uboot/include/dm/device.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Copyright (c) 2013 Google, Inc
   4 *
   5 * (C) Copyright 2012
   6 * Pavel Herrmann <morpheus.ibis@gmail.com>
   7 * Marek Vasut <marex@denx.de>
   8 */
   9
  10#ifndef _DM_DEVICE_H
  11#define _DM_DEVICE_H
  12
  13#include <dm/ofnode.h>
  14#include <dm/uclass-id.h>
  15#include <fdtdec.h>
  16#include <linker_lists.h>
  17#include <linux/kernel.h>
  18#include <linux/list.h>
  19#include <linux/printk.h>
  20
  21struct driver_info;
  22
  23/* Driver is active (probed). Cleared when it is removed */
  24#define DM_FLAG_ACTIVATED               (1 << 0)
  25
  26/* DM is responsible for allocating and freeing plat */
  27#define DM_FLAG_ALLOC_PDATA             (1 << 1)
  28
  29/* DM should init this device prior to relocation */
  30#define DM_FLAG_PRE_RELOC               (1 << 2)
  31
  32/* DM is responsible for allocating and freeing parent_plat */
  33#define DM_FLAG_ALLOC_PARENT_PDATA      (1 << 3)
  34
  35/* DM is responsible for allocating and freeing uclass_plat */
  36#define DM_FLAG_ALLOC_UCLASS_PDATA      (1 << 4)
  37
  38/* Allocate driver private data on a DMA boundary */
  39#define DM_FLAG_ALLOC_PRIV_DMA          (1 << 5)
  40
  41/* Device is bound */
  42#define DM_FLAG_BOUND                   (1 << 6)
  43
  44/* Device name is allocated and should be freed on unbind() */
  45#define DM_FLAG_NAME_ALLOCED            (1 << 7)
  46
  47/* Device has platform data provided by of-platdata */
  48#define DM_FLAG_OF_PLATDATA             (1 << 8)
  49
  50/*
  51 * Call driver remove function to stop currently active DMA transfers or
  52 * give DMA buffers back to the HW / controller. This may be needed for
  53 * some drivers to do some final stage cleanup before the OS is called
  54 * (U-Boot exit)
  55 */
  56#define DM_FLAG_ACTIVE_DMA              (1 << 9)
  57
  58/*
  59 * Call driver remove function to do some final configuration, before
  60 * U-Boot exits and the OS is started
  61 */
  62#define DM_FLAG_OS_PREPARE              (1 << 10)
  63
  64/* DM does not enable/disable the power domains corresponding to this device */
  65#define DM_FLAG_DEFAULT_PD_CTRL_OFF     (1 << 11)
  66
  67/* Driver plat has been read. Cleared when the device is removed */
  68#define DM_FLAG_PLATDATA_VALID          (1 << 12)
  69
  70/*
  71 * Device is removed without switching off its power domain. This might
  72 * be required, i. e. for serial console (debug) output when booting OS.
  73 */
  74#define DM_FLAG_LEAVE_PD_ON             (1 << 13)
  75
  76/*
  77 * Device is vital to the operation of other devices. It is possible to remove
  78 * removed this device after all regular devices are removed. This is useful
  79 * e.g. for clock, which need to be active during the device-removal phase.
  80 */
  81#define DM_FLAG_VITAL                   (1 << 14)
  82
  83/*
  84 * One or multiple of these flags are passed to device_remove() so that
  85 * a selective device removal as specified by the remove-stage and the
  86 * driver flags can be done.
  87 *
  88 * DO NOT use these flags in your driver's @flags value...
  89 *      use the above DM_FLAG_... values instead
  90 */
  91enum {
  92        /* Normal remove, remove all devices */
  93        DM_REMOVE_NORMAL        = 1 << 0,
  94
  95        /* Remove devices with active DMA */
  96        DM_REMOVE_ACTIVE_DMA    = DM_FLAG_ACTIVE_DMA,
  97
  98        /* Remove devices which need some final OS preparation steps */
  99        DM_REMOVE_OS_PREPARE    = DM_FLAG_OS_PREPARE,
 100
 101        /* Remove only devices that are not marked vital */
 102        DM_REMOVE_NON_VITAL     = DM_FLAG_VITAL,
 103
 104        /* Remove devices with any active flag */
 105        DM_REMOVE_ACTIVE_ALL    = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
 106
 107        /* Don't power down any attached power domains */
 108        DM_REMOVE_NO_PD         = 1 << 1,
 109};
 110
 111/**
 112 * struct udevice - An instance of a driver
 113 *
 114 * This holds information about a device, which is a driver bound to a
 115 * particular port or peripheral (essentially a driver instance).
 116 *
 117 * A device will come into existence through a 'bind' call, either due to
 118 * a U_BOOT_DRVINFO() macro (in which case plat is non-NULL) or a node
 119 * in the device tree (in which case of_offset is >= 0). In the latter case
 120 * we translate the device tree information into plat in a function
 121 * implemented by the driver of_to_plat method (called just before the
 122 * probe method if the device has a device tree node.
 123 *
 124 * All three of plat, priv and uclass_priv can be allocated by the
 125 * driver, or you can use the auto members of struct driver and
 126 * struct uclass_driver to have driver model do this automatically.
 127 *
 128 * @driver: The driver used by this device
 129 * @name: Name of device, typically the FDT node name
 130 * @plat_: Configuration data for this device (do not access outside driver
 131 *      model)
 132 * @parent_plat_: The parent bus's configuration data for this device (do not
 133 *      access outside driver model)
 134 * @uclass_plat_: The uclass's configuration data for this device (do not access
 135 *      outside driver model)
 136 * @driver_data: Driver data word for the entry that matched this device with
 137 *              its driver
 138 * @parent: Parent of this device, or NULL for the top level device
 139 * @priv_: Private data for this device (do not access outside driver model)
 140 * @uclass: Pointer to uclass for this device
 141 * @uclass_priv_: The uclass's private data for this device (do not access
 142 *      outside driver model)
 143 * @parent_priv_: The parent's private data for this device (do not access
 144 *      outside driver model)
 145 * @uclass_node: Used by uclass to link its devices
 146 * @child_head: List of children of this device
 147 * @sibling_node: Next device in list of all devices
 148 * @flags_: Flags for this device DM_FLAG_... (do not access outside driver
 149 *      model)
 150 * @seq_: Allocated sequence number for this device (-1 = none). This is set up
 151 * when the device is bound and is unique within the device's uclass. If the
 152 * device has an alias in the devicetree then that is used to set the sequence
 153 * number. Otherwise, the next available number is used. Sequence numbers are
 154 * used by certain commands that need device to be numbered (e.g. 'mmc dev').
 155 * (do not access outside driver model)
 156 * @node_: Reference to device tree node for this device (do not access outside
 157 *      driver model)
 158 * @devres_head: List of memory allocations associated with this device.
 159 *              When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
 160 *              add to this list. Memory so-allocated will be freed
 161 *              automatically when the device is removed / unbound
 162 * @dma_offset: Offset between the physical address space (CPU's) and the
 163 *              device's bus address space
 164 */
 165struct udevice {
 166        const struct driver *driver;
 167        const char *name;
 168        void *plat_;
 169        void *parent_plat_;
 170        void *uclass_plat_;
 171        ulong driver_data;
 172        struct udevice *parent;
 173        void *priv_;
 174        struct uclass *uclass;
 175        void *uclass_priv_;
 176        void *parent_priv_;
 177        struct list_head uclass_node;
 178        struct list_head child_head;
 179        struct list_head sibling_node;
 180#if !CONFIG_IS_ENABLED(OF_PLATDATA_RT)
 181        u32 flags_;
 182#endif
 183        int seq_;
 184#if CONFIG_IS_ENABLED(OF_REAL)
 185        ofnode node_;
 186#endif
 187#ifdef CONFIG_DEVRES
 188        struct list_head devres_head;
 189#endif
 190#if CONFIG_IS_ENABLED(DM_DMA)
 191        ulong dma_offset;
 192#endif
 193};
 194
 195/**
 196 * udevice_rt - runtime information set up by U-Boot
 197 *
 198 * This is only used with OF_PLATDATA_RT
 199 *
 200 * There is one of these for every udevice in the linker list, indexed by
 201 * the udevice_info idx value.
 202 *
 203 * @flags_: Flags for this device DM_FLAG_... (do not access outside driver
 204 *      model)
 205 */
 206struct udevice_rt {
 207        u32 flags_;
 208};
 209
 210/* Maximum sequence number supported and associated string length */
 211#define DM_MAX_SEQ      999
 212#define DM_MAX_SEQ_STR  3
 213
 214/* Returns the operations for a device */
 215#define device_get_ops(dev)     (dev->driver->ops)
 216
 217#if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
 218u32 dev_get_flags(const struct udevice *dev);
 219void dev_or_flags(const struct udevice *dev, u32 or);
 220void dev_bic_flags(const struct udevice *dev, u32 bic);
 221#else
 222static inline u32 dev_get_flags(const struct udevice *dev)
 223{
 224        return dev->flags_;
 225}
 226
 227static inline void dev_or_flags(struct udevice *dev, u32 or)
 228{
 229        dev->flags_ |= or;
 230}
 231
 232static inline void dev_bic_flags(struct udevice *dev, u32 bic)
 233{
 234        dev->flags_ &= ~bic;
 235}
 236#endif /* OF_PLATDATA_RT */
 237
 238/**
 239 * dev_ofnode() - get the DT node reference associated with a udevice
 240 *
 241 * @dev:        device to check
 242 * @return reference of the the device's DT node
 243 */
 244static inline ofnode dev_ofnode(const struct udevice *dev)
 245{
 246#if CONFIG_IS_ENABLED(OF_REAL)
 247        return dev->node_;
 248#else
 249        return ofnode_null();
 250#endif
 251}
 252
 253/* Returns non-zero if the device is active (probed and not removed) */
 254#define device_active(dev)      (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
 255
 256#if CONFIG_IS_ENABLED(DM_DMA)
 257#define dev_set_dma_offset(_dev, _offset)       _dev->dma_offset = _offset
 258#define dev_get_dma_offset(_dev)                _dev->dma_offset
 259#else
 260#define dev_set_dma_offset(_dev, _offset)
 261#define dev_get_dma_offset(_dev)                0
 262#endif
 263
 264static inline int dev_of_offset(const struct udevice *dev)
 265{
 266#if CONFIG_IS_ENABLED(OF_REAL)
 267        return ofnode_to_offset(dev_ofnode(dev));
 268#else
 269        return -1;
 270#endif
 271}
 272
 273static inline bool dev_has_ofnode(const struct udevice *dev)
 274{
 275#if CONFIG_IS_ENABLED(OF_REAL)
 276        return ofnode_valid(dev_ofnode(dev));
 277#else
 278        return false;
 279#endif
 280}
 281
 282static inline void dev_set_ofnode(struct udevice *dev, ofnode node)
 283{
 284#if CONFIG_IS_ENABLED(OF_REAL)
 285        dev->node_ = node;
 286#endif
 287}
 288
 289static inline int dev_seq(const struct udevice *dev)
 290{
 291        return dev->seq_;
 292}
 293
 294/**
 295 * struct udevice_id - Lists the compatible strings supported by a driver
 296 * @compatible: Compatible string
 297 * @data: Data for this compatible string
 298 */
 299struct udevice_id {
 300        const char *compatible;
 301        ulong data;
 302};
 303
 304#if CONFIG_IS_ENABLED(OF_REAL)
 305#define of_match_ptr(_ptr)      (_ptr)
 306#else
 307#define of_match_ptr(_ptr)      NULL
 308#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
 309
 310/**
 311 * struct driver - A driver for a feature or peripheral
 312 *
 313 * This holds methods for setting up a new device, and also removing it.
 314 * The device needs information to set itself up - this is provided either
 315 * by plat or a device tree node (which we find by looking up
 316 * matching compatible strings with of_match).
 317 *
 318 * Drivers all belong to a uclass, representing a class of devices of the
 319 * same type. Common elements of the drivers can be implemented in the uclass,
 320 * or the uclass can provide a consistent interface to the drivers within
 321 * it.
 322 *
 323 * @name: Device name
 324 * @id: Identifies the uclass we belong to
 325 * @of_match: List of compatible strings to match, and any identifying data
 326 * for each.
 327 * @bind: Called to bind a device to its driver
 328 * @probe: Called to probe a device, i.e. activate it
 329 * @remove: Called to remove a device, i.e. de-activate it
 330 * @unbind: Called to unbind a device from its driver
 331 * @of_to_plat: Called before probe to decode device tree data
 332 * @child_post_bind: Called after a new child has been bound
 333 * @child_pre_probe: Called before a child device is probed. The device has
 334 * memory allocated but it has not yet been probed.
 335 * @child_post_remove: Called after a child device is removed. The device
 336 * has memory allocated but its device_remove() method has been called.
 337 * @priv_auto: If non-zero this is the size of the private data
 338 * to be allocated in the device's ->priv pointer. If zero, then the driver
 339 * is responsible for allocating any data required.
 340 * @plat_auto: If non-zero this is the size of the
 341 * platform data to be allocated in the device's ->plat pointer.
 342 * This is typically only useful for device-tree-aware drivers (those with
 343 * an of_match), since drivers which use plat will have the data
 344 * provided in the U_BOOT_DRVINFO() instantiation.
 345 * @per_child_auto: Each device can hold private data owned by
 346 * its parent. If required this will be automatically allocated if this
 347 * value is non-zero.
 348 * @per_child_plat_auto: A bus likes to store information about
 349 * its children. If non-zero this is the size of this data, to be allocated
 350 * in the child's parent_plat pointer.
 351 * @ops: Driver-specific operations. This is typically a list of function
 352 * pointers defined by the driver, to implement driver functions required by
 353 * the uclass.
 354 * @flags: driver flags - see DM_FLAGS_...
 355 * @acpi_ops: Advanced Configuration and Power Interface (ACPI) operations,
 356 * allowing the device to add things to the ACPI tables passed to Linux
 357 */
 358struct driver {
 359        char *name;
 360        enum uclass_id id;
 361        const struct udevice_id *of_match;
 362        int (*bind)(struct udevice *dev);
 363        int (*probe)(struct udevice *dev);
 364        int (*remove)(struct udevice *dev);
 365        int (*unbind)(struct udevice *dev);
 366        int (*of_to_plat)(struct udevice *dev);
 367        int (*child_post_bind)(struct udevice *dev);
 368        int (*child_pre_probe)(struct udevice *dev);
 369        int (*child_post_remove)(struct udevice *dev);
 370        int priv_auto;
 371        int plat_auto;
 372        int per_child_auto;
 373        int per_child_plat_auto;
 374        const void *ops;        /* driver-specific operations */
 375        uint32_t flags;
 376#if CONFIG_IS_ENABLED(ACPIGEN)
 377        struct acpi_ops *acpi_ops;
 378#endif
 379};
 380
 381/* Declare a new U-Boot driver */
 382#define U_BOOT_DRIVER(__name)                                           \
 383        ll_entry_declare(struct driver, __name, driver)
 384
 385/* Get a pointer to a given driver */
 386#define DM_DRIVER_GET(__name)                                           \
 387        ll_entry_get(struct driver, __name, driver)
 388
 389/**
 390 * DM_DRIVER_REF() - Get a reference to a driver
 391 *
 392 * This is useful in data structures and code for referencing a driver at
 393 * build time. Before this is used, an extern U_BOOT_DRIVER() must have been
 394 * declared.
 395 *
 396 * For example:
 397 *
 398 * extern U_BOOT_DRIVER(sandbox_fixed_clock);
 399 *
 400 * struct driver *drvs[] = {
 401 *      DM_DRIVER_REF(sandbox_fixed_clock),
 402 * };
 403 *
 404 * @_name: Name of the driver. This must be a valid C identifier, used by the
 405 *      linker_list
 406 * @returns struct driver * for the driver
 407 */
 408#define DM_DRIVER_REF(_name)                                    \
 409        ll_entry_ref(struct driver, _name, driver)
 410
 411/**
 412 * Declare a macro to state a alias for a driver name. This macro will
 413 * produce no code but its information will be parsed by tools like
 414 * dtoc
 415 */
 416#define DM_DRIVER_ALIAS(__name, __alias)
 417
 418/**
 419 * Declare a macro to indicate which phase of U-Boot this driver is fore.
 420 *
 421 *
 422 * This macro produces no code but its information will be parsed by dtoc. The
 423 * macro can be only be used once in a driver. Put it within the U_BOOT_DRIVER()
 424 * declaration, e.g.:
 425 *
 426 * U_BOOT_DRIVER(cpu) = {
 427 *      .name = ...
 428 *      ...
 429 *      DM_PHASE(tpl)
 430 * };
 431 */
 432#define DM_PHASE(_phase)
 433
 434/**
 435 * Declare a macro to declare a header needed for a driver. Often the correct
 436 * header can be found automatically, but only for struct declarations. For
 437 * enums and #defines used in the driver declaration and declared in a different
 438 * header from the structs, this macro must be used.
 439 *
 440 * This macro produces no code but its information will be parsed by dtoc. The
 441 * macro can be used multiple times with different headers, for the same driver.
 442 * Put it within the U_BOOT_DRIVER() declaration, e.g.:
 443 *
 444 * U_BOOT_DRIVER(cpu) = {
 445 *      .name = ...
 446 *      ...
 447 *      DM_HEADER(<asm/cpu.h>)
 448 * };
 449 */
 450#define DM_HEADER(_hdr)
 451
 452/**
 453 * dev_get_plat() - Get the platform data for a device
 454 *
 455 * This checks that dev is not NULL, but no other checks for now
 456 *
 457 * @dev         Device to check
 458 * @return platform data, or NULL if none
 459 */
 460void *dev_get_plat(const struct udevice *dev);
 461
 462/**
 463 * dev_get_parent_plat() - Get the parent platform data for a device
 464 *
 465 * This checks that dev is not NULL, but no other checks for now
 466 *
 467 * @dev         Device to check
 468 * @return parent's platform data, or NULL if none
 469 */
 470void *dev_get_parent_plat(const struct udevice *dev);
 471
 472/**
 473 * dev_get_uclass_plat() - Get the uclass platform data for a device
 474 *
 475 * This checks that dev is not NULL, but no other checks for now
 476 *
 477 * @dev         Device to check
 478 * @return uclass's platform data, or NULL if none
 479 */
 480void *dev_get_uclass_plat(const struct udevice *dev);
 481
 482/**
 483 * dev_get_priv() - Get the private data for a device
 484 *
 485 * This checks that dev is not NULL, but no other checks for now
 486 *
 487 * @dev         Device to check
 488 * @return private data, or NULL if none
 489 */
 490void *dev_get_priv(const struct udevice *dev);
 491
 492/**
 493 * dev_get_parent_priv() - Get the parent private data for a device
 494 *
 495 * The parent private data is data stored in the device but owned by the
 496 * parent. For example, a USB device may have parent data which contains
 497 * information about how to talk to the device over USB.
 498 *
 499 * This checks that dev is not NULL, but no other checks for now
 500 *
 501 * @dev         Device to check
 502 * @return parent data, or NULL if none
 503 */
 504void *dev_get_parent_priv(const struct udevice *dev);
 505
 506/**
 507 * dev_get_uclass_priv() - Get the private uclass data for a device
 508 *
 509 * This checks that dev is not NULL, but no other checks for now
 510 *
 511 * @dev         Device to check
 512 * @return private uclass data for this device, or NULL if none
 513 */
 514void *dev_get_uclass_priv(const struct udevice *dev);
 515
 516/**
 517 * struct dev_get_parent() - Get the parent of a device
 518 *
 519 * @child:      Child to check
 520 * @return parent of child, or NULL if this is the root device
 521 */
 522struct udevice *dev_get_parent(const struct udevice *child);
 523
 524/**
 525 * dev_get_driver_data() - get the driver data used to bind a device
 526 *
 527 * When a device is bound using a device tree node, it matches a
 528 * particular compatible string in struct udevice_id. This function
 529 * returns the associated data value for that compatible string. This is
 530 * the 'data' field in struct udevice_id.
 531 *
 532 * As an example, consider this structure:
 533 * static const struct udevice_id tegra_i2c_ids[] = {
 534 *      { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
 535 *      { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
 536 *      { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
 537 *      { }
 538 * };
 539 *
 540 * When driver model finds a driver for this it will store the 'data' value
 541 * corresponding to the compatible string it matches. This function returns
 542 * that value. This allows the driver to handle several variants of a device.
 543 *
 544 * For USB devices, this is the driver_info field in struct usb_device_id.
 545 *
 546 * @dev:        Device to check
 547 * @return driver data (0 if none is provided)
 548 */
 549ulong dev_get_driver_data(const struct udevice *dev);
 550
 551/**
 552 * dev_get_driver_ops() - get the device's driver's operations
 553 *
 554 * This checks that dev is not NULL, and returns the pointer to device's
 555 * driver's operations.
 556 *
 557 * @dev:        Device to check
 558 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
 559 */
 560const void *dev_get_driver_ops(const struct udevice *dev);
 561
 562/**
 563 * device_get_uclass_id() - return the uclass ID of a device
 564 *
 565 * @dev:        Device to check
 566 * @return uclass ID for the device
 567 */
 568enum uclass_id device_get_uclass_id(const struct udevice *dev);
 569
 570/**
 571 * dev_get_uclass_name() - return the uclass name of a device
 572 *
 573 * This checks that dev is not NULL.
 574 *
 575 * @dev:        Device to check
 576 * @return  pointer to the uclass name for the device
 577 */
 578const char *dev_get_uclass_name(const struct udevice *dev);
 579
 580/**
 581 * device_get_child() - Get the child of a device by index
 582 *
 583 * Returns the numbered child, 0 being the first. This does not use
 584 * sequence numbers, only the natural order.
 585 *
 586 * @dev:        Parent device to check
 587 * @index:      Child index
 588 * @devp:       Returns pointer to device
 589 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
 590 *         to probe
 591 */
 592int device_get_child(const struct udevice *parent, int index,
 593                     struct udevice **devp);
 594
 595/**
 596 * device_get_child_count() - Get the available child count of a device
 597 *
 598 * Returns the number of children to a device.
 599 *
 600 * @parent:     Parent device to check
 601 */
 602int device_get_child_count(const struct udevice *parent);
 603
 604/**
 605 * device_find_child_by_seq() - Find a child device based on a sequence
 606 *
 607 * This searches for a device with the given seq.
 608 *
 609 * @parent: Parent device
 610 * @seq: Sequence number to find (0=first)
 611 * @devp: Returns pointer to device (there is only one per for each seq).
 612 * Set to NULL if none is found
 613 * @return 0 if OK, -ENODEV if not found
 614 */
 615int device_find_child_by_seq(const struct udevice *parent, int seq,
 616                             struct udevice **devp);
 617
 618/**
 619 * device_get_child_by_seq() - Get a child device based on a sequence
 620 *
 621 * If an active device has this sequence it will be returned. If there is no
 622 * such device then this will check for a device that is requesting this
 623 * sequence.
 624 *
 625 * The device is probed to activate it ready for use.
 626 *
 627 * @parent: Parent device
 628 * @seq: Sequence number to find (0=first)
 629 * @devp: Returns pointer to device (there is only one per for each seq)
 630 * Set to NULL if none is found
 631 * @return 0 if OK, -ve on error
 632 */
 633int device_get_child_by_seq(const struct udevice *parent, int seq,
 634                            struct udevice **devp);
 635
 636/**
 637 * device_find_child_by_of_offset() - Find a child device based on FDT offset
 638 *
 639 * Locates a child device by its device tree offset.
 640 *
 641 * @parent: Parent device
 642 * @of_offset: Device tree offset to find
 643 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 644 * @return 0 if OK, -ve on error
 645 */
 646int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
 647                                   struct udevice **devp);
 648
 649/**
 650 * device_get_child_by_of_offset() - Get a child device based on FDT offset
 651 *
 652 * Locates a child device by its device tree offset.
 653 *
 654 * The device is probed to activate it ready for use.
 655 *
 656 * @parent: Parent device
 657 * @of_offset: Device tree offset to find
 658 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 659 * @return 0 if OK, -ve on error
 660 */
 661int device_get_child_by_of_offset(const struct udevice *parent, int of_offset,
 662                                  struct udevice **devp);
 663
 664/**
 665 * device_find_global_by_ofnode() - Get a device based on ofnode
 666 *
 667 * Locates a device by its device tree ofnode, searching globally throughout
 668 * the all driver model devices.
 669 *
 670 * The device is NOT probed
 671 *
 672 * @node: Device tree ofnode to find
 673 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 674 * @return 0 if OK, -ve on error
 675 */
 676
 677int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
 678
 679/**
 680 * device_get_global_by_ofnode() - Get a device based on ofnode
 681 *
 682 * Locates a device by its device tree ofnode, searching globally throughout
 683 * the all driver model devices.
 684 *
 685 * The device is probed to activate it ready for use.
 686 *
 687 * @node: Device tree ofnode to find
 688 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 689 * @return 0 if OK, -ve on error
 690 */
 691int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
 692
 693/**
 694 * device_get_by_ofplat_idx() - Get a device based on of-platdata index
 695 *
 696 * Locates a device by either its struct driver_info index, or its
 697 * struct udevice index. The latter is used with OF_PLATDATA_INST, since we have
 698 * a list of build-time instantiated struct udevice records, The former is used
 699 * with !OF_PLATDATA_INST since in that case we have a list of
 700 * struct driver_info records.
 701 *
 702 * The index number is written into the idx field of struct phandle_1_arg, etc.
 703 * It is the position of this driver_info/udevice in its linker list.
 704 *
 705 * The device is probed to activate it ready for use.
 706 *
 707 * @idx: Index number of the driver_info/udevice structure (0=first)
 708 * @devp: Returns pointer to device if found, otherwise this is set to NULL
 709 * @return 0 if OK, -ve on error
 710 */
 711int device_get_by_ofplat_idx(uint idx, struct udevice **devp);
 712
 713/**
 714 * device_find_first_child() - Find the first child of a device
 715 *
 716 * @parent: Parent device to search
 717 * @devp: Returns first child device, or NULL if none
 718 * @return 0
 719 */
 720int device_find_first_child(const struct udevice *parent,
 721                            struct udevice **devp);
 722
 723/**
 724 * device_find_next_child() - Find the next child of a device
 725 *
 726 * @devp: Pointer to previous child device on entry. Returns pointer to next
 727 *              child device, or NULL if none
 728 * @return 0
 729 */
 730int device_find_next_child(struct udevice **devp);
 731
 732/**
 733 * device_find_first_inactive_child() - Find the first inactive child
 734 *
 735 * This is used to locate an existing child of a device which is of a given
 736 * uclass.
 737 *
 738 * The device is NOT probed
 739 *
 740 * @parent:     Parent device to search
 741 * @uclass_id:  Uclass to look for
 742 * @devp:       Returns device found, if any, else NULL
 743 * @return 0 if found, else -ENODEV
 744 */
 745int device_find_first_inactive_child(const struct udevice *parent,
 746                                     enum uclass_id uclass_id,
 747                                     struct udevice **devp);
 748
 749/**
 750 * device_find_first_child_by_uclass() - Find the first child of a device in uc
 751 *
 752 * @parent: Parent device to search
 753 * @uclass_id:  Uclass to look for
 754 * @devp: Returns first child device in that uclass, if any, else NULL
 755 * @return 0 if found, else -ENODEV
 756 */
 757int device_find_first_child_by_uclass(const struct udevice *parent,
 758                                      enum uclass_id uclass_id,
 759                                      struct udevice **devp);
 760
 761/**
 762 * device_find_child_by_name() - Find a child by device name
 763 *
 764 * @parent:     Parent device to search
 765 * @name:       Name to look for
 766 * @devp:       Returns device found, if any
 767 * @return 0 if found, else -ENODEV
 768 */
 769int device_find_child_by_name(const struct udevice *parent, const char *name,
 770                              struct udevice **devp);
 771
 772/**
 773 * device_first_child_ofdata_err() - Find the first child and reads its plat
 774 *
 775 * The of_to_plat() method is called on the child before it is returned,
 776 * but the child is not probed.
 777 *
 778 * @parent: Parent to check
 779 * @devp: Returns child that was found, if any
 780 * @return 0 on success, -ENODEV if no children, other -ve on error
 781 */
 782int device_first_child_ofdata_err(struct udevice *parent,
 783                                  struct udevice **devp);
 784
 785/*
 786 * device_next_child_ofdata_err() - Find the next child and read its plat
 787 *
 788 * The of_to_plat() method is called on the child before it is returned,
 789 * but the child is not probed.
 790 *
 791 * @devp: On entry, points to the previous child; on exit returns the child that
 792 *      was found, if any
 793 * @return 0 on success, -ENODEV if no children, other -ve on error
 794 */
 795int device_next_child_ofdata_err(struct udevice **devp);
 796
 797/**
 798 * device_first_child_err() - Get the first child of a device
 799 *
 800 * The device returned is probed if necessary, and ready for use
 801 *
 802 * @parent:     Parent device to search
 803 * @devp:       Returns device found, if any
 804 * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
 805 */
 806int device_first_child_err(struct udevice *parent, struct udevice **devp);
 807
 808/**
 809 * device_next_child_err() - Get the next child of a parent device
 810 *
 811 * The device returned is probed if necessary, and ready for use
 812 *
 813 * @devp: On entry, pointer to device to lookup. On exit, returns pointer
 814 * to the next sibling if no error occurred
 815 * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
 816 */
 817int device_next_child_err(struct udevice **devp);
 818
 819/**
 820 * device_has_children() - check if a device has any children
 821 *
 822 * @dev:        Device to check
 823 * @return true if the device has one or more children
 824 */
 825bool device_has_children(const struct udevice *dev);
 826
 827/**
 828 * device_has_active_children() - check if a device has any active children
 829 *
 830 * @dev:        Device to check
 831 * @return true if the device has one or more children and at least one of
 832 * them is active (probed).
 833 */
 834bool device_has_active_children(const struct udevice *dev);
 835
 836/**
 837 * device_is_last_sibling() - check if a device is the last sibling
 838 *
 839 * This function can be useful for display purposes, when special action needs
 840 * to be taken when displaying the last sibling. This can happen when a tree
 841 * view of devices is being displayed.
 842 *
 843 * @dev:        Device to check
 844 * @return true if there are no more siblings after this one - i.e. is it
 845 * last in the list.
 846 */
 847bool device_is_last_sibling(const struct udevice *dev);
 848
 849/**
 850 * device_set_name() - set the name of a device
 851 *
 852 * This must be called in the device's bind() method and no later. Normally
 853 * this is unnecessary but for probed devices which don't get a useful name
 854 * this function can be helpful.
 855 *
 856 * The name is allocated and will be freed automatically when the device is
 857 * unbound.
 858 *
 859 * @dev:        Device to update
 860 * @name:       New name (this string is allocated new memory and attached to
 861 *              the device)
 862 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
 863 * string
 864 */
 865int device_set_name(struct udevice *dev, const char *name);
 866
 867/**
 868 * device_set_name_alloced() - note that a device name is allocated
 869 *
 870 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
 871 * unbound the name will be freed. This avoids memory leaks.
 872 *
 873 * @dev:        Device to update
 874 */
 875void device_set_name_alloced(struct udevice *dev);
 876
 877/**
 878 * device_is_compatible() - check if the device is compatible with the compat
 879 *
 880 * This allows to check whether the device is comaptible with the compat.
 881 *
 882 * @dev:        udevice pointer for which compatible needs to be verified.
 883 * @compat:     Compatible string which needs to verified in the given
 884 *              device
 885 * @return true if OK, false if the compatible is not found
 886 */
 887bool device_is_compatible(const struct udevice *dev, const char *compat);
 888
 889/**
 890 * of_machine_is_compatible() - check if the machine is compatible with
 891 *                              the compat
 892 *
 893 * This allows to check whether the machine is comaptible with the compat.
 894 *
 895 * @compat:     Compatible string which needs to verified
 896 * @return true if OK, false if the compatible is not found
 897 */
 898bool of_machine_is_compatible(const char *compat);
 899
 900/**
 901 * dev_disable_by_path() - Disable a device given its device tree path
 902 *
 903 * @path:       The device tree path identifying the device to be disabled
 904 * @return 0 on success, -ve on error
 905 */
 906int dev_disable_by_path(const char *path);
 907
 908/**
 909 * dev_enable_by_path() - Enable a device given its device tree path
 910 *
 911 * @path:       The device tree path identifying the device to be enabled
 912 * @return 0 on success, -ve on error
 913 */
 914int dev_enable_by_path(const char *path);
 915
 916/**
 917 * device_is_on_pci_bus - Test if a device is on a PCI bus
 918 *
 919 * @dev:        device to test
 920 * @return:     true if it is on a PCI bus, false otherwise
 921 */
 922static inline bool device_is_on_pci_bus(const struct udevice *dev)
 923{
 924        return dev->parent && device_get_uclass_id(dev->parent) == UCLASS_PCI;
 925}
 926
 927/**
 928 * device_foreach_child_safe() - iterate through child devices safely
 929 *
 930 * This allows the @pos child to be removed in the loop if required.
 931 *
 932 * @pos: struct udevice * for the current device
 933 * @next: struct udevice * for the next device
 934 * @parent: parent device to scan
 935 */
 936#define device_foreach_child_safe(pos, next, parent)    \
 937        list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
 938
 939/**
 940 * device_foreach_child() - iterate through child devices
 941 *
 942 * @pos: struct udevice * for the current device
 943 * @parent: parent device to scan
 944 */
 945#define device_foreach_child(pos, parent)       \
 946        list_for_each_entry(pos, &parent->child_head, sibling_node)
 947
 948/**
 949 * device_foreach_child_of_to_plat() - iterate through children
 950 *
 951 * This stops when it gets an error, with @pos set to the device that failed to
 952 * read ofdata.
 953
 954 * This creates a for() loop which works through the available children of
 955 * a device in order from start to end. Device ofdata is read by calling
 956 * device_of_to_plat() on each one. The devices are not probed.
 957 *
 958 * @pos: struct udevice * for the current device
 959 * @parent: parent device to scan
 960 */
 961#define device_foreach_child_of_to_plat(pos, parent)    \
 962        for (int _ret = device_first_child_ofdata_err(parent, &pos); !_ret; \
 963             _ret = device_next_child_ofdata_err(&pos))
 964
 965/**
 966 * device_foreach_child_probe() - iterate through children, probing them
 967 *
 968 * This creates a for() loop which works through the available children of
 969 * a device in order from start to end. Devices are probed if necessary,
 970 * and ready for use.
 971 *
 972 * This stops when it gets an error, with @pos set to the device that failed to
 973 * probe
 974 *
 975 * @pos: struct udevice * for the current device
 976 * @parent: parent device to scan
 977 */
 978#define device_foreach_child_probe(pos, parent) \
 979        for (int _ret = device_first_child_err(parent, &pos); !_ret; \
 980             _ret = device_next_child_err(&pos))
 981
 982/**
 983 * dm_scan_fdt_dev() - Bind child device in the device tree
 984 *
 985 * This handles device which have sub-nodes in the device tree. It scans all
 986 * sub-nodes and binds drivers for each node where a driver can be found.
 987 *
 988 * If this is called prior to relocation, only pre-relocation devices will be
 989 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
 990 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
 991 * be bound.
 992 *
 993 * @dev:        Device to scan
 994 * @return 0 if OK, -ve on error
 995 */
 996int dm_scan_fdt_dev(struct udevice *dev);
 997
 998#endif
 999