uboot/fs/ubifs/tnc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  13 * the UBIFS B-tree.
  14 *
  15 * At the moment the locking rules of the TNC tree are quite simple and
  16 * straightforward. We just have a mutex and lock it when we traverse the
  17 * tree. If a znode is not in memory, we read it from flash while still having
  18 * the mutex locked.
  19 */
  20
  21#ifndef __UBOOT__
  22#include <log.h>
  23#include <dm/devres.h>
  24#include <linux/crc32.h>
  25#include <linux/slab.h>
  26#include <u-boot/crc.h>
  27#else
  28#include <linux/bitops.h>
  29#include <linux/bug.h>
  30#include <linux/compat.h>
  31#include <linux/err.h>
  32#include <linux/stat.h>
  33#endif
  34#include "ubifs.h"
  35
  36/*
  37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  38 * @NAME_LESS: name corresponding to the first argument is less than second
  39 * @NAME_MATCHES: names match
  40 * @NAME_GREATER: name corresponding to the second argument is greater than
  41 *                first
  42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  43 *
  44 * These constants were introduce to improve readability.
  45 */
  46enum {
  47        NAME_LESS    = 0,
  48        NAME_MATCHES = 1,
  49        NAME_GREATER = 2,
  50        NOT_ON_MEDIA = 3,
  51};
  52
  53/**
  54 * insert_old_idx - record an index node obsoleted since the last commit start.
  55 * @c: UBIFS file-system description object
  56 * @lnum: LEB number of obsoleted index node
  57 * @offs: offset of obsoleted index node
  58 *
  59 * Returns %0 on success, and a negative error code on failure.
  60 *
  61 * For recovery, there must always be a complete intact version of the index on
  62 * flash at all times. That is called the "old index". It is the index as at the
  63 * time of the last successful commit. Many of the index nodes in the old index
  64 * may be dirty, but they must not be erased until the next successful commit
  65 * (at which point that index becomes the old index).
  66 *
  67 * That means that the garbage collection and the in-the-gaps method of
  68 * committing must be able to determine if an index node is in the old index.
  69 * Most of the old index nodes can be found by looking up the TNC using the
  70 * 'lookup_znode()' function. However, some of the old index nodes may have
  71 * been deleted from the current index or may have been changed so much that
  72 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  73 * That is what this function does. The RB-tree is ordered by LEB number and
  74 * offset because they uniquely identify the old index node.
  75 */
  76static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  77{
  78        struct ubifs_old_idx *old_idx, *o;
  79        struct rb_node **p, *parent = NULL;
  80
  81        old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  82        if (unlikely(!old_idx))
  83                return -ENOMEM;
  84        old_idx->lnum = lnum;
  85        old_idx->offs = offs;
  86
  87        p = &c->old_idx.rb_node;
  88        while (*p) {
  89                parent = *p;
  90                o = rb_entry(parent, struct ubifs_old_idx, rb);
  91                if (lnum < o->lnum)
  92                        p = &(*p)->rb_left;
  93                else if (lnum > o->lnum)
  94                        p = &(*p)->rb_right;
  95                else if (offs < o->offs)
  96                        p = &(*p)->rb_left;
  97                else if (offs > o->offs)
  98                        p = &(*p)->rb_right;
  99                else {
 100                        ubifs_err(c, "old idx added twice!");
 101                        kfree(old_idx);
 102                        return 0;
 103                }
 104        }
 105        rb_link_node(&old_idx->rb, parent, p);
 106        rb_insert_color(&old_idx->rb, &c->old_idx);
 107        return 0;
 108}
 109
 110/**
 111 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 112 * @c: UBIFS file-system description object
 113 * @znode: znode of obsoleted index node
 114 *
 115 * Returns %0 on success, and a negative error code on failure.
 116 */
 117int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 118{
 119        if (znode->parent) {
 120                struct ubifs_zbranch *zbr;
 121
 122                zbr = &znode->parent->zbranch[znode->iip];
 123                if (zbr->len)
 124                        return insert_old_idx(c, zbr->lnum, zbr->offs);
 125        } else
 126                if (c->zroot.len)
 127                        return insert_old_idx(c, c->zroot.lnum,
 128                                              c->zroot.offs);
 129        return 0;
 130}
 131
 132/**
 133 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 134 * @c: UBIFS file-system description object
 135 * @znode: znode of obsoleted index node
 136 *
 137 * Returns %0 on success, and a negative error code on failure.
 138 */
 139static int ins_clr_old_idx_znode(struct ubifs_info *c,
 140                                 struct ubifs_znode *znode)
 141{
 142        int err;
 143
 144        if (znode->parent) {
 145                struct ubifs_zbranch *zbr;
 146
 147                zbr = &znode->parent->zbranch[znode->iip];
 148                if (zbr->len) {
 149                        err = insert_old_idx(c, zbr->lnum, zbr->offs);
 150                        if (err)
 151                                return err;
 152                        zbr->lnum = 0;
 153                        zbr->offs = 0;
 154                        zbr->len = 0;
 155                }
 156        } else
 157                if (c->zroot.len) {
 158                        err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 159                        if (err)
 160                                return err;
 161                        c->zroot.lnum = 0;
 162                        c->zroot.offs = 0;
 163                        c->zroot.len = 0;
 164                }
 165        return 0;
 166}
 167
 168/**
 169 * destroy_old_idx - destroy the old_idx RB-tree.
 170 * @c: UBIFS file-system description object
 171 *
 172 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 173 * nodes that were in the index last commit but have since been deleted.  This
 174 * is necessary for recovery i.e. the old index must be kept intact until the
 175 * new index is successfully written.  The old-idx RB-tree is used for the
 176 * in-the-gaps method of writing index nodes and is destroyed every commit.
 177 */
 178void destroy_old_idx(struct ubifs_info *c)
 179{
 180        struct ubifs_old_idx *old_idx, *n;
 181
 182        rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
 183                kfree(old_idx);
 184
 185        c->old_idx = RB_ROOT;
 186}
 187
 188/**
 189 * copy_znode - copy a dirty znode.
 190 * @c: UBIFS file-system description object
 191 * @znode: znode to copy
 192 *
 193 * A dirty znode being committed may not be changed, so it is copied.
 194 */
 195static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 196                                      struct ubifs_znode *znode)
 197{
 198        struct ubifs_znode *zn;
 199
 200        zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 201        if (unlikely(!zn))
 202                return ERR_PTR(-ENOMEM);
 203
 204        memcpy(zn, znode, c->max_znode_sz);
 205        zn->cnext = NULL;
 206        __set_bit(DIRTY_ZNODE, &zn->flags);
 207        __clear_bit(COW_ZNODE, &zn->flags);
 208
 209        ubifs_assert(!ubifs_zn_obsolete(znode));
 210        __set_bit(OBSOLETE_ZNODE, &znode->flags);
 211
 212        if (znode->level != 0) {
 213                int i;
 214                const int n = zn->child_cnt;
 215
 216                /* The children now have new parent */
 217                for (i = 0; i < n; i++) {
 218                        struct ubifs_zbranch *zbr = &zn->zbranch[i];
 219
 220                        if (zbr->znode)
 221                                zbr->znode->parent = zn;
 222                }
 223        }
 224
 225        atomic_long_inc(&c->dirty_zn_cnt);
 226        return zn;
 227}
 228
 229/**
 230 * add_idx_dirt - add dirt due to a dirty znode.
 231 * @c: UBIFS file-system description object
 232 * @lnum: LEB number of index node
 233 * @dirt: size of index node
 234 *
 235 * This function updates lprops dirty space and the new size of the index.
 236 */
 237static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 238{
 239        c->calc_idx_sz -= ALIGN(dirt, 8);
 240        return ubifs_add_dirt(c, lnum, dirt);
 241}
 242
 243/**
 244 * dirty_cow_znode - ensure a znode is not being committed.
 245 * @c: UBIFS file-system description object
 246 * @zbr: branch of znode to check
 247 *
 248 * Returns dirtied znode on success or negative error code on failure.
 249 */
 250static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 251                                           struct ubifs_zbranch *zbr)
 252{
 253        struct ubifs_znode *znode = zbr->znode;
 254        struct ubifs_znode *zn;
 255        int err;
 256
 257        if (!ubifs_zn_cow(znode)) {
 258                /* znode is not being committed */
 259                if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 260                        atomic_long_inc(&c->dirty_zn_cnt);
 261                        atomic_long_dec(&c->clean_zn_cnt);
 262                        atomic_long_dec(&ubifs_clean_zn_cnt);
 263                        err = add_idx_dirt(c, zbr->lnum, zbr->len);
 264                        if (unlikely(err))
 265                                return ERR_PTR(err);
 266                }
 267                return znode;
 268        }
 269
 270        zn = copy_znode(c, znode);
 271        if (IS_ERR(zn))
 272                return zn;
 273
 274        if (zbr->len) {
 275                err = insert_old_idx(c, zbr->lnum, zbr->offs);
 276                if (unlikely(err))
 277                        return ERR_PTR(err);
 278                err = add_idx_dirt(c, zbr->lnum, zbr->len);
 279        } else
 280                err = 0;
 281
 282        zbr->znode = zn;
 283        zbr->lnum = 0;
 284        zbr->offs = 0;
 285        zbr->len = 0;
 286
 287        if (unlikely(err))
 288                return ERR_PTR(err);
 289        return zn;
 290}
 291
 292/**
 293 * lnc_add - add a leaf node to the leaf node cache.
 294 * @c: UBIFS file-system description object
 295 * @zbr: zbranch of leaf node
 296 * @node: leaf node
 297 *
 298 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 299 * purpose of the leaf node cache is to save re-reading the same leaf node over
 300 * and over again. Most things are cached by VFS, however the file system must
 301 * cache directory entries for readdir and for resolving hash collisions. The
 302 * present implementation of the leaf node cache is extremely simple, and
 303 * allows for error returns that are not used but that may be needed if a more
 304 * complex implementation is created.
 305 *
 306 * Note, this function does not add the @node object to LNC directly, but
 307 * allocates a copy of the object and adds the copy to LNC. The reason for this
 308 * is that @node has been allocated outside of the TNC subsystem and will be
 309 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 310 * may be changed at any time, e.g. freed by the shrinker.
 311 */
 312static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 313                   const void *node)
 314{
 315        int err;
 316        void *lnc_node;
 317        const struct ubifs_dent_node *dent = node;
 318
 319        ubifs_assert(!zbr->leaf);
 320        ubifs_assert(zbr->len != 0);
 321        ubifs_assert(is_hash_key(c, &zbr->key));
 322
 323        err = ubifs_validate_entry(c, dent);
 324        if (err) {
 325                dump_stack();
 326                ubifs_dump_node(c, dent);
 327                return err;
 328        }
 329
 330        lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
 331        if (!lnc_node)
 332                /* We don't have to have the cache, so no error */
 333                return 0;
 334
 335        zbr->leaf = lnc_node;
 336        return 0;
 337}
 338
 339 /**
 340 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 341 * @c: UBIFS file-system description object
 342 * @zbr: zbranch of leaf node
 343 * @node: leaf node
 344 *
 345 * This function is similar to 'lnc_add()', but it does not create a copy of
 346 * @node but inserts @node to TNC directly.
 347 */
 348static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 349                            void *node)
 350{
 351        int err;
 352
 353        ubifs_assert(!zbr->leaf);
 354        ubifs_assert(zbr->len != 0);
 355
 356        err = ubifs_validate_entry(c, node);
 357        if (err) {
 358                dump_stack();
 359                ubifs_dump_node(c, node);
 360                return err;
 361        }
 362
 363        zbr->leaf = node;
 364        return 0;
 365}
 366
 367/**
 368 * lnc_free - remove a leaf node from the leaf node cache.
 369 * @zbr: zbranch of leaf node
 370 * @node: leaf node
 371 */
 372static void lnc_free(struct ubifs_zbranch *zbr)
 373{
 374        if (!zbr->leaf)
 375                return;
 376        kfree(zbr->leaf);
 377        zbr->leaf = NULL;
 378}
 379
 380/**
 381 * tnc_read_node_nm - read a "hashed" leaf node.
 382 * @c: UBIFS file-system description object
 383 * @zbr: key and position of the node
 384 * @node: node is returned here
 385 *
 386 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 387 * (in it is there) or from the hash media, in which case the node is also
 388 * added to LNC. Returns zero in case of success or a negative negative error
 389 * code in case of failure.
 390 */
 391static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 392                            void *node)
 393{
 394        int err;
 395
 396        ubifs_assert(is_hash_key(c, &zbr->key));
 397
 398        if (zbr->leaf) {
 399                /* Read from the leaf node cache */
 400                ubifs_assert(zbr->len != 0);
 401                memcpy(node, zbr->leaf, zbr->len);
 402                return 0;
 403        }
 404
 405        err = ubifs_tnc_read_node(c, zbr, node);
 406        if (err)
 407                return err;
 408
 409        /* Add the node to the leaf node cache */
 410        err = lnc_add(c, zbr, node);
 411        return err;
 412}
 413
 414/**
 415 * try_read_node - read a node if it is a node.
 416 * @c: UBIFS file-system description object
 417 * @buf: buffer to read to
 418 * @type: node type
 419 * @len: node length (not aligned)
 420 * @lnum: LEB number of node to read
 421 * @offs: offset of node to read
 422 *
 423 * This function tries to read a node of known type and length, checks it and
 424 * stores it in @buf. This function returns %1 if a node is present and %0 if
 425 * a node is not present. A negative error code is returned for I/O errors.
 426 * This function performs that same function as ubifs_read_node except that
 427 * it does not require that there is actually a node present and instead
 428 * the return code indicates if a node was read.
 429 *
 430 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 431 * is true (it is controlled by corresponding mount option). However, if
 432 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
 433 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
 434 * because during mounting or re-mounting from R/O mode to R/W mode we may read
 435 * journal nodes (when replying the journal or doing the recovery) and the
 436 * journal nodes may potentially be corrupted, so checking is required.
 437 */
 438static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 439                         int len, int lnum, int offs)
 440{
 441        int err, node_len;
 442        struct ubifs_ch *ch = buf;
 443        uint32_t crc, node_crc;
 444
 445        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 446
 447        err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
 448        if (err) {
 449                ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
 450                          type, lnum, offs, err);
 451                return err;
 452        }
 453
 454        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 455                return 0;
 456
 457        if (ch->node_type != type)
 458                return 0;
 459
 460        node_len = le32_to_cpu(ch->len);
 461        if (node_len != len)
 462                return 0;
 463
 464        if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
 465            !c->remounting_rw)
 466                return 1;
 467
 468        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 469        node_crc = le32_to_cpu(ch->crc);
 470        if (crc != node_crc)
 471                return 0;
 472
 473        return 1;
 474}
 475
 476/**
 477 * fallible_read_node - try to read a leaf node.
 478 * @c: UBIFS file-system description object
 479 * @key:  key of node to read
 480 * @zbr:  position of node
 481 * @node: node returned
 482 *
 483 * This function tries to read a node and returns %1 if the node is read, %0
 484 * if the node is not present, and a negative error code in the case of error.
 485 */
 486static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 487                              struct ubifs_zbranch *zbr, void *node)
 488{
 489        int ret;
 490
 491        dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
 492
 493        ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 494                            zbr->offs);
 495        if (ret == 1) {
 496                union ubifs_key node_key;
 497                struct ubifs_dent_node *dent = node;
 498
 499                /* All nodes have key in the same place */
 500                key_read(c, &dent->key, &node_key);
 501                if (keys_cmp(c, key, &node_key) != 0)
 502                        ret = 0;
 503        }
 504        if (ret == 0 && c->replaying)
 505                dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
 506                        zbr->lnum, zbr->offs, zbr->len);
 507        return ret;
 508}
 509
 510/**
 511 * matches_name - determine if a direntry or xattr entry matches a given name.
 512 * @c: UBIFS file-system description object
 513 * @zbr: zbranch of dent
 514 * @nm: name to match
 515 *
 516 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 517 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 518 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 519 * of failure, a negative error code is returned.
 520 */
 521static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 522                        const struct qstr *nm)
 523{
 524        struct ubifs_dent_node *dent;
 525        int nlen, err;
 526
 527        /* If possible, match against the dent in the leaf node cache */
 528        if (!zbr->leaf) {
 529                dent = kmalloc(zbr->len, GFP_NOFS);
 530                if (!dent)
 531                        return -ENOMEM;
 532
 533                err = ubifs_tnc_read_node(c, zbr, dent);
 534                if (err)
 535                        goto out_free;
 536
 537                /* Add the node to the leaf node cache */
 538                err = lnc_add_directly(c, zbr, dent);
 539                if (err)
 540                        goto out_free;
 541        } else
 542                dent = zbr->leaf;
 543
 544        nlen = le16_to_cpu(dent->nlen);
 545        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 546        if (err == 0) {
 547                if (nlen == nm->len)
 548                        return NAME_MATCHES;
 549                else if (nlen < nm->len)
 550                        return NAME_LESS;
 551                else
 552                        return NAME_GREATER;
 553        } else if (err < 0)
 554                return NAME_LESS;
 555        else
 556                return NAME_GREATER;
 557
 558out_free:
 559        kfree(dent);
 560        return err;
 561}
 562
 563/**
 564 * get_znode - get a TNC znode that may not be loaded yet.
 565 * @c: UBIFS file-system description object
 566 * @znode: parent znode
 567 * @n: znode branch slot number
 568 *
 569 * This function returns the znode or a negative error code.
 570 */
 571static struct ubifs_znode *get_znode(struct ubifs_info *c,
 572                                     struct ubifs_znode *znode, int n)
 573{
 574        struct ubifs_zbranch *zbr;
 575
 576        zbr = &znode->zbranch[n];
 577        if (zbr->znode)
 578                znode = zbr->znode;
 579        else
 580                znode = ubifs_load_znode(c, zbr, znode, n);
 581        return znode;
 582}
 583
 584/**
 585 * tnc_next - find next TNC entry.
 586 * @c: UBIFS file-system description object
 587 * @zn: znode is passed and returned here
 588 * @n: znode branch slot number is passed and returned here
 589 *
 590 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 591 * no next entry, or a negative error code otherwise.
 592 */
 593static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 594{
 595        struct ubifs_znode *znode = *zn;
 596        int nn = *n;
 597
 598        nn += 1;
 599        if (nn < znode->child_cnt) {
 600                *n = nn;
 601                return 0;
 602        }
 603        while (1) {
 604                struct ubifs_znode *zp;
 605
 606                zp = znode->parent;
 607                if (!zp)
 608                        return -ENOENT;
 609                nn = znode->iip + 1;
 610                znode = zp;
 611                if (nn < znode->child_cnt) {
 612                        znode = get_znode(c, znode, nn);
 613                        if (IS_ERR(znode))
 614                                return PTR_ERR(znode);
 615                        while (znode->level != 0) {
 616                                znode = get_znode(c, znode, 0);
 617                                if (IS_ERR(znode))
 618                                        return PTR_ERR(znode);
 619                        }
 620                        nn = 0;
 621                        break;
 622                }
 623        }
 624        *zn = znode;
 625        *n = nn;
 626        return 0;
 627}
 628
 629/**
 630 * tnc_prev - find previous TNC entry.
 631 * @c: UBIFS file-system description object
 632 * @zn: znode is returned here
 633 * @n: znode branch slot number is passed and returned here
 634 *
 635 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 636 * there is no next entry, or a negative error code otherwise.
 637 */
 638static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 639{
 640        struct ubifs_znode *znode = *zn;
 641        int nn = *n;
 642
 643        if (nn > 0) {
 644                *n = nn - 1;
 645                return 0;
 646        }
 647        while (1) {
 648                struct ubifs_znode *zp;
 649
 650                zp = znode->parent;
 651                if (!zp)
 652                        return -ENOENT;
 653                nn = znode->iip - 1;
 654                znode = zp;
 655                if (nn >= 0) {
 656                        znode = get_znode(c, znode, nn);
 657                        if (IS_ERR(znode))
 658                                return PTR_ERR(znode);
 659                        while (znode->level != 0) {
 660                                nn = znode->child_cnt - 1;
 661                                znode = get_znode(c, znode, nn);
 662                                if (IS_ERR(znode))
 663                                        return PTR_ERR(znode);
 664                        }
 665                        nn = znode->child_cnt - 1;
 666                        break;
 667                }
 668        }
 669        *zn = znode;
 670        *n = nn;
 671        return 0;
 672}
 673
 674/**
 675 * resolve_collision - resolve a collision.
 676 * @c: UBIFS file-system description object
 677 * @key: key of a directory or extended attribute entry
 678 * @zn: znode is returned here
 679 * @n: zbranch number is passed and returned here
 680 * @nm: name of the entry
 681 *
 682 * This function is called for "hashed" keys to make sure that the found key
 683 * really corresponds to the looked up node (directory or extended attribute
 684 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 685 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 686 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 687 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 688 * previous one. A negative error code is returned on failures.
 689 */
 690static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 691                             struct ubifs_znode **zn, int *n,
 692                             const struct qstr *nm)
 693{
 694        int err;
 695
 696        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 697        if (unlikely(err < 0))
 698                return err;
 699        if (err == NAME_MATCHES)
 700                return 1;
 701
 702        if (err == NAME_GREATER) {
 703                /* Look left */
 704                while (1) {
 705                        err = tnc_prev(c, zn, n);
 706                        if (err == -ENOENT) {
 707                                ubifs_assert(*n == 0);
 708                                *n = -1;
 709                                return 0;
 710                        }
 711                        if (err < 0)
 712                                return err;
 713                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 714                                /*
 715                                 * We have found the branch after which we would
 716                                 * like to insert, but inserting in this znode
 717                                 * may still be wrong. Consider the following 3
 718                                 * znodes, in the case where we are resolving a
 719                                 * collision with Key2.
 720                                 *
 721                                 *                  znode zp
 722                                 *            ----------------------
 723                                 * level 1     |  Key0  |  Key1  |
 724                                 *            -----------------------
 725                                 *                 |            |
 726                                 *       znode za  |            |  znode zb
 727                                 *          ------------      ------------
 728                                 * level 0  |  Key0  |        |  Key2  |
 729                                 *          ------------      ------------
 730                                 *
 731                                 * The lookup finds Key2 in znode zb. Lets say
 732                                 * there is no match and the name is greater so
 733                                 * we look left. When we find Key0, we end up
 734                                 * here. If we return now, we will insert into
 735                                 * znode za at slot n = 1.  But that is invalid
 736                                 * according to the parent's keys.  Key2 must
 737                                 * be inserted into znode zb.
 738                                 *
 739                                 * Note, this problem is not relevant for the
 740                                 * case when we go right, because
 741                                 * 'tnc_insert()' would correct the parent key.
 742                                 */
 743                                if (*n == (*zn)->child_cnt - 1) {
 744                                        err = tnc_next(c, zn, n);
 745                                        if (err) {
 746                                                /* Should be impossible */
 747                                                ubifs_assert(0);
 748                                                if (err == -ENOENT)
 749                                                        err = -EINVAL;
 750                                                return err;
 751                                        }
 752                                        ubifs_assert(*n == 0);
 753                                        *n = -1;
 754                                }
 755                                return 0;
 756                        }
 757                        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 758                        if (err < 0)
 759                                return err;
 760                        if (err == NAME_LESS)
 761                                return 0;
 762                        if (err == NAME_MATCHES)
 763                                return 1;
 764                        ubifs_assert(err == NAME_GREATER);
 765                }
 766        } else {
 767                int nn = *n;
 768                struct ubifs_znode *znode = *zn;
 769
 770                /* Look right */
 771                while (1) {
 772                        err = tnc_next(c, &znode, &nn);
 773                        if (err == -ENOENT)
 774                                return 0;
 775                        if (err < 0)
 776                                return err;
 777                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 778                                return 0;
 779                        err = matches_name(c, &znode->zbranch[nn], nm);
 780                        if (err < 0)
 781                                return err;
 782                        if (err == NAME_GREATER)
 783                                return 0;
 784                        *zn = znode;
 785                        *n = nn;
 786                        if (err == NAME_MATCHES)
 787                                return 1;
 788                        ubifs_assert(err == NAME_LESS);
 789                }
 790        }
 791}
 792
 793/**
 794 * fallible_matches_name - determine if a dent matches a given name.
 795 * @c: UBIFS file-system description object
 796 * @zbr: zbranch of dent
 797 * @nm: name to match
 798 *
 799 * This is a "fallible" version of 'matches_name()' function which does not
 800 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 801 *
 802 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 803 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 804 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 805 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 806 * error code is returned in case of failure.
 807 */
 808static int fallible_matches_name(struct ubifs_info *c,
 809                                 struct ubifs_zbranch *zbr,
 810                                 const struct qstr *nm)
 811{
 812        struct ubifs_dent_node *dent;
 813        int nlen, err;
 814
 815        /* If possible, match against the dent in the leaf node cache */
 816        if (!zbr->leaf) {
 817                dent = kmalloc(zbr->len, GFP_NOFS);
 818                if (!dent)
 819                        return -ENOMEM;
 820
 821                err = fallible_read_node(c, &zbr->key, zbr, dent);
 822                if (err < 0)
 823                        goto out_free;
 824                if (err == 0) {
 825                        /* The node was not present */
 826                        err = NOT_ON_MEDIA;
 827                        goto out_free;
 828                }
 829                ubifs_assert(err == 1);
 830
 831                err = lnc_add_directly(c, zbr, dent);
 832                if (err)
 833                        goto out_free;
 834        } else
 835                dent = zbr->leaf;
 836
 837        nlen = le16_to_cpu(dent->nlen);
 838        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 839        if (err == 0) {
 840                if (nlen == nm->len)
 841                        return NAME_MATCHES;
 842                else if (nlen < nm->len)
 843                        return NAME_LESS;
 844                else
 845                        return NAME_GREATER;
 846        } else if (err < 0)
 847                return NAME_LESS;
 848        else
 849                return NAME_GREATER;
 850
 851out_free:
 852        kfree(dent);
 853        return err;
 854}
 855
 856/**
 857 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 858 * @c: UBIFS file-system description object
 859 * @key: key
 860 * @zn: znode is returned here
 861 * @n: branch number is passed and returned here
 862 * @nm: name of directory entry
 863 * @adding: indicates caller is adding a key to the TNC
 864 *
 865 * This is a "fallible" version of the 'resolve_collision()' function which
 866 * does not panic if one of the nodes referred to by TNC does not exist on the
 867 * media. This may happen when replaying the journal if a deleted node was
 868 * Garbage-collected and the commit was not done. A branch that refers to a node
 869 * that is not present is called a dangling branch. The following are the return
 870 * codes for this function:
 871 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 872 *    branch;
 873 *  o if we are @adding and @nm was not found, %0 is returned;
 874 *  o if we are not @adding and @nm was not found, but a dangling branch was
 875 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 876 *  o a negative error code is returned in case of failure.
 877 */
 878static int fallible_resolve_collision(struct ubifs_info *c,
 879                                      const union ubifs_key *key,
 880                                      struct ubifs_znode **zn, int *n,
 881                                      const struct qstr *nm, int adding)
 882{
 883        struct ubifs_znode *o_znode = NULL, *znode = *zn;
 884        int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 885
 886        cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 887        if (unlikely(cmp < 0))
 888                return cmp;
 889        if (cmp == NAME_MATCHES)
 890                return 1;
 891        if (cmp == NOT_ON_MEDIA) {
 892                o_znode = znode;
 893                o_n = nn;
 894                /*
 895                 * We are unlucky and hit a dangling branch straight away.
 896                 * Now we do not really know where to go to find the needed
 897                 * branch - to the left or to the right. Well, let's try left.
 898                 */
 899                unsure = 1;
 900        } else if (!adding)
 901                unsure = 1; /* Remove a dangling branch wherever it is */
 902
 903        if (cmp == NAME_GREATER || unsure) {
 904                /* Look left */
 905                while (1) {
 906                        err = tnc_prev(c, zn, n);
 907                        if (err == -ENOENT) {
 908                                ubifs_assert(*n == 0);
 909                                *n = -1;
 910                                break;
 911                        }
 912                        if (err < 0)
 913                                return err;
 914                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 915                                /* See comments in 'resolve_collision()' */
 916                                if (*n == (*zn)->child_cnt - 1) {
 917                                        err = tnc_next(c, zn, n);
 918                                        if (err) {
 919                                                /* Should be impossible */
 920                                                ubifs_assert(0);
 921                                                if (err == -ENOENT)
 922                                                        err = -EINVAL;
 923                                                return err;
 924                                        }
 925                                        ubifs_assert(*n == 0);
 926                                        *n = -1;
 927                                }
 928                                break;
 929                        }
 930                        err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 931                        if (err < 0)
 932                                return err;
 933                        if (err == NAME_MATCHES)
 934                                return 1;
 935                        if (err == NOT_ON_MEDIA) {
 936                                o_znode = *zn;
 937                                o_n = *n;
 938                                continue;
 939                        }
 940                        if (!adding)
 941                                continue;
 942                        if (err == NAME_LESS)
 943                                break;
 944                        else
 945                                unsure = 0;
 946                }
 947        }
 948
 949        if (cmp == NAME_LESS || unsure) {
 950                /* Look right */
 951                *zn = znode;
 952                *n = nn;
 953                while (1) {
 954                        err = tnc_next(c, &znode, &nn);
 955                        if (err == -ENOENT)
 956                                break;
 957                        if (err < 0)
 958                                return err;
 959                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 960                                break;
 961                        err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 962                        if (err < 0)
 963                                return err;
 964                        if (err == NAME_GREATER)
 965                                break;
 966                        *zn = znode;
 967                        *n = nn;
 968                        if (err == NAME_MATCHES)
 969                                return 1;
 970                        if (err == NOT_ON_MEDIA) {
 971                                o_znode = znode;
 972                                o_n = nn;
 973                        }
 974                }
 975        }
 976
 977        /* Never match a dangling branch when adding */
 978        if (adding || !o_znode)
 979                return 0;
 980
 981        dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
 982                o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 983                o_znode->zbranch[o_n].len);
 984        *zn = o_znode;
 985        *n = o_n;
 986        return 1;
 987}
 988
 989/**
 990 * matches_position - determine if a zbranch matches a given position.
 991 * @zbr: zbranch of dent
 992 * @lnum: LEB number of dent to match
 993 * @offs: offset of dent to match
 994 *
 995 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
 996 */
 997static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
 998{
 999        if (zbr->lnum == lnum && zbr->offs == offs)
1000                return 1;
1001        else
1002                return 0;
1003}
1004
1005/**
1006 * resolve_collision_directly - resolve a collision directly.
1007 * @c: UBIFS file-system description object
1008 * @key: key of directory entry
1009 * @zn: znode is passed and returned here
1010 * @n: zbranch number is passed and returned here
1011 * @lnum: LEB number of dent node to match
1012 * @offs: offset of dent node to match
1013 *
1014 * This function is used for "hashed" keys to make sure the found directory or
1015 * extended attribute entry node is what was looked for. It is used when the
1016 * flash address of the right node is known (@lnum:@offs) which makes it much
1017 * easier to resolve collisions (no need to read entries and match full
1018 * names). This function returns %1 and sets @zn and @n if the collision is
1019 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1020 * previous directory entry. Otherwise a negative error code is returned.
1021 */
1022static int resolve_collision_directly(struct ubifs_info *c,
1023                                      const union ubifs_key *key,
1024                                      struct ubifs_znode **zn, int *n,
1025                                      int lnum, int offs)
1026{
1027        struct ubifs_znode *znode;
1028        int nn, err;
1029
1030        znode = *zn;
1031        nn = *n;
1032        if (matches_position(&znode->zbranch[nn], lnum, offs))
1033                return 1;
1034
1035        /* Look left */
1036        while (1) {
1037                err = tnc_prev(c, &znode, &nn);
1038                if (err == -ENOENT)
1039                        break;
1040                if (err < 0)
1041                        return err;
1042                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1043                        break;
1044                if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1045                        *zn = znode;
1046                        *n = nn;
1047                        return 1;
1048                }
1049        }
1050
1051        /* Look right */
1052        znode = *zn;
1053        nn = *n;
1054        while (1) {
1055                err = tnc_next(c, &znode, &nn);
1056                if (err == -ENOENT)
1057                        return 0;
1058                if (err < 0)
1059                        return err;
1060                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061                        return 0;
1062                *zn = znode;
1063                *n = nn;
1064                if (matches_position(&znode->zbranch[nn], lnum, offs))
1065                        return 1;
1066        }
1067}
1068
1069/**
1070 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1071 * @c: UBIFS file-system description object
1072 * @znode: znode to dirty
1073 *
1074 * If we do not have a unique key that resides in a znode, then we cannot
1075 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1076 * This function records the path back to the last dirty ancestor, and then
1077 * dirties the znodes on that path.
1078 */
1079static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1080                                               struct ubifs_znode *znode)
1081{
1082        struct ubifs_znode *zp;
1083        int *path = c->bottom_up_buf, p = 0;
1084
1085        ubifs_assert(c->zroot.znode);
1086        ubifs_assert(znode);
1087        if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1088                kfree(c->bottom_up_buf);
1089                c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1090                                           GFP_NOFS);
1091                if (!c->bottom_up_buf)
1092                        return ERR_PTR(-ENOMEM);
1093                path = c->bottom_up_buf;
1094        }
1095        if (c->zroot.znode->level) {
1096                /* Go up until parent is dirty */
1097                while (1) {
1098                        int n;
1099
1100                        zp = znode->parent;
1101                        if (!zp)
1102                                break;
1103                        n = znode->iip;
1104                        ubifs_assert(p < c->zroot.znode->level);
1105                        path[p++] = n;
1106                        if (!zp->cnext && ubifs_zn_dirty(znode))
1107                                break;
1108                        znode = zp;
1109                }
1110        }
1111
1112        /* Come back down, dirtying as we go */
1113        while (1) {
1114                struct ubifs_zbranch *zbr;
1115
1116                zp = znode->parent;
1117                if (zp) {
1118                        ubifs_assert(path[p - 1] >= 0);
1119                        ubifs_assert(path[p - 1] < zp->child_cnt);
1120                        zbr = &zp->zbranch[path[--p]];
1121                        znode = dirty_cow_znode(c, zbr);
1122                } else {
1123                        ubifs_assert(znode == c->zroot.znode);
1124                        znode = dirty_cow_znode(c, &c->zroot);
1125                }
1126                if (IS_ERR(znode) || !p)
1127                        break;
1128                ubifs_assert(path[p - 1] >= 0);
1129                ubifs_assert(path[p - 1] < znode->child_cnt);
1130                znode = znode->zbranch[path[p - 1]].znode;
1131        }
1132
1133        return znode;
1134}
1135
1136/**
1137 * ubifs_lookup_level0 - search for zero-level znode.
1138 * @c: UBIFS file-system description object
1139 * @key:  key to lookup
1140 * @zn: znode is returned here
1141 * @n: znode branch slot number is returned here
1142 *
1143 * This function looks up the TNC tree and search for zero-level znode which
1144 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1145 * cases:
1146 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1147 *     is returned and slot number of the matched branch is stored in @n;
1148 *   o not exact match, which means that zero-level znode does not contain
1149 *     @key, then %0 is returned and slot number of the closest branch is stored
1150 *     in @n;
1151 *   o @key is so small that it is even less than the lowest key of the
1152 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1153 *
1154 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1155 * function reads corresponding indexing nodes and inserts them to TNC. In
1156 * case of failure, a negative error code is returned.
1157 */
1158int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1159                        struct ubifs_znode **zn, int *n)
1160{
1161        int err, exact;
1162        struct ubifs_znode *znode;
1163        unsigned long time = get_seconds();
1164
1165        dbg_tnck(key, "search key ");
1166        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1167
1168        znode = c->zroot.znode;
1169        if (unlikely(!znode)) {
1170                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1171                if (IS_ERR(znode))
1172                        return PTR_ERR(znode);
1173        }
1174
1175        znode->time = time;
1176
1177        while (1) {
1178                struct ubifs_zbranch *zbr;
1179
1180                exact = ubifs_search_zbranch(c, znode, key, n);
1181
1182                if (znode->level == 0)
1183                        break;
1184
1185                if (*n < 0)
1186                        *n = 0;
1187                zbr = &znode->zbranch[*n];
1188
1189                if (zbr->znode) {
1190                        znode->time = time;
1191                        znode = zbr->znode;
1192                        continue;
1193                }
1194
1195                /* znode is not in TNC cache, load it from the media */
1196                znode = ubifs_load_znode(c, zbr, znode, *n);
1197                if (IS_ERR(znode))
1198                        return PTR_ERR(znode);
1199        }
1200
1201        *zn = znode;
1202        if (exact || !is_hash_key(c, key) || *n != -1) {
1203                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1204                return exact;
1205        }
1206
1207        /*
1208         * Here is a tricky place. We have not found the key and this is a
1209         * "hashed" key, which may collide. The rest of the code deals with
1210         * situations like this:
1211         *
1212         *                  | 3 | 5 |
1213         *                  /       \
1214         *          | 3 | 5 |      | 6 | 7 | (x)
1215         *
1216         * Or more a complex example:
1217         *
1218         *                | 1 | 5 |
1219         *                /       \
1220         *       | 1 | 3 |         | 5 | 8 |
1221         *              \           /
1222         *          | 5 | 5 |   | 6 | 7 | (x)
1223         *
1224         * In the examples, if we are looking for key "5", we may reach nodes
1225         * marked with "(x)". In this case what we have do is to look at the
1226         * left and see if there is "5" key there. If there is, we have to
1227         * return it.
1228         *
1229         * Note, this whole situation is possible because we allow to have
1230         * elements which are equivalent to the next key in the parent in the
1231         * children of current znode. For example, this happens if we split a
1232         * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1233         * like this:
1234         *                      | 3 | 5 |
1235         *                       /     \
1236         *                | 3 | 5 |   | 5 | 6 | 7 |
1237         *                              ^
1238         * And this becomes what is at the first "picture" after key "5" marked
1239         * with "^" is removed. What could be done is we could prohibit
1240         * splitting in the middle of the colliding sequence. Also, when
1241         * removing the leftmost key, we would have to correct the key of the
1242         * parent node, which would introduce additional complications. Namely,
1243         * if we changed the leftmost key of the parent znode, the garbage
1244         * collector would be unable to find it (GC is doing this when GC'ing
1245         * indexing LEBs). Although we already have an additional RB-tree where
1246         * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1247         * after the commit. But anyway, this does not look easy to implement
1248         * so we did not try this.
1249         */
1250        err = tnc_prev(c, &znode, n);
1251        if (err == -ENOENT) {
1252                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1253                *n = -1;
1254                return 0;
1255        }
1256        if (unlikely(err < 0))
1257                return err;
1258        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1259                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1260                *n = -1;
1261                return 0;
1262        }
1263
1264        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1265        *zn = znode;
1266        return 1;
1267}
1268
1269/**
1270 * lookup_level0_dirty - search for zero-level znode dirtying.
1271 * @c: UBIFS file-system description object
1272 * @key:  key to lookup
1273 * @zn: znode is returned here
1274 * @n: znode branch slot number is returned here
1275 *
1276 * This function looks up the TNC tree and search for zero-level znode which
1277 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1278 * cases:
1279 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1280 *     is returned and slot number of the matched branch is stored in @n;
1281 *   o not exact match, which means that zero-level znode does not contain @key
1282 *     then %0 is returned and slot number of the closed branch is stored in
1283 *     @n;
1284 *   o @key is so small that it is even less than the lowest key of the
1285 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1286 *
1287 * Additionally all znodes in the path from the root to the located zero-level
1288 * znode are marked as dirty.
1289 *
1290 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1291 * function reads corresponding indexing nodes and inserts them to TNC. In
1292 * case of failure, a negative error code is returned.
1293 */
1294static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1295                               struct ubifs_znode **zn, int *n)
1296{
1297        int err, exact;
1298        struct ubifs_znode *znode;
1299        unsigned long time = get_seconds();
1300
1301        dbg_tnck(key, "search and dirty key ");
1302
1303        znode = c->zroot.znode;
1304        if (unlikely(!znode)) {
1305                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1306                if (IS_ERR(znode))
1307                        return PTR_ERR(znode);
1308        }
1309
1310        znode = dirty_cow_znode(c, &c->zroot);
1311        if (IS_ERR(znode))
1312                return PTR_ERR(znode);
1313
1314        znode->time = time;
1315
1316        while (1) {
1317                struct ubifs_zbranch *zbr;
1318
1319                exact = ubifs_search_zbranch(c, znode, key, n);
1320
1321                if (znode->level == 0)
1322                        break;
1323
1324                if (*n < 0)
1325                        *n = 0;
1326                zbr = &znode->zbranch[*n];
1327
1328                if (zbr->znode) {
1329                        znode->time = time;
1330                        znode = dirty_cow_znode(c, zbr);
1331                        if (IS_ERR(znode))
1332                                return PTR_ERR(znode);
1333                        continue;
1334                }
1335
1336                /* znode is not in TNC cache, load it from the media */
1337                znode = ubifs_load_znode(c, zbr, znode, *n);
1338                if (IS_ERR(znode))
1339                        return PTR_ERR(znode);
1340                znode = dirty_cow_znode(c, zbr);
1341                if (IS_ERR(znode))
1342                        return PTR_ERR(znode);
1343        }
1344
1345        *zn = znode;
1346        if (exact || !is_hash_key(c, key) || *n != -1) {
1347                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1348                return exact;
1349        }
1350
1351        /*
1352         * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1353         * code.
1354         */
1355        err = tnc_prev(c, &znode, n);
1356        if (err == -ENOENT) {
1357                *n = -1;
1358                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1359                return 0;
1360        }
1361        if (unlikely(err < 0))
1362                return err;
1363        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1364                *n = -1;
1365                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1366                return 0;
1367        }
1368
1369        if (znode->cnext || !ubifs_zn_dirty(znode)) {
1370                znode = dirty_cow_bottom_up(c, znode);
1371                if (IS_ERR(znode))
1372                        return PTR_ERR(znode);
1373        }
1374
1375        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1376        *zn = znode;
1377        return 1;
1378}
1379
1380/**
1381 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1382 * @c: UBIFS file-system description object
1383 * @lnum: LEB number
1384 * @gc_seq1: garbage collection sequence number
1385 *
1386 * This function determines if @lnum may have been garbage collected since
1387 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1388 * %0 is returned.
1389 */
1390static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1391{
1392#ifndef __UBOOT__
1393        int gc_seq2, gced_lnum;
1394
1395        gced_lnum = c->gced_lnum;
1396        smp_rmb();
1397        gc_seq2 = c->gc_seq;
1398        /* Same seq means no GC */
1399        if (gc_seq1 == gc_seq2)
1400                return 0;
1401        /* Different by more than 1 means we don't know */
1402        if (gc_seq1 + 1 != gc_seq2)
1403                return 1;
1404        /*
1405         * We have seen the sequence number has increased by 1. Now we need to
1406         * be sure we read the right LEB number, so read it again.
1407         */
1408        smp_rmb();
1409        if (gced_lnum != c->gced_lnum)
1410                return 1;
1411        /* Finally we can check lnum */
1412        if (gced_lnum == lnum)
1413                return 1;
1414#else
1415        /* No garbage collection in the read-only U-Boot implementation */
1416#endif
1417        return 0;
1418}
1419
1420/**
1421 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1422 * @c: UBIFS file-system description object
1423 * @key: node key to lookup
1424 * @node: the node is returned here
1425 * @lnum: LEB number is returned here
1426 * @offs: offset is returned here
1427 *
1428 * This function looks up and reads node with key @key. The caller has to make
1429 * sure the @node buffer is large enough to fit the node. Returns zero in case
1430 * of success, %-ENOENT if the node was not found, and a negative error code in
1431 * case of failure. The node location can be returned in @lnum and @offs.
1432 */
1433int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1434                     void *node, int *lnum, int *offs)
1435{
1436        int found, n, err, safely = 0, gc_seq1;
1437        struct ubifs_znode *znode;
1438        struct ubifs_zbranch zbr, *zt;
1439
1440again:
1441        mutex_lock(&c->tnc_mutex);
1442        found = ubifs_lookup_level0(c, key, &znode, &n);
1443        if (!found) {
1444                err = -ENOENT;
1445                goto out;
1446        } else if (found < 0) {
1447                err = found;
1448                goto out;
1449        }
1450        zt = &znode->zbranch[n];
1451        if (lnum) {
1452                *lnum = zt->lnum;
1453                *offs = zt->offs;
1454        }
1455        if (is_hash_key(c, key)) {
1456                /*
1457                 * In this case the leaf node cache gets used, so we pass the
1458                 * address of the zbranch and keep the mutex locked
1459                 */
1460                err = tnc_read_node_nm(c, zt, node);
1461                goto out;
1462        }
1463        if (safely) {
1464                err = ubifs_tnc_read_node(c, zt, node);
1465                goto out;
1466        }
1467        /* Drop the TNC mutex prematurely and race with garbage collection */
1468        zbr = znode->zbranch[n];
1469        gc_seq1 = c->gc_seq;
1470        mutex_unlock(&c->tnc_mutex);
1471
1472        if (ubifs_get_wbuf(c, zbr.lnum)) {
1473                /* We do not GC journal heads */
1474                err = ubifs_tnc_read_node(c, &zbr, node);
1475                return err;
1476        }
1477
1478        err = fallible_read_node(c, key, &zbr, node);
1479        if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1480                /*
1481                 * The node may have been GC'ed out from under us so try again
1482                 * while keeping the TNC mutex locked.
1483                 */
1484                safely = 1;
1485                goto again;
1486        }
1487        return 0;
1488
1489out:
1490        mutex_unlock(&c->tnc_mutex);
1491        return err;
1492}
1493
1494/**
1495 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1496 * @c: UBIFS file-system description object
1497 * @bu: bulk-read parameters and results
1498 *
1499 * Lookup consecutive data node keys for the same inode that reside
1500 * consecutively in the same LEB. This function returns zero in case of success
1501 * and a negative error code in case of failure.
1502 *
1503 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1504 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1505 * maximum possible amount of nodes for bulk-read.
1506 */
1507int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1508{
1509        int n, err = 0, lnum = -1, uninitialized_var(offs);
1510        int uninitialized_var(len);
1511        unsigned int block = key_block(c, &bu->key);
1512        struct ubifs_znode *znode;
1513
1514        bu->cnt = 0;
1515        bu->blk_cnt = 0;
1516        bu->eof = 0;
1517
1518        mutex_lock(&c->tnc_mutex);
1519        /* Find first key */
1520        err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1521        if (err < 0)
1522                goto out;
1523        if (err) {
1524                /* Key found */
1525                len = znode->zbranch[n].len;
1526                /* The buffer must be big enough for at least 1 node */
1527                if (len > bu->buf_len) {
1528                        err = -EINVAL;
1529                        goto out;
1530                }
1531                /* Add this key */
1532                bu->zbranch[bu->cnt++] = znode->zbranch[n];
1533                bu->blk_cnt += 1;
1534                lnum = znode->zbranch[n].lnum;
1535                offs = ALIGN(znode->zbranch[n].offs + len, 8);
1536        }
1537        while (1) {
1538                struct ubifs_zbranch *zbr;
1539                union ubifs_key *key;
1540                unsigned int next_block;
1541
1542                /* Find next key */
1543                err = tnc_next(c, &znode, &n);
1544                if (err)
1545                        goto out;
1546                zbr = &znode->zbranch[n];
1547                key = &zbr->key;
1548                /* See if there is another data key for this file */
1549                if (key_inum(c, key) != key_inum(c, &bu->key) ||
1550                    key_type(c, key) != UBIFS_DATA_KEY) {
1551                        err = -ENOENT;
1552                        goto out;
1553                }
1554                if (lnum < 0) {
1555                        /* First key found */
1556                        lnum = zbr->lnum;
1557                        offs = ALIGN(zbr->offs + zbr->len, 8);
1558                        len = zbr->len;
1559                        if (len > bu->buf_len) {
1560                                err = -EINVAL;
1561                                goto out;
1562                        }
1563                } else {
1564                        /*
1565                         * The data nodes must be in consecutive positions in
1566                         * the same LEB.
1567                         */
1568                        if (zbr->lnum != lnum || zbr->offs != offs)
1569                                goto out;
1570                        offs += ALIGN(zbr->len, 8);
1571                        len = ALIGN(len, 8) + zbr->len;
1572                        /* Must not exceed buffer length */
1573                        if (len > bu->buf_len)
1574                                goto out;
1575                }
1576                /* Allow for holes */
1577                next_block = key_block(c, key);
1578                bu->blk_cnt += (next_block - block - 1);
1579                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1580                        goto out;
1581                block = next_block;
1582                /* Add this key */
1583                bu->zbranch[bu->cnt++] = *zbr;
1584                bu->blk_cnt += 1;
1585                /* See if we have room for more */
1586                if (bu->cnt >= UBIFS_MAX_BULK_READ)
1587                        goto out;
1588                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1589                        goto out;
1590        }
1591out:
1592        if (err == -ENOENT) {
1593                bu->eof = 1;
1594                err = 0;
1595        }
1596        bu->gc_seq = c->gc_seq;
1597        mutex_unlock(&c->tnc_mutex);
1598        if (err)
1599                return err;
1600        /*
1601         * An enormous hole could cause bulk-read to encompass too many
1602         * page cache pages, so limit the number here.
1603         */
1604        if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1605                bu->blk_cnt = UBIFS_MAX_BULK_READ;
1606        /*
1607         * Ensure that bulk-read covers a whole number of page cache
1608         * pages.
1609         */
1610        if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1611            !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1612                return 0;
1613        if (bu->eof) {
1614                /* At the end of file we can round up */
1615                bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1616                return 0;
1617        }
1618        /* Exclude data nodes that do not make up a whole page cache page */
1619        block = key_block(c, &bu->key) + bu->blk_cnt;
1620        block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1621        while (bu->cnt) {
1622                if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1623                        break;
1624                bu->cnt -= 1;
1625        }
1626        return 0;
1627}
1628
1629/**
1630 * read_wbuf - bulk-read from a LEB with a wbuf.
1631 * @wbuf: wbuf that may overlap the read
1632 * @buf: buffer into which to read
1633 * @len: read length
1634 * @lnum: LEB number from which to read
1635 * @offs: offset from which to read
1636 *
1637 * This functions returns %0 on success or a negative error code on failure.
1638 */
1639static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1640                     int offs)
1641{
1642        const struct ubifs_info *c = wbuf->c;
1643        int rlen, overlap;
1644
1645        dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1646        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1647        ubifs_assert(!(offs & 7) && offs < c->leb_size);
1648        ubifs_assert(offs + len <= c->leb_size);
1649
1650        spin_lock(&wbuf->lock);
1651        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1652        if (!overlap) {
1653                /* We may safely unlock the write-buffer and read the data */
1654                spin_unlock(&wbuf->lock);
1655                return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1656        }
1657
1658        /* Don't read under wbuf */
1659        rlen = wbuf->offs - offs;
1660        if (rlen < 0)
1661                rlen = 0;
1662
1663        /* Copy the rest from the write-buffer */
1664        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1665        spin_unlock(&wbuf->lock);
1666
1667        if (rlen > 0)
1668                /* Read everything that goes before write-buffer */
1669                return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1670
1671        return 0;
1672}
1673
1674/**
1675 * validate_data_node - validate data nodes for bulk-read.
1676 * @c: UBIFS file-system description object
1677 * @buf: buffer containing data node to validate
1678 * @zbr: zbranch of data node to validate
1679 *
1680 * This functions returns %0 on success or a negative error code on failure.
1681 */
1682static int validate_data_node(struct ubifs_info *c, void *buf,
1683                              struct ubifs_zbranch *zbr)
1684{
1685        union ubifs_key key1;
1686        struct ubifs_ch *ch = buf;
1687        int err, len;
1688
1689        if (ch->node_type != UBIFS_DATA_NODE) {
1690                ubifs_err(c, "bad node type (%d but expected %d)",
1691                          ch->node_type, UBIFS_DATA_NODE);
1692                goto out_err;
1693        }
1694
1695        err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1696        if (err) {
1697                ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1698                goto out;
1699        }
1700
1701        len = le32_to_cpu(ch->len);
1702        if (len != zbr->len) {
1703                ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1704                goto out_err;
1705        }
1706
1707        /* Make sure the key of the read node is correct */
1708        key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1709        if (!keys_eq(c, &zbr->key, &key1)) {
1710                ubifs_err(c, "bad key in node at LEB %d:%d",
1711                          zbr->lnum, zbr->offs);
1712                dbg_tnck(&zbr->key, "looked for key ");
1713                dbg_tnck(&key1, "found node's key ");
1714                goto out_err;
1715        }
1716
1717        return 0;
1718
1719out_err:
1720        err = -EINVAL;
1721out:
1722        ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1723        ubifs_dump_node(c, buf);
1724        dump_stack();
1725        return err;
1726}
1727
1728/**
1729 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1730 * @c: UBIFS file-system description object
1731 * @bu: bulk-read parameters and results
1732 *
1733 * This functions reads and validates the data nodes that were identified by the
1734 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1735 * -EAGAIN to indicate a race with GC, or another negative error code on
1736 * failure.
1737 */
1738int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1739{
1740        int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1741        struct ubifs_wbuf *wbuf;
1742        void *buf;
1743
1744        len = bu->zbranch[bu->cnt - 1].offs;
1745        len += bu->zbranch[bu->cnt - 1].len - offs;
1746        if (len > bu->buf_len) {
1747                ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1748                return -EINVAL;
1749        }
1750
1751        /* Do the read */
1752        wbuf = ubifs_get_wbuf(c, lnum);
1753        if (wbuf)
1754                err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1755        else
1756                err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1757
1758        /* Check for a race with GC */
1759        if (maybe_leb_gced(c, lnum, bu->gc_seq))
1760                return -EAGAIN;
1761
1762        if (err && err != -EBADMSG) {
1763                ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1764                          lnum, offs, err);
1765                dump_stack();
1766                dbg_tnck(&bu->key, "key ");
1767                return err;
1768        }
1769
1770        /* Validate the nodes read */
1771        buf = bu->buf;
1772        for (i = 0; i < bu->cnt; i++) {
1773                err = validate_data_node(c, buf, &bu->zbranch[i]);
1774                if (err)
1775                        return err;
1776                buf = buf + ALIGN(bu->zbranch[i].len, 8);
1777        }
1778
1779        return 0;
1780}
1781
1782/**
1783 * do_lookup_nm- look up a "hashed" node.
1784 * @c: UBIFS file-system description object
1785 * @key: node key to lookup
1786 * @node: the node is returned here
1787 * @nm: node name
1788 *
1789 * This function look up and reads a node which contains name hash in the key.
1790 * Since the hash may have collisions, there may be many nodes with the same
1791 * key, so we have to sequentially look to all of them until the needed one is
1792 * found. This function returns zero in case of success, %-ENOENT if the node
1793 * was not found, and a negative error code in case of failure.
1794 */
1795static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1796                        void *node, const struct qstr *nm)
1797{
1798        int found, n, err;
1799        struct ubifs_znode *znode;
1800
1801        dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1802        mutex_lock(&c->tnc_mutex);
1803        found = ubifs_lookup_level0(c, key, &znode, &n);
1804        if (!found) {
1805                err = -ENOENT;
1806                goto out_unlock;
1807        } else if (found < 0) {
1808                err = found;
1809                goto out_unlock;
1810        }
1811
1812        ubifs_assert(n >= 0);
1813
1814        err = resolve_collision(c, key, &znode, &n, nm);
1815        dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1816        if (unlikely(err < 0))
1817                goto out_unlock;
1818        if (err == 0) {
1819                err = -ENOENT;
1820                goto out_unlock;
1821        }
1822
1823        err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1824
1825out_unlock:
1826        mutex_unlock(&c->tnc_mutex);
1827        return err;
1828}
1829
1830/**
1831 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1832 * @c: UBIFS file-system description object
1833 * @key: node key to lookup
1834 * @node: the node is returned here
1835 * @nm: node name
1836 *
1837 * This function look up and reads a node which contains name hash in the key.
1838 * Since the hash may have collisions, there may be many nodes with the same
1839 * key, so we have to sequentially look to all of them until the needed one is
1840 * found. This function returns zero in case of success, %-ENOENT if the node
1841 * was not found, and a negative error code in case of failure.
1842 */
1843int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1844                        void *node, const struct qstr *nm)
1845{
1846        int err, len;
1847        const struct ubifs_dent_node *dent = node;
1848
1849        /*
1850         * We assume that in most of the cases there are no name collisions and
1851         * 'ubifs_tnc_lookup()' returns us the right direntry.
1852         */
1853        err = ubifs_tnc_lookup(c, key, node);
1854        if (err)
1855                return err;
1856
1857        len = le16_to_cpu(dent->nlen);
1858        if (nm->len == len && !memcmp(dent->name, nm->name, len))
1859                return 0;
1860
1861        /*
1862         * Unluckily, there are hash collisions and we have to iterate over
1863         * them look at each direntry with colliding name hash sequentially.
1864         */
1865        return do_lookup_nm(c, key, node, nm);
1866}
1867
1868/**
1869 * correct_parent_keys - correct parent znodes' keys.
1870 * @c: UBIFS file-system description object
1871 * @znode: znode to correct parent znodes for
1872 *
1873 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1874 * zbranch changes, keys of parent znodes have to be corrected. This helper
1875 * function is called in such situations and corrects the keys if needed.
1876 */
1877static void correct_parent_keys(const struct ubifs_info *c,
1878                                struct ubifs_znode *znode)
1879{
1880        union ubifs_key *key, *key1;
1881
1882        ubifs_assert(znode->parent);
1883        ubifs_assert(znode->iip == 0);
1884
1885        key = &znode->zbranch[0].key;
1886        key1 = &znode->parent->zbranch[0].key;
1887
1888        while (keys_cmp(c, key, key1) < 0) {
1889                key_copy(c, key, key1);
1890                znode = znode->parent;
1891                znode->alt = 1;
1892                if (!znode->parent || znode->iip)
1893                        break;
1894                key1 = &znode->parent->zbranch[0].key;
1895        }
1896}
1897
1898/**
1899 * insert_zbranch - insert a zbranch into a znode.
1900 * @znode: znode into which to insert
1901 * @zbr: zbranch to insert
1902 * @n: slot number to insert to
1903 *
1904 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1905 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1906 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1907 * slot, zbranches starting from @n have to be moved right.
1908 */
1909static void insert_zbranch(struct ubifs_znode *znode,
1910                           const struct ubifs_zbranch *zbr, int n)
1911{
1912        int i;
1913
1914        ubifs_assert(ubifs_zn_dirty(znode));
1915
1916        if (znode->level) {
1917                for (i = znode->child_cnt; i > n; i--) {
1918                        znode->zbranch[i] = znode->zbranch[i - 1];
1919                        if (znode->zbranch[i].znode)
1920                                znode->zbranch[i].znode->iip = i;
1921                }
1922                if (zbr->znode)
1923                        zbr->znode->iip = n;
1924        } else
1925                for (i = znode->child_cnt; i > n; i--)
1926                        znode->zbranch[i] = znode->zbranch[i - 1];
1927
1928        znode->zbranch[n] = *zbr;
1929        znode->child_cnt += 1;
1930
1931        /*
1932         * After inserting at slot zero, the lower bound of the key range of
1933         * this znode may have changed. If this znode is subsequently split
1934         * then the upper bound of the key range may change, and furthermore
1935         * it could change to be lower than the original lower bound. If that
1936         * happens, then it will no longer be possible to find this znode in the
1937         * TNC using the key from the index node on flash. That is bad because
1938         * if it is not found, we will assume it is obsolete and may overwrite
1939         * it. Then if there is an unclean unmount, we will start using the
1940         * old index which will be broken.
1941         *
1942         * So we first mark znodes that have insertions at slot zero, and then
1943         * if they are split we add their lnum/offs to the old_idx tree.
1944         */
1945        if (n == 0)
1946                znode->alt = 1;
1947}
1948
1949/**
1950 * tnc_insert - insert a node into TNC.
1951 * @c: UBIFS file-system description object
1952 * @znode: znode to insert into
1953 * @zbr: branch to insert
1954 * @n: slot number to insert new zbranch to
1955 *
1956 * This function inserts a new node described by @zbr into znode @znode. If
1957 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1958 * are splat as well if needed. Returns zero in case of success or a negative
1959 * error code in case of failure.
1960 */
1961static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1962                      struct ubifs_zbranch *zbr, int n)
1963{
1964        struct ubifs_znode *zn, *zi, *zp;
1965        int i, keep, move, appending = 0;
1966        union ubifs_key *key = &zbr->key, *key1;
1967
1968        ubifs_assert(n >= 0 && n <= c->fanout);
1969
1970        /* Implement naive insert for now */
1971again:
1972        zp = znode->parent;
1973        if (znode->child_cnt < c->fanout) {
1974                ubifs_assert(n != c->fanout);
1975                dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1976
1977                insert_zbranch(znode, zbr, n);
1978
1979                /* Ensure parent's key is correct */
1980                if (n == 0 && zp && znode->iip == 0)
1981                        correct_parent_keys(c, znode);
1982
1983                return 0;
1984        }
1985
1986        /*
1987         * Unfortunately, @znode does not have more empty slots and we have to
1988         * split it.
1989         */
1990        dbg_tnck(key, "splitting level %d, key ", znode->level);
1991
1992        if (znode->alt)
1993                /*
1994                 * We can no longer be sure of finding this znode by key, so we
1995                 * record it in the old_idx tree.
1996                 */
1997                ins_clr_old_idx_znode(c, znode);
1998
1999        zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2000        if (!zn)
2001                return -ENOMEM;
2002        zn->parent = zp;
2003        zn->level = znode->level;
2004
2005        /* Decide where to split */
2006        if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2007                /* Try not to split consecutive data keys */
2008                if (n == c->fanout) {
2009                        key1 = &znode->zbranch[n - 1].key;
2010                        if (key_inum(c, key1) == key_inum(c, key) &&
2011                            key_type(c, key1) == UBIFS_DATA_KEY)
2012                                appending = 1;
2013                } else
2014                        goto check_split;
2015        } else if (appending && n != c->fanout) {
2016                /* Try not to split consecutive data keys */
2017                appending = 0;
2018check_split:
2019                if (n >= (c->fanout + 1) / 2) {
2020                        key1 = &znode->zbranch[0].key;
2021                        if (key_inum(c, key1) == key_inum(c, key) &&
2022                            key_type(c, key1) == UBIFS_DATA_KEY) {
2023                                key1 = &znode->zbranch[n].key;
2024                                if (key_inum(c, key1) != key_inum(c, key) ||
2025                                    key_type(c, key1) != UBIFS_DATA_KEY) {
2026                                        keep = n;
2027                                        move = c->fanout - keep;
2028                                        zi = znode;
2029                                        goto do_split;
2030                                }
2031                        }
2032                }
2033        }
2034
2035        if (appending) {
2036                keep = c->fanout;
2037                move = 0;
2038        } else {
2039                keep = (c->fanout + 1) / 2;
2040                move = c->fanout - keep;
2041        }
2042
2043        /*
2044         * Although we don't at present, we could look at the neighbors and see
2045         * if we can move some zbranches there.
2046         */
2047
2048        if (n < keep) {
2049                /* Insert into existing znode */
2050                zi = znode;
2051                move += 1;
2052                keep -= 1;
2053        } else {
2054                /* Insert into new znode */
2055                zi = zn;
2056                n -= keep;
2057                /* Re-parent */
2058                if (zn->level != 0)
2059                        zbr->znode->parent = zn;
2060        }
2061
2062do_split:
2063
2064        __set_bit(DIRTY_ZNODE, &zn->flags);
2065        atomic_long_inc(&c->dirty_zn_cnt);
2066
2067        zn->child_cnt = move;
2068        znode->child_cnt = keep;
2069
2070        dbg_tnc("moving %d, keeping %d", move, keep);
2071
2072        /* Move zbranch */
2073        for (i = 0; i < move; i++) {
2074                zn->zbranch[i] = znode->zbranch[keep + i];
2075                /* Re-parent */
2076                if (zn->level != 0)
2077                        if (zn->zbranch[i].znode) {
2078                                zn->zbranch[i].znode->parent = zn;
2079                                zn->zbranch[i].znode->iip = i;
2080                        }
2081        }
2082
2083        /* Insert new key and branch */
2084        dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2085
2086        insert_zbranch(zi, zbr, n);
2087
2088        /* Insert new znode (produced by spitting) into the parent */
2089        if (zp) {
2090                if (n == 0 && zi == znode && znode->iip == 0)
2091                        correct_parent_keys(c, znode);
2092
2093                /* Locate insertion point */
2094                n = znode->iip + 1;
2095
2096                /* Tail recursion */
2097                zbr->key = zn->zbranch[0].key;
2098                zbr->znode = zn;
2099                zbr->lnum = 0;
2100                zbr->offs = 0;
2101                zbr->len = 0;
2102                znode = zp;
2103
2104                goto again;
2105        }
2106
2107        /* We have to split root znode */
2108        dbg_tnc("creating new zroot at level %d", znode->level + 1);
2109
2110        zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2111        if (!zi)
2112                return -ENOMEM;
2113
2114        zi->child_cnt = 2;
2115        zi->level = znode->level + 1;
2116
2117        __set_bit(DIRTY_ZNODE, &zi->flags);
2118        atomic_long_inc(&c->dirty_zn_cnt);
2119
2120        zi->zbranch[0].key = znode->zbranch[0].key;
2121        zi->zbranch[0].znode = znode;
2122        zi->zbranch[0].lnum = c->zroot.lnum;
2123        zi->zbranch[0].offs = c->zroot.offs;
2124        zi->zbranch[0].len = c->zroot.len;
2125        zi->zbranch[1].key = zn->zbranch[0].key;
2126        zi->zbranch[1].znode = zn;
2127
2128        c->zroot.lnum = 0;
2129        c->zroot.offs = 0;
2130        c->zroot.len = 0;
2131        c->zroot.znode = zi;
2132
2133        zn->parent = zi;
2134        zn->iip = 1;
2135        znode->parent = zi;
2136        znode->iip = 0;
2137
2138        return 0;
2139}
2140
2141/**
2142 * ubifs_tnc_add - add a node to TNC.
2143 * @c: UBIFS file-system description object
2144 * @key: key to add
2145 * @lnum: LEB number of node
2146 * @offs: node offset
2147 * @len: node length
2148 *
2149 * This function adds a node with key @key to TNC. The node may be new or it may
2150 * obsolete some existing one. Returns %0 on success or negative error code on
2151 * failure.
2152 */
2153int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2154                  int offs, int len)
2155{
2156        int found, n, err = 0;
2157        struct ubifs_znode *znode;
2158
2159        mutex_lock(&c->tnc_mutex);
2160        dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2161        found = lookup_level0_dirty(c, key, &znode, &n);
2162        if (!found) {
2163                struct ubifs_zbranch zbr;
2164
2165                zbr.znode = NULL;
2166                zbr.lnum = lnum;
2167                zbr.offs = offs;
2168                zbr.len = len;
2169                key_copy(c, key, &zbr.key);
2170                err = tnc_insert(c, znode, &zbr, n + 1);
2171        } else if (found == 1) {
2172                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2173
2174                lnc_free(zbr);
2175                err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2176                zbr->lnum = lnum;
2177                zbr->offs = offs;
2178                zbr->len = len;
2179        } else
2180                err = found;
2181        if (!err)
2182                err = dbg_check_tnc(c, 0);
2183        mutex_unlock(&c->tnc_mutex);
2184
2185        return err;
2186}
2187
2188/**
2189 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2190 * @c: UBIFS file-system description object
2191 * @key: key to add
2192 * @old_lnum: LEB number of old node
2193 * @old_offs: old node offset
2194 * @lnum: LEB number of node
2195 * @offs: node offset
2196 * @len: node length
2197 *
2198 * This function replaces a node with key @key in the TNC only if the old node
2199 * is found.  This function is called by garbage collection when node are moved.
2200 * Returns %0 on success or negative error code on failure.
2201 */
2202int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2203                      int old_lnum, int old_offs, int lnum, int offs, int len)
2204{
2205        int found, n, err = 0;
2206        struct ubifs_znode *znode;
2207
2208        mutex_lock(&c->tnc_mutex);
2209        dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2210                 old_offs, lnum, offs, len);
2211        found = lookup_level0_dirty(c, key, &znode, &n);
2212        if (found < 0) {
2213                err = found;
2214                goto out_unlock;
2215        }
2216
2217        if (found == 1) {
2218                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2219
2220                found = 0;
2221                if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2222                        lnc_free(zbr);
2223                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2224                        if (err)
2225                                goto out_unlock;
2226                        zbr->lnum = lnum;
2227                        zbr->offs = offs;
2228                        zbr->len = len;
2229                        found = 1;
2230                } else if (is_hash_key(c, key)) {
2231                        found = resolve_collision_directly(c, key, &znode, &n,
2232                                                           old_lnum, old_offs);
2233                        dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2234                                found, znode, n, old_lnum, old_offs);
2235                        if (found < 0) {
2236                                err = found;
2237                                goto out_unlock;
2238                        }
2239
2240                        if (found) {
2241                                /* Ensure the znode is dirtied */
2242                                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2243                                        znode = dirty_cow_bottom_up(c, znode);
2244                                        if (IS_ERR(znode)) {
2245                                                err = PTR_ERR(znode);
2246                                                goto out_unlock;
2247                                        }
2248                                }
2249                                zbr = &znode->zbranch[n];
2250                                lnc_free(zbr);
2251                                err = ubifs_add_dirt(c, zbr->lnum,
2252                                                     zbr->len);
2253                                if (err)
2254                                        goto out_unlock;
2255                                zbr->lnum = lnum;
2256                                zbr->offs = offs;
2257                                zbr->len = len;
2258                        }
2259                }
2260        }
2261
2262        if (!found)
2263                err = ubifs_add_dirt(c, lnum, len);
2264
2265        if (!err)
2266                err = dbg_check_tnc(c, 0);
2267
2268out_unlock:
2269        mutex_unlock(&c->tnc_mutex);
2270        return err;
2271}
2272
2273/**
2274 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2275 * @c: UBIFS file-system description object
2276 * @key: key to add
2277 * @lnum: LEB number of node
2278 * @offs: node offset
2279 * @len: node length
2280 * @nm: node name
2281 *
2282 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2283 * may have collisions, like directory entry keys.
2284 */
2285int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2286                     int lnum, int offs, int len, const struct qstr *nm)
2287{
2288        int found, n, err = 0;
2289        struct ubifs_znode *znode;
2290
2291        mutex_lock(&c->tnc_mutex);
2292        dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2293                 lnum, offs, nm->len, nm->name);
2294        found = lookup_level0_dirty(c, key, &znode, &n);
2295        if (found < 0) {
2296                err = found;
2297                goto out_unlock;
2298        }
2299
2300        if (found == 1) {
2301                if (c->replaying)
2302                        found = fallible_resolve_collision(c, key, &znode, &n,
2303                                                           nm, 1);
2304                else
2305                        found = resolve_collision(c, key, &znode, &n, nm);
2306                dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2307                if (found < 0) {
2308                        err = found;
2309                        goto out_unlock;
2310                }
2311
2312                /* Ensure the znode is dirtied */
2313                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2314                        znode = dirty_cow_bottom_up(c, znode);
2315                        if (IS_ERR(znode)) {
2316                                err = PTR_ERR(znode);
2317                                goto out_unlock;
2318                        }
2319                }
2320
2321                if (found == 1) {
2322                        struct ubifs_zbranch *zbr = &znode->zbranch[n];
2323
2324                        lnc_free(zbr);
2325                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2326                        zbr->lnum = lnum;
2327                        zbr->offs = offs;
2328                        zbr->len = len;
2329                        goto out_unlock;
2330                }
2331        }
2332
2333        if (!found) {
2334                struct ubifs_zbranch zbr;
2335
2336                zbr.znode = NULL;
2337                zbr.lnum = lnum;
2338                zbr.offs = offs;
2339                zbr.len = len;
2340                key_copy(c, key, &zbr.key);
2341                err = tnc_insert(c, znode, &zbr, n + 1);
2342                if (err)
2343                        goto out_unlock;
2344                if (c->replaying) {
2345                        /*
2346                         * We did not find it in the index so there may be a
2347                         * dangling branch still in the index. So we remove it
2348                         * by passing 'ubifs_tnc_remove_nm()' the same key but
2349                         * an unmatchable name.
2350                         */
2351                        struct qstr noname = { .name = "" };
2352
2353                        err = dbg_check_tnc(c, 0);
2354                        mutex_unlock(&c->tnc_mutex);
2355                        if (err)
2356                                return err;
2357                        return ubifs_tnc_remove_nm(c, key, &noname);
2358                }
2359        }
2360
2361out_unlock:
2362        if (!err)
2363                err = dbg_check_tnc(c, 0);
2364        mutex_unlock(&c->tnc_mutex);
2365        return err;
2366}
2367
2368/**
2369 * tnc_delete - delete a znode form TNC.
2370 * @c: UBIFS file-system description object
2371 * @znode: znode to delete from
2372 * @n: zbranch slot number to delete
2373 *
2374 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2375 * case of success and a negative error code in case of failure.
2376 */
2377static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2378{
2379        struct ubifs_zbranch *zbr;
2380        struct ubifs_znode *zp;
2381        int i, err;
2382
2383        /* Delete without merge for now */
2384        ubifs_assert(znode->level == 0);
2385        ubifs_assert(n >= 0 && n < c->fanout);
2386        dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2387
2388        zbr = &znode->zbranch[n];
2389        lnc_free(zbr);
2390
2391        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2392        if (err) {
2393                ubifs_dump_znode(c, znode);
2394                return err;
2395        }
2396
2397        /* We do not "gap" zbranch slots */
2398        for (i = n; i < znode->child_cnt - 1; i++)
2399                znode->zbranch[i] = znode->zbranch[i + 1];
2400        znode->child_cnt -= 1;
2401
2402        if (znode->child_cnt > 0)
2403                return 0;
2404
2405        /*
2406         * This was the last zbranch, we have to delete this znode from the
2407         * parent.
2408         */
2409
2410        do {
2411                ubifs_assert(!ubifs_zn_obsolete(znode));
2412                ubifs_assert(ubifs_zn_dirty(znode));
2413
2414                zp = znode->parent;
2415                n = znode->iip;
2416
2417                atomic_long_dec(&c->dirty_zn_cnt);
2418
2419                err = insert_old_idx_znode(c, znode);
2420                if (err)
2421                        return err;
2422
2423                if (znode->cnext) {
2424                        __set_bit(OBSOLETE_ZNODE, &znode->flags);
2425                        atomic_long_inc(&c->clean_zn_cnt);
2426                        atomic_long_inc(&ubifs_clean_zn_cnt);
2427                } else
2428                        kfree(znode);
2429                znode = zp;
2430        } while (znode->child_cnt == 1); /* while removing last child */
2431
2432        /* Remove from znode, entry n - 1 */
2433        znode->child_cnt -= 1;
2434        ubifs_assert(znode->level != 0);
2435        for (i = n; i < znode->child_cnt; i++) {
2436                znode->zbranch[i] = znode->zbranch[i + 1];
2437                if (znode->zbranch[i].znode)
2438                        znode->zbranch[i].znode->iip = i;
2439        }
2440
2441        /*
2442         * If this is the root and it has only 1 child then
2443         * collapse the tree.
2444         */
2445        if (!znode->parent) {
2446                while (znode->child_cnt == 1 && znode->level != 0) {
2447                        zp = znode;
2448                        zbr = &znode->zbranch[0];
2449                        znode = get_znode(c, znode, 0);
2450                        if (IS_ERR(znode))
2451                                return PTR_ERR(znode);
2452                        znode = dirty_cow_znode(c, zbr);
2453                        if (IS_ERR(znode))
2454                                return PTR_ERR(znode);
2455                        znode->parent = NULL;
2456                        znode->iip = 0;
2457                        if (c->zroot.len) {
2458                                err = insert_old_idx(c, c->zroot.lnum,
2459                                                     c->zroot.offs);
2460                                if (err)
2461                                        return err;
2462                        }
2463                        c->zroot.lnum = zbr->lnum;
2464                        c->zroot.offs = zbr->offs;
2465                        c->zroot.len = zbr->len;
2466                        c->zroot.znode = znode;
2467                        ubifs_assert(!ubifs_zn_obsolete(zp));
2468                        ubifs_assert(ubifs_zn_dirty(zp));
2469                        atomic_long_dec(&c->dirty_zn_cnt);
2470
2471                        if (zp->cnext) {
2472                                __set_bit(OBSOLETE_ZNODE, &zp->flags);
2473                                atomic_long_inc(&c->clean_zn_cnt);
2474                                atomic_long_inc(&ubifs_clean_zn_cnt);
2475                        } else
2476                                kfree(zp);
2477                }
2478        }
2479
2480        return 0;
2481}
2482
2483/**
2484 * ubifs_tnc_remove - remove an index entry of a node.
2485 * @c: UBIFS file-system description object
2486 * @key: key of node
2487 *
2488 * Returns %0 on success or negative error code on failure.
2489 */
2490int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2491{
2492        int found, n, err = 0;
2493        struct ubifs_znode *znode;
2494
2495        mutex_lock(&c->tnc_mutex);
2496        dbg_tnck(key, "key ");
2497        found = lookup_level0_dirty(c, key, &znode, &n);
2498        if (found < 0) {
2499                err = found;
2500                goto out_unlock;
2501        }
2502        if (found == 1)
2503                err = tnc_delete(c, znode, n);
2504        if (!err)
2505                err = dbg_check_tnc(c, 0);
2506
2507out_unlock:
2508        mutex_unlock(&c->tnc_mutex);
2509        return err;
2510}
2511
2512/**
2513 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2514 * @c: UBIFS file-system description object
2515 * @key: key of node
2516 * @nm: directory entry name
2517 *
2518 * Returns %0 on success or negative error code on failure.
2519 */
2520int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2521                        const struct qstr *nm)
2522{
2523        int n, err;
2524        struct ubifs_znode *znode;
2525
2526        mutex_lock(&c->tnc_mutex);
2527        dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2528        err = lookup_level0_dirty(c, key, &znode, &n);
2529        if (err < 0)
2530                goto out_unlock;
2531
2532        if (err) {
2533                if (c->replaying)
2534                        err = fallible_resolve_collision(c, key, &znode, &n,
2535                                                         nm, 0);
2536                else
2537                        err = resolve_collision(c, key, &znode, &n, nm);
2538                dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2539                if (err < 0)
2540                        goto out_unlock;
2541                if (err) {
2542                        /* Ensure the znode is dirtied */
2543                        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2544                                znode = dirty_cow_bottom_up(c, znode);
2545                                if (IS_ERR(znode)) {
2546                                        err = PTR_ERR(znode);
2547                                        goto out_unlock;
2548                                }
2549                        }
2550                        err = tnc_delete(c, znode, n);
2551                }
2552        }
2553
2554out_unlock:
2555        if (!err)
2556                err = dbg_check_tnc(c, 0);
2557        mutex_unlock(&c->tnc_mutex);
2558        return err;
2559}
2560
2561/**
2562 * key_in_range - determine if a key falls within a range of keys.
2563 * @c: UBIFS file-system description object
2564 * @key: key to check
2565 * @from_key: lowest key in range
2566 * @to_key: highest key in range
2567 *
2568 * This function returns %1 if the key is in range and %0 otherwise.
2569 */
2570static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2571                        union ubifs_key *from_key, union ubifs_key *to_key)
2572{
2573        if (keys_cmp(c, key, from_key) < 0)
2574                return 0;
2575        if (keys_cmp(c, key, to_key) > 0)
2576                return 0;
2577        return 1;
2578}
2579
2580/**
2581 * ubifs_tnc_remove_range - remove index entries in range.
2582 * @c: UBIFS file-system description object
2583 * @from_key: lowest key to remove
2584 * @to_key: highest key to remove
2585 *
2586 * This function removes index entries starting at @from_key and ending at
2587 * @to_key.  This function returns zero in case of success and a negative error
2588 * code in case of failure.
2589 */
2590int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2591                           union ubifs_key *to_key)
2592{
2593        int i, n, k, err = 0;
2594        struct ubifs_znode *znode;
2595        union ubifs_key *key;
2596
2597        mutex_lock(&c->tnc_mutex);
2598        while (1) {
2599                /* Find first level 0 znode that contains keys to remove */
2600                err = ubifs_lookup_level0(c, from_key, &znode, &n);
2601                if (err < 0)
2602                        goto out_unlock;
2603
2604                if (err)
2605                        key = from_key;
2606                else {
2607                        err = tnc_next(c, &znode, &n);
2608                        if (err == -ENOENT) {
2609                                err = 0;
2610                                goto out_unlock;
2611                        }
2612                        if (err < 0)
2613                                goto out_unlock;
2614                        key = &znode->zbranch[n].key;
2615                        if (!key_in_range(c, key, from_key, to_key)) {
2616                                err = 0;
2617                                goto out_unlock;
2618                        }
2619                }
2620
2621                /* Ensure the znode is dirtied */
2622                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2623                        znode = dirty_cow_bottom_up(c, znode);
2624                        if (IS_ERR(znode)) {
2625                                err = PTR_ERR(znode);
2626                                goto out_unlock;
2627                        }
2628                }
2629
2630                /* Remove all keys in range except the first */
2631                for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2632                        key = &znode->zbranch[i].key;
2633                        if (!key_in_range(c, key, from_key, to_key))
2634                                break;
2635                        lnc_free(&znode->zbranch[i]);
2636                        err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2637                                             znode->zbranch[i].len);
2638                        if (err) {
2639                                ubifs_dump_znode(c, znode);
2640                                goto out_unlock;
2641                        }
2642                        dbg_tnck(key, "removing key ");
2643                }
2644                if (k) {
2645                        for (i = n + 1 + k; i < znode->child_cnt; i++)
2646                                znode->zbranch[i - k] = znode->zbranch[i];
2647                        znode->child_cnt -= k;
2648                }
2649
2650                /* Now delete the first */
2651                err = tnc_delete(c, znode, n);
2652                if (err)
2653                        goto out_unlock;
2654        }
2655
2656out_unlock:
2657        if (!err)
2658                err = dbg_check_tnc(c, 0);
2659        mutex_unlock(&c->tnc_mutex);
2660        return err;
2661}
2662
2663/**
2664 * ubifs_tnc_remove_ino - remove an inode from TNC.
2665 * @c: UBIFS file-system description object
2666 * @inum: inode number to remove
2667 *
2668 * This function remove inode @inum and all the extended attributes associated
2669 * with the anode from TNC and returns zero in case of success or a negative
2670 * error code in case of failure.
2671 */
2672int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2673{
2674        union ubifs_key key1, key2;
2675        struct ubifs_dent_node *xent, *pxent = NULL;
2676        struct qstr nm = { .name = NULL };
2677
2678        dbg_tnc("ino %lu", (unsigned long)inum);
2679
2680        /*
2681         * Walk all extended attribute entries and remove them together with
2682         * corresponding extended attribute inodes.
2683         */
2684        lowest_xent_key(c, &key1, inum);
2685        while (1) {
2686                ino_t xattr_inum;
2687                int err;
2688
2689                xent = ubifs_tnc_next_ent(c, &key1, &nm);
2690                if (IS_ERR(xent)) {
2691                        err = PTR_ERR(xent);
2692                        if (err == -ENOENT)
2693                                break;
2694                        return err;
2695                }
2696
2697                xattr_inum = le64_to_cpu(xent->inum);
2698                dbg_tnc("xent '%s', ino %lu", xent->name,
2699                        (unsigned long)xattr_inum);
2700
2701                nm.name = xent->name;
2702                nm.len = le16_to_cpu(xent->nlen);
2703                err = ubifs_tnc_remove_nm(c, &key1, &nm);
2704                if (err) {
2705                        kfree(xent);
2706                        return err;
2707                }
2708
2709                lowest_ino_key(c, &key1, xattr_inum);
2710                highest_ino_key(c, &key2, xattr_inum);
2711                err = ubifs_tnc_remove_range(c, &key1, &key2);
2712                if (err) {
2713                        kfree(xent);
2714                        return err;
2715                }
2716
2717                kfree(pxent);
2718                pxent = xent;
2719                key_read(c, &xent->key, &key1);
2720        }
2721
2722        kfree(pxent);
2723        lowest_ino_key(c, &key1, inum);
2724        highest_ino_key(c, &key2, inum);
2725
2726        return ubifs_tnc_remove_range(c, &key1, &key2);
2727}
2728
2729/**
2730 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2731 * @c: UBIFS file-system description object
2732 * @key: key of last entry
2733 * @nm: name of last entry found or %NULL
2734 *
2735 * This function finds and reads the next directory or extended attribute entry
2736 * after the given key (@key) if there is one. @nm is used to resolve
2737 * collisions.
2738 *
2739 * If the name of the current entry is not known and only the key is known,
2740 * @nm->name has to be %NULL. In this case the semantics of this function is a
2741 * little bit different and it returns the entry corresponding to this key, not
2742 * the next one. If the key was not found, the closest "right" entry is
2743 * returned.
2744 *
2745 * If the fist entry has to be found, @key has to contain the lowest possible
2746 * key value for this inode and @name has to be %NULL.
2747 *
2748 * This function returns the found directory or extended attribute entry node
2749 * in case of success, %-ENOENT is returned if no entry was found, and a
2750 * negative error code is returned in case of failure.
2751 */
2752struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2753                                           union ubifs_key *key,
2754                                           const struct qstr *nm)
2755{
2756        int n, err, type = key_type(c, key);
2757        struct ubifs_znode *znode;
2758        struct ubifs_dent_node *dent;
2759        struct ubifs_zbranch *zbr;
2760        union ubifs_key *dkey;
2761
2762        dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2763        ubifs_assert(is_hash_key(c, key));
2764
2765        mutex_lock(&c->tnc_mutex);
2766        err = ubifs_lookup_level0(c, key, &znode, &n);
2767        if (unlikely(err < 0))
2768                goto out_unlock;
2769
2770        if (nm->name) {
2771                if (err) {
2772                        /* Handle collisions */
2773                        err = resolve_collision(c, key, &znode, &n, nm);
2774                        dbg_tnc("rc returned %d, znode %p, n %d",
2775                                err, znode, n);
2776                        if (unlikely(err < 0))
2777                                goto out_unlock;
2778                }
2779
2780                /* Now find next entry */
2781                err = tnc_next(c, &znode, &n);
2782                if (unlikely(err))
2783                        goto out_unlock;
2784        } else {
2785                /*
2786                 * The full name of the entry was not given, in which case the
2787                 * behavior of this function is a little different and it
2788                 * returns current entry, not the next one.
2789                 */
2790                if (!err) {
2791                        /*
2792                         * However, the given key does not exist in the TNC
2793                         * tree and @znode/@n variables contain the closest
2794                         * "preceding" element. Switch to the next one.
2795                         */
2796                        err = tnc_next(c, &znode, &n);
2797                        if (err)
2798                                goto out_unlock;
2799                }
2800        }
2801
2802        zbr = &znode->zbranch[n];
2803        dent = kmalloc(zbr->len, GFP_NOFS);
2804        if (unlikely(!dent)) {
2805                err = -ENOMEM;
2806                goto out_unlock;
2807        }
2808
2809        /*
2810         * The above 'tnc_next()' call could lead us to the next inode, check
2811         * this.
2812         */
2813        dkey = &zbr->key;
2814        if (key_inum(c, dkey) != key_inum(c, key) ||
2815            key_type(c, dkey) != type) {
2816                err = -ENOENT;
2817                goto out_free;
2818        }
2819
2820        err = tnc_read_node_nm(c, zbr, dent);
2821        if (unlikely(err))
2822                goto out_free;
2823
2824        mutex_unlock(&c->tnc_mutex);
2825        return dent;
2826
2827out_free:
2828        kfree(dent);
2829out_unlock:
2830        mutex_unlock(&c->tnc_mutex);
2831        return ERR_PTR(err);
2832}
2833
2834/**
2835 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2836 * @c: UBIFS file-system description object
2837 *
2838 * Destroy left-over obsolete znodes from a failed commit.
2839 */
2840static void tnc_destroy_cnext(struct ubifs_info *c)
2841{
2842        struct ubifs_znode *cnext;
2843
2844        if (!c->cnext)
2845                return;
2846        ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2847        cnext = c->cnext;
2848        do {
2849                struct ubifs_znode *znode = cnext;
2850
2851                cnext = cnext->cnext;
2852                if (ubifs_zn_obsolete(znode))
2853                        kfree(znode);
2854        } while (cnext && cnext != c->cnext);
2855}
2856
2857/**
2858 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2859 * @c: UBIFS file-system description object
2860 */
2861void ubifs_tnc_close(struct ubifs_info *c)
2862{
2863        tnc_destroy_cnext(c);
2864        if (c->zroot.znode) {
2865                long n, freed;
2866
2867                n = atomic_long_read(&c->clean_zn_cnt);
2868                freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2869                ubifs_assert(freed == n);
2870                atomic_long_sub(n, &ubifs_clean_zn_cnt);
2871        }
2872        kfree(c->gap_lebs);
2873        kfree(c->ilebs);
2874        destroy_old_idx(c);
2875}
2876
2877/**
2878 * left_znode - get the znode to the left.
2879 * @c: UBIFS file-system description object
2880 * @znode: znode
2881 *
2882 * This function returns a pointer to the znode to the left of @znode or NULL if
2883 * there is not one. A negative error code is returned on failure.
2884 */
2885static struct ubifs_znode *left_znode(struct ubifs_info *c,
2886                                      struct ubifs_znode *znode)
2887{
2888        int level = znode->level;
2889
2890        while (1) {
2891                int n = znode->iip - 1;
2892
2893                /* Go up until we can go left */
2894                znode = znode->parent;
2895                if (!znode)
2896                        return NULL;
2897                if (n >= 0) {
2898                        /* Now go down the rightmost branch to 'level' */
2899                        znode = get_znode(c, znode, n);
2900                        if (IS_ERR(znode))
2901                                return znode;
2902                        while (znode->level != level) {
2903                                n = znode->child_cnt - 1;
2904                                znode = get_znode(c, znode, n);
2905                                if (IS_ERR(znode))
2906                                        return znode;
2907                        }
2908                        break;
2909                }
2910        }
2911        return znode;
2912}
2913
2914/**
2915 * right_znode - get the znode to the right.
2916 * @c: UBIFS file-system description object
2917 * @znode: znode
2918 *
2919 * This function returns a pointer to the znode to the right of @znode or NULL
2920 * if there is not one. A negative error code is returned on failure.
2921 */
2922static struct ubifs_znode *right_znode(struct ubifs_info *c,
2923                                       struct ubifs_znode *znode)
2924{
2925        int level = znode->level;
2926
2927        while (1) {
2928                int n = znode->iip + 1;
2929
2930                /* Go up until we can go right */
2931                znode = znode->parent;
2932                if (!znode)
2933                        return NULL;
2934                if (n < znode->child_cnt) {
2935                        /* Now go down the leftmost branch to 'level' */
2936                        znode = get_znode(c, znode, n);
2937                        if (IS_ERR(znode))
2938                                return znode;
2939                        while (znode->level != level) {
2940                                znode = get_znode(c, znode, 0);
2941                                if (IS_ERR(znode))
2942                                        return znode;
2943                        }
2944                        break;
2945                }
2946        }
2947        return znode;
2948}
2949
2950/**
2951 * lookup_znode - find a particular indexing node from TNC.
2952 * @c: UBIFS file-system description object
2953 * @key: index node key to lookup
2954 * @level: index node level
2955 * @lnum: index node LEB number
2956 * @offs: index node offset
2957 *
2958 * This function searches an indexing node by its first key @key and its
2959 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2960 * nodes it traverses to TNC. This function is called for indexing nodes which
2961 * were found on the media by scanning, for example when garbage-collecting or
2962 * when doing in-the-gaps commit. This means that the indexing node which is
2963 * looked for does not have to have exactly the same leftmost key @key, because
2964 * the leftmost key may have been changed, in which case TNC will contain a
2965 * dirty znode which still refers the same @lnum:@offs. This function is clever
2966 * enough to recognize such indexing nodes.
2967 *
2968 * Note, if a znode was deleted or changed too much, then this function will
2969 * not find it. For situations like this UBIFS has the old index RB-tree
2970 * (indexed by @lnum:@offs).
2971 *
2972 * This function returns a pointer to the znode found or %NULL if it is not
2973 * found. A negative error code is returned on failure.
2974 */
2975static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2976                                        union ubifs_key *key, int level,
2977                                        int lnum, int offs)
2978{
2979        struct ubifs_znode *znode, *zn;
2980        int n, nn;
2981
2982        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2983
2984        /*
2985         * The arguments have probably been read off flash, so don't assume
2986         * they are valid.
2987         */
2988        if (level < 0)
2989                return ERR_PTR(-EINVAL);
2990
2991        /* Get the root znode */
2992        znode = c->zroot.znode;
2993        if (!znode) {
2994                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2995                if (IS_ERR(znode))
2996                        return znode;
2997        }
2998        /* Check if it is the one we are looking for */
2999        if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3000                return znode;
3001        /* Descend to the parent level i.e. (level + 1) */
3002        if (level >= znode->level)
3003                return NULL;
3004        while (1) {
3005                ubifs_search_zbranch(c, znode, key, &n);
3006                if (n < 0) {
3007                        /*
3008                         * We reached a znode where the leftmost key is greater
3009                         * than the key we are searching for. This is the same
3010                         * situation as the one described in a huge comment at
3011                         * the end of the 'ubifs_lookup_level0()' function. And
3012                         * for exactly the same reasons we have to try to look
3013                         * left before giving up.
3014                         */
3015                        znode = left_znode(c, znode);
3016                        if (!znode)
3017                                return NULL;
3018                        if (IS_ERR(znode))
3019                                return znode;
3020                        ubifs_search_zbranch(c, znode, key, &n);
3021                        ubifs_assert(n >= 0);
3022                }
3023                if (znode->level == level + 1)
3024                        break;
3025                znode = get_znode(c, znode, n);
3026                if (IS_ERR(znode))
3027                        return znode;
3028        }
3029        /* Check if the child is the one we are looking for */
3030        if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3031                return get_znode(c, znode, n);
3032        /* If the key is unique, there is nowhere else to look */
3033        if (!is_hash_key(c, key))
3034                return NULL;
3035        /*
3036         * The key is not unique and so may be also in the znodes to either
3037         * side.
3038         */
3039        zn = znode;
3040        nn = n;
3041        /* Look left */
3042        while (1) {
3043                /* Move one branch to the left */
3044                if (n)
3045                        n -= 1;
3046                else {
3047                        znode = left_znode(c, znode);
3048                        if (!znode)
3049                                break;
3050                        if (IS_ERR(znode))
3051                                return znode;
3052                        n = znode->child_cnt - 1;
3053                }
3054                /* Check it */
3055                if (znode->zbranch[n].lnum == lnum &&
3056                    znode->zbranch[n].offs == offs)
3057                        return get_znode(c, znode, n);
3058                /* Stop if the key is less than the one we are looking for */
3059                if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3060                        break;
3061        }
3062        /* Back to the middle */
3063        znode = zn;
3064        n = nn;
3065        /* Look right */
3066        while (1) {
3067                /* Move one branch to the right */
3068                if (++n >= znode->child_cnt) {
3069                        znode = right_znode(c, znode);
3070                        if (!znode)
3071                                break;
3072                        if (IS_ERR(znode))
3073                                return znode;
3074                        n = 0;
3075                }
3076                /* Check it */
3077                if (znode->zbranch[n].lnum == lnum &&
3078                    znode->zbranch[n].offs == offs)
3079                        return get_znode(c, znode, n);
3080                /* Stop if the key is greater than the one we are looking for */
3081                if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3082                        break;
3083        }
3084        return NULL;
3085}
3086
3087/**
3088 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3089 * @c: UBIFS file-system description object
3090 * @key: key of index node
3091 * @level: index node level
3092 * @lnum: LEB number of index node
3093 * @offs: offset of index node
3094 *
3095 * This function returns %0 if the index node is not referred to in the TNC, %1
3096 * if the index node is referred to in the TNC and the corresponding znode is
3097 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3098 * znode is clean, and a negative error code in case of failure.
3099 *
3100 * Note, the @key argument has to be the key of the first child. Also note,
3101 * this function relies on the fact that 0:0 is never a valid LEB number and
3102 * offset for a main-area node.
3103 */
3104int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3105                       int lnum, int offs)
3106{
3107        struct ubifs_znode *znode;
3108
3109        znode = lookup_znode(c, key, level, lnum, offs);
3110        if (!znode)
3111                return 0;
3112        if (IS_ERR(znode))
3113                return PTR_ERR(znode);
3114
3115        return ubifs_zn_dirty(znode) ? 1 : 2;
3116}
3117
3118/**
3119 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3120 * @c: UBIFS file-system description object
3121 * @key: node key
3122 * @lnum: node LEB number
3123 * @offs: node offset
3124 *
3125 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3126 * not, and a negative error code in case of failure.
3127 *
3128 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3129 * and offset for a main-area node.
3130 */
3131static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3132                               int lnum, int offs)
3133{
3134        struct ubifs_zbranch *zbr;
3135        struct ubifs_znode *znode, *zn;
3136        int n, found, err, nn;
3137        const int unique = !is_hash_key(c, key);
3138
3139        found = ubifs_lookup_level0(c, key, &znode, &n);
3140        if (found < 0)
3141                return found; /* Error code */
3142        if (!found)
3143                return 0;
3144        zbr = &znode->zbranch[n];
3145        if (lnum == zbr->lnum && offs == zbr->offs)
3146                return 1; /* Found it */
3147        if (unique)
3148                return 0;
3149        /*
3150         * Because the key is not unique, we have to look left
3151         * and right as well
3152         */
3153        zn = znode;
3154        nn = n;
3155        /* Look left */
3156        while (1) {
3157                err = tnc_prev(c, &znode, &n);
3158                if (err == -ENOENT)
3159                        break;
3160                if (err)
3161                        return err;
3162                if (keys_cmp(c, key, &znode->zbranch[n].key))
3163                        break;
3164                zbr = &znode->zbranch[n];
3165                if (lnum == zbr->lnum && offs == zbr->offs)
3166                        return 1; /* Found it */
3167        }
3168        /* Look right */
3169        znode = zn;
3170        n = nn;
3171        while (1) {
3172                err = tnc_next(c, &znode, &n);
3173                if (err) {
3174                        if (err == -ENOENT)
3175                                return 0;
3176                        return err;
3177                }
3178                if (keys_cmp(c, key, &znode->zbranch[n].key))
3179                        break;
3180                zbr = &znode->zbranch[n];
3181                if (lnum == zbr->lnum && offs == zbr->offs)
3182                        return 1; /* Found it */
3183        }
3184        return 0;
3185}
3186
3187/**
3188 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3189 * @c: UBIFS file-system description object
3190 * @key: node key
3191 * @level: index node level (if it is an index node)
3192 * @lnum: node LEB number
3193 * @offs: node offset
3194 * @is_idx: non-zero if the node is an index node
3195 *
3196 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3197 * negative error code in case of failure. For index nodes, @key has to be the
3198 * key of the first child. An index node is considered to be in the TNC only if
3199 * the corresponding znode is clean or has not been loaded.
3200 */
3201int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3202                       int lnum, int offs, int is_idx)
3203{
3204        int err;
3205
3206        mutex_lock(&c->tnc_mutex);
3207        if (is_idx) {
3208                err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3209                if (err < 0)
3210                        goto out_unlock;
3211                if (err == 1)
3212                        /* The index node was found but it was dirty */
3213                        err = 0;
3214                else if (err == 2)
3215                        /* The index node was found and it was clean */
3216                        err = 1;
3217                else
3218                        BUG_ON(err != 0);
3219        } else
3220                err = is_leaf_node_in_tnc(c, key, lnum, offs);
3221
3222out_unlock:
3223        mutex_unlock(&c->tnc_mutex);
3224        return err;
3225}
3226
3227/**
3228 * ubifs_dirty_idx_node - dirty an index node.
3229 * @c: UBIFS file-system description object
3230 * @key: index node key
3231 * @level: index node level
3232 * @lnum: index node LEB number
3233 * @offs: index node offset
3234 *
3235 * This function loads and dirties an index node so that it can be garbage
3236 * collected. The @key argument has to be the key of the first child. This
3237 * function relies on the fact that 0:0 is never a valid LEB number and offset
3238 * for a main-area node. Returns %0 on success and a negative error code on
3239 * failure.
3240 */
3241int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3242                         int lnum, int offs)
3243{
3244        struct ubifs_znode *znode;
3245        int err = 0;
3246
3247        mutex_lock(&c->tnc_mutex);
3248        znode = lookup_znode(c, key, level, lnum, offs);
3249        if (!znode)
3250                goto out_unlock;
3251        if (IS_ERR(znode)) {
3252                err = PTR_ERR(znode);
3253                goto out_unlock;
3254        }
3255        znode = dirty_cow_bottom_up(c, znode);
3256        if (IS_ERR(znode)) {
3257                err = PTR_ERR(znode);
3258                goto out_unlock;
3259        }
3260
3261out_unlock:
3262        mutex_unlock(&c->tnc_mutex);
3263        return err;
3264}
3265
3266/**
3267 * dbg_check_inode_size - check if inode size is correct.
3268 * @c: UBIFS file-system description object
3269 * @inum: inode number
3270 * @size: inode size
3271 *
3272 * This function makes sure that the inode size (@size) is correct and it does
3273 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3274 * if it has a data page beyond @size, and other negative error code in case of
3275 * other errors.
3276 */
3277int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3278                         loff_t size)
3279{
3280        int err, n;
3281        union ubifs_key from_key, to_key, *key;
3282        struct ubifs_znode *znode;
3283        unsigned int block;
3284
3285        if (!S_ISREG(inode->i_mode))
3286                return 0;
3287        if (!dbg_is_chk_gen(c))
3288                return 0;
3289
3290        block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3291        data_key_init(c, &from_key, inode->i_ino, block);
3292        highest_data_key(c, &to_key, inode->i_ino);
3293
3294        mutex_lock(&c->tnc_mutex);
3295        err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3296        if (err < 0)
3297                goto out_unlock;
3298
3299        if (err) {
3300                key = &from_key;
3301                goto out_dump;
3302        }
3303
3304        err = tnc_next(c, &znode, &n);
3305        if (err == -ENOENT) {
3306                err = 0;
3307                goto out_unlock;
3308        }
3309        if (err < 0)
3310                goto out_unlock;
3311
3312        ubifs_assert(err == 0);
3313        key = &znode->zbranch[n].key;
3314        if (!key_in_range(c, key, &from_key, &to_key))
3315                goto out_unlock;
3316
3317out_dump:
3318        block = key_block(c, key);
3319        ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3320                  (unsigned long)inode->i_ino, size,
3321                  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3322        mutex_unlock(&c->tnc_mutex);
3323        ubifs_dump_inode(c, inode);
3324        dump_stack();
3325        return -EINVAL;
3326
3327out_unlock:
3328        mutex_unlock(&c->tnc_mutex);
3329        return err;
3330}
3331