uboot/fs/ubifs/lpt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements the LEB properties tree (LPT) area. The LPT area
  13 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
  14 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
  15 * between the log and the orphan area.
  16 *
  17 * The LPT area is like a miniature self-contained file system. It is required
  18 * that it never runs out of space, is fast to access and update, and scales
  19 * logarithmically. The LEB properties tree is implemented as a wandering tree
  20 * much like the TNC, and the LPT area has its own garbage collection.
  21 *
  22 * The LPT has two slightly different forms called the "small model" and the
  23 * "big model". The small model is used when the entire LEB properties table
  24 * can be written into a single eraseblock. In that case, garbage collection
  25 * consists of just writing the whole table, which therefore makes all other
  26 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
  27 * selected for garbage collection, which consists of marking the clean nodes in
  28 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
  29 * the case of the big model, a table of LEB numbers is saved so that the entire
  30 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
  31 * mounted.
  32 */
  33
  34#include "ubifs.h"
  35#ifndef __UBOOT__
  36#include <log.h>
  37#include <dm/devres.h>
  38#include <linux/crc16.h>
  39#include <linux/math64.h>
  40#include <linux/slab.h>
  41#else
  42#include <linux/compat.h>
  43#include <linux/err.h>
  44#include <ubi_uboot.h>
  45#include "crc16.h"
  46#endif
  47
  48/**
  49 * do_calc_lpt_geom - calculate sizes for the LPT area.
  50 * @c: the UBIFS file-system description object
  51 *
  52 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
  53 * properties of the flash and whether LPT is "big" (c->big_lpt).
  54 */
  55static void do_calc_lpt_geom(struct ubifs_info *c)
  56{
  57        int i, n, bits, per_leb_wastage, max_pnode_cnt;
  58        long long sz, tot_wastage;
  59
  60        n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
  61        max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  62
  63        c->lpt_hght = 1;
  64        n = UBIFS_LPT_FANOUT;
  65        while (n < max_pnode_cnt) {
  66                c->lpt_hght += 1;
  67                n <<= UBIFS_LPT_FANOUT_SHIFT;
  68        }
  69
  70        c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
  71
  72        n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
  73        c->nnode_cnt = n;
  74        for (i = 1; i < c->lpt_hght; i++) {
  75                n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  76                c->nnode_cnt += n;
  77        }
  78
  79        c->space_bits = fls(c->leb_size) - 3;
  80        c->lpt_lnum_bits = fls(c->lpt_lebs);
  81        c->lpt_offs_bits = fls(c->leb_size - 1);
  82        c->lpt_spc_bits = fls(c->leb_size);
  83
  84        n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
  85        c->pcnt_bits = fls(n - 1);
  86
  87        c->lnum_bits = fls(c->max_leb_cnt - 1);
  88
  89        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  90               (c->big_lpt ? c->pcnt_bits : 0) +
  91               (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
  92        c->pnode_sz = (bits + 7) / 8;
  93
  94        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  95               (c->big_lpt ? c->pcnt_bits : 0) +
  96               (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
  97        c->nnode_sz = (bits + 7) / 8;
  98
  99        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 100               c->lpt_lebs * c->lpt_spc_bits * 2;
 101        c->ltab_sz = (bits + 7) / 8;
 102
 103        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 104               c->lnum_bits * c->lsave_cnt;
 105        c->lsave_sz = (bits + 7) / 8;
 106
 107        /* Calculate the minimum LPT size */
 108        c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
 109        c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
 110        c->lpt_sz += c->ltab_sz;
 111        if (c->big_lpt)
 112                c->lpt_sz += c->lsave_sz;
 113
 114        /* Add wastage */
 115        sz = c->lpt_sz;
 116        per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
 117        sz += per_leb_wastage;
 118        tot_wastage = per_leb_wastage;
 119        while (sz > c->leb_size) {
 120                sz += per_leb_wastage;
 121                sz -= c->leb_size;
 122                tot_wastage += per_leb_wastage;
 123        }
 124        tot_wastage += ALIGN(sz, c->min_io_size) - sz;
 125        c->lpt_sz += tot_wastage;
 126}
 127
 128/**
 129 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
 130 * @c: the UBIFS file-system description object
 131 *
 132 * This function returns %0 on success and a negative error code on failure.
 133 */
 134int ubifs_calc_lpt_geom(struct ubifs_info *c)
 135{
 136        int lebs_needed;
 137        long long sz;
 138
 139        do_calc_lpt_geom(c);
 140
 141        /* Verify that lpt_lebs is big enough */
 142        sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
 143        lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 144        if (lebs_needed > c->lpt_lebs) {
 145                ubifs_err(c, "too few LPT LEBs");
 146                return -EINVAL;
 147        }
 148
 149        /* Verify that ltab fits in a single LEB (since ltab is a single node */
 150        if (c->ltab_sz > c->leb_size) {
 151                ubifs_err(c, "LPT ltab too big");
 152                return -EINVAL;
 153        }
 154
 155        c->check_lpt_free = c->big_lpt;
 156        return 0;
 157}
 158
 159/**
 160 * calc_dflt_lpt_geom - calculate default LPT geometry.
 161 * @c: the UBIFS file-system description object
 162 * @main_lebs: number of main area LEBs is passed and returned here
 163 * @big_lpt: whether the LPT area is "big" is returned here
 164 *
 165 * The size of the LPT area depends on parameters that themselves are dependent
 166 * on the size of the LPT area. This function, successively recalculates the LPT
 167 * area geometry until the parameters and resultant geometry are consistent.
 168 *
 169 * This function returns %0 on success and a negative error code on failure.
 170 */
 171static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
 172                              int *big_lpt)
 173{
 174        int i, lebs_needed;
 175        long long sz;
 176
 177        /* Start by assuming the minimum number of LPT LEBs */
 178        c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
 179        c->main_lebs = *main_lebs - c->lpt_lebs;
 180        if (c->main_lebs <= 0)
 181                return -EINVAL;
 182
 183        /* And assume we will use the small LPT model */
 184        c->big_lpt = 0;
 185
 186        /*
 187         * Calculate the geometry based on assumptions above and then see if it
 188         * makes sense
 189         */
 190        do_calc_lpt_geom(c);
 191
 192        /* Small LPT model must have lpt_sz < leb_size */
 193        if (c->lpt_sz > c->leb_size) {
 194                /* Nope, so try again using big LPT model */
 195                c->big_lpt = 1;
 196                do_calc_lpt_geom(c);
 197        }
 198
 199        /* Now check there are enough LPT LEBs */
 200        for (i = 0; i < 64 ; i++) {
 201                sz = c->lpt_sz * 4; /* Allow 4 times the size */
 202                lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 203                if (lebs_needed > c->lpt_lebs) {
 204                        /* Not enough LPT LEBs so try again with more */
 205                        c->lpt_lebs = lebs_needed;
 206                        c->main_lebs = *main_lebs - c->lpt_lebs;
 207                        if (c->main_lebs <= 0)
 208                                return -EINVAL;
 209                        do_calc_lpt_geom(c);
 210                        continue;
 211                }
 212                if (c->ltab_sz > c->leb_size) {
 213                        ubifs_err(c, "LPT ltab too big");
 214                        return -EINVAL;
 215                }
 216                *main_lebs = c->main_lebs;
 217                *big_lpt = c->big_lpt;
 218                return 0;
 219        }
 220        return -EINVAL;
 221}
 222
 223/**
 224 * pack_bits - pack bit fields end-to-end.
 225 * @addr: address at which to pack (passed and next address returned)
 226 * @pos: bit position at which to pack (passed and next position returned)
 227 * @val: value to pack
 228 * @nrbits: number of bits of value to pack (1-32)
 229 */
 230static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
 231{
 232        uint8_t *p = *addr;
 233        int b = *pos;
 234
 235        ubifs_assert(nrbits > 0);
 236        ubifs_assert(nrbits <= 32);
 237        ubifs_assert(*pos >= 0);
 238        ubifs_assert(*pos < 8);
 239        ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
 240        if (b) {
 241                *p |= ((uint8_t)val) << b;
 242                nrbits += b;
 243                if (nrbits > 8) {
 244                        *++p = (uint8_t)(val >>= (8 - b));
 245                        if (nrbits > 16) {
 246                                *++p = (uint8_t)(val >>= 8);
 247                                if (nrbits > 24) {
 248                                        *++p = (uint8_t)(val >>= 8);
 249                                        if (nrbits > 32)
 250                                                *++p = (uint8_t)(val >>= 8);
 251                                }
 252                        }
 253                }
 254        } else {
 255                *p = (uint8_t)val;
 256                if (nrbits > 8) {
 257                        *++p = (uint8_t)(val >>= 8);
 258                        if (nrbits > 16) {
 259                                *++p = (uint8_t)(val >>= 8);
 260                                if (nrbits > 24)
 261                                        *++p = (uint8_t)(val >>= 8);
 262                        }
 263                }
 264        }
 265        b = nrbits & 7;
 266        if (b == 0)
 267                p++;
 268        *addr = p;
 269        *pos = b;
 270}
 271
 272/**
 273 * ubifs_unpack_bits - unpack bit fields.
 274 * @addr: address at which to unpack (passed and next address returned)
 275 * @pos: bit position at which to unpack (passed and next position returned)
 276 * @nrbits: number of bits of value to unpack (1-32)
 277 *
 278 * This functions returns the value unpacked.
 279 */
 280uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
 281{
 282        const int k = 32 - nrbits;
 283        uint8_t *p = *addr;
 284        int b = *pos;
 285        uint32_t uninitialized_var(val);
 286        const int bytes = (nrbits + b + 7) >> 3;
 287
 288        ubifs_assert(nrbits > 0);
 289        ubifs_assert(nrbits <= 32);
 290        ubifs_assert(*pos >= 0);
 291        ubifs_assert(*pos < 8);
 292        if (b) {
 293                switch (bytes) {
 294                case 2:
 295                        val = p[1];
 296                        break;
 297                case 3:
 298                        val = p[1] | ((uint32_t)p[2] << 8);
 299                        break;
 300                case 4:
 301                        val = p[1] | ((uint32_t)p[2] << 8) |
 302                                     ((uint32_t)p[3] << 16);
 303                        break;
 304                case 5:
 305                        val = p[1] | ((uint32_t)p[2] << 8) |
 306                                     ((uint32_t)p[3] << 16) |
 307                                     ((uint32_t)p[4] << 24);
 308                }
 309                val <<= (8 - b);
 310                val |= *p >> b;
 311                nrbits += b;
 312        } else {
 313                switch (bytes) {
 314                case 1:
 315                        val = p[0];
 316                        break;
 317                case 2:
 318                        val = p[0] | ((uint32_t)p[1] << 8);
 319                        break;
 320                case 3:
 321                        val = p[0] | ((uint32_t)p[1] << 8) |
 322                                     ((uint32_t)p[2] << 16);
 323                        break;
 324                case 4:
 325                        val = p[0] | ((uint32_t)p[1] << 8) |
 326                                     ((uint32_t)p[2] << 16) |
 327                                     ((uint32_t)p[3] << 24);
 328                        break;
 329                }
 330        }
 331        val <<= k;
 332        val >>= k;
 333        b = nrbits & 7;
 334        p += nrbits >> 3;
 335        *addr = p;
 336        *pos = b;
 337        ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
 338        return val;
 339}
 340
 341/**
 342 * ubifs_pack_pnode - pack all the bit fields of a pnode.
 343 * @c: UBIFS file-system description object
 344 * @buf: buffer into which to pack
 345 * @pnode: pnode to pack
 346 */
 347void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
 348                      struct ubifs_pnode *pnode)
 349{
 350        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 351        int i, pos = 0;
 352        uint16_t crc;
 353
 354        pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
 355        if (c->big_lpt)
 356                pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
 357        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 358                pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
 359                          c->space_bits);
 360                pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
 361                          c->space_bits);
 362                if (pnode->lprops[i].flags & LPROPS_INDEX)
 363                        pack_bits(&addr, &pos, 1, 1);
 364                else
 365                        pack_bits(&addr, &pos, 0, 1);
 366        }
 367        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 368                    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
 369        addr = buf;
 370        pos = 0;
 371        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 372}
 373
 374/**
 375 * ubifs_pack_nnode - pack all the bit fields of a nnode.
 376 * @c: UBIFS file-system description object
 377 * @buf: buffer into which to pack
 378 * @nnode: nnode to pack
 379 */
 380void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
 381                      struct ubifs_nnode *nnode)
 382{
 383        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 384        int i, pos = 0;
 385        uint16_t crc;
 386
 387        pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
 388        if (c->big_lpt)
 389                pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
 390        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 391                int lnum = nnode->nbranch[i].lnum;
 392
 393                if (lnum == 0)
 394                        lnum = c->lpt_last + 1;
 395                pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
 396                pack_bits(&addr, &pos, nnode->nbranch[i].offs,
 397                          c->lpt_offs_bits);
 398        }
 399        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 400                    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
 401        addr = buf;
 402        pos = 0;
 403        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 404}
 405
 406/**
 407 * ubifs_pack_ltab - pack the LPT's own lprops table.
 408 * @c: UBIFS file-system description object
 409 * @buf: buffer into which to pack
 410 * @ltab: LPT's own lprops table to pack
 411 */
 412void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
 413                     struct ubifs_lpt_lprops *ltab)
 414{
 415        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 416        int i, pos = 0;
 417        uint16_t crc;
 418
 419        pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
 420        for (i = 0; i < c->lpt_lebs; i++) {
 421                pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
 422                pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
 423        }
 424        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 425                    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
 426        addr = buf;
 427        pos = 0;
 428        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 429}
 430
 431/**
 432 * ubifs_pack_lsave - pack the LPT's save table.
 433 * @c: UBIFS file-system description object
 434 * @buf: buffer into which to pack
 435 * @lsave: LPT's save table to pack
 436 */
 437void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
 438{
 439        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 440        int i, pos = 0;
 441        uint16_t crc;
 442
 443        pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
 444        for (i = 0; i < c->lsave_cnt; i++)
 445                pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
 446        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 447                    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
 448        addr = buf;
 449        pos = 0;
 450        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 451}
 452
 453/**
 454 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
 455 * @c: UBIFS file-system description object
 456 * @lnum: LEB number to which to add dirty space
 457 * @dirty: amount of dirty space to add
 458 */
 459void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
 460{
 461        if (!dirty || !lnum)
 462                return;
 463        dbg_lp("LEB %d add %d to %d",
 464               lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
 465        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 466        c->ltab[lnum - c->lpt_first].dirty += dirty;
 467}
 468
 469/**
 470 * set_ltab - set LPT LEB properties.
 471 * @c: UBIFS file-system description object
 472 * @lnum: LEB number
 473 * @free: amount of free space
 474 * @dirty: amount of dirty space
 475 */
 476static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 477{
 478        dbg_lp("LEB %d free %d dirty %d to %d %d",
 479               lnum, c->ltab[lnum - c->lpt_first].free,
 480               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 481        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 482        c->ltab[lnum - c->lpt_first].free = free;
 483        c->ltab[lnum - c->lpt_first].dirty = dirty;
 484}
 485
 486/**
 487 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
 488 * @c: UBIFS file-system description object
 489 * @nnode: nnode for which to add dirt
 490 */
 491void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
 492{
 493        struct ubifs_nnode *np = nnode->parent;
 494
 495        if (np)
 496                ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
 497                                   c->nnode_sz);
 498        else {
 499                ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
 500                if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 501                        c->lpt_drty_flgs |= LTAB_DIRTY;
 502                        ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 503                }
 504        }
 505}
 506
 507/**
 508 * add_pnode_dirt - add dirty space to LPT LEB properties.
 509 * @c: UBIFS file-system description object
 510 * @pnode: pnode for which to add dirt
 511 */
 512static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 513{
 514        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 515                           c->pnode_sz);
 516}
 517
 518/**
 519 * calc_nnode_num - calculate nnode number.
 520 * @row: the row in the tree (root is zero)
 521 * @col: the column in the row (leftmost is zero)
 522 *
 523 * The nnode number is a number that uniquely identifies a nnode and can be used
 524 * easily to traverse the tree from the root to that nnode.
 525 *
 526 * This function calculates and returns the nnode number for the nnode at @row
 527 * and @col.
 528 */
 529static int calc_nnode_num(int row, int col)
 530{
 531        int num, bits;
 532
 533        num = 1;
 534        while (row--) {
 535                bits = (col & (UBIFS_LPT_FANOUT - 1));
 536                col >>= UBIFS_LPT_FANOUT_SHIFT;
 537                num <<= UBIFS_LPT_FANOUT_SHIFT;
 538                num |= bits;
 539        }
 540        return num;
 541}
 542
 543/**
 544 * calc_nnode_num_from_parent - calculate nnode number.
 545 * @c: UBIFS file-system description object
 546 * @parent: parent nnode
 547 * @iip: index in parent
 548 *
 549 * The nnode number is a number that uniquely identifies a nnode and can be used
 550 * easily to traverse the tree from the root to that nnode.
 551 *
 552 * This function calculates and returns the nnode number based on the parent's
 553 * nnode number and the index in parent.
 554 */
 555static int calc_nnode_num_from_parent(const struct ubifs_info *c,
 556                                      struct ubifs_nnode *parent, int iip)
 557{
 558        int num, shft;
 559
 560        if (!parent)
 561                return 1;
 562        shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
 563        num = parent->num ^ (1 << shft);
 564        num |= (UBIFS_LPT_FANOUT + iip) << shft;
 565        return num;
 566}
 567
 568/**
 569 * calc_pnode_num_from_parent - calculate pnode number.
 570 * @c: UBIFS file-system description object
 571 * @parent: parent nnode
 572 * @iip: index in parent
 573 *
 574 * The pnode number is a number that uniquely identifies a pnode and can be used
 575 * easily to traverse the tree from the root to that pnode.
 576 *
 577 * This function calculates and returns the pnode number based on the parent's
 578 * nnode number and the index in parent.
 579 */
 580static int calc_pnode_num_from_parent(const struct ubifs_info *c,
 581                                      struct ubifs_nnode *parent, int iip)
 582{
 583        int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
 584
 585        for (i = 0; i < n; i++) {
 586                num <<= UBIFS_LPT_FANOUT_SHIFT;
 587                num |= pnum & (UBIFS_LPT_FANOUT - 1);
 588                pnum >>= UBIFS_LPT_FANOUT_SHIFT;
 589        }
 590        num <<= UBIFS_LPT_FANOUT_SHIFT;
 591        num |= iip;
 592        return num;
 593}
 594
 595/**
 596 * ubifs_create_dflt_lpt - create default LPT.
 597 * @c: UBIFS file-system description object
 598 * @main_lebs: number of main area LEBs is passed and returned here
 599 * @lpt_first: LEB number of first LPT LEB
 600 * @lpt_lebs: number of LEBs for LPT is passed and returned here
 601 * @big_lpt: use big LPT model is passed and returned here
 602 *
 603 * This function returns %0 on success and a negative error code on failure.
 604 */
 605int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
 606                          int *lpt_lebs, int *big_lpt)
 607{
 608        int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
 609        int blnum, boffs, bsz, bcnt;
 610        struct ubifs_pnode *pnode = NULL;
 611        struct ubifs_nnode *nnode = NULL;
 612        void *buf = NULL, *p;
 613        struct ubifs_lpt_lprops *ltab = NULL;
 614        int *lsave = NULL;
 615
 616        err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
 617        if (err)
 618                return err;
 619        *lpt_lebs = c->lpt_lebs;
 620
 621        /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
 622        c->lpt_first = lpt_first;
 623        /* Needed by 'set_ltab()' */
 624        c->lpt_last = lpt_first + c->lpt_lebs - 1;
 625        /* Needed by 'ubifs_pack_lsave()' */
 626        c->main_first = c->leb_cnt - *main_lebs;
 627
 628        lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
 629        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
 630        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
 631        buf = vmalloc(c->leb_size);
 632        ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
 633        if (!pnode || !nnode || !buf || !ltab || !lsave) {
 634                err = -ENOMEM;
 635                goto out;
 636        }
 637
 638        ubifs_assert(!c->ltab);
 639        c->ltab = ltab; /* Needed by set_ltab */
 640
 641        /* Initialize LPT's own lprops */
 642        for (i = 0; i < c->lpt_lebs; i++) {
 643                ltab[i].free = c->leb_size;
 644                ltab[i].dirty = 0;
 645                ltab[i].tgc = 0;
 646                ltab[i].cmt = 0;
 647        }
 648
 649        lnum = lpt_first;
 650        p = buf;
 651        /* Number of leaf nodes (pnodes) */
 652        cnt = c->pnode_cnt;
 653
 654        /*
 655         * The first pnode contains the LEB properties for the LEBs that contain
 656         * the root inode node and the root index node of the index tree.
 657         */
 658        node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
 659        iopos = ALIGN(node_sz, c->min_io_size);
 660        pnode->lprops[0].free = c->leb_size - iopos;
 661        pnode->lprops[0].dirty = iopos - node_sz;
 662        pnode->lprops[0].flags = LPROPS_INDEX;
 663
 664        node_sz = UBIFS_INO_NODE_SZ;
 665        iopos = ALIGN(node_sz, c->min_io_size);
 666        pnode->lprops[1].free = c->leb_size - iopos;
 667        pnode->lprops[1].dirty = iopos - node_sz;
 668
 669        for (i = 2; i < UBIFS_LPT_FANOUT; i++)
 670                pnode->lprops[i].free = c->leb_size;
 671
 672        /* Add first pnode */
 673        ubifs_pack_pnode(c, p, pnode);
 674        p += c->pnode_sz;
 675        len = c->pnode_sz;
 676        pnode->num += 1;
 677
 678        /* Reset pnode values for remaining pnodes */
 679        pnode->lprops[0].free = c->leb_size;
 680        pnode->lprops[0].dirty = 0;
 681        pnode->lprops[0].flags = 0;
 682
 683        pnode->lprops[1].free = c->leb_size;
 684        pnode->lprops[1].dirty = 0;
 685
 686        /*
 687         * To calculate the internal node branches, we keep information about
 688         * the level below.
 689         */
 690        blnum = lnum; /* LEB number of level below */
 691        boffs = 0; /* Offset of level below */
 692        bcnt = cnt; /* Number of nodes in level below */
 693        bsz = c->pnode_sz; /* Size of nodes in level below */
 694
 695        /* Add all remaining pnodes */
 696        for (i = 1; i < cnt; i++) {
 697                if (len + c->pnode_sz > c->leb_size) {
 698                        alen = ALIGN(len, c->min_io_size);
 699                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 700                        memset(p, 0xff, alen - len);
 701                        err = ubifs_leb_change(c, lnum++, buf, alen);
 702                        if (err)
 703                                goto out;
 704                        p = buf;
 705                        len = 0;
 706                }
 707                ubifs_pack_pnode(c, p, pnode);
 708                p += c->pnode_sz;
 709                len += c->pnode_sz;
 710                /*
 711                 * pnodes are simply numbered left to right starting at zero,
 712                 * which means the pnode number can be used easily to traverse
 713                 * down the tree to the corresponding pnode.
 714                 */
 715                pnode->num += 1;
 716        }
 717
 718        row = 0;
 719        for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
 720                row += 1;
 721        /* Add all nnodes, one level at a time */
 722        while (1) {
 723                /* Number of internal nodes (nnodes) at next level */
 724                cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
 725                for (i = 0; i < cnt; i++) {
 726                        if (len + c->nnode_sz > c->leb_size) {
 727                                alen = ALIGN(len, c->min_io_size);
 728                                set_ltab(c, lnum, c->leb_size - alen,
 729                                            alen - len);
 730                                memset(p, 0xff, alen - len);
 731                                err = ubifs_leb_change(c, lnum++, buf, alen);
 732                                if (err)
 733                                        goto out;
 734                                p = buf;
 735                                len = 0;
 736                        }
 737                        /* Only 1 nnode at this level, so it is the root */
 738                        if (cnt == 1) {
 739                                c->lpt_lnum = lnum;
 740                                c->lpt_offs = len;
 741                        }
 742                        /* Set branches to the level below */
 743                        for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
 744                                if (bcnt) {
 745                                        if (boffs + bsz > c->leb_size) {
 746                                                blnum += 1;
 747                                                boffs = 0;
 748                                        }
 749                                        nnode->nbranch[j].lnum = blnum;
 750                                        nnode->nbranch[j].offs = boffs;
 751                                        boffs += bsz;
 752                                        bcnt--;
 753                                } else {
 754                                        nnode->nbranch[j].lnum = 0;
 755                                        nnode->nbranch[j].offs = 0;
 756                                }
 757                        }
 758                        nnode->num = calc_nnode_num(row, i);
 759                        ubifs_pack_nnode(c, p, nnode);
 760                        p += c->nnode_sz;
 761                        len += c->nnode_sz;
 762                }
 763                /* Only 1 nnode at this level, so it is the root */
 764                if (cnt == 1)
 765                        break;
 766                /* Update the information about the level below */
 767                bcnt = cnt;
 768                bsz = c->nnode_sz;
 769                row -= 1;
 770        }
 771
 772        if (*big_lpt) {
 773                /* Need to add LPT's save table */
 774                if (len + c->lsave_sz > c->leb_size) {
 775                        alen = ALIGN(len, c->min_io_size);
 776                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 777                        memset(p, 0xff, alen - len);
 778                        err = ubifs_leb_change(c, lnum++, buf, alen);
 779                        if (err)
 780                                goto out;
 781                        p = buf;
 782                        len = 0;
 783                }
 784
 785                c->lsave_lnum = lnum;
 786                c->lsave_offs = len;
 787
 788                for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
 789                        lsave[i] = c->main_first + i;
 790                for (; i < c->lsave_cnt; i++)
 791                        lsave[i] = c->main_first;
 792
 793                ubifs_pack_lsave(c, p, lsave);
 794                p += c->lsave_sz;
 795                len += c->lsave_sz;
 796        }
 797
 798        /* Need to add LPT's own LEB properties table */
 799        if (len + c->ltab_sz > c->leb_size) {
 800                alen = ALIGN(len, c->min_io_size);
 801                set_ltab(c, lnum, c->leb_size - alen, alen - len);
 802                memset(p, 0xff, alen - len);
 803                err = ubifs_leb_change(c, lnum++, buf, alen);
 804                if (err)
 805                        goto out;
 806                p = buf;
 807                len = 0;
 808        }
 809
 810        c->ltab_lnum = lnum;
 811        c->ltab_offs = len;
 812
 813        /* Update ltab before packing it */
 814        len += c->ltab_sz;
 815        alen = ALIGN(len, c->min_io_size);
 816        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 817
 818        ubifs_pack_ltab(c, p, ltab);
 819        p += c->ltab_sz;
 820
 821        /* Write remaining buffer */
 822        memset(p, 0xff, alen - len);
 823        err = ubifs_leb_change(c, lnum, buf, alen);
 824        if (err)
 825                goto out;
 826
 827        c->nhead_lnum = lnum;
 828        c->nhead_offs = ALIGN(len, c->min_io_size);
 829
 830        dbg_lp("space_bits %d", c->space_bits);
 831        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
 832        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
 833        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
 834        dbg_lp("pcnt_bits %d", c->pcnt_bits);
 835        dbg_lp("lnum_bits %d", c->lnum_bits);
 836        dbg_lp("pnode_sz %d", c->pnode_sz);
 837        dbg_lp("nnode_sz %d", c->nnode_sz);
 838        dbg_lp("ltab_sz %d", c->ltab_sz);
 839        dbg_lp("lsave_sz %d", c->lsave_sz);
 840        dbg_lp("lsave_cnt %d", c->lsave_cnt);
 841        dbg_lp("lpt_hght %d", c->lpt_hght);
 842        dbg_lp("big_lpt %d", c->big_lpt);
 843        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 844        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 845        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 846        if (c->big_lpt)
 847                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 848out:
 849        c->ltab = NULL;
 850        kfree(lsave);
 851        vfree(ltab);
 852        vfree(buf);
 853        kfree(nnode);
 854        kfree(pnode);
 855        return err;
 856}
 857
 858/**
 859 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
 860 * @c: UBIFS file-system description object
 861 * @pnode: pnode
 862 *
 863 * When a pnode is loaded into memory, the LEB properties it contains are added,
 864 * by this function, to the LEB category lists and heaps.
 865 */
 866static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
 867{
 868        int i;
 869
 870        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 871                int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
 872                int lnum = pnode->lprops[i].lnum;
 873
 874                if (!lnum)
 875                        return;
 876                ubifs_add_to_cat(c, &pnode->lprops[i], cat);
 877        }
 878}
 879
 880/**
 881 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
 882 * @c: UBIFS file-system description object
 883 * @old_pnode: pnode copied
 884 * @new_pnode: pnode copy
 885 *
 886 * During commit it is sometimes necessary to copy a pnode
 887 * (see dirty_cow_pnode).  When that happens, references in
 888 * category lists and heaps must be replaced.  This function does that.
 889 */
 890static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
 891                         struct ubifs_pnode *new_pnode)
 892{
 893        int i;
 894
 895        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 896                if (!new_pnode->lprops[i].lnum)
 897                        return;
 898                ubifs_replace_cat(c, &old_pnode->lprops[i],
 899                                  &new_pnode->lprops[i]);
 900        }
 901}
 902
 903/**
 904 * check_lpt_crc - check LPT node crc is correct.
 905 * @c: UBIFS file-system description object
 906 * @buf: buffer containing node
 907 * @len: length of node
 908 *
 909 * This function returns %0 on success and a negative error code on failure.
 910 */
 911static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
 912{
 913        int pos = 0;
 914        uint8_t *addr = buf;
 915        uint16_t crc, calc_crc;
 916
 917        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
 918        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 919                         len - UBIFS_LPT_CRC_BYTES);
 920        if (crc != calc_crc) {
 921                ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
 922                          crc, calc_crc);
 923                dump_stack();
 924                return -EINVAL;
 925        }
 926        return 0;
 927}
 928
 929/**
 930 * check_lpt_type - check LPT node type is correct.
 931 * @c: UBIFS file-system description object
 932 * @addr: address of type bit field is passed and returned updated here
 933 * @pos: position of type bit field is passed and returned updated here
 934 * @type: expected type
 935 *
 936 * This function returns %0 on success and a negative error code on failure.
 937 */
 938static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
 939                          int *pos, int type)
 940{
 941        int node_type;
 942
 943        node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
 944        if (node_type != type) {
 945                ubifs_err(c, "invalid type (%d) in LPT node type %d",
 946                          node_type, type);
 947                dump_stack();
 948                return -EINVAL;
 949        }
 950        return 0;
 951}
 952
 953/**
 954 * unpack_pnode - unpack a pnode.
 955 * @c: UBIFS file-system description object
 956 * @buf: buffer containing packed pnode to unpack
 957 * @pnode: pnode structure to fill
 958 *
 959 * This function returns %0 on success and a negative error code on failure.
 960 */
 961static int unpack_pnode(const struct ubifs_info *c, void *buf,
 962                        struct ubifs_pnode *pnode)
 963{
 964        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 965        int i, pos = 0, err;
 966
 967        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
 968        if (err)
 969                return err;
 970        if (c->big_lpt)
 971                pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
 972        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 973                struct ubifs_lprops * const lprops = &pnode->lprops[i];
 974
 975                lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 976                lprops->free <<= 3;
 977                lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 978                lprops->dirty <<= 3;
 979
 980                if (ubifs_unpack_bits(&addr, &pos, 1))
 981                        lprops->flags = LPROPS_INDEX;
 982                else
 983                        lprops->flags = 0;
 984                lprops->flags |= ubifs_categorize_lprops(c, lprops);
 985        }
 986        err = check_lpt_crc(c, buf, c->pnode_sz);
 987        return err;
 988}
 989
 990/**
 991 * ubifs_unpack_nnode - unpack a nnode.
 992 * @c: UBIFS file-system description object
 993 * @buf: buffer containing packed nnode to unpack
 994 * @nnode: nnode structure to fill
 995 *
 996 * This function returns %0 on success and a negative error code on failure.
 997 */
 998int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
 999                       struct ubifs_nnode *nnode)
1000{
1001        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1002        int i, pos = 0, err;
1003
1004        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1005        if (err)
1006                return err;
1007        if (c->big_lpt)
1008                nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1009        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1010                int lnum;
1011
1012                lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1013                       c->lpt_first;
1014                if (lnum == c->lpt_last + 1)
1015                        lnum = 0;
1016                nnode->nbranch[i].lnum = lnum;
1017                nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1018                                                     c->lpt_offs_bits);
1019        }
1020        err = check_lpt_crc(c, buf, c->nnode_sz);
1021        return err;
1022}
1023
1024/**
1025 * unpack_ltab - unpack the LPT's own lprops table.
1026 * @c: UBIFS file-system description object
1027 * @buf: buffer from which to unpack
1028 *
1029 * This function returns %0 on success and a negative error code on failure.
1030 */
1031static int unpack_ltab(const struct ubifs_info *c, void *buf)
1032{
1033        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1034        int i, pos = 0, err;
1035
1036        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1037        if (err)
1038                return err;
1039        for (i = 0; i < c->lpt_lebs; i++) {
1040                int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1041                int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1042
1043                if (free < 0 || free > c->leb_size || dirty < 0 ||
1044                    dirty > c->leb_size || free + dirty > c->leb_size)
1045                        return -EINVAL;
1046
1047                c->ltab[i].free = free;
1048                c->ltab[i].dirty = dirty;
1049                c->ltab[i].tgc = 0;
1050                c->ltab[i].cmt = 0;
1051        }
1052        err = check_lpt_crc(c, buf, c->ltab_sz);
1053        return err;
1054}
1055
1056#ifndef __UBOOT__
1057/**
1058 * unpack_lsave - unpack the LPT's save table.
1059 * @c: UBIFS file-system description object
1060 * @buf: buffer from which to unpack
1061 *
1062 * This function returns %0 on success and a negative error code on failure.
1063 */
1064static int unpack_lsave(const struct ubifs_info *c, void *buf)
1065{
1066        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1067        int i, pos = 0, err;
1068
1069        err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1070        if (err)
1071                return err;
1072        for (i = 0; i < c->lsave_cnt; i++) {
1073                int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1074
1075                if (lnum < c->main_first || lnum >= c->leb_cnt)
1076                        return -EINVAL;
1077                c->lsave[i] = lnum;
1078        }
1079        err = check_lpt_crc(c, buf, c->lsave_sz);
1080        return err;
1081}
1082#endif
1083
1084/**
1085 * validate_nnode - validate a nnode.
1086 * @c: UBIFS file-system description object
1087 * @nnode: nnode to validate
1088 * @parent: parent nnode (or NULL for the root nnode)
1089 * @iip: index in parent
1090 *
1091 * This function returns %0 on success and a negative error code on failure.
1092 */
1093static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1094                          struct ubifs_nnode *parent, int iip)
1095{
1096        int i, lvl, max_offs;
1097
1098        if (c->big_lpt) {
1099                int num = calc_nnode_num_from_parent(c, parent, iip);
1100
1101                if (nnode->num != num)
1102                        return -EINVAL;
1103        }
1104        lvl = parent ? parent->level - 1 : c->lpt_hght;
1105        if (lvl < 1)
1106                return -EINVAL;
1107        if (lvl == 1)
1108                max_offs = c->leb_size - c->pnode_sz;
1109        else
1110                max_offs = c->leb_size - c->nnode_sz;
1111        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1112                int lnum = nnode->nbranch[i].lnum;
1113                int offs = nnode->nbranch[i].offs;
1114
1115                if (lnum == 0) {
1116                        if (offs != 0)
1117                                return -EINVAL;
1118                        continue;
1119                }
1120                if (lnum < c->lpt_first || lnum > c->lpt_last)
1121                        return -EINVAL;
1122                if (offs < 0 || offs > max_offs)
1123                        return -EINVAL;
1124        }
1125        return 0;
1126}
1127
1128/**
1129 * validate_pnode - validate a pnode.
1130 * @c: UBIFS file-system description object
1131 * @pnode: pnode to validate
1132 * @parent: parent nnode
1133 * @iip: index in parent
1134 *
1135 * This function returns %0 on success and a negative error code on failure.
1136 */
1137static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1138                          struct ubifs_nnode *parent, int iip)
1139{
1140        int i;
1141
1142        if (c->big_lpt) {
1143                int num = calc_pnode_num_from_parent(c, parent, iip);
1144
1145                if (pnode->num != num)
1146                        return -EINVAL;
1147        }
1148        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1149                int free = pnode->lprops[i].free;
1150                int dirty = pnode->lprops[i].dirty;
1151
1152                if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1153                    (free & 7))
1154                        return -EINVAL;
1155                if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1156                        return -EINVAL;
1157                if (dirty + free > c->leb_size)
1158                        return -EINVAL;
1159        }
1160        return 0;
1161}
1162
1163/**
1164 * set_pnode_lnum - set LEB numbers on a pnode.
1165 * @c: UBIFS file-system description object
1166 * @pnode: pnode to update
1167 *
1168 * This function calculates the LEB numbers for the LEB properties it contains
1169 * based on the pnode number.
1170 */
1171static void set_pnode_lnum(const struct ubifs_info *c,
1172                           struct ubifs_pnode *pnode)
1173{
1174        int i, lnum;
1175
1176        lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1177        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1178                if (lnum >= c->leb_cnt)
1179                        return;
1180                pnode->lprops[i].lnum = lnum++;
1181        }
1182}
1183
1184/**
1185 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1186 * @c: UBIFS file-system description object
1187 * @parent: parent nnode (or NULL for the root)
1188 * @iip: index in parent
1189 *
1190 * This function returns %0 on success and a negative error code on failure.
1191 */
1192int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1193{
1194        struct ubifs_nbranch *branch = NULL;
1195        struct ubifs_nnode *nnode = NULL;
1196        void *buf = c->lpt_nod_buf;
1197        int err, lnum, offs;
1198
1199        if (parent) {
1200                branch = &parent->nbranch[iip];
1201                lnum = branch->lnum;
1202                offs = branch->offs;
1203        } else {
1204                lnum = c->lpt_lnum;
1205                offs = c->lpt_offs;
1206        }
1207        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1208        if (!nnode) {
1209                err = -ENOMEM;
1210                goto out;
1211        }
1212        if (lnum == 0) {
1213                /*
1214                 * This nnode was not written which just means that the LEB
1215                 * properties in the subtree below it describe empty LEBs. We
1216                 * make the nnode as though we had read it, which in fact means
1217                 * doing almost nothing.
1218                 */
1219                if (c->big_lpt)
1220                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1221        } else {
1222                err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1223                if (err)
1224                        goto out;
1225                err = ubifs_unpack_nnode(c, buf, nnode);
1226                if (err)
1227                        goto out;
1228        }
1229        err = validate_nnode(c, nnode, parent, iip);
1230        if (err)
1231                goto out;
1232        if (!c->big_lpt)
1233                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1234        if (parent) {
1235                branch->nnode = nnode;
1236                nnode->level = parent->level - 1;
1237        } else {
1238                c->nroot = nnode;
1239                nnode->level = c->lpt_hght;
1240        }
1241        nnode->parent = parent;
1242        nnode->iip = iip;
1243        return 0;
1244
1245out:
1246        ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1247        dump_stack();
1248        kfree(nnode);
1249        return err;
1250}
1251
1252/**
1253 * read_pnode - read a pnode from flash and link it to the tree in memory.
1254 * @c: UBIFS file-system description object
1255 * @parent: parent nnode
1256 * @iip: index in parent
1257 *
1258 * This function returns %0 on success and a negative error code on failure.
1259 */
1260static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1261{
1262        struct ubifs_nbranch *branch;
1263        struct ubifs_pnode *pnode = NULL;
1264        void *buf = c->lpt_nod_buf;
1265        int err, lnum, offs;
1266
1267        branch = &parent->nbranch[iip];
1268        lnum = branch->lnum;
1269        offs = branch->offs;
1270        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1271        if (!pnode)
1272                return -ENOMEM;
1273
1274        if (lnum == 0) {
1275                /*
1276                 * This pnode was not written which just means that the LEB
1277                 * properties in it describe empty LEBs. We make the pnode as
1278                 * though we had read it.
1279                 */
1280                int i;
1281
1282                if (c->big_lpt)
1283                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1284                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1285                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1286
1287                        lprops->free = c->leb_size;
1288                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1289                }
1290        } else {
1291                err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1292                if (err)
1293                        goto out;
1294                err = unpack_pnode(c, buf, pnode);
1295                if (err)
1296                        goto out;
1297        }
1298        err = validate_pnode(c, pnode, parent, iip);
1299        if (err)
1300                goto out;
1301        if (!c->big_lpt)
1302                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1303        branch->pnode = pnode;
1304        pnode->parent = parent;
1305        pnode->iip = iip;
1306        set_pnode_lnum(c, pnode);
1307        c->pnodes_have += 1;
1308        return 0;
1309
1310out:
1311        ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1312        ubifs_dump_pnode(c, pnode, parent, iip);
1313        dump_stack();
1314        ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1315        kfree(pnode);
1316        return err;
1317}
1318
1319/**
1320 * read_ltab - read LPT's own lprops table.
1321 * @c: UBIFS file-system description object
1322 *
1323 * This function returns %0 on success and a negative error code on failure.
1324 */
1325static int read_ltab(struct ubifs_info *c)
1326{
1327        int err;
1328        void *buf;
1329
1330        buf = vmalloc(c->ltab_sz);
1331        if (!buf)
1332                return -ENOMEM;
1333        err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1334        if (err)
1335                goto out;
1336        err = unpack_ltab(c, buf);
1337out:
1338        vfree(buf);
1339        return err;
1340}
1341
1342#ifndef __UBOOT__
1343/**
1344 * read_lsave - read LPT's save table.
1345 * @c: UBIFS file-system description object
1346 *
1347 * This function returns %0 on success and a negative error code on failure.
1348 */
1349static int read_lsave(struct ubifs_info *c)
1350{
1351        int err, i;
1352        void *buf;
1353
1354        buf = vmalloc(c->lsave_sz);
1355        if (!buf)
1356                return -ENOMEM;
1357        err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1358                             c->lsave_sz, 1);
1359        if (err)
1360                goto out;
1361        err = unpack_lsave(c, buf);
1362        if (err)
1363                goto out;
1364        for (i = 0; i < c->lsave_cnt; i++) {
1365                int lnum = c->lsave[i];
1366                struct ubifs_lprops *lprops;
1367
1368                /*
1369                 * Due to automatic resizing, the values in the lsave table
1370                 * could be beyond the volume size - just ignore them.
1371                 */
1372                if (lnum >= c->leb_cnt)
1373                        continue;
1374                lprops = ubifs_lpt_lookup(c, lnum);
1375                if (IS_ERR(lprops)) {
1376                        err = PTR_ERR(lprops);
1377                        goto out;
1378                }
1379        }
1380out:
1381        vfree(buf);
1382        return err;
1383}
1384#endif
1385
1386/**
1387 * ubifs_get_nnode - get a nnode.
1388 * @c: UBIFS file-system description object
1389 * @parent: parent nnode (or NULL for the root)
1390 * @iip: index in parent
1391 *
1392 * This function returns a pointer to the nnode on success or a negative error
1393 * code on failure.
1394 */
1395struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1396                                    struct ubifs_nnode *parent, int iip)
1397{
1398        struct ubifs_nbranch *branch;
1399        struct ubifs_nnode *nnode;
1400        int err;
1401
1402        branch = &parent->nbranch[iip];
1403        nnode = branch->nnode;
1404        if (nnode)
1405                return nnode;
1406        err = ubifs_read_nnode(c, parent, iip);
1407        if (err)
1408                return ERR_PTR(err);
1409        return branch->nnode;
1410}
1411
1412/**
1413 * ubifs_get_pnode - get a pnode.
1414 * @c: UBIFS file-system description object
1415 * @parent: parent nnode
1416 * @iip: index in parent
1417 *
1418 * This function returns a pointer to the pnode on success or a negative error
1419 * code on failure.
1420 */
1421struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1422                                    struct ubifs_nnode *parent, int iip)
1423{
1424        struct ubifs_nbranch *branch;
1425        struct ubifs_pnode *pnode;
1426        int err;
1427
1428        branch = &parent->nbranch[iip];
1429        pnode = branch->pnode;
1430        if (pnode)
1431                return pnode;
1432        err = read_pnode(c, parent, iip);
1433        if (err)
1434                return ERR_PTR(err);
1435        update_cats(c, branch->pnode);
1436        return branch->pnode;
1437}
1438
1439/**
1440 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1441 * @c: UBIFS file-system description object
1442 * @lnum: LEB number to lookup
1443 *
1444 * This function returns a pointer to the LEB properties on success or a
1445 * negative error code on failure.
1446 */
1447struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1448{
1449        int err, i, h, iip, shft;
1450        struct ubifs_nnode *nnode;
1451        struct ubifs_pnode *pnode;
1452
1453        if (!c->nroot) {
1454                err = ubifs_read_nnode(c, NULL, 0);
1455                if (err)
1456                        return ERR_PTR(err);
1457        }
1458        nnode = c->nroot;
1459        i = lnum - c->main_first;
1460        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1461        for (h = 1; h < c->lpt_hght; h++) {
1462                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1463                shft -= UBIFS_LPT_FANOUT_SHIFT;
1464                nnode = ubifs_get_nnode(c, nnode, iip);
1465                if (IS_ERR(nnode))
1466                        return ERR_CAST(nnode);
1467        }
1468        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1469        pnode = ubifs_get_pnode(c, nnode, iip);
1470        if (IS_ERR(pnode))
1471                return ERR_CAST(pnode);
1472        iip = (i & (UBIFS_LPT_FANOUT - 1));
1473        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1474               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1475               pnode->lprops[iip].flags);
1476        return &pnode->lprops[iip];
1477}
1478
1479/**
1480 * dirty_cow_nnode - ensure a nnode is not being committed.
1481 * @c: UBIFS file-system description object
1482 * @nnode: nnode to check
1483 *
1484 * Returns dirtied nnode on success or negative error code on failure.
1485 */
1486static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1487                                           struct ubifs_nnode *nnode)
1488{
1489        struct ubifs_nnode *n;
1490        int i;
1491
1492        if (!test_bit(COW_CNODE, &nnode->flags)) {
1493                /* nnode is not being committed */
1494                if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1495                        c->dirty_nn_cnt += 1;
1496                        ubifs_add_nnode_dirt(c, nnode);
1497                }
1498                return nnode;
1499        }
1500
1501        /* nnode is being committed, so copy it */
1502        n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1503        if (unlikely(!n))
1504                return ERR_PTR(-ENOMEM);
1505
1506        memcpy(n, nnode, sizeof(struct ubifs_nnode));
1507        n->cnext = NULL;
1508        __set_bit(DIRTY_CNODE, &n->flags);
1509        __clear_bit(COW_CNODE, &n->flags);
1510
1511        /* The children now have new parent */
1512        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1513                struct ubifs_nbranch *branch = &n->nbranch[i];
1514
1515                if (branch->cnode)
1516                        branch->cnode->parent = n;
1517        }
1518
1519        ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1520        __set_bit(OBSOLETE_CNODE, &nnode->flags);
1521
1522        c->dirty_nn_cnt += 1;
1523        ubifs_add_nnode_dirt(c, nnode);
1524        if (nnode->parent)
1525                nnode->parent->nbranch[n->iip].nnode = n;
1526        else
1527                c->nroot = n;
1528        return n;
1529}
1530
1531/**
1532 * dirty_cow_pnode - ensure a pnode is not being committed.
1533 * @c: UBIFS file-system description object
1534 * @pnode: pnode to check
1535 *
1536 * Returns dirtied pnode on success or negative error code on failure.
1537 */
1538static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1539                                           struct ubifs_pnode *pnode)
1540{
1541        struct ubifs_pnode *p;
1542
1543        if (!test_bit(COW_CNODE, &pnode->flags)) {
1544                /* pnode is not being committed */
1545                if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1546                        c->dirty_pn_cnt += 1;
1547                        add_pnode_dirt(c, pnode);
1548                }
1549                return pnode;
1550        }
1551
1552        /* pnode is being committed, so copy it */
1553        p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1554        if (unlikely(!p))
1555                return ERR_PTR(-ENOMEM);
1556
1557        memcpy(p, pnode, sizeof(struct ubifs_pnode));
1558        p->cnext = NULL;
1559        __set_bit(DIRTY_CNODE, &p->flags);
1560        __clear_bit(COW_CNODE, &p->flags);
1561        replace_cats(c, pnode, p);
1562
1563        ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1564        __set_bit(OBSOLETE_CNODE, &pnode->flags);
1565
1566        c->dirty_pn_cnt += 1;
1567        add_pnode_dirt(c, pnode);
1568        pnode->parent->nbranch[p->iip].pnode = p;
1569        return p;
1570}
1571
1572/**
1573 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1574 * @c: UBIFS file-system description object
1575 * @lnum: LEB number to lookup
1576 *
1577 * This function returns a pointer to the LEB properties on success or a
1578 * negative error code on failure.
1579 */
1580struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1581{
1582        int err, i, h, iip, shft;
1583        struct ubifs_nnode *nnode;
1584        struct ubifs_pnode *pnode;
1585
1586        if (!c->nroot) {
1587                err = ubifs_read_nnode(c, NULL, 0);
1588                if (err)
1589                        return ERR_PTR(err);
1590        }
1591        nnode = c->nroot;
1592        nnode = dirty_cow_nnode(c, nnode);
1593        if (IS_ERR(nnode))
1594                return ERR_CAST(nnode);
1595        i = lnum - c->main_first;
1596        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1597        for (h = 1; h < c->lpt_hght; h++) {
1598                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1599                shft -= UBIFS_LPT_FANOUT_SHIFT;
1600                nnode = ubifs_get_nnode(c, nnode, iip);
1601                if (IS_ERR(nnode))
1602                        return ERR_CAST(nnode);
1603                nnode = dirty_cow_nnode(c, nnode);
1604                if (IS_ERR(nnode))
1605                        return ERR_CAST(nnode);
1606        }
1607        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1608        pnode = ubifs_get_pnode(c, nnode, iip);
1609        if (IS_ERR(pnode))
1610                return ERR_CAST(pnode);
1611        pnode = dirty_cow_pnode(c, pnode);
1612        if (IS_ERR(pnode))
1613                return ERR_CAST(pnode);
1614        iip = (i & (UBIFS_LPT_FANOUT - 1));
1615        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1616               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1617               pnode->lprops[iip].flags);
1618        ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1619        return &pnode->lprops[iip];
1620}
1621
1622/**
1623 * lpt_init_rd - initialize the LPT for reading.
1624 * @c: UBIFS file-system description object
1625 *
1626 * This function returns %0 on success and a negative error code on failure.
1627 */
1628static int lpt_init_rd(struct ubifs_info *c)
1629{
1630        int err, i;
1631
1632        c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1633        if (!c->ltab)
1634                return -ENOMEM;
1635
1636        i = max_t(int, c->nnode_sz, c->pnode_sz);
1637        c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1638        if (!c->lpt_nod_buf)
1639                return -ENOMEM;
1640
1641        for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1642                c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1643                                             GFP_KERNEL);
1644                if (!c->lpt_heap[i].arr)
1645                        return -ENOMEM;
1646                c->lpt_heap[i].cnt = 0;
1647                c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1648        }
1649
1650        c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1651        if (!c->dirty_idx.arr)
1652                return -ENOMEM;
1653        c->dirty_idx.cnt = 0;
1654        c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1655
1656        err = read_ltab(c);
1657        if (err)
1658                return err;
1659
1660        dbg_lp("space_bits %d", c->space_bits);
1661        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1662        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1663        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1664        dbg_lp("pcnt_bits %d", c->pcnt_bits);
1665        dbg_lp("lnum_bits %d", c->lnum_bits);
1666        dbg_lp("pnode_sz %d", c->pnode_sz);
1667        dbg_lp("nnode_sz %d", c->nnode_sz);
1668        dbg_lp("ltab_sz %d", c->ltab_sz);
1669        dbg_lp("lsave_sz %d", c->lsave_sz);
1670        dbg_lp("lsave_cnt %d", c->lsave_cnt);
1671        dbg_lp("lpt_hght %d", c->lpt_hght);
1672        dbg_lp("big_lpt %d", c->big_lpt);
1673        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1674        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1675        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1676        if (c->big_lpt)
1677                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1678
1679        return 0;
1680}
1681
1682#ifndef __UBOOT__
1683/**
1684 * lpt_init_wr - initialize the LPT for writing.
1685 * @c: UBIFS file-system description object
1686 *
1687 * 'lpt_init_rd()' must have been called already.
1688 *
1689 * This function returns %0 on success and a negative error code on failure.
1690 */
1691static int lpt_init_wr(struct ubifs_info *c)
1692{
1693        int err, i;
1694
1695        c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1696        if (!c->ltab_cmt)
1697                return -ENOMEM;
1698
1699        c->lpt_buf = vmalloc(c->leb_size);
1700        if (!c->lpt_buf)
1701                return -ENOMEM;
1702
1703        if (c->big_lpt) {
1704                c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1705                if (!c->lsave)
1706                        return -ENOMEM;
1707                err = read_lsave(c);
1708                if (err)
1709                        return err;
1710        }
1711
1712        for (i = 0; i < c->lpt_lebs; i++)
1713                if (c->ltab[i].free == c->leb_size) {
1714                        err = ubifs_leb_unmap(c, i + c->lpt_first);
1715                        if (err)
1716                                return err;
1717                }
1718
1719        return 0;
1720}
1721#endif
1722
1723/**
1724 * ubifs_lpt_init - initialize the LPT.
1725 * @c: UBIFS file-system description object
1726 * @rd: whether to initialize lpt for reading
1727 * @wr: whether to initialize lpt for writing
1728 *
1729 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1730 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1731 * true.
1732 *
1733 * This function returns %0 on success and a negative error code on failure.
1734 */
1735int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1736{
1737        int err;
1738
1739        if (rd) {
1740                err = lpt_init_rd(c);
1741                if (err)
1742                        goto out_err;
1743        }
1744
1745#ifndef __UBOOT__
1746        if (wr) {
1747                err = lpt_init_wr(c);
1748                if (err)
1749                        goto out_err;
1750        }
1751#endif
1752
1753        return 0;
1754
1755out_err:
1756#ifndef __UBOOT__
1757        if (wr)
1758                ubifs_lpt_free(c, 1);
1759#endif
1760        if (rd)
1761                ubifs_lpt_free(c, 0);
1762        return err;
1763}
1764
1765/**
1766 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1767 * @nnode: where to keep a nnode
1768 * @pnode: where to keep a pnode
1769 * @cnode: where to keep a cnode
1770 * @in_tree: is the node in the tree in memory
1771 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1772 * the tree
1773 * @ptr.pnode: ditto for pnode
1774 * @ptr.cnode: ditto for cnode
1775 */
1776struct lpt_scan_node {
1777        union {
1778                struct ubifs_nnode nnode;
1779                struct ubifs_pnode pnode;
1780                struct ubifs_cnode cnode;
1781        };
1782        int in_tree;
1783        union {
1784                struct ubifs_nnode *nnode;
1785                struct ubifs_pnode *pnode;
1786                struct ubifs_cnode *cnode;
1787        } ptr;
1788};
1789
1790/**
1791 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1792 * @c: the UBIFS file-system description object
1793 * @path: where to put the nnode
1794 * @parent: parent of the nnode
1795 * @iip: index in parent of the nnode
1796 *
1797 * This function returns a pointer to the nnode on success or a negative error
1798 * code on failure.
1799 */
1800static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1801                                          struct lpt_scan_node *path,
1802                                          struct ubifs_nnode *parent, int iip)
1803{
1804        struct ubifs_nbranch *branch;
1805        struct ubifs_nnode *nnode;
1806        void *buf = c->lpt_nod_buf;
1807        int err;
1808
1809        branch = &parent->nbranch[iip];
1810        nnode = branch->nnode;
1811        if (nnode) {
1812                path->in_tree = 1;
1813                path->ptr.nnode = nnode;
1814                return nnode;
1815        }
1816        nnode = &path->nnode;
1817        path->in_tree = 0;
1818        path->ptr.nnode = nnode;
1819        memset(nnode, 0, sizeof(struct ubifs_nnode));
1820        if (branch->lnum == 0) {
1821                /*
1822                 * This nnode was not written which just means that the LEB
1823                 * properties in the subtree below it describe empty LEBs. We
1824                 * make the nnode as though we had read it, which in fact means
1825                 * doing almost nothing.
1826                 */
1827                if (c->big_lpt)
1828                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1829        } else {
1830                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1831                                     c->nnode_sz, 1);
1832                if (err)
1833                        return ERR_PTR(err);
1834                err = ubifs_unpack_nnode(c, buf, nnode);
1835                if (err)
1836                        return ERR_PTR(err);
1837        }
1838        err = validate_nnode(c, nnode, parent, iip);
1839        if (err)
1840                return ERR_PTR(err);
1841        if (!c->big_lpt)
1842                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1843        nnode->level = parent->level - 1;
1844        nnode->parent = parent;
1845        nnode->iip = iip;
1846        return nnode;
1847}
1848
1849/**
1850 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1851 * @c: the UBIFS file-system description object
1852 * @path: where to put the pnode
1853 * @parent: parent of the pnode
1854 * @iip: index in parent of the pnode
1855 *
1856 * This function returns a pointer to the pnode on success or a negative error
1857 * code on failure.
1858 */
1859static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1860                                          struct lpt_scan_node *path,
1861                                          struct ubifs_nnode *parent, int iip)
1862{
1863        struct ubifs_nbranch *branch;
1864        struct ubifs_pnode *pnode;
1865        void *buf = c->lpt_nod_buf;
1866        int err;
1867
1868        branch = &parent->nbranch[iip];
1869        pnode = branch->pnode;
1870        if (pnode) {
1871                path->in_tree = 1;
1872                path->ptr.pnode = pnode;
1873                return pnode;
1874        }
1875        pnode = &path->pnode;
1876        path->in_tree = 0;
1877        path->ptr.pnode = pnode;
1878        memset(pnode, 0, sizeof(struct ubifs_pnode));
1879        if (branch->lnum == 0) {
1880                /*
1881                 * This pnode was not written which just means that the LEB
1882                 * properties in it describe empty LEBs. We make the pnode as
1883                 * though we had read it.
1884                 */
1885                int i;
1886
1887                if (c->big_lpt)
1888                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1889                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1890                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1891
1892                        lprops->free = c->leb_size;
1893                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1894                }
1895        } else {
1896                ubifs_assert(branch->lnum >= c->lpt_first &&
1897                             branch->lnum <= c->lpt_last);
1898                ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1899                err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1900                                     c->pnode_sz, 1);
1901                if (err)
1902                        return ERR_PTR(err);
1903                err = unpack_pnode(c, buf, pnode);
1904                if (err)
1905                        return ERR_PTR(err);
1906        }
1907        err = validate_pnode(c, pnode, parent, iip);
1908        if (err)
1909                return ERR_PTR(err);
1910        if (!c->big_lpt)
1911                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1912        pnode->parent = parent;
1913        pnode->iip = iip;
1914        set_pnode_lnum(c, pnode);
1915        return pnode;
1916}
1917
1918/**
1919 * ubifs_lpt_scan_nolock - scan the LPT.
1920 * @c: the UBIFS file-system description object
1921 * @start_lnum: LEB number from which to start scanning
1922 * @end_lnum: LEB number at which to stop scanning
1923 * @scan_cb: callback function called for each lprops
1924 * @data: data to be passed to the callback function
1925 *
1926 * This function returns %0 on success and a negative error code on failure.
1927 */
1928int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1929                          ubifs_lpt_scan_callback scan_cb, void *data)
1930{
1931        int err = 0, i, h, iip, shft;
1932        struct ubifs_nnode *nnode;
1933        struct ubifs_pnode *pnode;
1934        struct lpt_scan_node *path;
1935
1936        if (start_lnum == -1) {
1937                start_lnum = end_lnum + 1;
1938                if (start_lnum >= c->leb_cnt)
1939                        start_lnum = c->main_first;
1940        }
1941
1942        ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1943        ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1944
1945        if (!c->nroot) {
1946                err = ubifs_read_nnode(c, NULL, 0);
1947                if (err)
1948                        return err;
1949        }
1950
1951        path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1952                       GFP_NOFS);
1953        if (!path)
1954                return -ENOMEM;
1955
1956        path[0].ptr.nnode = c->nroot;
1957        path[0].in_tree = 1;
1958again:
1959        /* Descend to the pnode containing start_lnum */
1960        nnode = c->nroot;
1961        i = start_lnum - c->main_first;
1962        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1963        for (h = 1; h < c->lpt_hght; h++) {
1964                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1965                shft -= UBIFS_LPT_FANOUT_SHIFT;
1966                nnode = scan_get_nnode(c, path + h, nnode, iip);
1967                if (IS_ERR(nnode)) {
1968                        err = PTR_ERR(nnode);
1969                        goto out;
1970                }
1971        }
1972        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1973        pnode = scan_get_pnode(c, path + h, nnode, iip);
1974        if (IS_ERR(pnode)) {
1975                err = PTR_ERR(pnode);
1976                goto out;
1977        }
1978        iip = (i & (UBIFS_LPT_FANOUT - 1));
1979
1980        /* Loop for each lprops */
1981        while (1) {
1982                struct ubifs_lprops *lprops = &pnode->lprops[iip];
1983                int ret, lnum = lprops->lnum;
1984
1985                ret = scan_cb(c, lprops, path[h].in_tree, data);
1986                if (ret < 0) {
1987                        err = ret;
1988                        goto out;
1989                }
1990                if (ret & LPT_SCAN_ADD) {
1991                        /* Add all the nodes in path to the tree in memory */
1992                        for (h = 1; h < c->lpt_hght; h++) {
1993                                const size_t sz = sizeof(struct ubifs_nnode);
1994                                struct ubifs_nnode *parent;
1995
1996                                if (path[h].in_tree)
1997                                        continue;
1998                                nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1999                                if (!nnode) {
2000                                        err = -ENOMEM;
2001                                        goto out;
2002                                }
2003                                parent = nnode->parent;
2004                                parent->nbranch[nnode->iip].nnode = nnode;
2005                                path[h].ptr.nnode = nnode;
2006                                path[h].in_tree = 1;
2007                                path[h + 1].cnode.parent = nnode;
2008                        }
2009                        if (path[h].in_tree)
2010                                ubifs_ensure_cat(c, lprops);
2011                        else {
2012                                const size_t sz = sizeof(struct ubifs_pnode);
2013                                struct ubifs_nnode *parent;
2014
2015                                pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2016                                if (!pnode) {
2017                                        err = -ENOMEM;
2018                                        goto out;
2019                                }
2020                                parent = pnode->parent;
2021                                parent->nbranch[pnode->iip].pnode = pnode;
2022                                path[h].ptr.pnode = pnode;
2023                                path[h].in_tree = 1;
2024                                update_cats(c, pnode);
2025                                c->pnodes_have += 1;
2026                        }
2027                        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2028                                                  c->nroot, 0, 0);
2029                        if (err)
2030                                goto out;
2031                        err = dbg_check_cats(c);
2032                        if (err)
2033                                goto out;
2034                }
2035                if (ret & LPT_SCAN_STOP) {
2036                        err = 0;
2037                        break;
2038                }
2039                /* Get the next lprops */
2040                if (lnum == end_lnum) {
2041                        /*
2042                         * We got to the end without finding what we were
2043                         * looking for
2044                         */
2045                        err = -ENOSPC;
2046                        goto out;
2047                }
2048                if (lnum + 1 >= c->leb_cnt) {
2049                        /* Wrap-around to the beginning */
2050                        start_lnum = c->main_first;
2051                        goto again;
2052                }
2053                if (iip + 1 < UBIFS_LPT_FANOUT) {
2054                        /* Next lprops is in the same pnode */
2055                        iip += 1;
2056                        continue;
2057                }
2058                /* We need to get the next pnode. Go up until we can go right */
2059                iip = pnode->iip;
2060                while (1) {
2061                        h -= 1;
2062                        ubifs_assert(h >= 0);
2063                        nnode = path[h].ptr.nnode;
2064                        if (iip + 1 < UBIFS_LPT_FANOUT)
2065                                break;
2066                        iip = nnode->iip;
2067                }
2068                /* Go right */
2069                iip += 1;
2070                /* Descend to the pnode */
2071                h += 1;
2072                for (; h < c->lpt_hght; h++) {
2073                        nnode = scan_get_nnode(c, path + h, nnode, iip);
2074                        if (IS_ERR(nnode)) {
2075                                err = PTR_ERR(nnode);
2076                                goto out;
2077                        }
2078                        iip = 0;
2079                }
2080                pnode = scan_get_pnode(c, path + h, nnode, iip);
2081                if (IS_ERR(pnode)) {
2082                        err = PTR_ERR(pnode);
2083                        goto out;
2084                }
2085                iip = 0;
2086        }
2087out:
2088        kfree(path);
2089        return err;
2090}
2091
2092/**
2093 * dbg_chk_pnode - check a pnode.
2094 * @c: the UBIFS file-system description object
2095 * @pnode: pnode to check
2096 * @col: pnode column
2097 *
2098 * This function returns %0 on success and a negative error code on failure.
2099 */
2100static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2101                         int col)
2102{
2103        int i;
2104
2105        if (pnode->num != col) {
2106                ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2107                          pnode->num, col, pnode->parent->num, pnode->iip);
2108                return -EINVAL;
2109        }
2110        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2111                struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2112                int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2113                           c->main_first;
2114                int found, cat = lprops->flags & LPROPS_CAT_MASK;
2115                struct ubifs_lpt_heap *heap;
2116                struct list_head *list = NULL;
2117
2118                if (lnum >= c->leb_cnt)
2119                        continue;
2120                if (lprops->lnum != lnum) {
2121                        ubifs_err(c, "bad LEB number %d expected %d",
2122                                  lprops->lnum, lnum);
2123                        return -EINVAL;
2124                }
2125                if (lprops->flags & LPROPS_TAKEN) {
2126                        if (cat != LPROPS_UNCAT) {
2127                                ubifs_err(c, "LEB %d taken but not uncat %d",
2128                                          lprops->lnum, cat);
2129                                return -EINVAL;
2130                        }
2131                        continue;
2132                }
2133                if (lprops->flags & LPROPS_INDEX) {
2134                        switch (cat) {
2135                        case LPROPS_UNCAT:
2136                        case LPROPS_DIRTY_IDX:
2137                        case LPROPS_FRDI_IDX:
2138                                break;
2139                        default:
2140                                ubifs_err(c, "LEB %d index but cat %d",
2141                                          lprops->lnum, cat);
2142                                return -EINVAL;
2143                        }
2144                } else {
2145                        switch (cat) {
2146                        case LPROPS_UNCAT:
2147                        case LPROPS_DIRTY:
2148                        case LPROPS_FREE:
2149                        case LPROPS_EMPTY:
2150                        case LPROPS_FREEABLE:
2151                                break;
2152                        default:
2153                                ubifs_err(c, "LEB %d not index but cat %d",
2154                                          lprops->lnum, cat);
2155                                return -EINVAL;
2156                        }
2157                }
2158                switch (cat) {
2159                case LPROPS_UNCAT:
2160                        list = &c->uncat_list;
2161                        break;
2162                case LPROPS_EMPTY:
2163                        list = &c->empty_list;
2164                        break;
2165                case LPROPS_FREEABLE:
2166                        list = &c->freeable_list;
2167                        break;
2168                case LPROPS_FRDI_IDX:
2169                        list = &c->frdi_idx_list;
2170                        break;
2171                }
2172                found = 0;
2173                switch (cat) {
2174                case LPROPS_DIRTY:
2175                case LPROPS_DIRTY_IDX:
2176                case LPROPS_FREE:
2177                        heap = &c->lpt_heap[cat - 1];
2178                        if (lprops->hpos < heap->cnt &&
2179                            heap->arr[lprops->hpos] == lprops)
2180                                found = 1;
2181                        break;
2182                case LPROPS_UNCAT:
2183                case LPROPS_EMPTY:
2184                case LPROPS_FREEABLE:
2185                case LPROPS_FRDI_IDX:
2186                        list_for_each_entry(lp, list, list)
2187                                if (lprops == lp) {
2188                                        found = 1;
2189                                        break;
2190                                }
2191                        break;
2192                }
2193                if (!found) {
2194                        ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2195                                  lprops->lnum, cat);
2196                        return -EINVAL;
2197                }
2198                switch (cat) {
2199                case LPROPS_EMPTY:
2200                        if (lprops->free != c->leb_size) {
2201                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2202                                          lprops->lnum, cat, lprops->free,
2203                                          lprops->dirty);
2204                                return -EINVAL;
2205                        }
2206                        break;
2207                case LPROPS_FREEABLE:
2208                case LPROPS_FRDI_IDX:
2209                        if (lprops->free + lprops->dirty != c->leb_size) {
2210                                ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2211                                          lprops->lnum, cat, lprops->free,
2212                                          lprops->dirty);
2213                                return -EINVAL;
2214                        }
2215                        break;
2216                }
2217        }
2218        return 0;
2219}
2220
2221/**
2222 * dbg_check_lpt_nodes - check nnodes and pnodes.
2223 * @c: the UBIFS file-system description object
2224 * @cnode: next cnode (nnode or pnode) to check
2225 * @row: row of cnode (root is zero)
2226 * @col: column of cnode (leftmost is zero)
2227 *
2228 * This function returns %0 on success and a negative error code on failure.
2229 */
2230int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2231                        int row, int col)
2232{
2233        struct ubifs_nnode *nnode, *nn;
2234        struct ubifs_cnode *cn;
2235        int num, iip = 0, err;
2236
2237        if (!dbg_is_chk_lprops(c))
2238                return 0;
2239
2240        while (cnode) {
2241                ubifs_assert(row >= 0);
2242                nnode = cnode->parent;
2243                if (cnode->level) {
2244                        /* cnode is a nnode */
2245                        num = calc_nnode_num(row, col);
2246                        if (cnode->num != num) {
2247                                ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2248                                          cnode->num, num,
2249                                          (nnode ? nnode->num : 0), cnode->iip);
2250                                return -EINVAL;
2251                        }
2252                        nn = (struct ubifs_nnode *)cnode;
2253                        while (iip < UBIFS_LPT_FANOUT) {
2254                                cn = nn->nbranch[iip].cnode;
2255                                if (cn) {
2256                                        /* Go down */
2257                                        row += 1;
2258                                        col <<= UBIFS_LPT_FANOUT_SHIFT;
2259                                        col += iip;
2260                                        iip = 0;
2261                                        cnode = cn;
2262                                        break;
2263                                }
2264                                /* Go right */
2265                                iip += 1;
2266                        }
2267                        if (iip < UBIFS_LPT_FANOUT)
2268                                continue;
2269                } else {
2270                        struct ubifs_pnode *pnode;
2271
2272                        /* cnode is a pnode */
2273                        pnode = (struct ubifs_pnode *)cnode;
2274                        err = dbg_chk_pnode(c, pnode, col);
2275                        if (err)
2276                                return err;
2277                }
2278                /* Go up and to the right */
2279                row -= 1;
2280                col >>= UBIFS_LPT_FANOUT_SHIFT;
2281                iip = cnode->iip + 1;
2282                cnode = (struct ubifs_cnode *)nnode;
2283        }
2284        return 0;
2285}
2286