node to be written to the media - it
 415 * calculates node CRC and fills the common header.
 416 */
 417void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
 418{
 419        uint32_t crc;
 420        struct ubifs_ch *ch = node;
 421        unsigned long long sqnum = next_sqnum(c);
 422
 423        ubifs_assert(len >= UBIFS_CH_SZ);
 424
 425        ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
 426        ch->len = cpu_to_le32(len);
 427        if (last)
 428                ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
 429        else
 430                ch->group_type = UBIFS_IN_NODE_GROUP;
 431        ch->sqnum = cpu_to_le64(sqnum);
 432        ch->padding[0] = ch->padding[1] = 0;
 433        crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
 434        ch->crc = cpu_to_le32(crc);
 435}
 436
 437#ifndef __UBOOT__
 438/**
 439 * wbuf_timer_callback - write-buffer timer callback function.
 440 * @timer: timer data (write-buffer descriptor)
 441 *
 442 * This function is called when the write-buffer timer expires.
 443 */
 444static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
 445{
 446        struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
 447
 448        dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
 449        wbuf->need_sync = 1;
 450        wbuf->c->need_wbuf_sync = 1;
 451        ubifs_wake_up_bgt(wbuf->c);
 452        return HRTIMER_NORESTART;
 453}
 454
 455/**
 456 * new_wbuf_timer - start new write-buffer timer.
 457 * @wbuf: write-buffer descriptor
 458 */
 459static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 460{
 461        ubifs_assert(!hrtimer_active(&wbuf->timer));
 462
 463        if (wbuf->no_timer)
 464                return;
 465        dbg_io("set timer for jhead %s, %llu-%llu millisecs",
 466               dbg_jhead(wbuf->jhead),
 467               div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
 468               div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
 469                       USEC_PER_SEC));
 470        hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
 471                               HRTIMER_MODE_REL);
 472}
 473#endif
 474
 475/**
 476 * cancel_wbuf_timer - cancel write-buffer timer.
 477 * @wbuf: write-buffer descriptor
 478 */
 479static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
 480{
 481        if (wbuf->no_timer)
 482                return;
 483        wbuf->need_sync = 0;
 484#ifndef __UBOOT__
 485        hrtimer_cancel(&wbuf->timer);
 486#endif
 487}
 488
 489/**
 490 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
 491 * @wbuf: write-buffer to synchronize
 492 *
 493 * This function synchronizes write-buffer @buf and returns zero in case of
 494 * success or a negative error code in case of failure.
 495 *
 496 * Note, although write-buffers are of @c->max_write_size, this function does
 497 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
 498 * if the write-buffer is only partially filled with data, only the used part
 499 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
 500 * This way we waste less space.
 501 */
 502int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
 503{
 504        struct ubifs_info *c = wbuf->c;
 505        int err, dirt, sync_len;
 506
 507        cancel_wbuf_timer_nolock(wbuf);
 508        if (!wbuf->used || wbuf->lnum == -1)
 509                /* Write-buffer is empty or not seeked */
 510                return 0;
 511
 512        dbg_io("LEB %d:%d, %d bytes, jhead %s",
 513               wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
 514        ubifs_assert(!(wbuf->avail & 7));
 515        ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
 516        ubifs_assert(wbuf->size >= c->min_io_size);
 517        ubifs_assert(wbuf->size <= c->max_write_size);
 518        ubifs_assert(wbuf->size % c->min_io_size == 0);
 519        ubifs_assert(!c->ro_media && !c->ro_mount);
 520        if (c->leb_size - wbuf->offs >= c->max_write_size)
 521                ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
 522
 523        if (c->ro_error)
 524                return -EROFS;
 525
 526        /*
 527         * Do not write whole write buffer but write only the minimum necessary
 528         * amount of min. I/O units.
 529         */
 530        sync_len = ALIGN(wbuf->used, c->min_io_size);
 531        dirt = sync_len - wbuf->used;
 532        if (dirt)
 533                ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
 534        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
 535        if (err)
 536                return err;
 537
 538        spin_lock(&wbuf->lock);
 539        wbuf->offs += sync_len;
 540        /*
 541         * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
 542         * But our goal is to optimize writes and make sure we write in
 543         * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
 544         * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
 545         * sure that @wbuf->offs + @wbuf->size is aligned to
 546         * @c->max_write_size. This way we make sure that after next
 547         * write-buffer flush we are again at the optimal offset (aligned to
 548         * @c->max_write_size).
 549         */
 550        if (c->leb_size - wbuf->offs < c->max_write_size)
 551                wbuf->size = c->leb_size - wbuf->offs;
 552        else if (wbuf->offs & (c->max_write_size - 1))
 553                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 554        else
 555                wbuf->size = c->max_write_size;
 556        wbuf->avail = wbuf->size;
 557        wbuf->used = 0;
 558        wbuf->next_ino = 0;
 559        spin_unlock(&wbuf->lock);
 560
 561        if (wbuf->sync_callback)
 562                err = wbuf->sync_callback(c, wbuf->lnum,
 563                                          c->leb_size - wbuf->offs, dirt);
 564        return err;
 565}
 566
 567/**
 568 * ubifs_wbuf_seek_nolock - seek write-buffer.
 569 * @wbuf: write-buffer
 570 * @lnum: logical eraseblock number to seek to
 571 * @offs: logical eraseblock offset to seek to
 572 *
 573 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
 574 * The write-buffer has to be empty. Returns zero in case of success and a
 575 * negative error code in case of failure.
 576 */
 577int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
 578{
 579        const struct ubifs_info *c = wbuf->c;
 580
 581        dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
 582        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
 583        ubifs_assert(offs >= 0 && offs <= c->leb_size);
 584        ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
 585        ubifs_assert(lnum != wbuf->lnum);
 586        ubifs_assert(wbuf->used == 0);
 587
 588        spin_lock(&wbuf->lock);
 589        wbuf->lnum = lnum;
 590        wbuf->offs = offs;
 591        if (c->leb_size - wbuf->offs < c->max_write_size)
 592                wbuf->size = c->leb_size - wbuf->offs;
 593        else if (wbuf->offs & (c->max_write_size - 1))
 594                wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
 595        else
 596                wbuf->size = c->max_write_size;
 597        wbuf->avail = wbuf->size;
 598        wbuf->used = 0;
 599        spin_unlock(&wbuf->lock);
 600
 601        return 0;
 602}
 603
 604#ifndef __UBOOT__
 605/**
 606 * ubifs_bg_wbufs_sync - synchronize write-buffers.
 607 * @c: UBIFS file-system description object
 608 *
 609 * This function is called by background thread to synchronize write-buffers.
 610 * Returns zero in case of success and a negative error code in case of
 611 * failure.
 612 */
 613int ubifs_bg_wbufs_sync(struct ubifs_info *c)
 614{
 615        int err, i;
 616
 617        ubifs_assert(!c->ro_media && !c->ro_mount);
 618        if (!c->need_wbuf_sync)
 619                return 0;
 620        c->need_wbuf_sync = 0;
 621
 622        if (c->ro_error) {
 623                err = -EROFS;
 624                goto out_timers;
 625        }
 626
 627        dbg_io("synchronize");
 628        for (i = 0; i < c->jhead_cnt; i++) {
 629                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 630
 631                cond_resched();
 632
 633                /*
 634                 * If the mutex is locked then wbuf is being changed, so
 635                 * synchronization is not necessary.
 636                 */
 637                if (mutex_is_locked(&wbuf->io_mutex))
 638                        continue;
 639
 640                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 641                if (!wbuf->need_sync) {
 642                        mutex_unlock(&wbuf->io_mutex);
 643                        continue;
 644                }
 645
 646                err = ubifs_wbuf_sync_nolock(wbuf);
 647                mutex_unlock(&wbuf->io_mutex);
 648                if (err) {
 649                        ubifs_err(c, "cannot sync write-buffer, error %d", err);
 650                        ubifs_ro_mode(c, err);
 651                        goto out_timers;
 652                }
 653        }
 654
 655        return 0;
 656
 657out_timers:
 658        /* Cancel all timers to prevent repeated errors */
 659        for (i = 0; i < c->jhead_cnt; i++) {
 660                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
 661
 662                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 663                cancel_wbuf_timer_nolock(wbuf);
 664                mutex_unlock(&wbuf->io_mutex);
 665        }
 666        return err;
 667}
 668
 669/**
 670 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
 671 * @wbuf: write-buffer
 672 * @buf: node to write
 673 * @len: node length
 674 *
 675 * This function writes data to flash via write-buffer @wbuf. This means that
 676 * the last piece of the node won't reach the flash media immediately if it
 677 * does not take whole max. write unit (@c->max_write_size). Instead, the node
 678 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
 679 * because more data are appended to the write-buffer).
 680 *
 681 * This function returns zero in case of success and a negative error code in
 682 * case of failure. If the node cannot be written because there is no more
 683 * space in this logical eraseblock, %-ENOSPC is returned.
 684 */
 685int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
 686{
 687        struct ubifs_info *c = wbuf->c;
 688        int err, written, n, aligned_len = ALIGN(len, 8);
 689
 690        dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
 691               dbg_ntype(((struct ubifs_ch *)buf)->node_type),
 692               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
 693        ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
 694        ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
 695        ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
 696        ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
 697        ubifs_assert(wbuf->size >= c->min_io_size);
 698        ubifs_assert(wbuf->size <= c->max_write_size);
 699        ubifs_assert(wbuf->size % c->min_io_size == 0);
 700        ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
 701        ubifs_assert(!c->ro_media && !c->ro_mount);
 702        ubifs_assert(!c->space_fixup);
 703        if (c->leb_size - wbuf->offs >= c->max_write_size)
 704                ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
 705
 706        if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
 707                err = -ENOSPC;
 708                goto out;
 709        }
 710
 711        cancel_wbuf_timer_nolock(wbuf);
 712
 713        if (c->ro_error)
 714                return -EROFS;
 715
 716        if (aligned_len <= wbuf->avail) {
 717                /*
 718                 * The node is not very large and fits entirely within
 719                 * write-buffer.
 720                 */
 721                memcpy(wbuf->buf + wbuf->used, buf, len);
 722
 723                if (aligned_len == wbuf->avail) {
 724                        dbg_io("flush jhead %s wbuf to LEB %d:%d",
 725                               dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 726                        err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
 727                                              wbuf->offs, wbuf->size);
 728                        if (err)
 729                                goto out;
 730
 731                        spin_lock(&wbuf->lock);
 732                        wbuf->offs += wbuf->size;
 733                        if (c->leb_size - wbuf->offs >= c->max_write_size)
 734                                wbuf->size = c->max_write_size;
 735                        else
 736                                wbuf->size = c->leb_size - wbuf->offs;
 737                        wbuf->avail = wbuf->size;
 738                        wbuf->used = 0;
 739                        wbuf->next_ino = 0;
 740                        spin_unlock(&wbuf->lock);
 741                } else {
 742                        spin_lock(&wbuf->lock);
 743                        wbuf->avail -= aligned_len;
 744                        wbuf->used += aligned_len;
 745                        spin_unlock(&wbuf->lock);
 746                }
 747
 748                goto exit;
 749        }
 750
 751        written = 0;
 752
 753        if (wbuf->used) {
 754                /*
 755                 * The node is large enough and does not fit entirely within
 756                 * current available space. We have to fill and flush
 757                 * write-buffer and switch to the next max. write unit.
 758                 */
 759                dbg_io("flush jhead %s wbuf to LEB %d:%d",
 760                       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
 761                memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
 762                err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
 763                                      wbuf->size);
 764                if (err)
 765                        goto out;
 766
 767                wbuf->offs += wbuf->size;
 768                len -= wbuf->avail;
 769                aligned_len -= wbuf->avail;
 770                written += wbuf->avail;
 771        } else if (wbuf->offs & (c->max_write_size - 1)) {
 772                /*
 773                 * The write-buffer offset is not aligned to
 774                 * @c->max_write_size and @wbuf->size is less than
 775                 * @c->max_write_size. Write @wbuf->size bytes to make sure the
 776                 * following writes are done in optimal @c->max_write_size
 777                 * chunks.
 778                 */
 779                dbg_io("write %d bytes to LEB %d:%d",
 780                       wbuf->size, wbuf->lnum, wbuf->offs);
 781                err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
 782                                      wbuf->size);
 783                if (err)
 784                        goto out;
 785
 786                wbuf->offs += wbuf->size;
 787                len -= wbuf->size;
 788                aligned_len -= wbuf->size;
 789                written += wbuf->size;
 790        }
 791
 792        /*
 793         * The remaining data may take more whole max. write units, so write the
 794         * remains multiple to max. write unit size directly to the flash media.
 795         * We align node length to 8-byte boundary because we anyway flash wbuf
 796         * if the remaining space is less than 8 bytes.
 797         */
 798        n = aligned_len >> c->max_write_shift;
 799        if (n) {
 800                n <<= c->max_write_shift;
 801                dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
 802                       wbuf->offs);
 803                err = ubifs_leb_write(c, wbuf->lnum, buf + written,
 804                                      wbuf->offs, n);
 805                if (err)
 806                        goto out;
 807                wbuf->offs += n;
 808                aligned_len -= n;
 809                len -= n;
 810                written += n;
 811        }
 812
 813        spin_lock(&wbuf->lock);
 814        if (aligned_len)
 815                /*
 816                 * And now we have what's left and what does not take whole
 817                 * max. write unit, so write it to the write-buffer and we are
 818                 * done.
 819                 */
 820                memcpy(wbuf->buf, buf + written, len);
 821
 822        if (c->leb_size - wbuf->offs >= c->max_write_size)
 823                wbuf->size = c->max_write_size;
 824        else
 825                wbuf->size = c->leb_size - wbuf->offs;
 826        wbuf->avail = wbuf->size - aligned_len;
 827        wbuf->used = aligned_len;
 828        wbuf->next_ino = 0;
 829        spin_unlock(&wbuf->lock);
 830
 831exit:
 832        if (wbuf->sync_callback) {
 833                int free = c->leb_size - wbuf->offs - wbuf->used;
 834
 835                err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
 836                if (err)
 837                        goto out;
 838        }
 839
 840        if (wbuf->used)
 841                new_wbuf_timer_nolock(wbuf);
 842
 843        return 0;
 844
 845out:
 846        ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
 847                  len, wbuf->lnum, wbuf->offs, err);
 848        ubifs_dump_node(c, buf);
 849        dump_stack();
 850        ubifs_dump_leb(c, wbuf->lnum);
 851        return err;
 852}
 853
 854/**
 855 * ubifs_write_node - write node to the media.
 856 * @c: UBIFS file-system description object
 857 * @buf: the node to write
 858 * @len: node length
 859 * @lnum: logical eraseblock number
 860 * @offs: offset within the logical eraseblock
 861 *
 862 * This function automatically fills node magic number, assigns sequence
 863 * number, and calculates node CRC checksum. The length of the @buf buffer has
 864 * to be aligned to the minimal I/O unit size. This function automatically
 865 * appends padding node and padding bytes if needed. Returns zero in case of
 866 * success and a negative error code in case of failure.
 867 */
 868int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
 869                     int offs)
 870{
 871        int err, buf_len = ALIGN(len, c->min_io_size);
 872
 873        dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
 874               lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
 875               buf_len);
 876        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 877        ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
 878        ubifs_assert(!c->ro_media && !c->ro_mount);
 879        ubifs_assert(!c->space_fixup);
 880
 881        if (c->ro_error)
 882                return -EROFS;
 883
 884        ubifs_prepare_node(c, buf, len, 1);
 885        err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
 886        if (err)
 887                ubifs_dump_node(c, buf);
 888
 889        return err;
 890}
 891#endif
 892
 893/**
 894 * ubifs_read_node_wbuf - read node from the media or write-buffer.
 895 * @wbuf: wbuf to check for un-written data
 896 * @buf: buffer to read to
 897 * @type: node type
 898 * @len: node length
 899 * @lnum: logical eraseblock number
 900 * @offs: offset within the logical eraseblock
 901 *
 902 * This function reads a node of known type and length, checks it and stores
 903 * in @buf. If the node partially or fully sits in the write-buffer, this
 904 * function takes data from the buffer, otherwise it reads the flash media.
 905 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
 906 * error code in case of failure.
 907 */
 908int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
 909                         int lnum, int offs)
 910{
 911        const struct ubifs_info *c = wbuf->c;
 912        int err, rlen, overlap;
 913        struct ubifs_ch *ch = buf;
 914
 915        dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
 916               dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
 917        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 918        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 919        ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 920
 921        spin_lock(&wbuf->lock);
 922        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
 923        if (!overlap) {
 924                /* We may safely unlock the write-buffer and read the data */
 925                spin_unlock(&wbuf->lock);
 926                return ubifs_read_node(c, buf, type, len, lnum, offs);
 927        }
 928
 929        /* Don't read under wbuf */
 930        rlen = wbuf->offs - offs;
 931        if (rlen < 0)
 932                rlen = 0;
 933
 934        /* Copy the rest from the write-buffer */
 935        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
 936        spin_unlock(&wbuf->lock);
 937
 938        if (rlen > 0) {
 939                /* Read everything that goes before write-buffer */
 940                err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
 941                if (err && err != -EBADMSG)
 942                        return err;
 943        }
 944
 945        if (type != ch->node_type) {
 946                ubifs_err(c, "bad node type (%d but expected %d)",
 947                          ch->node_type, type);
 948                goto out;
 949        }
 950
 951        err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
 952        if (err) {
 953                ubifs_err(c, "expected node type %d", type);
 954                return err;
 955        }
 956
 957        rlen = le32_to_cpu(ch->len);
 958        if (rlen != len) {
 959                ubifs_err(c, "bad node length %d, expected %d", rlen, len);
 960                goto out;
 961        }
 962
 963        return 0;
 964
 965out:
 966        ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
 967        ubifs_dump_node(c, buf);
 968        dump_stack();
 969        return -EINVAL;
 970}
 971
 972/**
 973 * ubifs_read_node - read node.
 974 * @c: UBIFS file-system description object
 975 * @buf: buffer to read to
 976 * @type: node type
 977 * @len: node length (not aligned)
 978 * @lnum: logical eraseblock number
 979 * @offs: offset within the logical eraseblock
 980 *
 981 * This function reads a node of known type and and length, checks it and
 982 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
 983 * and a negative error code in case of failure.
 984 */
 985int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
 986                    int lnum, int offs)
 987{
 988        int err, l;
 989        struct ubifs_ch *ch = buf;
 990
 991        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 992        ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
 993        ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
 994        ubifs_assert(!(offs & 7) && offs < c->leb_size);
 995        ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
 996
 997        err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
 998        if (err && err != -EBADMSG)
 999                return err;
1000
1001        if (type != ch->node_type) {
1002                ubifs_errc(c, "bad node type (%d but expected %d)",
1003                           ch->node_type, type);
1004                goto out;
1005        }
1006
1007        err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1008        if (err) {
1009                ubifs_errc(c, "expected node type %d", type);
1010                return err;
1011        }
1012
1013        l = le32_to_cpu(ch->len);
1014        if (l != len) {
1015                ubifs_errc(c, "bad node length %d, expected %d", l, len);
1016                goto out;
1017        }
1018
1019        return 0;
1020
1021out:
1022        ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1023                   offs, ubi_is_mapped(c->ubi, lnum));
1024        if (!c->probing) {
1025                ubifs_dump_node(c, buf);
1026                dump_stack();
1027        }
1028        return -EINVAL;
1029}
1030
1031/**
1032 * ubifs_wbuf_init - initialize write-buffer.
1033 * @c: UBIFS file-system description object
1034 * @wbuf: write-buffer to initialize
1035 *
1036 * This function initializes write-buffer. Returns zero in case of success
1037 * %-ENOMEM in case of failure.
1038 */
1039int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1040{
1041        size_t size;
1042
1043        wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1044        if (!wbuf->buf)
1045                return -ENOMEM;
1046
1047        size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1048        wbuf->inodes = kmalloc(size, GFP_KERNEL);
1049        if (!wbuf->inodes) {
1050                kfree(wbuf->buf);
1051                wbuf->buf = NULL;
1052                return -ENOMEM;
1053        }
1054
1055        wbuf->used = 0;
1056        wbuf->lnum = wbuf->offs = -1;
1057        /*
1058         * If the LEB starts at the max. write size aligned address, then
1059         * write-buffer size has to be set to @c->max_write_size. Otherwise,
1060         * set it to something smaller so that it ends at the closest max.
1061         * write size boundary.
1062         */
1063        size = c->max_write_size - (c->leb_start % c->max_write_size);
1064        wbuf->avail = wbuf->size = size;
1065        wbuf->sync_callback = NULL;
1066        mutex_init(&wbuf->io_mutex);
1067        spin_lock_init(&wbuf->lock);
1068        wbuf->c = c;
1069        wbuf->next_ino = 0;
1070
1071#ifndef __UBOOT__
1072        hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1073        wbuf->timer.function = wbuf_timer_callback_nolock;
1074        wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1075        wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1076        wbuf->delta *= 1000000000ULL;
1077        ubifs_assert(wbuf->delta <= ULONG_MAX);
1078#endif
1079        return 0;
1080}
1081
1082/**
1083 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1084 * @wbuf: the write-buffer where to add
1085 * @inum: the inode number
1086 *
1087 * This function adds an inode number to the inode array of the write-buffer.
1088 */
1089void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1090{
1091        if (!wbuf->buf)
1092                /* NOR flash or something similar */
1093                return;
1094
1095        spin_lock(&wbuf->lock);
1096        if (wbuf->used)
1097                wbuf->inodes[wbuf->next_ino++] = inum;
1098        spin_unlock(&wbuf->lock);
1099}
1100
1101/**
1102 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1103 * @wbuf: the write-buffer
1104 * @inum: the inode number
1105 *
1106 * This function returns with %1 if the write-buffer contains some data from the
1107 * given inode otherwise it returns with %0.
1108 */
1109static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1110{
1111        int i, ret = 0;
1112
1113        spin_lock(&wbuf->lock);
1114        for (i = 0; i < wbuf->next_ino; i++)
1115                if (inum == wbuf->inodes[i]) {
1116                        ret = 1;
1117                        break;
1118                }
1119        spin_unlock(&wbuf->lock);
1120
1121        return ret;
1122}
1123
1124/**
1125 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1126 * @c: UBIFS file-system description object
1127 * @inode: inode to synchronize
1128 *
1129 * This function synchronizes write-buffers which contain nodes belonging to
1130 * @inode. Returns zero in case of success and a negative error code in case of
1131 * failure.
1132 */
1133int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1134{
1135        int i, err = 0;
1136
1137        for (i = 0; i < c->jhead_cnt; i++) {
1138                struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1139
1140                if (i == GCHD)
1141                        /*
1142                         * GC head is special, do not look at it. Even if the
1143                         * head contains something related to this inode, it is
1144                         * a _copy_ of corresponding on-flash node which sits
1145                         * somewhere else.
1146                         */
1147                        continue;
1148
1149                if (!wbuf_has_ino(wbuf, inode->i_ino))
1150                        continue;
1151
1152                mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1153                if (wbuf_has_ino(wbuf, inode->i_ino))
1154                        err = ubifs_wbuf_sync_nolock(wbuf);
1155                mutex_unlock(&wbuf->io_mutex);
1156
1157                if (err) {
1158                        ubifs_ro_mode(c, err);
1159                        return err;
1160                }
1161        }
1162        return 0;
1163}
1164