uboot/fs/ubifs/sb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS superblock. The superblock is stored at the first
  13 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
  14 * change it. The superblock node mostly contains geometry information.
  15 */
  16
  17#include "ubifs.h"
  18#ifndef __UBOOT__
  19#include <log.h>
  20#include <dm/devres.h>
  21#include <linux/slab.h>
  22#include <linux/random.h>
  23#include <linux/math64.h>
  24#else
  25
  26#include <linux/compat.h>
  27#include <linux/err.h>
  28#include <ubi_uboot.h>
  29#include <linux/stat.h>
  30#endif
  31
  32/*
  33 * Default journal size in logical eraseblocks as a percent of total
  34 * flash size.
  35 */
  36#define DEFAULT_JNL_PERCENT 5
  37
  38/* Default maximum journal size in bytes */
  39#define DEFAULT_MAX_JNL (32*1024*1024)
  40
  41/* Default indexing tree fanout */
  42#define DEFAULT_FANOUT 8
  43
  44/* Default number of data journal heads */
  45#define DEFAULT_JHEADS_CNT 1
  46
  47/* Default positions of different LEBs in the main area */
  48#define DEFAULT_IDX_LEB  0
  49#define DEFAULT_DATA_LEB 1
  50#define DEFAULT_GC_LEB   2
  51
  52/* Default number of LEB numbers in LPT's save table */
  53#define DEFAULT_LSAVE_CNT 256
  54
  55/* Default reserved pool size as a percent of maximum free space */
  56#define DEFAULT_RP_PERCENT 5
  57
  58/* The default maximum size of reserved pool in bytes */
  59#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
  60
  61/* Default time granularity in nanoseconds */
  62#define DEFAULT_TIME_GRAN 1000000000
  63
  64#ifndef __UBOOT__
  65/**
  66 * create_default_filesystem - format empty UBI volume.
  67 * @c: UBIFS file-system description object
  68 *
  69 * This function creates default empty file-system. Returns zero in case of
  70 * success and a negative error code in case of failure.
  71 */
  72static int create_default_filesystem(struct ubifs_info *c)
  73{
  74        struct ubifs_sb_node *sup;
  75        struct ubifs_mst_node *mst;
  76        struct ubifs_idx_node *idx;
  77        struct ubifs_branch *br;
  78        struct ubifs_ino_node *ino;
  79        struct ubifs_cs_node *cs;
  80        union ubifs_key key;
  81        int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
  82        int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
  83        int min_leb_cnt = UBIFS_MIN_LEB_CNT;
  84        long long tmp64, main_bytes;
  85        __le64 tmp_le64;
  86
  87        /* Some functions called from here depend on the @c->key_len filed */
  88        c->key_len = UBIFS_SK_LEN;
  89
  90        /*
  91         * First of all, we have to calculate default file-system geometry -
  92         * log size, journal size, etc.
  93         */
  94        if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
  95                /* We can first multiply then divide and have no overflow */
  96                jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
  97        else
  98                jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
  99
 100        if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
 101                jnl_lebs = UBIFS_MIN_JNL_LEBS;
 102        if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
 103                jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
 104
 105        /*
 106         * The log should be large enough to fit reference nodes for all bud
 107         * LEBs. Because buds do not have to start from the beginning of LEBs
 108         * (half of the LEB may contain committed data), the log should
 109         * generally be larger, make it twice as large.
 110         */
 111        tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
 112        log_lebs = tmp / c->leb_size;
 113        /* Plus one LEB reserved for commit */
 114        log_lebs += 1;
 115        if (c->leb_cnt - min_leb_cnt > 8) {
 116                /* And some extra space to allow writes while committing */
 117                log_lebs += 1;
 118                min_leb_cnt += 1;
 119        }
 120
 121        max_buds = jnl_lebs - log_lebs;
 122        if (max_buds < UBIFS_MIN_BUD_LEBS)
 123                max_buds = UBIFS_MIN_BUD_LEBS;
 124
 125        /*
 126         * Orphan nodes are stored in a separate area. One node can store a lot
 127         * of orphan inode numbers, but when new orphan comes we just add a new
 128         * orphan node. At some point the nodes are consolidated into one
 129         * orphan node.
 130         */
 131        orph_lebs = UBIFS_MIN_ORPH_LEBS;
 132        if (c->leb_cnt - min_leb_cnt > 1)
 133                /*
 134                 * For debugging purposes it is better to have at least 2
 135                 * orphan LEBs, because the orphan subsystem would need to do
 136                 * consolidations and would be stressed more.
 137                 */
 138                orph_lebs += 1;
 139
 140        main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
 141        main_lebs -= orph_lebs;
 142
 143        lpt_first = UBIFS_LOG_LNUM + log_lebs;
 144        c->lsave_cnt = DEFAULT_LSAVE_CNT;
 145        c->max_leb_cnt = c->leb_cnt;
 146        err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
 147                                    &big_lpt);
 148        if (err)
 149                return err;
 150
 151        dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
 152                lpt_first + lpt_lebs - 1);
 153
 154        main_first = c->leb_cnt - main_lebs;
 155
 156        /* Create default superblock */
 157        tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
 158        sup = kzalloc(tmp, GFP_KERNEL);
 159        if (!sup)
 160                return -ENOMEM;
 161
 162        tmp64 = (long long)max_buds * c->leb_size;
 163        if (big_lpt)
 164                sup_flags |= UBIFS_FLG_BIGLPT;
 165
 166        sup->ch.node_type  = UBIFS_SB_NODE;
 167        sup->key_hash      = UBIFS_KEY_HASH_R5;
 168        sup->flags         = cpu_to_le32(sup_flags);
 169        sup->min_io_size   = cpu_to_le32(c->min_io_size);
 170        sup->leb_size      = cpu_to_le32(c->leb_size);
 171        sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
 172        sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
 173        sup->max_bud_bytes = cpu_to_le64(tmp64);
 174        sup->log_lebs      = cpu_to_le32(log_lebs);
 175        sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
 176        sup->orph_lebs     = cpu_to_le32(orph_lebs);
 177        sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
 178        sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
 179        sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
 180        sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
 181        sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
 182        if (c->mount_opts.override_compr)
 183                sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
 184        else
 185                sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
 186
 187        generate_random_uuid(sup->uuid);
 188
 189        main_bytes = (long long)main_lebs * c->leb_size;
 190        tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
 191        if (tmp64 > DEFAULT_MAX_RP_SIZE)
 192                tmp64 = DEFAULT_MAX_RP_SIZE;
 193        sup->rp_size = cpu_to_le64(tmp64);
 194        sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
 195
 196        err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
 197        kfree(sup);
 198        if (err)
 199                return err;
 200
 201        dbg_gen("default superblock created at LEB 0:0");
 202
 203        /* Create default master node */
 204        mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
 205        if (!mst)
 206                return -ENOMEM;
 207
 208        mst->ch.node_type = UBIFS_MST_NODE;
 209        mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
 210        mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
 211        mst->cmt_no       = 0;
 212        mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
 213        mst->root_offs    = 0;
 214        tmp = ubifs_idx_node_sz(c, 1);
 215        mst->root_len     = cpu_to_le32(tmp);
 216        mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
 217        mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
 218        mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
 219        mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
 220        mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
 221        mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
 222        mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
 223        mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
 224        mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
 225        mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
 226        mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
 227        mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
 228        mst->lscan_lnum   = cpu_to_le32(main_first);
 229        mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
 230        mst->idx_lebs     = cpu_to_le32(1);
 231        mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
 232
 233        /* Calculate lprops statistics */
 234        tmp64 = main_bytes;
 235        tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
 236        tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
 237        mst->total_free = cpu_to_le64(tmp64);
 238
 239        tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
 240        ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
 241                          UBIFS_INO_NODE_SZ;
 242        tmp64 += ino_waste;
 243        tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
 244        mst->total_dirty = cpu_to_le64(tmp64);
 245
 246        /*  The indexing LEB does not contribute to dark space */
 247        tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
 248        mst->total_dark = cpu_to_le64(tmp64);
 249
 250        mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
 251
 252        err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
 253        if (err) {
 254                kfree(mst);
 255                return err;
 256        }
 257        err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
 258                               0);
 259        kfree(mst);
 260        if (err)
 261                return err;
 262
 263        dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
 264
 265        /* Create the root indexing node */
 266        tmp = ubifs_idx_node_sz(c, 1);
 267        idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
 268        if (!idx)
 269                return -ENOMEM;
 270
 271        c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
 272        c->key_hash = key_r5_hash;
 273
 274        idx->ch.node_type = UBIFS_IDX_NODE;
 275        idx->child_cnt = cpu_to_le16(1);
 276        ino_key_init(c, &key, UBIFS_ROOT_INO);
 277        br = ubifs_idx_branch(c, idx, 0);
 278        key_write_idx(c, &key, &br->key);
 279        br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
 280        br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
 281        err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
 282        kfree(idx);
 283        if (err)
 284                return err;
 285
 286        dbg_gen("default root indexing node created LEB %d:0",
 287                main_first + DEFAULT_IDX_LEB);
 288
 289        /* Create default root inode */
 290        tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
 291        ino = kzalloc(tmp, GFP_KERNEL);
 292        if (!ino)
 293                return -ENOMEM;
 294
 295        ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
 296        ino->ch.node_type = UBIFS_INO_NODE;
 297        ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
 298        ino->nlink = cpu_to_le32(2);
 299        tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
 300        ino->atime_sec   = tmp_le64;
 301        ino->ctime_sec   = tmp_le64;
 302        ino->mtime_sec   = tmp_le64;
 303        ino->atime_nsec  = 0;
 304        ino->ctime_nsec  = 0;
 305        ino->mtime_nsec  = 0;
 306        ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
 307        ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
 308
 309        /* Set compression enabled by default */
 310        ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
 311
 312        err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
 313                               main_first + DEFAULT_DATA_LEB, 0);
 314        kfree(ino);
 315        if (err)
 316                return err;
 317
 318        dbg_gen("root inode created at LEB %d:0",
 319                main_first + DEFAULT_DATA_LEB);
 320
 321        /*
 322         * The first node in the log has to be the commit start node. This is
 323         * always the case during normal file-system operation. Write a fake
 324         * commit start node to the log.
 325         */
 326        tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
 327        cs = kzalloc(tmp, GFP_KERNEL);
 328        if (!cs)
 329                return -ENOMEM;
 330
 331        cs->ch.node_type = UBIFS_CS_NODE;
 332        err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
 333        kfree(cs);
 334        if (err)
 335                return err;
 336
 337        ubifs_msg(c, "default file-system created");
 338        return 0;
 339}
 340#endif
 341
 342/**
 343 * validate_sb - validate superblock node.
 344 * @c: UBIFS file-system description object
 345 * @sup: superblock node
 346 *
 347 * This function validates superblock node @sup. Since most of data was read
 348 * from the superblock and stored in @c, the function validates fields in @c
 349 * instead. Returns zero in case of success and %-EINVAL in case of validation
 350 * failure.
 351 */
 352static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
 353{
 354        long long max_bytes;
 355        int err = 1, min_leb_cnt;
 356
 357        if (!c->key_hash) {
 358                err = 2;
 359                goto failed;
 360        }
 361
 362        if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
 363                err = 3;
 364                goto failed;
 365        }
 366
 367        if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
 368                ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
 369                          le32_to_cpu(sup->min_io_size), c->min_io_size);
 370                goto failed;
 371        }
 372
 373        if (le32_to_cpu(sup->leb_size) != c->leb_size) {
 374                ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
 375                          le32_to_cpu(sup->leb_size), c->leb_size);
 376                goto failed;
 377        }
 378
 379        if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
 380            c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
 381            c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
 382            c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
 383                err = 4;
 384                goto failed;
 385        }
 386
 387        /*
 388         * Calculate minimum allowed amount of main area LEBs. This is very
 389         * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
 390         * have just read from the superblock.
 391         */
 392        min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
 393        min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
 394
 395        if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
 396                ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
 397                          c->leb_cnt, c->vi.size, min_leb_cnt);
 398                goto failed;
 399        }
 400
 401        if (c->max_leb_cnt < c->leb_cnt) {
 402                ubifs_err(c, "max. LEB count %d less than LEB count %d",
 403                          c->max_leb_cnt, c->leb_cnt);
 404                goto failed;
 405        }
 406
 407        if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
 408                ubifs_err(c, "too few main LEBs count %d, must be at least %d",
 409                          c->main_lebs, UBIFS_MIN_MAIN_LEBS);
 410                goto failed;
 411        }
 412
 413        max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
 414        if (c->max_bud_bytes < max_bytes) {
 415                ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
 416                          c->max_bud_bytes, max_bytes);
 417                goto failed;
 418        }
 419
 420        max_bytes = (long long)c->leb_size * c->main_lebs;
 421        if (c->max_bud_bytes > max_bytes) {
 422                ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
 423                          c->max_bud_bytes, max_bytes);
 424                goto failed;
 425        }
 426
 427        if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
 428            c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
 429                err = 9;
 430                goto failed;
 431        }
 432
 433        if (c->fanout < UBIFS_MIN_FANOUT ||
 434            ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
 435                err = 10;
 436                goto failed;
 437        }
 438
 439        if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
 440            c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
 441            c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
 442                err = 11;
 443                goto failed;
 444        }
 445
 446        if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
 447            c->orph_lebs + c->main_lebs != c->leb_cnt) {
 448                err = 12;
 449                goto failed;
 450        }
 451
 452        if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
 453                err = 13;
 454                goto failed;
 455        }
 456
 457        if (c->rp_size < 0 || max_bytes < c->rp_size) {
 458                err = 14;
 459                goto failed;
 460        }
 461
 462        if (le32_to_cpu(sup->time_gran) > 1000000000 ||
 463            le32_to_cpu(sup->time_gran) < 1) {
 464                err = 15;
 465                goto failed;
 466        }
 467
 468        return 0;
 469
 470failed:
 471        ubifs_err(c, "bad superblock, error %d", err);
 472        ubifs_dump_node(c, sup);
 473        return -EINVAL;
 474}
 475
 476/**
 477 * ubifs_read_sb_node - read superblock node.
 478 * @c: UBIFS file-system description object
 479 *
 480 * This function returns a pointer to the superblock node or a negative error
 481 * code. Note, the user of this function is responsible of kfree()'ing the
 482 * returned superblock buffer.
 483 */
 484struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
 485{
 486        struct ubifs_sb_node *sup;
 487        int err;
 488
 489        sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
 490        if (!sup)
 491                return ERR_PTR(-ENOMEM);
 492
 493        err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
 494                              UBIFS_SB_LNUM, 0);
 495        if (err) {
 496                kfree(sup);
 497                return ERR_PTR(err);
 498        }
 499
 500        return sup;
 501}
 502
 503/**
 504 * ubifs_write_sb_node - write superblock node.
 505 * @c: UBIFS file-system description object
 506 * @sup: superblock node read with 'ubifs_read_sb_node()'
 507 *
 508 * This function returns %0 on success and a negative error code on failure.
 509 */
 510int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
 511{
 512        int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
 513
 514        ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
 515        return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
 516}
 517
 518/**
 519 * ubifs_read_superblock - read superblock.
 520 * @c: UBIFS file-system description object
 521 *
 522 * This function finds, reads and checks the superblock. If an empty UBI volume
 523 * is being mounted, this function creates default superblock. Returns zero in
 524 * case of success, and a negative error code in case of failure.
 525 */
 526int ubifs_read_superblock(struct ubifs_info *c)
 527{
 528        int err, sup_flags;
 529        struct ubifs_sb_node *sup;
 530
 531        if (c->empty) {
 532#ifndef __UBOOT__
 533                err = create_default_filesystem(c);
 534                if (err)
 535                        return err;
 536#else
 537                printf("No UBIFS filesystem found!\n");
 538                return -1;
 539#endif
 540        }
 541
 542        sup = ubifs_read_sb_node(c);
 543        if (IS_ERR(sup))
 544                return PTR_ERR(sup);
 545
 546        c->fmt_version = le32_to_cpu(sup->fmt_version);
 547        c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
 548
 549        /*
 550         * The software supports all previous versions but not future versions,
 551         * due to the unavailability of time-travelling equipment.
 552         */
 553        if (c->fmt_version > UBIFS_FORMAT_VERSION) {
 554                ubifs_assert(!c->ro_media || c->ro_mount);
 555                if (!c->ro_mount ||
 556                    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
 557                        ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
 558                                  c->fmt_version, c->ro_compat_version,
 559                                  UBIFS_FORMAT_VERSION,
 560                                  UBIFS_RO_COMPAT_VERSION);
 561                        if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
 562                                ubifs_msg(c, "only R/O mounting is possible");
 563                                err = -EROFS;
 564                        } else
 565                                err = -EINVAL;
 566                        goto out;
 567                }
 568
 569                /*
 570                 * The FS is mounted R/O, and the media format is
 571                 * R/O-compatible with the UBIFS implementation, so we can
 572                 * mount.
 573                 */
 574                c->rw_incompat = 1;
 575        }
 576
 577        if (c->fmt_version < 3) {
 578                ubifs_err(c, "on-flash format version %d is not supported",
 579                          c->fmt_version);
 580                err = -EINVAL;
 581                goto out;
 582        }
 583
 584        switch (sup->key_hash) {
 585        case UBIFS_KEY_HASH_R5:
 586                c->key_hash = key_r5_hash;
 587                c->key_hash_type = UBIFS_KEY_HASH_R5;
 588                break;
 589
 590        case UBIFS_KEY_HASH_TEST:
 591                c->key_hash = key_test_hash;
 592                c->key_hash_type = UBIFS_KEY_HASH_TEST;
 593                break;
 594        };
 595
 596        c->key_fmt = sup->key_fmt;
 597
 598        switch (c->key_fmt) {
 599        case UBIFS_SIMPLE_KEY_FMT:
 600                c->key_len = UBIFS_SK_LEN;
 601                break;
 602        default:
 603                ubifs_err(c, "unsupported key format");
 604                err = -EINVAL;
 605                goto out;
 606        }
 607
 608        c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
 609        c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
 610        c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
 611        c->log_lebs      = le32_to_cpu(sup->log_lebs);
 612        c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
 613        c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
 614        c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
 615        c->fanout        = le32_to_cpu(sup->fanout);
 616        c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
 617        c->rp_size       = le64_to_cpu(sup->rp_size);
 618#ifndef __UBOOT__
 619        c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
 620        c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
 621#else
 622        c->rp_uid.val    = le32_to_cpu(sup->rp_uid);
 623        c->rp_gid.val    = le32_to_cpu(sup->rp_gid);
 624#endif
 625        sup_flags        = le32_to_cpu(sup->flags);
 626        if (!c->mount_opts.override_compr)
 627                c->default_compr = le16_to_cpu(sup->default_compr);
 628
 629        c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
 630        memcpy(&c->uuid, &sup->uuid, 16);
 631        c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
 632        c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
 633
 634        /* Automatically increase file system size to the maximum size */
 635        c->old_leb_cnt = c->leb_cnt;
 636        if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
 637                c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
 638                if (c->ro_mount)
 639                        dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
 640                                c->old_leb_cnt, c->leb_cnt);
 641#ifndef __UBOOT__
 642                else {
 643                        dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
 644                                c->old_leb_cnt, c->leb_cnt);
 645                        sup->leb_cnt = cpu_to_le32(c->leb_cnt);
 646                        err = ubifs_write_sb_node(c, sup);
 647                        if (err)
 648                                goto out;
 649                        c->old_leb_cnt = c->leb_cnt;
 650                }
 651#endif
 652        }
 653
 654        c->log_bytes = (long long)c->log_lebs * c->leb_size;
 655        c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
 656        c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
 657        c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
 658        c->orph_first = c->lpt_last + 1;
 659        c->orph_last = c->orph_first + c->orph_lebs - 1;
 660        c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
 661        c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
 662        c->main_first = c->leb_cnt - c->main_lebs;
 663
 664        err = validate_sb(c, sup);
 665out:
 666        kfree(sup);
 667        return err;
 668}
 669
 670/**
 671 * fixup_leb - fixup/unmap an LEB containing free space.
 672 * @c: UBIFS file-system description object
 673 * @lnum: the LEB number to fix up
 674 * @len: number of used bytes in LEB (starting at offset 0)
 675 *
 676 * This function reads the contents of the given LEB number @lnum, then fixes
 677 * it up, so that empty min. I/O units in the end of LEB are actually erased on
 678 * flash (rather than being just all-0xff real data). If the LEB is completely
 679 * empty, it is simply unmapped.
 680 */
 681static int fixup_leb(struct ubifs_info *c, int lnum, int len)
 682{
 683        int err;
 684
 685        ubifs_assert(len >= 0);
 686        ubifs_assert(len % c->min_io_size == 0);
 687        ubifs_assert(len < c->leb_size);
 688
 689        if (len == 0) {
 690                dbg_mnt("unmap empty LEB %d", lnum);
 691                return ubifs_leb_unmap(c, lnum);
 692        }
 693
 694        dbg_mnt("fixup LEB %d, data len %d", lnum, len);
 695        err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
 696        if (err)
 697                return err;
 698
 699        return ubifs_leb_change(c, lnum, c->sbuf, len);
 700}
 701
 702/**
 703 * fixup_free_space - find & remap all LEBs containing free space.
 704 * @c: UBIFS file-system description object
 705 *
 706 * This function walks through all LEBs in the filesystem and fiexes up those
 707 * containing free/empty space.
 708 */
 709static int fixup_free_space(struct ubifs_info *c)
 710{
 711        int lnum, err = 0;
 712        struct ubifs_lprops *lprops;
 713
 714        ubifs_get_lprops(c);
 715
 716        /* Fixup LEBs in the master area */
 717        for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
 718                err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
 719                if (err)
 720                        goto out;
 721        }
 722
 723        /* Unmap unused log LEBs */
 724        lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
 725        while (lnum != c->ltail_lnum) {
 726                err = fixup_leb(c, lnum, 0);
 727                if (err)
 728                        goto out;
 729                lnum = ubifs_next_log_lnum(c, lnum);
 730        }
 731
 732        /*
 733         * Fixup the log head which contains the only a CS node at the
 734         * beginning.
 735         */
 736        err = fixup_leb(c, c->lhead_lnum,
 737                        ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
 738        if (err)
 739                goto out;
 740
 741        /* Fixup LEBs in the LPT area */
 742        for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
 743                int free = c->ltab[lnum - c->lpt_first].free;
 744
 745                if (free > 0) {
 746                        err = fixup_leb(c, lnum, c->leb_size - free);
 747                        if (err)
 748                                goto out;
 749                }
 750        }
 751
 752        /* Unmap LEBs in the orphans area */
 753        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 754                err = fixup_leb(c, lnum, 0);
 755                if (err)
 756                        goto out;
 757        }
 758
 759        /* Fixup LEBs in the main area */
 760        for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
 761                lprops = ubifs_lpt_lookup(c, lnum);
 762                if (IS_ERR(lprops)) {
 763                        err = PTR_ERR(lprops);
 764                        goto out;
 765                }
 766
 767                if (lprops->free > 0) {
 768                        err = fixup_leb(c, lnum, c->leb_size - lprops->free);
 769                        if (err)
 770                                goto out;
 771                }
 772        }
 773
 774out:
 775        ubifs_release_lprops(c);
 776        return err;
 777}
 778
 779/**
 780 * ubifs_fixup_free_space - find & fix all LEBs with free space.
 781 * @c: UBIFS file-system description object
 782 *
 783 * This function fixes up LEBs containing free space on first mount, if the
 784 * appropriate flag was set when the FS was created. Each LEB with one or more
 785 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
 786 * the free space is actually erased. E.g., this is necessary for some NAND
 787 * chips, since the free space may have been programmed like real "0xff" data
 788 * (generating a non-0xff ECC), causing future writes to the not-really-erased
 789 * NAND pages to behave badly. After the space is fixed up, the superblock flag
 790 * is cleared, so that this is skipped for all future mounts.
 791 */
 792int ubifs_fixup_free_space(struct ubifs_info *c)
 793{
 794        int err;
 795        struct ubifs_sb_node *sup;
 796
 797        ubifs_assert(c->space_fixup);
 798        ubifs_assert(!c->ro_mount);
 799
 800        ubifs_msg(c, "start fixing up free space");
 801
 802        err = fixup_free_space(c);
 803        if (err)
 804                return err;
 805
 806        sup = ubifs_read_sb_node(c);
 807        if (IS_ERR(sup))
 808                return PTR_ERR(sup);
 809
 810        /* Free-space fixup is no longer required */
 811        c->space_fixup = 0;
 812        sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
 813
 814        err = ubifs_write_sb_node(c, sup);
 815        kfree(sup);
 816        if (err)
 817                return err;
 818
 819        ubifs_msg(c, "free space fixup complete");
 820        return err;
 821}
 822