uboot/lib/zstd/fse.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: (GPL-2.0 or BSD-2-Clause) */
   2/*
   3 * FSE : Finite State Entropy codec
   4 * Public Prototypes declaration
   5 * Copyright (C) 2013-2016, Yann Collet.
   6 *
   7 * You can contact the author at :
   8 * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
   9 */
  10#ifndef FSE_H
  11#define FSE_H
  12
  13/*-*****************************************
  14*  Dependencies
  15******************************************/
  16#include <linux/types.h> /* size_t, ptrdiff_t */
  17
  18/*-*****************************************
  19*  FSE_PUBLIC_API : control library symbols visibility
  20******************************************/
  21#define FSE_PUBLIC_API
  22
  23/*------   Version   ------*/
  24#define FSE_VERSION_MAJOR 0
  25#define FSE_VERSION_MINOR 9
  26#define FSE_VERSION_RELEASE 0
  27
  28#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
  29#define FSE_QUOTE(str) #str
  30#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
  31#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
  32
  33#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR * 100 * 100 + FSE_VERSION_MINOR * 100 + FSE_VERSION_RELEASE)
  34FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
  35
  36/*-*****************************************
  37*  Tool functions
  38******************************************/
  39FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
  40
  41/* Error Management */
  42FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
  43
  44/*-*****************************************
  45*  FSE detailed API
  46******************************************/
  47/*!
  48FSE_compress() does the following:
  491. count symbol occurrence from source[] into table count[]
  502. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
  513. save normalized counters to memory buffer using writeNCount()
  524. build encoding table 'CTable' from normalized counters
  535. encode the data stream using encoding table 'CTable'
  54
  55FSE_decompress() does the following:
  561. read normalized counters with readNCount()
  572. build decoding table 'DTable' from normalized counters
  583. decode the data stream using decoding table 'DTable'
  59
  60The following API allows targeting specific sub-functions for advanced tasks.
  61For example, it's possible to compress several blocks using the same 'CTable',
  62or to save and provide normalized distribution using external method.
  63*/
  64
  65/* *** COMPRESSION *** */
  66/*! FSE_optimalTableLog():
  67        dynamically downsize 'tableLog' when conditions are met.
  68        It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
  69        @return : recommended tableLog (necessarily <= 'maxTableLog') */
  70FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
  71
  72/*! FSE_normalizeCount():
  73        normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
  74        'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
  75        @return : tableLog,
  76                          or an errorCode, which can be tested using FSE_isError() */
  77FSE_PUBLIC_API size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t srcSize, unsigned maxSymbolValue);
  78
  79/*! FSE_NCountWriteBound():
  80        Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
  81        Typically useful for allocation purpose. */
  82FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
  83
  84/*! FSE_writeNCount():
  85        Compactly save 'normalizedCounter' into 'buffer'.
  86        @return : size of the compressed table,
  87                          or an errorCode, which can be tested using FSE_isError(). */
  88FSE_PUBLIC_API size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
  89
  90/*! Constructor and Destructor of FSE_CTable.
  91        Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
  92typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
  93
  94/*! FSE_compress_usingCTable():
  95        Compress `src` using `ct` into `dst` which must be already allocated.
  96        @return : size of compressed data (<= `dstCapacity`),
  97                          or 0 if compressed data could not fit into `dst`,
  98                          or an errorCode, which can be tested using FSE_isError() */
  99FSE_PUBLIC_API size_t FSE_compress_usingCTable(void *dst, size_t dstCapacity, const void *src, size_t srcSize, const FSE_CTable *ct);
 100
 101/*!
 102Tutorial :
 103----------
 104The first step is to count all symbols. FSE_count() does this job very fast.
 105Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
 106'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
 107maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
 108FSE_count() will return the number of occurrence of the most frequent symbol.
 109This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
 110If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
 111
 112The next step is to normalize the frequencies.
 113FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
 114It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
 115You can use 'tableLog'==0 to mean "use default tableLog value".
 116If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
 117which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
 118
 119The result of FSE_normalizeCount() will be saved into a table,
 120called 'normalizedCounter', which is a table of signed short.
 121'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
 122The return value is tableLog if everything proceeded as expected.
 123It is 0 if there is a single symbol within distribution.
 124If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
 125
 126'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
 127'buffer' must be already allocated.
 128For guaranteed success, buffer size must be at least FSE_headerBound().
 129The result of the function is the number of bytes written into 'buffer'.
 130If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
 131
 132'normalizedCounter' can then be used to create the compression table 'CTable'.
 133The space required by 'CTable' must be already allocated, using FSE_createCTable().
 134You can then use FSE_buildCTable() to fill 'CTable'.
 135If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
 136
 137'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
 138Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
 139The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
 140If it returns '0', compressed data could not fit into 'dst'.
 141If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
 142*/
 143
 144/* *** DECOMPRESSION *** */
 145
 146/*! FSE_readNCount():
 147        Read compactly saved 'normalizedCounter' from 'rBuffer'.
 148        @return : size read from 'rBuffer',
 149                          or an errorCode, which can be tested using FSE_isError().
 150                          maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
 151FSE_PUBLIC_API size_t FSE_readNCount(short *normalizedCounter, unsigned *maxSymbolValuePtr, unsigned *tableLogPtr, const void *rBuffer, size_t rBuffSize);
 152
 153/*! Constructor and Destructor of FSE_DTable.
 154        Note that its size depends on 'tableLog' */
 155typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
 156
 157/*! FSE_buildDTable():
 158        Builds 'dt', which must be already allocated, using FSE_createDTable().
 159        return : 0, or an errorCode, which can be tested using FSE_isError() */
 160FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable *dt, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize);
 161
 162/*! FSE_decompress_usingDTable():
 163        Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
 164        into `dst` which must be already allocated.
 165        @return : size of regenerated data (necessarily <= `dstCapacity`),
 166                          or an errorCode, which can be tested using FSE_isError() */
 167FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, const FSE_DTable *dt);
 168
 169/*!
 170Tutorial :
 171----------
 172(Note : these functions only decompress FSE-compressed blocks.
 173 If block is uncompressed, use memcpy() instead
 174 If block is a single repeated byte, use memset() instead )
 175
 176The first step is to obtain the normalized frequencies of symbols.
 177This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
 178'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
 179In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
 180or size the table to handle worst case situations (typically 256).
 181FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
 182The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
 183Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
 184If there is an error, the function will return an error code, which can be tested using FSE_isError().
 185
 186The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
 187This is performed by the function FSE_buildDTable().
 188The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
 189If there is an error, the function will return an error code, which can be tested using FSE_isError().
 190
 191`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
 192`cSrcSize` must be strictly correct, otherwise decompression will fail.
 193FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
 194If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
 195*/
 196
 197/* *** Dependency *** */
 198#include "bitstream.h"
 199
 200/* *****************************************
 201*  Static allocation
 202*******************************************/
 203/* FSE buffer bounds */
 204#define FSE_NCOUNTBOUND 512
 205#define FSE_BLOCKBOUND(size) (size + (size >> 7))
 206#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
 207
 208/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
 209#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1 << (maxTableLog - 1)) + ((maxSymbolValue + 1) * 2))
 210#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1 << maxTableLog))
 211
 212/* *****************************************
 213*  FSE advanced API
 214*******************************************/
 215/* FSE_count_wksp() :
 216 * Same as FSE_count(), but using an externally provided scratch buffer.
 217 * `workSpace` size must be table of >= `1024` unsigned
 218 */
 219size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace);
 220
 221/* FSE_countFast_wksp() :
 222 * Same as FSE_countFast(), but using an externally provided scratch buffer.
 223 * `workSpace` must be a table of minimum `1024` unsigned
 224 */
 225size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize, unsigned *workSpace);
 226
 227/*! FSE_count_simple
 228 * Same as FSE_countFast(), but does not use any additional memory (not even on stack).
 229 * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`).
 230*/
 231size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize);
 232
 233unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
 234/**< same as FSE_optimalTableLog(), which used `minus==2` */
 235
 236size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits);
 237/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
 238
 239size_t FSE_buildCTable_rle(FSE_CTable *ct, unsigned char symbolValue);
 240/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
 241
 242/* FSE_buildCTable_wksp() :
 243 * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
 244 * `wkspSize` must be >= `(1<<tableLog)`.
 245 */
 246size_t FSE_buildCTable_wksp(FSE_CTable *ct, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workSpace, size_t wkspSize);
 247
 248size_t FSE_buildDTable_raw(FSE_DTable *dt, unsigned nbBits);
 249/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
 250
 251size_t FSE_buildDTable_rle(FSE_DTable *dt, unsigned char symbolValue);
 252/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
 253
 254size_t FSE_decompress_wksp(void *dst, size_t dstCapacity, const void *cSrc, size_t cSrcSize, unsigned maxLog, void *workspace, size_t workspaceSize);
 255/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */
 256
 257/* *****************************************
 258*  FSE symbol compression API
 259*******************************************/
 260/*!
 261   This API consists of small unitary functions, which highly benefit from being inlined.
 262   Hence their body are included in next section.
 263*/
 264typedef struct {
 265        ptrdiff_t value;
 266        const void *stateTable;
 267        const void *symbolTT;
 268        unsigned stateLog;
 269} FSE_CState_t;
 270
 271static void FSE_initCState(FSE_CState_t *CStatePtr, const FSE_CTable *ct);
 272
 273static void FSE_encodeSymbol(BIT_CStream_t *bitC, FSE_CState_t *CStatePtr, unsigned symbol);
 274
 275static void FSE_flushCState(BIT_CStream_t *bitC, const FSE_CState_t *CStatePtr);
 276
 277/**<
 278These functions are inner components of FSE_compress_usingCTable().
 279They allow the creation of custom streams, mixing multiple tables and bit sources.
 280
 281A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
 282So the first symbol you will encode is the last you will decode, like a LIFO stack.
 283
 284You will need a few variables to track your CStream. They are :
 285
 286FSE_CTable    ct;         // Provided by FSE_buildCTable()
 287BIT_CStream_t bitStream;  // bitStream tracking structure
 288FSE_CState_t  state;      // State tracking structure (can have several)
 289
 290
 291The first thing to do is to init bitStream and state.
 292        size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
 293        FSE_initCState(&state, ct);
 294
 295Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
 296You can then encode your input data, byte after byte.
 297FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
 298Remember decoding will be done in reverse direction.
 299        FSE_encodeByte(&bitStream, &state, symbol);
 300
 301At any time, you can also add any bit sequence.
 302Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
 303        BIT_addBits(&bitStream, bitField, nbBits);
 304
 305The above methods don't commit data to memory, they just store it into local register, for speed.
 306Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
 307Writing data to memory is a manual operation, performed by the flushBits function.
 308        BIT_flushBits(&bitStream);
 309
 310Your last FSE encoding operation shall be to flush your last state value(s).
 311        FSE_flushState(&bitStream, &state);
 312
 313Finally, you must close the bitStream.
 314The function returns the size of CStream in bytes.
 315If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
 316If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
 317        size_t size = BIT_closeCStream(&bitStream);
 318*/
 319
 320/* *****************************************
 321*  FSE symbol decompression API
 322*******************************************/
 323typedef struct {
 324        size_t state;
 325        const void *table; /* precise table may vary, depending on U16 */
 326} FSE_DState_t;
 327
 328static void FSE_initDState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD, const FSE_DTable *dt);
 329
 330static unsigned char FSE_decodeSymbol(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD);
 331
 332static unsigned FSE_endOfDState(const FSE_DState_t *DStatePtr);
 333
 334/**<
 335Let's now decompose FSE_decompress_usingDTable() into its unitary components.
 336You will decode FSE-encoded symbols from the bitStream,
 337and also any other bitFields you put in, **in reverse order**.
 338
 339You will need a few variables to track your bitStream. They are :
 340
 341BIT_DStream_t DStream;    // Stream context
 342FSE_DState_t  DState;     // State context. Multiple ones are possible
 343FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
 344
 345The first thing to do is to init the bitStream.
 346        errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
 347
 348You should then retrieve your initial state(s)
 349(in reverse flushing order if you have several ones) :
 350        errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
 351
 352You can then decode your data, symbol after symbol.
 353For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
 354Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
 355        unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
 356
 357You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
 358Note : maximum allowed nbBits is 25, for 32-bits compatibility
 359        size_t bitField = BIT_readBits(&DStream, nbBits);
 360
 361All above operations only read from local register (which size depends on size_t).
 362Refueling the register from memory is manually performed by the reload method.
 363        endSignal = FSE_reloadDStream(&DStream);
 364
 365BIT_reloadDStream() result tells if there is still some more data to read from DStream.
 366BIT_DStream_unfinished : there is still some data left into the DStream.
 367BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
 368BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
 369BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
 370
 371When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
 372to properly detect the exact end of stream.
 373After each decoded symbol, check if DStream is fully consumed using this simple test :
 374        BIT_reloadDStream(&DStream) >= BIT_DStream_completed
 375
 376When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
 377Checking if DStream has reached its end is performed by :
 378        BIT_endOfDStream(&DStream);
 379Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
 380        FSE_endOfDState(&DState);
 381*/
 382
 383/* *****************************************
 384*  FSE unsafe API
 385*******************************************/
 386static unsigned char FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD);
 387/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
 388
 389/* *****************************************
 390*  Implementation of inlined functions
 391*******************************************/
 392typedef struct {
 393        int deltaFindState;
 394        U32 deltaNbBits;
 395} FSE_symbolCompressionTransform; /* total 8 bytes */
 396
 397ZSTD_STATIC void FSE_initCState(FSE_CState_t *statePtr, const FSE_CTable *ct)
 398{
 399        const void *ptr = ct;
 400        const U16 *u16ptr = (const U16 *)ptr;
 401        const U32 tableLog = ZSTD_read16(ptr);
 402        statePtr->value = (ptrdiff_t)1 << tableLog;
 403        statePtr->stateTable = u16ptr + 2;
 404        statePtr->symbolTT = ((const U32 *)ct + 1 + (tableLog ? (1 << (tableLog - 1)) : 1));
 405        statePtr->stateLog = tableLog;
 406}
 407
 408/*! FSE_initCState2() :
 409*   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
 410*   uses the smallest state value possible, saving the cost of this symbol */
 411ZSTD_STATIC void FSE_initCState2(FSE_CState_t *statePtr, const FSE_CTable *ct, U32 symbol)
 412{
 413        FSE_initCState(statePtr, ct);
 414        {
 415                const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol];
 416                const U16 *stateTable = (const U16 *)(statePtr->stateTable);
 417                U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1 << 15)) >> 16);
 418                statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
 419                statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
 420        }
 421}
 422
 423ZSTD_STATIC void FSE_encodeSymbol(BIT_CStream_t *bitC, FSE_CState_t *statePtr, U32 symbol)
 424{
 425        const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform *)(statePtr->symbolTT))[symbol];
 426        const U16 *const stateTable = (const U16 *)(statePtr->stateTable);
 427        U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
 428        BIT_addBits(bitC, statePtr->value, nbBitsOut);
 429        statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
 430}
 431
 432ZSTD_STATIC void FSE_flushCState(BIT_CStream_t *bitC, const FSE_CState_t *statePtr)
 433{
 434        BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
 435        BIT_flushBits(bitC);
 436}
 437
 438/* ======    Decompression    ====== */
 439
 440typedef struct {
 441        U16 tableLog;
 442        U16 fastMode;
 443} FSE_DTableHeader; /* sizeof U32 */
 444
 445typedef struct {
 446        unsigned short newState;
 447        unsigned char symbol;
 448        unsigned char nbBits;
 449} FSE_decode_t; /* size == U32 */
 450
 451ZSTD_STATIC void FSE_initDState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD, const FSE_DTable *dt)
 452{
 453        const void *ptr = dt;
 454        const FSE_DTableHeader *const DTableH = (const FSE_DTableHeader *)ptr;
 455        DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
 456        BIT_reloadDStream(bitD);
 457        DStatePtr->table = dt + 1;
 458}
 459
 460ZSTD_STATIC BYTE FSE_peekSymbol(const FSE_DState_t *DStatePtr)
 461{
 462        FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
 463        return DInfo.symbol;
 464}
 465
 466ZSTD_STATIC void FSE_updateState(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
 467{
 468        FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
 469        U32 const nbBits = DInfo.nbBits;
 470        size_t const lowBits = BIT_readBits(bitD, nbBits);
 471        DStatePtr->state = DInfo.newState + lowBits;
 472}
 473
 474ZSTD_STATIC BYTE FSE_decodeSymbol(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
 475{
 476        FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
 477        U32 const nbBits = DInfo.nbBits;
 478        BYTE const symbol = DInfo.symbol;
 479        size_t const lowBits = BIT_readBits(bitD, nbBits);
 480
 481        DStatePtr->state = DInfo.newState + lowBits;
 482        return symbol;
 483}
 484
 485/*! FSE_decodeSymbolFast() :
 486        unsafe, only works if no symbol has a probability > 50% */
 487ZSTD_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t *DStatePtr, BIT_DStream_t *bitD)
 488{
 489        FSE_decode_t const DInfo = ((const FSE_decode_t *)(DStatePtr->table))[DStatePtr->state];
 490        U32 const nbBits = DInfo.nbBits;
 491        BYTE const symbol = DInfo.symbol;
 492        size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
 493
 494        DStatePtr->state = DInfo.newState + lowBits;
 495        return symbol;
 496}
 497
 498ZSTD_STATIC unsigned FSE_endOfDState(const FSE_DState_t *DStatePtr) { return DStatePtr->state == 0; }
 499
 500/* **************************************************************
 501*  Tuning parameters
 502****************************************************************/
 503/*!MEMORY_USAGE :
 504*  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
 505*  Increasing memory usage improves compression ratio
 506*  Reduced memory usage can improve speed, due to cache effect
 507*  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
 508#ifndef FSE_MAX_MEMORY_USAGE
 509#define FSE_MAX_MEMORY_USAGE 14
 510#endif
 511#ifndef FSE_DEFAULT_MEMORY_USAGE
 512#define FSE_DEFAULT_MEMORY_USAGE 13
 513#endif
 514
 515/*!FSE_MAX_SYMBOL_VALUE :
 516*  Maximum symbol value authorized.
 517*  Required for proper stack allocation */
 518#ifndef FSE_MAX_SYMBOL_VALUE
 519#define FSE_MAX_SYMBOL_VALUE 255
 520#endif
 521
 522/* **************************************************************
 523*  template functions type & suffix
 524****************************************************************/
 525#define FSE_FUNCTION_TYPE BYTE
 526#define FSE_FUNCTION_EXTENSION
 527#define FSE_DECODE_TYPE FSE_decode_t
 528
 529/* ***************************************************************
 530*  Constants
 531*****************************************************************/
 532#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE - 2)
 533#define FSE_MAX_TABLESIZE (1U << FSE_MAX_TABLELOG)
 534#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE - 1)
 535#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE - 2)
 536#define FSE_MIN_TABLELOG 5
 537
 538#define FSE_TABLELOG_ABSOLUTE_MAX 15
 539#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
 540#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
 541#endif
 542
 543#define FSE_TABLESTEP(tableSize) ((tableSize >> 1) + (tableSize >> 3) + 3)
 544
 545#endif /* FSE_H */
 546