uboot/fs/ubifs/replay.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains journal replay code. It runs when the file-system is being
  13 * mounted and requires no locking.
  14 *
  15 * The larger is the journal, the longer it takes to scan it, so the longer it
  16 * takes to mount UBIFS. This is why the journal has limited size which may be
  17 * changed depending on the system requirements. But a larger journal gives
  18 * faster I/O speed because it writes the index less frequently. So this is a
  19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  20 * larger is the journal, the more memory its index may consume.
  21 */
  22
  23#ifdef __UBOOT__
  24#include <log.h>
  25#include <dm/devres.h>
  26#include <linux/compat.h>
  27#include <linux/err.h>
  28#endif
  29#include "ubifs.h"
  30#include <linux/bug.h>
  31#include <linux/list_sort.h>
  32
  33/**
  34 * struct replay_entry - replay list entry.
  35 * @lnum: logical eraseblock number of the node
  36 * @offs: node offset
  37 * @len: node length
  38 * @deletion: non-zero if this entry corresponds to a node deletion
  39 * @sqnum: node sequence number
  40 * @list: links the replay list
  41 * @key: node key
  42 * @nm: directory entry name
  43 * @old_size: truncation old size
  44 * @new_size: truncation new size
  45 *
  46 * The replay process first scans all buds and builds the replay list, then
  47 * sorts the replay list in nodes sequence number order, and then inserts all
  48 * the replay entries to the TNC.
  49 */
  50struct replay_entry {
  51        int lnum;
  52        int offs;
  53        int len;
  54        unsigned int deletion:1;
  55        unsigned long long sqnum;
  56        struct list_head list;
  57        union ubifs_key key;
  58        union {
  59                struct qstr nm;
  60                struct {
  61                        loff_t old_size;
  62                        loff_t new_size;
  63                };
  64        };
  65};
  66
  67/**
  68 * struct bud_entry - entry in the list of buds to replay.
  69 * @list: next bud in the list
  70 * @bud: bud description object
  71 * @sqnum: reference node sequence number
  72 * @free: free bytes in the bud
  73 * @dirty: dirty bytes in the bud
  74 */
  75struct bud_entry {
  76        struct list_head list;
  77        struct ubifs_bud *bud;
  78        unsigned long long sqnum;
  79        int free;
  80        int dirty;
  81};
  82
  83/**
  84 * set_bud_lprops - set free and dirty space used by a bud.
  85 * @c: UBIFS file-system description object
  86 * @b: bud entry which describes the bud
  87 *
  88 * This function makes sure the LEB properties of bud @b are set correctly
  89 * after the replay. Returns zero in case of success and a negative error code
  90 * in case of failure.
  91 */
  92static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  93{
  94        const struct ubifs_lprops *lp;
  95        int err = 0, dirty;
  96
  97        ubifs_get_lprops(c);
  98
  99        lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
 100        if (IS_ERR(lp)) {
 101                err = PTR_ERR(lp);
 102                goto out;
 103        }
 104
 105        dirty = lp->dirty;
 106        if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 107                /*
 108                 * The LEB was added to the journal with a starting offset of
 109                 * zero which means the LEB must have been empty. The LEB
 110                 * property values should be @lp->free == @c->leb_size and
 111                 * @lp->dirty == 0, but that is not the case. The reason is that
 112                 * the LEB had been garbage collected before it became the bud,
 113                 * and there was not commit inbetween. The garbage collector
 114                 * resets the free and dirty space without recording it
 115                 * anywhere except lprops, so if there was no commit then
 116                 * lprops does not have that information.
 117                 *
 118                 * We do not need to adjust free space because the scan has told
 119                 * us the exact value which is recorded in the replay entry as
 120                 * @b->free.
 121                 *
 122                 * However we do need to subtract from the dirty space the
 123                 * amount of space that the garbage collector reclaimed, which
 124                 * is the whole LEB minus the amount of space that was free.
 125                 */
 126                dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 127                        lp->free, lp->dirty);
 128                dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 129                        lp->free, lp->dirty);
 130                dirty -= c->leb_size - lp->free;
 131                /*
 132                 * If the replay order was perfect the dirty space would now be
 133                 * zero. The order is not perfect because the journal heads
 134                 * race with each other. This is not a problem but is does mean
 135                 * that the dirty space may temporarily exceed c->leb_size
 136                 * during the replay.
 137                 */
 138                if (dirty != 0)
 139                        dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 140                                b->bud->lnum, lp->free, lp->dirty, b->free,
 141                                b->dirty);
 142        }
 143        lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 144                             lp->flags | LPROPS_TAKEN, 0);
 145        if (IS_ERR(lp)) {
 146                err = PTR_ERR(lp);
 147                goto out;
 148        }
 149
 150        /* Make sure the journal head points to the latest bud */
 151        err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 152                                     b->bud->lnum, c->leb_size - b->free);
 153
 154out:
 155        ubifs_release_lprops(c);
 156        return err;
 157}
 158
 159/**
 160 * set_buds_lprops - set free and dirty space for all replayed buds.
 161 * @c: UBIFS file-system description object
 162 *
 163 * This function sets LEB properties for all replayed buds. Returns zero in
 164 * case of success and a negative error code in case of failure.
 165 */
 166static int set_buds_lprops(struct ubifs_info *c)
 167{
 168        struct bud_entry *b;
 169        int err;
 170
 171        list_for_each_entry(b, &c->replay_buds, list) {
 172                err = set_bud_lprops(c, b);
 173                if (err)
 174                        return err;
 175        }
 176
 177        return 0;
 178}
 179
 180/**
 181 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 182 * @c: UBIFS file-system description object
 183 * @r: replay entry of truncation
 184 */
 185static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 186{
 187        unsigned min_blk, max_blk;
 188        union ubifs_key min_key, max_key;
 189        ino_t ino;
 190
 191        min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 192        if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 193                min_blk += 1;
 194
 195        max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 196        if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 197                max_blk -= 1;
 198
 199        ino = key_inum(c, &r->key);
 200
 201        data_key_init(c, &min_key, ino, min_blk);
 202        data_key_init(c, &max_key, ino, max_blk);
 203
 204        return ubifs_tnc_remove_range(c, &min_key, &max_key);
 205}
 206
 207/**
 208 * apply_replay_entry - apply a replay entry to the TNC.
 209 * @c: UBIFS file-system description object
 210 * @r: replay entry to apply
 211 *
 212 * Apply a replay entry to the TNC.
 213 */
 214static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 215{
 216        int err;
 217
 218        dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 219                 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 220
 221        /* Set c->replay_sqnum to help deal with dangling branches. */
 222        c->replay_sqnum = r->sqnum;
 223
 224        if (is_hash_key(c, &r->key)) {
 225                if (r->deletion)
 226                        err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 227                else
 228                        err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 229                                               r->len, &r->nm);
 230        } else {
 231                if (r->deletion)
 232                        switch (key_type(c, &r->key)) {
 233                        case UBIFS_INO_KEY:
 234                        {
 235                                ino_t inum = key_inum(c, &r->key);
 236
 237                                err = ubifs_tnc_remove_ino(c, inum);
 238                                break;
 239                        }
 240                        case UBIFS_TRUN_KEY:
 241                                err = trun_remove_range(c, r);
 242                                break;
 243                        default:
 244                                err = ubifs_tnc_remove(c, &r->key);
 245                                break;
 246                        }
 247                else
 248                        err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 249                                            r->len);
 250                if (err)
 251                        return err;
 252
 253                if (c->need_recovery)
 254                        err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 255                                                       r->new_size);
 256        }
 257
 258        return err;
 259}
 260
 261/**
 262 * replay_entries_cmp - compare 2 replay entries.
 263 * @priv: UBIFS file-system description object
 264 * @a: first replay entry
 265 * @a: second replay entry
 266 *
 267 * This is a comparios function for 'list_sort()' which compares 2 replay
 268 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
 269 * greater sequence number and %-1 otherwise.
 270 */
 271static int replay_entries_cmp(void *priv, struct list_head *a,
 272                              struct list_head *b)
 273{
 274        struct replay_entry *ra, *rb;
 275
 276        cond_resched();
 277        if (a == b)
 278                return 0;
 279
 280        ra = list_entry(a, struct replay_entry, list);
 281        rb = list_entry(b, struct replay_entry, list);
 282        ubifs_assert(ra->sqnum != rb->sqnum);
 283        if (ra->sqnum > rb->sqnum)
 284                return 1;
 285        return -1;
 286}
 287
 288/**
 289 * apply_replay_list - apply the replay list to the TNC.
 290 * @c: UBIFS file-system description object
 291 *
 292 * Apply all entries in the replay list to the TNC. Returns zero in case of
 293 * success and a negative error code in case of failure.
 294 */
 295static int apply_replay_list(struct ubifs_info *c)
 296{
 297        struct replay_entry *r;
 298        int err;
 299
 300        list_sort(c, &c->replay_list, &replay_entries_cmp);
 301
 302        list_for_each_entry(r, &c->replay_list, list) {
 303                cond_resched();
 304
 305                err = apply_replay_entry(c, r);
 306                if (err)
 307                        return err;
 308        }
 309
 310        return 0;
 311}
 312
 313/**
 314 * destroy_replay_list - destroy the replay.
 315 * @c: UBIFS file-system description object
 316 *
 317 * Destroy the replay list.
 318 */
 319static void destroy_replay_list(struct ubifs_info *c)
 320{
 321        struct replay_entry *r, *tmp;
 322
 323        list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 324                if (is_hash_key(c, &r->key))
 325                        kfree(r->nm.name);
 326                list_del(&r->list);
 327                kfree(r);
 328        }
 329}
 330
 331/**
 332 * insert_node - insert a node to the replay list
 333 * @c: UBIFS file-system description object
 334 * @lnum: node logical eraseblock number
 335 * @offs: node offset
 336 * @len: node length
 337 * @key: node key
 338 * @sqnum: sequence number
 339 * @deletion: non-zero if this is a deletion
 340 * @used: number of bytes in use in a LEB
 341 * @old_size: truncation old size
 342 * @new_size: truncation new size
 343 *
 344 * This function inserts a scanned non-direntry node to the replay list. The
 345 * replay list contains @struct replay_entry elements, and we sort this list in
 346 * sequence number order before applying it. The replay list is applied at the
 347 * very end of the replay process. Since the list is sorted in sequence number
 348 * order, the older modifications are applied first. This function returns zero
 349 * in case of success and a negative error code in case of failure.
 350 */
 351static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 352                       union ubifs_key *key, unsigned long long sqnum,
 353                       int deletion, int *used, loff_t old_size,
 354                       loff_t new_size)
 355{
 356        struct replay_entry *r;
 357
 358        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 359
 360        if (key_inum(c, key) >= c->highest_inum)
 361                c->highest_inum = key_inum(c, key);
 362
 363        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 364        if (!r)
 365                return -ENOMEM;
 366
 367        if (!deletion)
 368                *used += ALIGN(len, 8);
 369        r->lnum = lnum;
 370        r->offs = offs;
 371        r->len = len;
 372        r->deletion = !!deletion;
 373        r->sqnum = sqnum;
 374        key_copy(c, key, &r->key);
 375        r->old_size = old_size;
 376        r->new_size = new_size;
 377
 378        list_add_tail(&r->list, &c->replay_list);
 379        return 0;
 380}
 381
 382/**
 383 * insert_dent - insert a directory entry node into the replay list.
 384 * @c: UBIFS file-system description object
 385 * @lnum: node logical eraseblock number
 386 * @offs: node offset
 387 * @len: node length
 388 * @key: node key
 389 * @name: directory entry name
 390 * @nlen: directory entry name length
 391 * @sqnum: sequence number
 392 * @deletion: non-zero if this is a deletion
 393 * @used: number of bytes in use in a LEB
 394 *
 395 * This function inserts a scanned directory entry node or an extended
 396 * attribute entry to the replay list. Returns zero in case of success and a
 397 * negative error code in case of failure.
 398 */
 399static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 400                       union ubifs_key *key, const char *name, int nlen,
 401                       unsigned long long sqnum, int deletion, int *used)
 402{
 403        struct replay_entry *r;
 404        char *nbuf;
 405
 406        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 407        if (key_inum(c, key) >= c->highest_inum)
 408                c->highest_inum = key_inum(c, key);
 409
 410        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 411        if (!r)
 412                return -ENOMEM;
 413
 414        nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 415        if (!nbuf) {
 416                kfree(r);
 417                return -ENOMEM;
 418        }
 419
 420        if (!deletion)
 421                *used += ALIGN(len, 8);
 422        r->lnum = lnum;
 423        r->offs = offs;
 424        r->len = len;
 425        r->deletion = !!deletion;
 426        r->sqnum = sqnum;
 427        key_copy(c, key, &r->key);
 428        r->nm.len = nlen;
 429        memcpy(nbuf, name, nlen);
 430        nbuf[nlen] = '\0';
 431        r->nm.name = nbuf;
 432
 433        list_add_tail(&r->list, &c->replay_list);
 434        return 0;
 435}
 436
 437/**
 438 * ubifs_validate_entry - validate directory or extended attribute entry node.
 439 * @c: UBIFS file-system description object
 440 * @dent: the node to validate
 441 *
 442 * This function validates directory or extended attribute entry node @dent.
 443 * Returns zero if the node is all right and a %-EINVAL if not.
 444 */
 445int ubifs_validate_entry(struct ubifs_info *c,
 446                         const struct ubifs_dent_node *dent)
 447{
 448        int key_type = key_type_flash(c, dent->key);
 449        int nlen = le16_to_cpu(dent->nlen);
 450
 451        if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 452            dent->type >= UBIFS_ITYPES_CNT ||
 453            nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 454            strnlen(dent->name, nlen) != nlen ||
 455            le64_to_cpu(dent->inum) > MAX_INUM) {
 456                ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 457                          "directory entry" : "extended attribute entry");
 458                return -EINVAL;
 459        }
 460
 461        if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 462                ubifs_err(c, "bad key type %d", key_type);
 463                return -EINVAL;
 464        }
 465
 466        return 0;
 467}
 468
 469/**
 470 * is_last_bud - check if the bud is the last in the journal head.
 471 * @c: UBIFS file-system description object
 472 * @bud: bud description object
 473 *
 474 * This function checks if bud @bud is the last bud in its journal head. This
 475 * information is then used by 'replay_bud()' to decide whether the bud can
 476 * have corruptions or not. Indeed, only last buds can be corrupted by power
 477 * cuts. Returns %1 if this is the last bud, and %0 if not.
 478 */
 479static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 480{
 481        struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 482        struct ubifs_bud *next;
 483        uint32_t data;
 484        int err;
 485
 486        if (list_is_last(&bud->list, &jh->buds_list))
 487                return 1;
 488
 489        /*
 490         * The following is a quirk to make sure we work correctly with UBIFS
 491         * images used with older UBIFS.
 492         *
 493         * Normally, the last bud will be the last in the journal head's list
 494         * of bud. However, there is one exception if the UBIFS image belongs
 495         * to older UBIFS. This is fairly unlikely: one would need to use old
 496         * UBIFS, then have a power cut exactly at the right point, and then
 497         * try to mount this image with new UBIFS.
 498         *
 499         * The exception is: it is possible to have 2 buds A and B, A goes
 500         * before B, and B is the last, bud B is contains no data, and bud A is
 501         * corrupted at the end. The reason is that in older versions when the
 502         * journal code switched the next bud (from A to B), it first added a
 503         * log reference node for the new bud (B), and only after this it
 504         * synchronized the write-buffer of current bud (A). But later this was
 505         * changed and UBIFS started to always synchronize the write-buffer of
 506         * the bud (A) before writing the log reference for the new bud (B).
 507         *
 508         * But because older UBIFS always synchronized A's write-buffer before
 509         * writing to B, we can recognize this exceptional situation but
 510         * checking the contents of bud B - if it is empty, then A can be
 511         * treated as the last and we can recover it.
 512         *
 513         * TODO: remove this piece of code in a couple of years (today it is
 514         * 16.05.2011).
 515         */
 516        next = list_entry(bud->list.next, struct ubifs_bud, list);
 517        if (!list_is_last(&next->list, &jh->buds_list))
 518                return 0;
 519
 520        err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 521        if (err)
 522                return 0;
 523
 524        return data == 0xFFFFFFFF;
 525}
 526
 527/**
 528 * replay_bud - replay a bud logical eraseblock.
 529 * @c: UBIFS file-system description object
 530 * @b: bud entry which describes the bud
 531 *
 532 * This function replays bud @bud, recovers it if needed, and adds all nodes
 533 * from this bud to the replay list. Returns zero in case of success and a
 534 * negative error code in case of failure.
 535 */
 536static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 537{
 538        int is_last = is_last_bud(c, b->bud);
 539        int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 540        struct ubifs_scan_leb *sleb;
 541        struct ubifs_scan_node *snod;
 542
 543        dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 544                lnum, b->bud->jhead, offs, is_last);
 545
 546        if (c->need_recovery && is_last)
 547                /*
 548                 * Recover only last LEBs in the journal heads, because power
 549                 * cuts may cause corruptions only in these LEBs, because only
 550                 * these LEBs could possibly be written to at the power cut
 551                 * time.
 552                 */
 553                sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 554        else
 555                sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 556        if (IS_ERR(sleb))
 557                return PTR_ERR(sleb);
 558
 559        /*
 560         * The bud does not have to start from offset zero - the beginning of
 561         * the 'lnum' LEB may contain previously committed data. One of the
 562         * things we have to do in replay is to correctly update lprops with
 563         * newer information about this LEB.
 564         *
 565         * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 566         * bytes of free space because it only contain information about
 567         * committed data.
 568         *
 569         * But we know that real amount of free space is 'c->leb_size -
 570         * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 571         * 'sleb->endpt' is used by bud data. We have to correctly calculate
 572         * how much of these data are dirty and update lprops with this
 573         * information.
 574         *
 575         * The dirt in that LEB region is comprised of padding nodes, deletion
 576         * nodes, truncation nodes and nodes which are obsoleted by subsequent
 577         * nodes in this LEB. So instead of calculating clean space, we
 578         * calculate used space ('used' variable).
 579         */
 580
 581        list_for_each_entry(snod, &sleb->nodes, list) {
 582                int deletion = 0;
 583
 584                cond_resched();
 585
 586                if (snod->sqnum >= SQNUM_WATERMARK) {
 587                        ubifs_err(c, "file system's life ended");
 588                        goto out_dump;
 589                }
 590
 591                if (snod->sqnum > c->max_sqnum)
 592                        c->max_sqnum = snod->sqnum;
 593
 594                switch (snod->type) {
 595                case UBIFS_INO_NODE:
 596                {
 597                        struct ubifs_ino_node *ino = snod->node;
 598                        loff_t new_size = le64_to_cpu(ino->size);
 599
 600                        if (le32_to_cpu(ino->nlink) == 0)
 601                                deletion = 1;
 602                        err = insert_node(c, lnum, snod->offs, snod->len,
 603                                          &snod->key, snod->sqnum, deletion,
 604                                          &used, 0, new_size);
 605                        break;
 606                }
 607                case UBIFS_DATA_NODE:
 608                {
 609                        struct ubifs_data_node *dn = snod->node;
 610                        loff_t new_size = le32_to_cpu(dn->size) +
 611                                          key_block(c, &snod->key) *
 612                                          UBIFS_BLOCK_SIZE;
 613
 614                        err = insert_node(c, lnum, snod->offs, snod->len,
 615                                          &snod->key, snod->sqnum, deletion,
 616                                          &used, 0, new_size);
 617                        break;
 618                }
 619                case UBIFS_DENT_NODE:
 620                case UBIFS_XENT_NODE:
 621                {
 622                        struct ubifs_dent_node *dent = snod->node;
 623
 624                        err = ubifs_validate_entry(c, dent);
 625                        if (err)
 626                                goto out_dump;
 627
 628                        err = insert_dent(c, lnum, snod->offs, snod->len,
 629                                          &snod->key, dent->name,
 630                                          le16_to_cpu(dent->nlen), snod->sqnum,
 631                                          !le64_to_cpu(dent->inum), &used);
 632                        break;
 633                }
 634                case UBIFS_TRUN_NODE:
 635                {
 636                        struct ubifs_trun_node *trun = snod->node;
 637                        loff_t old_size = le64_to_cpu(trun->old_size);
 638                        loff_t new_size = le64_to_cpu(trun->new_size);
 639                        union ubifs_key key;
 640
 641                        /* Validate truncation node */
 642                        if (old_size < 0 || old_size > c->max_inode_sz ||
 643                            new_size < 0 || new_size > c->max_inode_sz ||
 644                            old_size <= new_size) {
 645                                ubifs_err(c, "bad truncation node");
 646                                goto out_dump;
 647                        }
 648
 649                        /*
 650                         * Create a fake truncation key just to use the same
 651                         * functions which expect nodes to have keys.
 652                         */
 653                        trun_key_init(c, &key, le32_to_cpu(trun->inum));
 654                        err = insert_node(c, lnum, snod->offs, snod->len,
 655                                          &key, snod->sqnum, 1, &used,
 656                                          old_size, new_size);
 657                        break;
 658                }
 659                default:
 660                        ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 661                                  snod->type, lnum, snod->offs);
 662                        err = -EINVAL;
 663                        goto out_dump;
 664                }
 665                if (err)
 666                        goto out;
 667        }
 668
 669        ubifs_assert(ubifs_search_bud(c, lnum));
 670        ubifs_assert(sleb->endpt - offs >= used);
 671        ubifs_assert(sleb->endpt % c->min_io_size == 0);
 672
 673        b->dirty = sleb->endpt - offs - used;
 674        b->free = c->leb_size - sleb->endpt;
 675        dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 676                lnum, b->dirty, b->free);
 677
 678out:
 679        ubifs_scan_destroy(sleb);
 680        return err;
 681
 682out_dump:
 683        ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 684        ubifs_dump_node(c, snod->node);
 685        ubifs_scan_destroy(sleb);
 686        return -EINVAL;
 687}
 688
 689/**
 690 * replay_buds - replay all buds.
 691 * @c: UBIFS file-system description object
 692 *
 693 * This function returns zero in case of success and a negative error code in
 694 * case of failure.
 695 */
 696static int replay_buds(struct ubifs_info *c)
 697{
 698        struct bud_entry *b;
 699        int err;
 700        unsigned long long prev_sqnum = 0;
 701
 702        list_for_each_entry(b, &c->replay_buds, list) {
 703                err = replay_bud(c, b);
 704                if (err)
 705                        return err;
 706
 707                ubifs_assert(b->sqnum > prev_sqnum);
 708                prev_sqnum = b->sqnum;
 709        }
 710
 711        return 0;
 712}
 713
 714/**
 715 * destroy_bud_list - destroy the list of buds to replay.
 716 * @c: UBIFS file-system description object
 717 */
 718static void destroy_bud_list(struct ubifs_info *c)
 719{
 720        struct bud_entry *b;
 721
 722        while (!list_empty(&c->replay_buds)) {
 723                b = list_entry(c->replay_buds.next, struct bud_entry, list);
 724                list_del(&b->list);
 725                kfree(b);
 726        }
 727}
 728
 729/**
 730 * add_replay_bud - add a bud to the list of buds to replay.
 731 * @c: UBIFS file-system description object
 732 * @lnum: bud logical eraseblock number to replay
 733 * @offs: bud start offset
 734 * @jhead: journal head to which this bud belongs
 735 * @sqnum: reference node sequence number
 736 *
 737 * This function returns zero in case of success and a negative error code in
 738 * case of failure.
 739 */
 740static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 741                          unsigned long long sqnum)
 742{
 743        struct ubifs_bud *bud;
 744        struct bud_entry *b;
 745
 746        dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 747
 748        bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 749        if (!bud)
 750                return -ENOMEM;
 751
 752        b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 753        if (!b) {
 754                kfree(bud);
 755                return -ENOMEM;
 756        }
 757
 758        bud->lnum = lnum;
 759        bud->start = offs;
 760        bud->jhead = jhead;
 761        ubifs_add_bud(c, bud);
 762
 763        b->bud = bud;
 764        b->sqnum = sqnum;
 765        list_add_tail(&b->list, &c->replay_buds);
 766
 767        return 0;
 768}
 769
 770/**
 771 * validate_ref - validate a reference node.
 772 * @c: UBIFS file-system description object
 773 * @ref: the reference node to validate
 774 * @ref_lnum: LEB number of the reference node
 775 * @ref_offs: reference node offset
 776 *
 777 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 778 * returned if the reference node is new, otherwise %-EINVAL is returned if
 779 * validation failed.
 780 */
 781static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 782{
 783        struct ubifs_bud *bud;
 784        int lnum = le32_to_cpu(ref->lnum);
 785        unsigned int offs = le32_to_cpu(ref->offs);
 786        unsigned int jhead = le32_to_cpu(ref->jhead);
 787
 788        /*
 789         * ref->offs may point to the end of LEB when the journal head points
 790         * to the end of LEB and we write reference node for it during commit.
 791         * So this is why we require 'offs > c->leb_size'.
 792         */
 793        if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 794            lnum < c->main_first || offs > c->leb_size ||
 795            offs & (c->min_io_size - 1))
 796                return -EINVAL;
 797
 798        /* Make sure we have not already looked at this bud */
 799        bud = ubifs_search_bud(c, lnum);
 800        if (bud) {
 801                if (bud->jhead == jhead && bud->start <= offs)
 802                        return 1;
 803                ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 804                return -EINVAL;
 805        }
 806
 807        return 0;
 808}
 809
 810/**
 811 * replay_log_leb - replay a log logical eraseblock.
 812 * @c: UBIFS file-system description object
 813 * @lnum: log logical eraseblock to replay
 814 * @offs: offset to start replaying from
 815 * @sbuf: scan buffer
 816 *
 817 * This function replays a log LEB and returns zero in case of success, %1 if
 818 * this is the last LEB in the log, and a negative error code in case of
 819 * failure.
 820 */
 821static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 822{
 823        int err;
 824        struct ubifs_scan_leb *sleb;
 825        struct ubifs_scan_node *snod;
 826        const struct ubifs_cs_node *node;
 827
 828        dbg_mnt("replay log LEB %d:%d", lnum, offs);
 829        sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 830        if (IS_ERR(sleb)) {
 831                if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 832                        return PTR_ERR(sleb);
 833                /*
 834                 * Note, the below function will recover this log LEB only if
 835                 * it is the last, because unclean reboots can possibly corrupt
 836                 * only the tail of the log.
 837                 */
 838                sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
 839                if (IS_ERR(sleb))
 840                        return PTR_ERR(sleb);
 841        }
 842
 843        if (sleb->nodes_cnt == 0) {
 844                err = 1;
 845                goto out;
 846        }
 847
 848        node = sleb->buf;
 849        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 850        if (c->cs_sqnum == 0) {
 851                /*
 852                 * This is the first log LEB we are looking at, make sure that
 853                 * the first node is a commit start node. Also record its
 854                 * sequence number so that UBIFS can determine where the log
 855                 * ends, because all nodes which were have higher sequence
 856                 * numbers.
 857                 */
 858                if (snod->type != UBIFS_CS_NODE) {
 859                        ubifs_err(c, "first log node at LEB %d:%d is not CS node",
 860                                  lnum, offs);
 861                        goto out_dump;
 862                }
 863                if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
 864                        ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
 865                                  lnum, offs,
 866                                  (unsigned long long)le64_to_cpu(node->cmt_no),
 867                                  c->cmt_no);
 868                        goto out_dump;
 869                }
 870
 871                c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
 872                dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
 873        }
 874
 875        if (snod->sqnum < c->cs_sqnum) {
 876                /*
 877                 * This means that we reached end of log and now
 878                 * look to the older log data, which was already
 879                 * committed but the eraseblock was not erased (UBIFS
 880                 * only un-maps it). So this basically means we have to
 881                 * exit with "end of log" code.
 882                 */
 883                err = 1;
 884                goto out;
 885        }
 886
 887        /* Make sure the first node sits at offset zero of the LEB */
 888        if (snod->offs != 0) {
 889                ubifs_err(c, "first node is not at zero offset");
 890                goto out_dump;
 891        }
 892
 893        list_for_each_entry(snod, &sleb->nodes, list) {
 894                cond_resched();
 895
 896                if (snod->sqnum >= SQNUM_WATERMARK) {
 897                        ubifs_err(c, "file system's life ended");
 898                        goto out_dump;
 899                }
 900
 901                if (snod->sqnum < c->cs_sqnum) {
 902                        ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
 903                                  snod->sqnum, c->cs_sqnum);
 904                        goto out_dump;
 905                }
 906
 907                if (snod->sqnum > c->max_sqnum)
 908                        c->max_sqnum = snod->sqnum;
 909
 910                switch (snod->type) {
 911                case UBIFS_REF_NODE: {
 912                        const struct ubifs_ref_node *ref = snod->node;
 913
 914                        err = validate_ref(c, ref);
 915                        if (err == 1)
 916                                break; /* Already have this bud */
 917                        if (err)
 918                                goto out_dump;
 919
 920                        err = add_replay_bud(c, le32_to_cpu(ref->lnum),
 921                                             le32_to_cpu(ref->offs),
 922                                             le32_to_cpu(ref->jhead),
 923                                             snod->sqnum);
 924                        if (err)
 925                                goto out;
 926
 927                        break;
 928                }
 929                case UBIFS_CS_NODE:
 930                        /* Make sure it sits at the beginning of LEB */
 931                        if (snod->offs != 0) {
 932                                ubifs_err(c, "unexpected node in log");
 933                                goto out_dump;
 934                        }
 935                        break;
 936                default:
 937                        ubifs_err(c, "unexpected node in log");
 938                        goto out_dump;
 939                }
 940        }
 941
 942        if (sleb->endpt || c->lhead_offs >= c->leb_size) {
 943                c->lhead_lnum = lnum;
 944                c->lhead_offs = sleb->endpt;
 945        }
 946
 947        err = !sleb->endpt;
 948out:
 949        ubifs_scan_destroy(sleb);
 950        return err;
 951
 952out_dump:
 953        ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
 954                  lnum, offs + snod->offs);
 955        ubifs_dump_node(c, snod->node);
 956        ubifs_scan_destroy(sleb);
 957        return -EINVAL;
 958}
 959
 960/**
 961 * take_ihead - update the status of the index head in lprops to 'taken'.
 962 * @c: UBIFS file-system description object
 963 *
 964 * This function returns the amount of free space in the index head LEB or a
 965 * negative error code.
 966 */
 967static int take_ihead(struct ubifs_info *c)
 968{
 969        const struct ubifs_lprops *lp;
 970        int err, free;
 971
 972        ubifs_get_lprops(c);
 973
 974        lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
 975        if (IS_ERR(lp)) {
 976                err = PTR_ERR(lp);
 977                goto out;
 978        }
 979
 980        free = lp->free;
 981
 982        lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 983                             lp->flags | LPROPS_TAKEN, 0);
 984        if (IS_ERR(lp)) {
 985                err = PTR_ERR(lp);
 986                goto out;
 987        }
 988
 989        err = free;
 990out:
 991        ubifs_release_lprops(c);
 992        return err;
 993}
 994
 995/**
 996 * ubifs_replay_journal - replay journal.
 997 * @c: UBIFS file-system description object
 998 *
 999 * This function scans the journal, replays and cleans it up. It makes sure all
1000 * memory data structures related to uncommitted journal are built (dirty TNC
1001 * tree, tree of buds, modified lprops, etc).
1002 */
1003int ubifs_replay_journal(struct ubifs_info *c)
1004{
1005        int err, lnum, free;
1006
1007        BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1008
1009        /* Update the status of the index head in lprops to 'taken' */
1010        free = take_ihead(c);
1011        if (free < 0)
1012                return free; /* Error code */
1013
1014        if (c->ihead_offs != c->leb_size - free) {
1015                ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1016                          c->ihead_offs);
1017                return -EINVAL;
1018        }
1019
1020        dbg_mnt("start replaying the journal");
1021        c->replaying = 1;
1022        lnum = c->ltail_lnum = c->lhead_lnum;
1023
1024        do {
1025                err = replay_log_leb(c, lnum, 0, c->sbuf);
1026                if (err == 1) {
1027                        if (lnum != c->lhead_lnum)
1028                                /* We hit the end of the log */
1029                                break;
1030
1031                        /*
1032                         * The head of the log must always start with the
1033                         * "commit start" node on a properly formatted UBIFS.
1034                         * But we found no nodes at all, which means that
1035                         * someting went wrong and we cannot proceed mounting
1036                         * the file-system.
1037                         */
1038                        ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1039                                  lnum, 0);
1040                        err = -EINVAL;
1041                }
1042                if (err)
1043                        goto out;
1044                lnum = ubifs_next_log_lnum(c, lnum);
1045        } while (lnum != c->ltail_lnum);
1046
1047        err = replay_buds(c);
1048        if (err)
1049                goto out;
1050
1051        err = apply_replay_list(c);
1052        if (err)
1053                goto out;
1054
1055        err = set_buds_lprops(c);
1056        if (err)
1057                goto out;
1058
1059        /*
1060         * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1061         * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1062         * depend on it. This means we have to initialize it to make sure
1063         * budgeting works properly.
1064         */
1065        c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1066        c->bi.uncommitted_idx *= c->max_idx_node_sz;
1067
1068        ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1069        dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1070                c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1071                (unsigned long)c->highest_inum);
1072out:
1073        destroy_replay_list(c);
1074        destroy_bud_list(c);
1075        c->replaying = 0;
1076        return err;
1077}
1078