qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4@settitle QEMU Emulator User Documentation
   5@exampleindent 0
   6@paragraphindent 0
   7@c %**end of header
   8
   9@iftex
  10@titlepage
  11@sp 7
  12@center @titlefont{QEMU Emulator}
  13@sp 1
  14@center @titlefont{User Documentation}
  15@sp 3
  16@end titlepage
  17@end iftex
  18
  19@ifnottex
  20@node Top
  21@top
  22
  23@menu
  24* Introduction::
  25* Installation::
  26* QEMU PC System emulator::
  27* QEMU System emulator for non PC targets::
  28* QEMU User space emulator::
  29* compilation:: Compilation from the sources
  30* Index::
  31@end menu
  32@end ifnottex
  33
  34@contents
  35
  36@node Introduction
  37@chapter Introduction
  38
  39@menu
  40* intro_features:: Features
  41@end menu
  42
  43@node intro_features
  44@section Features
  45
  46QEMU is a FAST! processor emulator using dynamic translation to
  47achieve good emulation speed.
  48
  49QEMU has two operating modes:
  50
  51@itemize @minus
  52
  53@item
  54Full system emulation. In this mode, QEMU emulates a full system (for
  55example a PC), including one or several processors and various
  56peripherals. It can be used to launch different Operating Systems
  57without rebooting the PC or to debug system code.
  58
  59@item
  60User mode emulation. In this mode, QEMU can launch
  61processes compiled for one CPU on another CPU. It can be used to
  62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
  63to ease cross-compilation and cross-debugging.
  64
  65@end itemize
  66
  67QEMU can run without an host kernel driver and yet gives acceptable
  68performance.
  69
  70For system emulation, the following hardware targets are supported:
  71@itemize
  72@item PC (x86 or x86_64 processor)
  73@item ISA PC (old style PC without PCI bus)
  74@item PREP (PowerPC processor)
  75@item G3 Beige PowerMac (PowerPC processor)
  76@item Mac99 PowerMac (PowerPC processor, in progress)
  77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
  78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
  79@item Malta board (32-bit and 64-bit MIPS processors)
  80@item MIPS Magnum (64-bit MIPS processor)
  81@item ARM Integrator/CP (ARM)
  82@item ARM Versatile baseboard (ARM)
  83@item ARM RealView Emulation/Platform baseboard (ARM)
  84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
  85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
  86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
  87@item Freescale MCF5208EVB (ColdFire V2).
  88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
  89@item Palm Tungsten|E PDA (OMAP310 processor)
  90@item N800 and N810 tablets (OMAP2420 processor)
  91@item MusicPal (MV88W8618 ARM processor)
  92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
  93@item Siemens SX1 smartphone (OMAP310 processor)
  94@item Syborg SVP base model (ARM Cortex-A8).
  95@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
  96@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
  97@end itemize
  98
  99For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
 100
 101@node Installation
 102@chapter Installation
 103
 104If you want to compile QEMU yourself, see @ref{compilation}.
 105
 106@menu
 107* install_linux::   Linux
 108* install_windows:: Windows
 109* install_mac::     Macintosh
 110@end menu
 111
 112@node install_linux
 113@section Linux
 114
 115If a precompiled package is available for your distribution - you just
 116have to install it. Otherwise, see @ref{compilation}.
 117
 118@node install_windows
 119@section Windows
 120
 121Download the experimental binary installer at
 122@url{http://www.free.oszoo.org/@/download.html}.
 123
 124@node install_mac
 125@section Mac OS X
 126
 127Download the experimental binary installer at
 128@url{http://www.free.oszoo.org/@/download.html}.
 129
 130@node QEMU PC System emulator
 131@chapter QEMU PC System emulator
 132
 133@menu
 134* pcsys_introduction:: Introduction
 135* pcsys_quickstart::   Quick Start
 136* sec_invocation::     Invocation
 137* pcsys_keys::         Keys
 138* pcsys_monitor::      QEMU Monitor
 139* disk_images::        Disk Images
 140* pcsys_network::      Network emulation
 141* direct_linux_boot::  Direct Linux Boot
 142* pcsys_usb::          USB emulation
 143* vnc_security::       VNC security
 144* gdb_usage::          GDB usage
 145* pcsys_os_specific::  Target OS specific information
 146@end menu
 147
 148@node pcsys_introduction
 149@section Introduction
 150
 151@c man begin DESCRIPTION
 152
 153The QEMU PC System emulator simulates the
 154following peripherals:
 155
 156@itemize @minus
 157@item
 158i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 159@item
 160Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 161extensions (hardware level, including all non standard modes).
 162@item
 163PS/2 mouse and keyboard
 164@item
 1652 PCI IDE interfaces with hard disk and CD-ROM support
 166@item
 167Floppy disk
 168@item
 169PCI and ISA network adapters
 170@item
 171Serial ports
 172@item
 173Creative SoundBlaster 16 sound card
 174@item
 175ENSONIQ AudioPCI ES1370 sound card
 176@item
 177Intel 82801AA AC97 Audio compatible sound card
 178@item
 179Adlib(OPL2) - Yamaha YM3812 compatible chip
 180@item
 181Gravis Ultrasound GF1 sound card
 182@item
 183CS4231A compatible sound card
 184@item
 185PCI UHCI USB controller and a virtual USB hub.
 186@end itemize
 187
 188SMP is supported with up to 255 CPUs.
 189
 190Note that adlib, gus and cs4231a are only available when QEMU was
 191configured with --audio-card-list option containing the name(s) of
 192required card(s).
 193
 194QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
 195VGA BIOS.
 196
 197QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 198
 199QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 200by Tibor "TS" Schütz.
 201
 202Not that, by default, GUS shares IRQ(7) with parallel ports and so
 203qemu must be told to not have parallel ports to have working GUS
 204
 205@example
 206qemu dos.img -soundhw gus -parallel none
 207@end example
 208
 209Alternatively:
 210@example
 211qemu dos.img -device gus,irq=5
 212@end example
 213
 214Or some other unclaimed IRQ.
 215
 216CS4231A is the chip used in Windows Sound System and GUSMAX products
 217
 218@c man end
 219
 220@node pcsys_quickstart
 221@section Quick Start
 222
 223Download and uncompress the linux image (@file{linux.img}) and type:
 224
 225@example
 226qemu linux.img
 227@end example
 228
 229Linux should boot and give you a prompt.
 230
 231@node sec_invocation
 232@section Invocation
 233
 234@example
 235@c man begin SYNOPSIS
 236usage: qemu [options] [@var{disk_image}]
 237@c man end
 238@end example
 239
 240@c man begin OPTIONS
 241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 242targets do not need a disk image.
 243
 244@include qemu-options.texi
 245
 246@c man end
 247
 248@node pcsys_keys
 249@section Keys
 250
 251@c man begin OPTIONS
 252
 253During the graphical emulation, you can use the following keys:
 254@table @key
 255@item Ctrl-Alt-f
 256Toggle full screen
 257
 258@item Ctrl-Alt-u
 259Restore the screen's un-scaled dimensions
 260
 261@item Ctrl-Alt-n
 262Switch to virtual console 'n'. Standard console mappings are:
 263@table @emph
 264@item 1
 265Target system display
 266@item 2
 267Monitor
 268@item 3
 269Serial port
 270@end table
 271
 272@item Ctrl-Alt
 273Toggle mouse and keyboard grab.
 274@end table
 275
 276In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 277@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 278
 279During emulation, if you are using the @option{-nographic} option, use
 280@key{Ctrl-a h} to get terminal commands:
 281
 282@table @key
 283@item Ctrl-a h
 284@item Ctrl-a ?
 285Print this help
 286@item Ctrl-a x
 287Exit emulator
 288@item Ctrl-a s
 289Save disk data back to file (if -snapshot)
 290@item Ctrl-a t
 291Toggle console timestamps
 292@item Ctrl-a b
 293Send break (magic sysrq in Linux)
 294@item Ctrl-a c
 295Switch between console and monitor
 296@item Ctrl-a Ctrl-a
 297Send Ctrl-a
 298@end table
 299@c man end
 300
 301@ignore
 302
 303@c man begin SEEALSO
 304The HTML documentation of QEMU for more precise information and Linux
 305user mode emulator invocation.
 306@c man end
 307
 308@c man begin AUTHOR
 309Fabrice Bellard
 310@c man end
 311
 312@end ignore
 313
 314@node pcsys_monitor
 315@section QEMU Monitor
 316
 317The QEMU monitor is used to give complex commands to the QEMU
 318emulator. You can use it to:
 319
 320@itemize @minus
 321
 322@item
 323Remove or insert removable media images
 324(such as CD-ROM or floppies).
 325
 326@item
 327Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 328from a disk file.
 329
 330@item Inspect the VM state without an external debugger.
 331
 332@end itemize
 333
 334@subsection Commands
 335
 336The following commands are available:
 337
 338@include qemu-monitor.texi
 339
 340@subsection Integer expressions
 341
 342The monitor understands integers expressions for every integer
 343argument. You can use register names to get the value of specifics
 344CPU registers by prefixing them with @emph{$}.
 345
 346@node disk_images
 347@section Disk Images
 348
 349Since version 0.6.1, QEMU supports many disk image formats, including
 350growable disk images (their size increase as non empty sectors are
 351written), compressed and encrypted disk images. Version 0.8.3 added
 352the new qcow2 disk image format which is essential to support VM
 353snapshots.
 354
 355@menu
 356* disk_images_quickstart::    Quick start for disk image creation
 357* disk_images_snapshot_mode:: Snapshot mode
 358* vm_snapshots::              VM snapshots
 359* qemu_img_invocation::       qemu-img Invocation
 360* qemu_nbd_invocation::       qemu-nbd Invocation
 361* host_drives::               Using host drives
 362* disk_images_fat_images::    Virtual FAT disk images
 363* disk_images_nbd::           NBD access
 364@end menu
 365
 366@node disk_images_quickstart
 367@subsection Quick start for disk image creation
 368
 369You can create a disk image with the command:
 370@example
 371qemu-img create myimage.img mysize
 372@end example
 373where @var{myimage.img} is the disk image filename and @var{mysize} is its
 374size in kilobytes. You can add an @code{M} suffix to give the size in
 375megabytes and a @code{G} suffix for gigabytes.
 376
 377See @ref{qemu_img_invocation} for more information.
 378
 379@node disk_images_snapshot_mode
 380@subsection Snapshot mode
 381
 382If you use the option @option{-snapshot}, all disk images are
 383considered as read only. When sectors in written, they are written in
 384a temporary file created in @file{/tmp}. You can however force the
 385write back to the raw disk images by using the @code{commit} monitor
 386command (or @key{C-a s} in the serial console).
 387
 388@node vm_snapshots
 389@subsection VM snapshots
 390
 391VM snapshots are snapshots of the complete virtual machine including
 392CPU state, RAM, device state and the content of all the writable
 393disks. In order to use VM snapshots, you must have at least one non
 394removable and writable block device using the @code{qcow2} disk image
 395format. Normally this device is the first virtual hard drive.
 396
 397Use the monitor command @code{savevm} to create a new VM snapshot or
 398replace an existing one. A human readable name can be assigned to each
 399snapshot in addition to its numerical ID.
 400
 401Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 402a VM snapshot. @code{info snapshots} lists the available snapshots
 403with their associated information:
 404
 405@example
 406(qemu) info snapshots
 407Snapshot devices: hda
 408Snapshot list (from hda):
 409ID        TAG                 VM SIZE                DATE       VM CLOCK
 4101         start                   41M 2006-08-06 12:38:02   00:00:14.954
 4112                                 40M 2006-08-06 12:43:29   00:00:18.633
 4123         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 413@end example
 414
 415A VM snapshot is made of a VM state info (its size is shown in
 416@code{info snapshots}) and a snapshot of every writable disk image.
 417The VM state info is stored in the first @code{qcow2} non removable
 418and writable block device. The disk image snapshots are stored in
 419every disk image. The size of a snapshot in a disk image is difficult
 420to evaluate and is not shown by @code{info snapshots} because the
 421associated disk sectors are shared among all the snapshots to save
 422disk space (otherwise each snapshot would need a full copy of all the
 423disk images).
 424
 425When using the (unrelated) @code{-snapshot} option
 426(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 427but they are deleted as soon as you exit QEMU.
 428
 429VM snapshots currently have the following known limitations:
 430@itemize
 431@item
 432They cannot cope with removable devices if they are removed or
 433inserted after a snapshot is done.
 434@item
 435A few device drivers still have incomplete snapshot support so their
 436state is not saved or restored properly (in particular USB).
 437@end itemize
 438
 439@node qemu_img_invocation
 440@subsection @code{qemu-img} Invocation
 441
 442@include qemu-img.texi
 443
 444@node qemu_nbd_invocation
 445@subsection @code{qemu-nbd} Invocation
 446
 447@include qemu-nbd.texi
 448
 449@node host_drives
 450@subsection Using host drives
 451
 452In addition to disk image files, QEMU can directly access host
 453devices. We describe here the usage for QEMU version >= 0.8.3.
 454
 455@subsubsection Linux
 456
 457On Linux, you can directly use the host device filename instead of a
 458disk image filename provided you have enough privileges to access
 459it. For example, use @file{/dev/cdrom} to access to the CDROM or
 460@file{/dev/fd0} for the floppy.
 461
 462@table @code
 463@item CD
 464You can specify a CDROM device even if no CDROM is loaded. QEMU has
 465specific code to detect CDROM insertion or removal. CDROM ejection by
 466the guest OS is supported. Currently only data CDs are supported.
 467@item Floppy
 468You can specify a floppy device even if no floppy is loaded. Floppy
 469removal is currently not detected accurately (if you change floppy
 470without doing floppy access while the floppy is not loaded, the guest
 471OS will think that the same floppy is loaded).
 472@item Hard disks
 473Hard disks can be used. Normally you must specify the whole disk
 474(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
 475see it as a partitioned disk. WARNING: unless you know what you do, it
 476is better to only make READ-ONLY accesses to the hard disk otherwise
 477you may corrupt your host data (use the @option{-snapshot} command
 478line option or modify the device permissions accordingly).
 479@end table
 480
 481@subsubsection Windows
 482
 483@table @code
 484@item CD
 485The preferred syntax is the drive letter (e.g. @file{d:}). The
 486alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
 487supported as an alias to the first CDROM drive.
 488
 489Currently there is no specific code to handle removable media, so it
 490is better to use the @code{change} or @code{eject} monitor commands to
 491change or eject media.
 492@item Hard disks
 493Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
 494where @var{N} is the drive number (0 is the first hard disk).
 495
 496WARNING: unless you know what you do, it is better to only make
 497READ-ONLY accesses to the hard disk otherwise you may corrupt your
 498host data (use the @option{-snapshot} command line so that the
 499modifications are written in a temporary file).
 500@end table
 501
 502
 503@subsubsection Mac OS X
 504
 505@file{/dev/cdrom} is an alias to the first CDROM.
 506
 507Currently there is no specific code to handle removable media, so it
 508is better to use the @code{change} or @code{eject} monitor commands to
 509change or eject media.
 510
 511@node disk_images_fat_images
 512@subsection Virtual FAT disk images
 513
 514QEMU can automatically create a virtual FAT disk image from a
 515directory tree. In order to use it, just type:
 516
 517@example
 518qemu linux.img -hdb fat:/my_directory
 519@end example
 520
 521Then you access access to all the files in the @file{/my_directory}
 522directory without having to copy them in a disk image or to export
 523them via SAMBA or NFS. The default access is @emph{read-only}.
 524
 525Floppies can be emulated with the @code{:floppy:} option:
 526
 527@example
 528qemu linux.img -fda fat:floppy:/my_directory
 529@end example
 530
 531A read/write support is available for testing (beta stage) with the
 532@code{:rw:} option:
 533
 534@example
 535qemu linux.img -fda fat:floppy:rw:/my_directory
 536@end example
 537
 538What you should @emph{never} do:
 539@itemize
 540@item use non-ASCII filenames ;
 541@item use "-snapshot" together with ":rw:" ;
 542@item expect it to work when loadvm'ing ;
 543@item write to the FAT directory on the host system while accessing it with the guest system.
 544@end itemize
 545
 546@node disk_images_nbd
 547@subsection NBD access
 548
 549QEMU can access directly to block device exported using the Network Block Device
 550protocol.
 551
 552@example
 553qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
 554@end example
 555
 556If the NBD server is located on the same host, you can use an unix socket instead
 557of an inet socket:
 558
 559@example
 560qemu linux.img -hdb nbd:unix:/tmp/my_socket
 561@end example
 562
 563In this case, the block device must be exported using qemu-nbd:
 564
 565@example
 566qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
 567@end example
 568
 569The use of qemu-nbd allows to share a disk between several guests:
 570@example
 571qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
 572@end example
 573
 574and then you can use it with two guests:
 575@example
 576qemu linux1.img -hdb nbd:unix:/tmp/my_socket
 577qemu linux2.img -hdb nbd:unix:/tmp/my_socket
 578@end example
 579
 580@node pcsys_network
 581@section Network emulation
 582
 583QEMU can simulate several network cards (PCI or ISA cards on the PC
 584target) and can connect them to an arbitrary number of Virtual Local
 585Area Networks (VLANs). Host TAP devices can be connected to any QEMU
 586VLAN. VLAN can be connected between separate instances of QEMU to
 587simulate large networks. For simpler usage, a non privileged user mode
 588network stack can replace the TAP device to have a basic network
 589connection.
 590
 591@subsection VLANs
 592
 593QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
 594connection between several network devices. These devices can be for
 595example QEMU virtual Ethernet cards or virtual Host ethernet devices
 596(TAP devices).
 597
 598@subsection Using TAP network interfaces
 599
 600This is the standard way to connect QEMU to a real network. QEMU adds
 601a virtual network device on your host (called @code{tapN}), and you
 602can then configure it as if it was a real ethernet card.
 603
 604@subsubsection Linux host
 605
 606As an example, you can download the @file{linux-test-xxx.tar.gz}
 607archive and copy the script @file{qemu-ifup} in @file{/etc} and
 608configure properly @code{sudo} so that the command @code{ifconfig}
 609contained in @file{qemu-ifup} can be executed as root. You must verify
 610that your host kernel supports the TAP network interfaces: the
 611device @file{/dev/net/tun} must be present.
 612
 613See @ref{sec_invocation} to have examples of command lines using the
 614TAP network interfaces.
 615
 616@subsubsection Windows host
 617
 618There is a virtual ethernet driver for Windows 2000/XP systems, called
 619TAP-Win32. But it is not included in standard QEMU for Windows,
 620so you will need to get it separately. It is part of OpenVPN package,
 621so download OpenVPN from : @url{http://openvpn.net/}.
 622
 623@subsection Using the user mode network stack
 624
 625By using the option @option{-net user} (default configuration if no
 626@option{-net} option is specified), QEMU uses a completely user mode
 627network stack (you don't need root privilege to use the virtual
 628network). The virtual network configuration is the following:
 629
 630@example
 631
 632         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
 633                           |          (10.0.2.2)
 634                           |
 635                           ---->  DNS server (10.0.2.3)
 636                           |
 637                           ---->  SMB server (10.0.2.4)
 638@end example
 639
 640The QEMU VM behaves as if it was behind a firewall which blocks all
 641incoming connections. You can use a DHCP client to automatically
 642configure the network in the QEMU VM. The DHCP server assign addresses
 643to the hosts starting from 10.0.2.15.
 644
 645In order to check that the user mode network is working, you can ping
 646the address 10.0.2.2 and verify that you got an address in the range
 64710.0.2.x from the QEMU virtual DHCP server.
 648
 649Note that @code{ping} is not supported reliably to the internet as it
 650would require root privileges. It means you can only ping the local
 651router (10.0.2.2).
 652
 653When using the built-in TFTP server, the router is also the TFTP
 654server.
 655
 656When using the @option{-redir} option, TCP or UDP connections can be
 657redirected from the host to the guest. It allows for example to
 658redirect X11, telnet or SSH connections.
 659
 660@subsection Connecting VLANs between QEMU instances
 661
 662Using the @option{-net socket} option, it is possible to make VLANs
 663that span several QEMU instances. See @ref{sec_invocation} to have a
 664basic example.
 665
 666@node direct_linux_boot
 667@section Direct Linux Boot
 668
 669This section explains how to launch a Linux kernel inside QEMU without
 670having to make a full bootable image. It is very useful for fast Linux
 671kernel testing.
 672
 673The syntax is:
 674@example
 675qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
 676@end example
 677
 678Use @option{-kernel} to provide the Linux kernel image and
 679@option{-append} to give the kernel command line arguments. The
 680@option{-initrd} option can be used to provide an INITRD image.
 681
 682When using the direct Linux boot, a disk image for the first hard disk
 683@file{hda} is required because its boot sector is used to launch the
 684Linux kernel.
 685
 686If you do not need graphical output, you can disable it and redirect
 687the virtual serial port and the QEMU monitor to the console with the
 688@option{-nographic} option. The typical command line is:
 689@example
 690qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
 691     -append "root=/dev/hda console=ttyS0" -nographic
 692@end example
 693
 694Use @key{Ctrl-a c} to switch between the serial console and the
 695monitor (@pxref{pcsys_keys}).
 696
 697@node pcsys_usb
 698@section USB emulation
 699
 700QEMU emulates a PCI UHCI USB controller. You can virtually plug
 701virtual USB devices or real host USB devices (experimental, works only
 702on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
 703as necessary to connect multiple USB devices.
 704
 705@menu
 706* usb_devices::
 707* host_usb_devices::
 708@end menu
 709@node usb_devices
 710@subsection Connecting USB devices
 711
 712USB devices can be connected with the @option{-usbdevice} commandline option
 713or the @code{usb_add} monitor command.  Available devices are:
 714
 715@table @code
 716@item mouse
 717Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
 718@item tablet
 719Pointer device that uses absolute coordinates (like a touchscreen).
 720This means qemu is able to report the mouse position without having
 721to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
 722@item disk:@var{file}
 723Mass storage device based on @var{file} (@pxref{disk_images})
 724@item host:@var{bus.addr}
 725Pass through the host device identified by @var{bus.addr}
 726(Linux only)
 727@item host:@var{vendor_id:product_id}
 728Pass through the host device identified by @var{vendor_id:product_id}
 729(Linux only)
 730@item wacom-tablet
 731Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
 732above but it can be used with the tslib library because in addition to touch
 733coordinates it reports touch pressure.
 734@item keyboard
 735Standard USB keyboard.  Will override the PS/2 keyboard (if present).
 736@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
 737Serial converter. This emulates an FTDI FT232BM chip connected to host character
 738device @var{dev}. The available character devices are the same as for the
 739@code{-serial} option. The @code{vendorid} and @code{productid} options can be
 740used to override the default 0403:6001. For instance, 
 741@example
 742usb_add serial:productid=FA00:tcp:192.168.0.2:4444
 743@end example
 744will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
 745serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
 746@item braille
 747Braille device.  This will use BrlAPI to display the braille output on a real
 748or fake device.
 749@item net:@var{options}
 750Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
 751specifies NIC options as with @code{-net nic,}@var{options} (see description).
 752For instance, user-mode networking can be used with
 753@example
 754qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
 755@end example
 756Currently this cannot be used in machines that support PCI NICs.
 757@item bt[:@var{hci-type}]
 758Bluetooth dongle whose type is specified in the same format as with
 759the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
 760no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
 761This USB device implements the USB Transport Layer of HCI.  Example
 762usage:
 763@example
 764qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
 765@end example
 766@end table
 767
 768@node host_usb_devices
 769@subsection Using host USB devices on a Linux host
 770
 771WARNING: this is an experimental feature. QEMU will slow down when
 772using it. USB devices requiring real time streaming (i.e. USB Video
 773Cameras) are not supported yet.
 774
 775@enumerate
 776@item If you use an early Linux 2.4 kernel, verify that no Linux driver
 777is actually using the USB device. A simple way to do that is simply to
 778disable the corresponding kernel module by renaming it from @file{mydriver.o}
 779to @file{mydriver.o.disabled}.
 780
 781@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
 782@example
 783ls /proc/bus/usb
 784001  devices  drivers
 785@end example
 786
 787@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
 788@example
 789chown -R myuid /proc/bus/usb
 790@end example
 791
 792@item Launch QEMU and do in the monitor:
 793@example
 794info usbhost
 795  Device 1.2, speed 480 Mb/s
 796    Class 00: USB device 1234:5678, USB DISK
 797@end example
 798You should see the list of the devices you can use (Never try to use
 799hubs, it won't work).
 800
 801@item Add the device in QEMU by using:
 802@example
 803usb_add host:1234:5678
 804@end example
 805
 806Normally the guest OS should report that a new USB device is
 807plugged. You can use the option @option{-usbdevice} to do the same.
 808
 809@item Now you can try to use the host USB device in QEMU.
 810
 811@end enumerate
 812
 813When relaunching QEMU, you may have to unplug and plug again the USB
 814device to make it work again (this is a bug).
 815
 816@node vnc_security
 817@section VNC security
 818
 819The VNC server capability provides access to the graphical console
 820of the guest VM across the network. This has a number of security
 821considerations depending on the deployment scenarios.
 822
 823@menu
 824* vnc_sec_none::
 825* vnc_sec_password::
 826* vnc_sec_certificate::
 827* vnc_sec_certificate_verify::
 828* vnc_sec_certificate_pw::
 829* vnc_sec_sasl::
 830* vnc_sec_certificate_sasl::
 831* vnc_generate_cert::
 832* vnc_setup_sasl::
 833@end menu
 834@node vnc_sec_none
 835@subsection Without passwords
 836
 837The simplest VNC server setup does not include any form of authentication.
 838For this setup it is recommended to restrict it to listen on a UNIX domain
 839socket only. For example
 840
 841@example
 842qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
 843@end example
 844
 845This ensures that only users on local box with read/write access to that
 846path can access the VNC server. To securely access the VNC server from a
 847remote machine, a combination of netcat+ssh can be used to provide a secure
 848tunnel.
 849
 850@node vnc_sec_password
 851@subsection With passwords
 852
 853The VNC protocol has limited support for password based authentication. Since
 854the protocol limits passwords to 8 characters it should not be considered
 855to provide high security. The password can be fairly easily brute-forced by
 856a client making repeat connections. For this reason, a VNC server using password
 857authentication should be restricted to only listen on the loopback interface
 858or UNIX domain sockets. Password authentication is requested with the @code{password}
 859option, and then once QEMU is running the password is set with the monitor. Until
 860the monitor is used to set the password all clients will be rejected.
 861
 862@example
 863qemu [...OPTIONS...] -vnc :1,password -monitor stdio
 864(qemu) change vnc password
 865Password: ********
 866(qemu)
 867@end example
 868
 869@node vnc_sec_certificate
 870@subsection With x509 certificates
 871
 872The QEMU VNC server also implements the VeNCrypt extension allowing use of
 873TLS for encryption of the session, and x509 certificates for authentication.
 874The use of x509 certificates is strongly recommended, because TLS on its
 875own is susceptible to man-in-the-middle attacks. Basic x509 certificate
 876support provides a secure session, but no authentication. This allows any
 877client to connect, and provides an encrypted session.
 878
 879@example
 880qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
 881@end example
 882
 883In the above example @code{/etc/pki/qemu} should contain at least three files,
 884@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
 885users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
 886NB the @code{server-key.pem} file should be protected with file mode 0600 to
 887only be readable by the user owning it.
 888
 889@node vnc_sec_certificate_verify
 890@subsection With x509 certificates and client verification
 891
 892Certificates can also provide a means to authenticate the client connecting.
 893The server will request that the client provide a certificate, which it will
 894then validate against the CA certificate. This is a good choice if deploying
 895in an environment with a private internal certificate authority.
 896
 897@example
 898qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
 899@end example
 900
 901
 902@node vnc_sec_certificate_pw
 903@subsection With x509 certificates, client verification and passwords
 904
 905Finally, the previous method can be combined with VNC password authentication
 906to provide two layers of authentication for clients.
 907
 908@example
 909qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
 910(qemu) change vnc password
 911Password: ********
 912(qemu)
 913@end example
 914
 915
 916@node vnc_sec_sasl
 917@subsection With SASL authentication
 918
 919The SASL authentication method is a VNC extension, that provides an
 920easily extendable, pluggable authentication method. This allows for
 921integration with a wide range of authentication mechanisms, such as
 922PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
 923The strength of the authentication depends on the exact mechanism
 924configured. If the chosen mechanism also provides a SSF layer, then
 925it will encrypt the datastream as well.
 926
 927Refer to the later docs on how to choose the exact SASL mechanism
 928used for authentication, but assuming use of one supporting SSF,
 929then QEMU can be launched with:
 930
 931@example
 932qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
 933@end example
 934
 935@node vnc_sec_certificate_sasl
 936@subsection With x509 certificates and SASL authentication
 937
 938If the desired SASL authentication mechanism does not supported
 939SSF layers, then it is strongly advised to run it in combination
 940with TLS and x509 certificates. This provides securely encrypted
 941data stream, avoiding risk of compromising of the security
 942credentials. This can be enabled, by combining the 'sasl' option
 943with the aforementioned TLS + x509 options:
 944
 945@example
 946qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
 947@end example
 948
 949
 950@node vnc_generate_cert
 951@subsection Generating certificates for VNC
 952
 953The GNU TLS packages provides a command called @code{certtool} which can
 954be used to generate certificates and keys in PEM format. At a minimum it
 955is neccessary to setup a certificate authority, and issue certificates to
 956each server. If using certificates for authentication, then each client
 957will also need to be issued a certificate. The recommendation is for the
 958server to keep its certificates in either @code{/etc/pki/qemu} or for
 959unprivileged users in @code{$HOME/.pki/qemu}.
 960
 961@menu
 962* vnc_generate_ca::
 963* vnc_generate_server::
 964* vnc_generate_client::
 965@end menu
 966@node vnc_generate_ca
 967@subsubsection Setup the Certificate Authority
 968
 969This step only needs to be performed once per organization / organizational
 970unit. First the CA needs a private key. This key must be kept VERY secret
 971and secure. If this key is compromised the entire trust chain of the certificates
 972issued with it is lost.
 973
 974@example
 975# certtool --generate-privkey > ca-key.pem
 976@end example
 977
 978A CA needs to have a public certificate. For simplicity it can be a self-signed
 979certificate, or one issue by a commercial certificate issuing authority. To
 980generate a self-signed certificate requires one core piece of information, the
 981name of the organization.
 982
 983@example
 984# cat > ca.info <<EOF
 985cn = Name of your organization
 986ca
 987cert_signing_key
 988EOF
 989# certtool --generate-self-signed \
 990           --load-privkey ca-key.pem
 991           --template ca.info \
 992           --outfile ca-cert.pem
 993@end example
 994
 995The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
 996TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
 997
 998@node vnc_generate_server
 999@subsubsection Issuing server certificates
1000
1001Each server (or host) needs to be issued with a key and certificate. When connecting
1002the certificate is sent to the client which validates it against the CA certificate.
1003The core piece of information for a server certificate is the hostname. This should
1004be the fully qualified hostname that the client will connect with, since the client
1005will typically also verify the hostname in the certificate. On the host holding the
1006secure CA private key:
1007
1008@example
1009# cat > server.info <<EOF
1010organization = Name  of your organization
1011cn = server.foo.example.com
1012tls_www_server
1013encryption_key
1014signing_key
1015EOF
1016# certtool --generate-privkey > server-key.pem
1017# certtool --generate-certificate \
1018           --load-ca-certificate ca-cert.pem \
1019           --load-ca-privkey ca-key.pem \
1020           --load-privkey server server-key.pem \
1021           --template server.info \
1022           --outfile server-cert.pem
1023@end example
1024
1025The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1026to the server for which they were generated. The @code{server-key.pem} is security
1027sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1028
1029@node vnc_generate_client
1030@subsubsection Issuing client certificates
1031
1032If the QEMU VNC server is to use the @code{x509verify} option to validate client
1033certificates as its authentication mechanism, each client also needs to be issued
1034a certificate. The client certificate contains enough metadata to uniquely identify
1035the client, typically organization, state, city, building, etc. On the host holding
1036the secure CA private key:
1037
1038@example
1039# cat > client.info <<EOF
1040country = GB
1041state = London
1042locality = London
1043organiazation = Name of your organization
1044cn = client.foo.example.com
1045tls_www_client
1046encryption_key
1047signing_key
1048EOF
1049# certtool --generate-privkey > client-key.pem
1050# certtool --generate-certificate \
1051           --load-ca-certificate ca-cert.pem \
1052           --load-ca-privkey ca-key.pem \
1053           --load-privkey client-key.pem \
1054           --template client.info \
1055           --outfile client-cert.pem
1056@end example
1057
1058The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1059copied to the client for which they were generated.
1060
1061
1062@node vnc_setup_sasl
1063
1064@subsection Configuring SASL mechanisms
1065
1066The following documentation assumes use of the Cyrus SASL implementation on a
1067Linux host, but the principals should apply to any other SASL impl. When SASL
1068is enabled, the mechanism configuration will be loaded from system default
1069SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1070unprivileged user, an environment variable SASL_CONF_PATH can be used
1071to make it search alternate locations for the service config.
1072
1073The default configuration might contain
1074
1075@example
1076mech_list: digest-md5
1077sasldb_path: /etc/qemu/passwd.db
1078@end example
1079
1080This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1081Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1082in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1083command. While this mechanism is easy to configure and use, it is not
1084considered secure by modern standards, so only suitable for developers /
1085ad-hoc testing.
1086
1087A more serious deployment might use Kerberos, which is done with the 'gssapi'
1088mechanism
1089
1090@example
1091mech_list: gssapi
1092keytab: /etc/qemu/krb5.tab
1093@end example
1094
1095For this to work the administrator of your KDC must generate a Kerberos
1096principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1097replacing 'somehost.example.com' with the fully qualified host name of the
1098machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1099
1100Other configurations will be left as an exercise for the reader. It should
1101be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1102encryption. For all other mechanisms, VNC should always be configured to
1103use TLS and x509 certificates to protect security credentials from snooping.
1104
1105@node gdb_usage
1106@section GDB usage
1107
1108QEMU has a primitive support to work with gdb, so that you can do
1109'Ctrl-C' while the virtual machine is running and inspect its state.
1110
1111In order to use gdb, launch qemu with the '-s' option. It will wait for a
1112gdb connection:
1113@example
1114> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1115       -append "root=/dev/hda"
1116Connected to host network interface: tun0
1117Waiting gdb connection on port 1234
1118@end example
1119
1120Then launch gdb on the 'vmlinux' executable:
1121@example
1122> gdb vmlinux
1123@end example
1124
1125In gdb, connect to QEMU:
1126@example
1127(gdb) target remote localhost:1234
1128@end example
1129
1130Then you can use gdb normally. For example, type 'c' to launch the kernel:
1131@example
1132(gdb) c
1133@end example
1134
1135Here are some useful tips in order to use gdb on system code:
1136
1137@enumerate
1138@item
1139Use @code{info reg} to display all the CPU registers.
1140@item
1141Use @code{x/10i $eip} to display the code at the PC position.
1142@item
1143Use @code{set architecture i8086} to dump 16 bit code. Then use
1144@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1145@end enumerate
1146
1147Advanced debugging options:
1148
1149The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1150@table @code
1151@item maintenance packet qqemu.sstepbits
1152
1153This will display the MASK bits used to control the single stepping IE:
1154@example
1155(gdb) maintenance packet qqemu.sstepbits
1156sending: "qqemu.sstepbits"
1157received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1158@end example
1159@item maintenance packet qqemu.sstep
1160
1161This will display the current value of the mask used when single stepping IE:
1162@example
1163(gdb) maintenance packet qqemu.sstep
1164sending: "qqemu.sstep"
1165received: "0x7"
1166@end example
1167@item maintenance packet Qqemu.sstep=HEX_VALUE
1168
1169This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1170@example
1171(gdb) maintenance packet Qqemu.sstep=0x5
1172sending: "qemu.sstep=0x5"
1173received: "OK"
1174@end example
1175@end table
1176
1177@node pcsys_os_specific
1178@section Target OS specific information
1179
1180@subsection Linux
1181
1182To have access to SVGA graphic modes under X11, use the @code{vesa} or
1183the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1184color depth in the guest and the host OS.
1185
1186When using a 2.6 guest Linux kernel, you should add the option
1187@code{clock=pit} on the kernel command line because the 2.6 Linux
1188kernels make very strict real time clock checks by default that QEMU
1189cannot simulate exactly.
1190
1191When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1192not activated because QEMU is slower with this patch. The QEMU
1193Accelerator Module is also much slower in this case. Earlier Fedora
1194Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1195patch by default. Newer kernels don't have it.
1196
1197@subsection Windows
1198
1199If you have a slow host, using Windows 95 is better as it gives the
1200best speed. Windows 2000 is also a good choice.
1201
1202@subsubsection SVGA graphic modes support
1203
1204QEMU emulates a Cirrus Logic GD5446 Video
1205card. All Windows versions starting from Windows 95 should recognize
1206and use this graphic card. For optimal performances, use 16 bit color
1207depth in the guest and the host OS.
1208
1209If you are using Windows XP as guest OS and if you want to use high
1210resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
12111280x1024x16), then you should use the VESA VBE virtual graphic card
1212(option @option{-std-vga}).
1213
1214@subsubsection CPU usage reduction
1215
1216Windows 9x does not correctly use the CPU HLT
1217instruction. The result is that it takes host CPU cycles even when
1218idle. You can install the utility from
1219@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1220problem. Note that no such tool is needed for NT, 2000 or XP.
1221
1222@subsubsection Windows 2000 disk full problem
1223
1224Windows 2000 has a bug which gives a disk full problem during its
1225installation. When installing it, use the @option{-win2k-hack} QEMU
1226option to enable a specific workaround. After Windows 2000 is
1227installed, you no longer need this option (this option slows down the
1228IDE transfers).
1229
1230@subsubsection Windows 2000 shutdown
1231
1232Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1233can. It comes from the fact that Windows 2000 does not automatically
1234use the APM driver provided by the BIOS.
1235
1236In order to correct that, do the following (thanks to Struan
1237Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1238Add/Troubleshoot a device => Add a new device & Next => No, select the
1239hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1240(again) a few times. Now the driver is installed and Windows 2000 now
1241correctly instructs QEMU to shutdown at the appropriate moment.
1242
1243@subsubsection Share a directory between Unix and Windows
1244
1245See @ref{sec_invocation} about the help of the option @option{-smb}.
1246
1247@subsubsection Windows XP security problem
1248
1249Some releases of Windows XP install correctly but give a security
1250error when booting:
1251@example
1252A problem is preventing Windows from accurately checking the
1253license for this computer. Error code: 0x800703e6.
1254@end example
1255
1256The workaround is to install a service pack for XP after a boot in safe
1257mode. Then reboot, and the problem should go away. Since there is no
1258network while in safe mode, its recommended to download the full
1259installation of SP1 or SP2 and transfer that via an ISO or using the
1260vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1261
1262@subsection MS-DOS and FreeDOS
1263
1264@subsubsection CPU usage reduction
1265
1266DOS does not correctly use the CPU HLT instruction. The result is that
1267it takes host CPU cycles even when idle. You can install the utility
1268from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1269problem.
1270
1271@node QEMU System emulator for non PC targets
1272@chapter QEMU System emulator for non PC targets
1273
1274QEMU is a generic emulator and it emulates many non PC
1275machines. Most of the options are similar to the PC emulator. The
1276differences are mentioned in the following sections.
1277
1278@menu
1279* QEMU PowerPC System emulator::
1280* Sparc32 System emulator::
1281* Sparc64 System emulator::
1282* MIPS System emulator::
1283* ARM System emulator::
1284* ColdFire System emulator::
1285@end menu
1286
1287@node QEMU PowerPC System emulator
1288@section QEMU PowerPC System emulator
1289
1290Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1291or PowerMac PowerPC system.
1292
1293QEMU emulates the following PowerMac peripherals:
1294
1295@itemize @minus
1296@item
1297UniNorth or Grackle PCI Bridge
1298@item
1299PCI VGA compatible card with VESA Bochs Extensions
1300@item
13012 PMAC IDE interfaces with hard disk and CD-ROM support
1302@item
1303NE2000 PCI adapters
1304@item
1305Non Volatile RAM
1306@item
1307VIA-CUDA with ADB keyboard and mouse.
1308@end itemize
1309
1310QEMU emulates the following PREP peripherals:
1311
1312@itemize @minus
1313@item
1314PCI Bridge
1315@item
1316PCI VGA compatible card with VESA Bochs Extensions
1317@item
13182 IDE interfaces with hard disk and CD-ROM support
1319@item
1320Floppy disk
1321@item
1322NE2000 network adapters
1323@item
1324Serial port
1325@item
1326PREP Non Volatile RAM
1327@item
1328PC compatible keyboard and mouse.
1329@end itemize
1330
1331QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1332@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1333
1334Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1335for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1336v2) portable firmware implementation. The goal is to implement a 100%
1337IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1338
1339@c man begin OPTIONS
1340
1341The following options are specific to the PowerPC emulation:
1342
1343@table @option
1344
1345@item -g @var{W}x@var{H}[x@var{DEPTH}]
1346
1347Set the initial VGA graphic mode. The default is 800x600x15.
1348
1349@item -prom-env @var{string}
1350
1351Set OpenBIOS variables in NVRAM, for example:
1352
1353@example
1354qemu-system-ppc -prom-env 'auto-boot?=false' \
1355 -prom-env 'boot-device=hd:2,\yaboot' \
1356 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1357@end example
1358
1359These variables are not used by Open Hack'Ware.
1360
1361@end table
1362
1363@c man end
1364
1365
1366More information is available at
1367@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1368
1369@node Sparc32 System emulator
1370@section Sparc32 System emulator
1371
1372Use the executable @file{qemu-system-sparc} to simulate the following
1373Sun4m architecture machines:
1374@itemize @minus
1375@item
1376SPARCstation 4
1377@item
1378SPARCstation 5
1379@item
1380SPARCstation 10
1381@item
1382SPARCstation 20
1383@item
1384SPARCserver 600MP
1385@item
1386SPARCstation LX
1387@item
1388SPARCstation Voyager
1389@item
1390SPARCclassic
1391@item
1392SPARCbook
1393@end itemize
1394
1395The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1396but Linux limits the number of usable CPUs to 4.
1397
1398It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1399SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1400emulators are not usable yet.
1401
1402QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1403
1404@itemize @minus
1405@item
1406IOMMU or IO-UNITs
1407@item
1408TCX Frame buffer
1409@item
1410Lance (Am7990) Ethernet
1411@item
1412Non Volatile RAM M48T02/M48T08
1413@item
1414Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1415and power/reset logic
1416@item
1417ESP SCSI controller with hard disk and CD-ROM support
1418@item
1419Floppy drive (not on SS-600MP)
1420@item
1421CS4231 sound device (only on SS-5, not working yet)
1422@end itemize
1423
1424The number of peripherals is fixed in the architecture.  Maximum
1425memory size depends on the machine type, for SS-5 it is 256MB and for
1426others 2047MB.
1427
1428Since version 0.8.2, QEMU uses OpenBIOS
1429@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1430firmware implementation. The goal is to implement a 100% IEEE
14311275-1994 (referred to as Open Firmware) compliant firmware.
1432
1433A sample Linux 2.6 series kernel and ram disk image are available on
1434the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1435some kernel versions work. Please note that currently Solaris kernels
1436don't work probably due to interface issues between OpenBIOS and
1437Solaris.
1438
1439@c man begin OPTIONS
1440
1441The following options are specific to the Sparc32 emulation:
1442
1443@table @option
1444
1445@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1446
1447Set the initial TCX graphic mode. The default is 1024x768x8, currently
1448the only other possible mode is 1024x768x24.
1449
1450@item -prom-env @var{string}
1451
1452Set OpenBIOS variables in NVRAM, for example:
1453
1454@example
1455qemu-system-sparc -prom-env 'auto-boot?=false' \
1456 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1457@end example
1458
1459@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1460
1461Set the emulated machine type. Default is SS-5.
1462
1463@end table
1464
1465@c man end
1466
1467@node Sparc64 System emulator
1468@section Sparc64 System emulator
1469
1470Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1471(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1472Niagara (T1) machine. The emulator is not usable for anything yet, but
1473it can launch some kernels.
1474
1475QEMU emulates the following peripherals:
1476
1477@itemize @minus
1478@item
1479UltraSparc IIi APB PCI Bridge
1480@item
1481PCI VGA compatible card with VESA Bochs Extensions
1482@item
1483PS/2 mouse and keyboard
1484@item
1485Non Volatile RAM M48T59
1486@item
1487PC-compatible serial ports
1488@item
14892 PCI IDE interfaces with hard disk and CD-ROM support
1490@item
1491Floppy disk
1492@end itemize
1493
1494@c man begin OPTIONS
1495
1496The following options are specific to the Sparc64 emulation:
1497
1498@table @option
1499
1500@item -prom-env @var{string}
1501
1502Set OpenBIOS variables in NVRAM, for example:
1503
1504@example
1505qemu-system-sparc64 -prom-env 'auto-boot?=false'
1506@end example
1507
1508@item -M [sun4u|sun4v|Niagara]
1509
1510Set the emulated machine type. The default is sun4u.
1511
1512@end table
1513
1514@c man end
1515
1516@node MIPS System emulator
1517@section MIPS System emulator
1518
1519Four executables cover simulation of 32 and 64-bit MIPS systems in
1520both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1521@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1522Five different machine types are emulated:
1523
1524@itemize @minus
1525@item
1526A generic ISA PC-like machine "mips"
1527@item
1528The MIPS Malta prototype board "malta"
1529@item
1530An ACER Pica "pica61". This machine needs the 64-bit emulator.
1531@item
1532MIPS emulator pseudo board "mipssim"
1533@item
1534A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1535@end itemize
1536
1537The generic emulation is supported by Debian 'Etch' and is able to
1538install Debian into a virtual disk image. The following devices are
1539emulated:
1540
1541@itemize @minus
1542@item
1543A range of MIPS CPUs, default is the 24Kf
1544@item
1545PC style serial port
1546@item
1547PC style IDE disk
1548@item
1549NE2000 network card
1550@end itemize
1551
1552The Malta emulation supports the following devices:
1553
1554@itemize @minus
1555@item
1556Core board with MIPS 24Kf CPU and Galileo system controller
1557@item
1558PIIX4 PCI/USB/SMbus controller
1559@item
1560The Multi-I/O chip's serial device
1561@item
1562PCI network cards (PCnet32 and others)
1563@item
1564Malta FPGA serial device
1565@item
1566Cirrus (default) or any other PCI VGA graphics card
1567@end itemize
1568
1569The ACER Pica emulation supports:
1570
1571@itemize @minus
1572@item
1573MIPS R4000 CPU
1574@item
1575PC-style IRQ and DMA controllers
1576@item
1577PC Keyboard
1578@item
1579IDE controller
1580@end itemize
1581
1582The mipssim pseudo board emulation provides an environment similiar
1583to what the proprietary MIPS emulator uses for running Linux.
1584It supports:
1585
1586@itemize @minus
1587@item
1588A range of MIPS CPUs, default is the 24Kf
1589@item
1590PC style serial port
1591@item
1592MIPSnet network emulation
1593@end itemize
1594
1595The MIPS Magnum R4000 emulation supports:
1596
1597@itemize @minus
1598@item
1599MIPS R4000 CPU
1600@item
1601PC-style IRQ controller
1602@item
1603PC Keyboard
1604@item
1605SCSI controller
1606@item
1607G364 framebuffer
1608@end itemize
1609
1610
1611@node ARM System emulator
1612@section ARM System emulator
1613
1614Use the executable @file{qemu-system-arm} to simulate a ARM
1615machine. The ARM Integrator/CP board is emulated with the following
1616devices:
1617
1618@itemize @minus
1619@item
1620ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1621@item
1622Two PL011 UARTs
1623@item
1624SMC 91c111 Ethernet adapter
1625@item
1626PL110 LCD controller
1627@item
1628PL050 KMI with PS/2 keyboard and mouse.
1629@item
1630PL181 MultiMedia Card Interface with SD card.
1631@end itemize
1632
1633The ARM Versatile baseboard is emulated with the following devices:
1634
1635@itemize @minus
1636@item
1637ARM926E, ARM1136 or Cortex-A8 CPU
1638@item
1639PL190 Vectored Interrupt Controller
1640@item
1641Four PL011 UARTs
1642@item
1643SMC 91c111 Ethernet adapter
1644@item
1645PL110 LCD controller
1646@item
1647PL050 KMI with PS/2 keyboard and mouse.
1648@item
1649PCI host bridge.  Note the emulated PCI bridge only provides access to
1650PCI memory space.  It does not provide access to PCI IO space.
1651This means some devices (eg. ne2k_pci NIC) are not usable, and others
1652(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1653mapped control registers.
1654@item
1655PCI OHCI USB controller.
1656@item
1657LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1658@item
1659PL181 MultiMedia Card Interface with SD card.
1660@end itemize
1661
1662The ARM RealView Emulation/Platform baseboard is emulated with the following
1663devices:
1664
1665@itemize @minus
1666@item
1667ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1668@item
1669ARM AMBA Generic/Distributed Interrupt Controller
1670@item
1671Four PL011 UARTs
1672@item
1673SMC 91c111 or SMSC LAN9118 Ethernet adapter
1674@item
1675PL110 LCD controller
1676@item
1677PL050 KMI with PS/2 keyboard and mouse
1678@item
1679PCI host bridge
1680@item
1681PCI OHCI USB controller
1682@item
1683LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1684@item
1685PL181 MultiMedia Card Interface with SD card.
1686@end itemize
1687
1688The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1689and "Terrier") emulation includes the following peripherals:
1690
1691@itemize @minus
1692@item
1693Intel PXA270 System-on-chip (ARM V5TE core)
1694@item
1695NAND Flash memory
1696@item
1697IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1698@item
1699On-chip OHCI USB controller
1700@item
1701On-chip LCD controller
1702@item
1703On-chip Real Time Clock
1704@item
1705TI ADS7846 touchscreen controller on SSP bus
1706@item
1707Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1708@item
1709GPIO-connected keyboard controller and LEDs
1710@item
1711Secure Digital card connected to PXA MMC/SD host
1712@item
1713Three on-chip UARTs
1714@item
1715WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1716@end itemize
1717
1718The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1719following elements:
1720
1721@itemize @minus
1722@item
1723Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1724@item
1725ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1726@item
1727On-chip LCD controller
1728@item
1729On-chip Real Time Clock
1730@item
1731TI TSC2102i touchscreen controller / analog-digital converter / Audio
1732CODEC, connected through MicroWire and I@math{^2}S busses
1733@item
1734GPIO-connected matrix keypad
1735@item
1736Secure Digital card connected to OMAP MMC/SD host
1737@item
1738Three on-chip UARTs
1739@end itemize
1740
1741Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1742emulation supports the following elements:
1743
1744@itemize @minus
1745@item
1746Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1747@item
1748RAM and non-volatile OneNAND Flash memories
1749@item
1750Display connected to EPSON remote framebuffer chip and OMAP on-chip
1751display controller and a LS041y3 MIPI DBI-C controller
1752@item
1753TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1754driven through SPI bus
1755@item
1756National Semiconductor LM8323-controlled qwerty keyboard driven
1757through I@math{^2}C bus
1758@item
1759Secure Digital card connected to OMAP MMC/SD host
1760@item
1761Three OMAP on-chip UARTs and on-chip STI debugging console
1762@item
1763A Bluetooth(R) transciever and HCI connected to an UART
1764@item
1765Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1766TUSB6010 chip - only USB host mode is supported
1767@item
1768TI TMP105 temperature sensor driven through I@math{^2}C bus
1769@item
1770TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1771@item
1772Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1773through CBUS
1774@end itemize
1775
1776The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1777devices:
1778
1779@itemize @minus
1780@item
1781Cortex-M3 CPU core.
1782@item
178364k Flash and 8k SRAM.
1784@item
1785Timers, UARTs, ADC and I@math{^2}C interface.
1786@item
1787OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1788@end itemize
1789
1790The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1791devices:
1792
1793@itemize @minus
1794@item
1795Cortex-M3 CPU core.
1796@item
1797256k Flash and 64k SRAM.
1798@item
1799Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1800@item
1801OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1802@end itemize
1803
1804The Freecom MusicPal internet radio emulation includes the following
1805elements:
1806
1807@itemize @minus
1808@item
1809Marvell MV88W8618 ARM core.
1810@item
181132 MB RAM, 256 KB SRAM, 8 MB flash.
1812@item
1813Up to 2 16550 UARTs
1814@item
1815MV88W8xx8 Ethernet controller
1816@item
1817MV88W8618 audio controller, WM8750 CODEC and mixer
1818@item
1819128×64 display with brightness control
1820@item
18212 buttons, 2 navigation wheels with button function
1822@end itemize
1823
1824The Siemens SX1 models v1 and v2 (default) basic emulation.
1825The emulaton includes the following elements:
1826
1827@itemize @minus
1828@item
1829Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1830@item
1831ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1832V1
18331 Flash of 16MB and 1 Flash of 8MB
1834V2
18351 Flash of 32MB
1836@item
1837On-chip LCD controller
1838@item
1839On-chip Real Time Clock
1840@item
1841Secure Digital card connected to OMAP MMC/SD host
1842@item
1843Three on-chip UARTs
1844@end itemize
1845
1846The "Syborg" Symbian Virtual Platform base model includes the following
1847elements:
1848
1849@itemize @minus
1850@item
1851ARM Cortex-A8 CPU
1852@item
1853Interrupt controller
1854@item
1855Timer
1856@item
1857Real Time Clock
1858@item
1859Keyboard
1860@item
1861Framebuffer
1862@item
1863Touchscreen
1864@item
1865UARTs
1866@end itemize
1867
1868A Linux 2.6 test image is available on the QEMU web site. More
1869information is available in the QEMU mailing-list archive.
1870
1871@c man begin OPTIONS
1872
1873The following options are specific to the ARM emulation:
1874
1875@table @option
1876
1877@item -semihosting
1878Enable semihosting syscall emulation.
1879
1880On ARM this implements the "Angel" interface.
1881
1882Note that this allows guest direct access to the host filesystem,
1883so should only be used with trusted guest OS.
1884
1885@end table
1886
1887@node ColdFire System emulator
1888@section ColdFire System emulator
1889
1890Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1891The emulator is able to boot a uClinux kernel.
1892
1893The M5208EVB emulation includes the following devices:
1894
1895@itemize @minus
1896@item
1897MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1898@item
1899Three Two on-chip UARTs.
1900@item
1901Fast Ethernet Controller (FEC)
1902@end itemize
1903
1904The AN5206 emulation includes the following devices:
1905
1906@itemize @minus
1907@item
1908MCF5206 ColdFire V2 Microprocessor.
1909@item
1910Two on-chip UARTs.
1911@end itemize
1912
1913@c man begin OPTIONS
1914
1915The following options are specific to the ARM emulation:
1916
1917@table @option
1918
1919@item -semihosting
1920Enable semihosting syscall emulation.
1921
1922On M68K this implements the "ColdFire GDB" interface used by libgloss.
1923
1924Note that this allows guest direct access to the host filesystem,
1925so should only be used with trusted guest OS.
1926
1927@end table
1928
1929@node QEMU User space emulator
1930@chapter QEMU User space emulator
1931
1932@menu
1933* Supported Operating Systems ::
1934* Linux User space emulator::
1935* Mac OS X/Darwin User space emulator ::
1936* BSD User space emulator ::
1937@end menu
1938
1939@node Supported Operating Systems
1940@section Supported Operating Systems
1941
1942The following OS are supported in user space emulation:
1943
1944@itemize @minus
1945@item
1946Linux (referred as qemu-linux-user)
1947@item
1948Mac OS X/Darwin (referred as qemu-darwin-user)
1949@item
1950BSD (referred as qemu-bsd-user)
1951@end itemize
1952
1953@node Linux User space emulator
1954@section Linux User space emulator
1955
1956@menu
1957* Quick Start::
1958* Wine launch::
1959* Command line options::
1960* Other binaries::
1961@end menu
1962
1963@node Quick Start
1964@subsection Quick Start
1965
1966In order to launch a Linux process, QEMU needs the process executable
1967itself and all the target (x86) dynamic libraries used by it.
1968
1969@itemize
1970
1971@item On x86, you can just try to launch any process by using the native
1972libraries:
1973
1974@example
1975qemu-i386 -L / /bin/ls
1976@end example
1977
1978@code{-L /} tells that the x86 dynamic linker must be searched with a
1979@file{/} prefix.
1980
1981@item Since QEMU is also a linux process, you can launch qemu with
1982qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1983
1984@example
1985qemu-i386 -L / qemu-i386 -L / /bin/ls
1986@end example
1987
1988@item On non x86 CPUs, you need first to download at least an x86 glibc
1989(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1990@code{LD_LIBRARY_PATH} is not set:
1991
1992@example
1993unset LD_LIBRARY_PATH
1994@end example
1995
1996Then you can launch the precompiled @file{ls} x86 executable:
1997
1998@example
1999qemu-i386 tests/i386/ls
2000@end example
2001You can look at @file{qemu-binfmt-conf.sh} so that
2002QEMU is automatically launched by the Linux kernel when you try to
2003launch x86 executables. It requires the @code{binfmt_misc} module in the
2004Linux kernel.
2005
2006@item The x86 version of QEMU is also included. You can try weird things such as:
2007@example
2008qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2009          /usr/local/qemu-i386/bin/ls-i386
2010@end example
2011
2012@end itemize
2013
2014@node Wine launch
2015@subsection Wine launch
2016
2017@itemize
2018
2019@item Ensure that you have a working QEMU with the x86 glibc
2020distribution (see previous section). In order to verify it, you must be
2021able to do:
2022
2023@example
2024qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2025@end example
2026
2027@item Download the binary x86 Wine install
2028(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2029
2030@item Configure Wine on your account. Look at the provided script
2031@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2032@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2033
2034@item Then you can try the example @file{putty.exe}:
2035
2036@example
2037qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2038          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2039@end example
2040
2041@end itemize
2042
2043@node Command line options
2044@subsection Command line options
2045
2046@example
2047usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
2048@end example
2049
2050@table @option
2051@item -h
2052Print the help
2053@item -L path
2054Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2055@item -s size
2056Set the x86 stack size in bytes (default=524288)
2057@item -cpu model
2058Select CPU model (-cpu ? for list and additional feature selection)
2059@item -B offset
2060Offset guest address by the specified number of bytes.  This is useful when
2061the address region rewuired by guest applications is reserved on the host.
2062Ths option is currently only supported on some hosts.
2063@end table
2064
2065Debug options:
2066
2067@table @option
2068@item -d
2069Activate log (logfile=/tmp/qemu.log)
2070@item -p pagesize
2071Act as if the host page size was 'pagesize' bytes
2072@item -g port
2073Wait gdb connection to port
2074@item -singlestep
2075Run the emulation in single step mode.
2076@end table
2077
2078Environment variables:
2079
2080@table @env
2081@item QEMU_STRACE
2082Print system calls and arguments similar to the 'strace' program
2083(NOTE: the actual 'strace' program will not work because the user
2084space emulator hasn't implemented ptrace).  At the moment this is
2085incomplete.  All system calls that don't have a specific argument
2086format are printed with information for six arguments.  Many
2087flag-style arguments don't have decoders and will show up as numbers.
2088@end table
2089
2090@node Other binaries
2091@subsection Other binaries
2092
2093@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2094binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2095configurations), and arm-uclinux bFLT format binaries.
2096
2097@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2098(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2099coldfire uClinux bFLT format binaries.
2100
2101The binary format is detected automatically.
2102
2103@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2104
2105@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2106(Sparc64 CPU, 32 bit ABI).
2107
2108@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2109SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2110
2111@node Mac OS X/Darwin User space emulator
2112@section Mac OS X/Darwin User space emulator
2113
2114@menu
2115* Mac OS X/Darwin Status::
2116* Mac OS X/Darwin Quick Start::
2117* Mac OS X/Darwin Command line options::
2118@end menu
2119
2120@node Mac OS X/Darwin Status
2121@subsection Mac OS X/Darwin Status
2122
2123@itemize @minus
2124@item
2125target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2126@item
2127target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2128@item
2129target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2130@item
2131target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2132@end itemize
2133
2134[1] If you're host commpage can be executed by qemu.
2135
2136@node Mac OS X/Darwin Quick Start
2137@subsection Quick Start
2138
2139In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2140itself and all the target dynamic libraries used by it. If you don't have the FAT
2141libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2142CD or compile them by hand.
2143
2144@itemize
2145
2146@item On x86, you can just try to launch any process by using the native
2147libraries:
2148
2149@example
2150qemu-i386 /bin/ls
2151@end example
2152
2153or to run the ppc version of the executable:
2154
2155@example
2156qemu-ppc /bin/ls
2157@end example
2158
2159@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2160are installed:
2161
2162@example
2163qemu-i386 -L /opt/x86_root/ /bin/ls
2164@end example
2165
2166@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2167@file{/opt/x86_root/usr/bin/dyld}.
2168
2169@end itemize
2170
2171@node Mac OS X/Darwin Command line options
2172@subsection Command line options
2173
2174@example
2175usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2176@end example
2177
2178@table @option
2179@item -h
2180Print the help
2181@item -L path
2182Set the library root path (default=/)
2183@item -s size
2184Set the stack size in bytes (default=524288)
2185@end table
2186
2187Debug options:
2188
2189@table @option
2190@item -d
2191Activate log (logfile=/tmp/qemu.log)
2192@item -p pagesize
2193Act as if the host page size was 'pagesize' bytes
2194@item -singlestep
2195Run the emulation in single step mode.
2196@end table
2197
2198@node BSD User space emulator
2199@section BSD User space emulator
2200
2201@menu
2202* BSD Status::
2203* BSD Quick Start::
2204* BSD Command line options::
2205@end menu
2206
2207@node BSD Status
2208@subsection BSD Status
2209
2210@itemize @minus
2211@item
2212target Sparc64 on Sparc64: Some trivial programs work.
2213@end itemize
2214
2215@node BSD Quick Start
2216@subsection Quick Start
2217
2218In order to launch a BSD process, QEMU needs the process executable
2219itself and all the target dynamic libraries used by it.
2220
2221@itemize
2222
2223@item On Sparc64, you can just try to launch any process by using the native
2224libraries:
2225
2226@example
2227qemu-sparc64 /bin/ls
2228@end example
2229
2230@end itemize
2231
2232@node BSD Command line options
2233@subsection Command line options
2234
2235@example
2236usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2237@end example
2238
2239@table @option
2240@item -h
2241Print the help
2242@item -L path
2243Set the library root path (default=/)
2244@item -s size
2245Set the stack size in bytes (default=524288)
2246@item -bsd type
2247Set the type of the emulated BSD Operating system. Valid values are
2248FreeBSD, NetBSD and OpenBSD (default).
2249@end table
2250
2251Debug options:
2252
2253@table @option
2254@item -d
2255Activate log (logfile=/tmp/qemu.log)
2256@item -p pagesize
2257Act as if the host page size was 'pagesize' bytes
2258@item -singlestep
2259Run the emulation in single step mode.
2260@end table
2261
2262@node compilation
2263@chapter Compilation from the sources
2264
2265@menu
2266* Linux/Unix::
2267* Windows::
2268* Cross compilation for Windows with Linux::
2269* Mac OS X::
2270@end menu
2271
2272@node Linux/Unix
2273@section Linux/Unix
2274
2275@subsection Compilation
2276
2277First you must decompress the sources:
2278@example
2279cd /tmp
2280tar zxvf qemu-x.y.z.tar.gz
2281cd qemu-x.y.z
2282@end example
2283
2284Then you configure QEMU and build it (usually no options are needed):
2285@example
2286./configure
2287make
2288@end example
2289
2290Then type as root user:
2291@example
2292make install
2293@end example
2294to install QEMU in @file{/usr/local}.
2295
2296@node Windows
2297@section Windows
2298
2299@itemize
2300@item Install the current versions of MSYS and MinGW from
2301@url{http://www.mingw.org/}. You can find detailed installation
2302instructions in the download section and the FAQ.
2303
2304@item Download
2305the MinGW development library of SDL 1.2.x
2306(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2307@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2308unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2309directory. Edit the @file{sdl-config} script so that it gives the
2310correct SDL directory when invoked.
2311
2312@item Extract the current version of QEMU.
2313
2314@item Start the MSYS shell (file @file{msys.bat}).
2315
2316@item Change to the QEMU directory. Launch @file{./configure} and
2317@file{make}.  If you have problems using SDL, verify that
2318@file{sdl-config} can be launched from the MSYS command line.
2319
2320@item You can install QEMU in @file{Program Files/Qemu} by typing
2321@file{make install}. Don't forget to copy @file{SDL.dll} in
2322@file{Program Files/Qemu}.
2323
2324@end itemize
2325
2326@node Cross compilation for Windows with Linux
2327@section Cross compilation for Windows with Linux
2328
2329@itemize
2330@item
2331Install the MinGW cross compilation tools available at
2332@url{http://www.mingw.org/}.
2333
2334@item
2335Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2336unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2337variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2338the QEMU configuration script.
2339
2340@item
2341Configure QEMU for Windows cross compilation:
2342@example
2343./configure --enable-mingw32
2344@end example
2345If necessary, you can change the cross-prefix according to the prefix
2346chosen for the MinGW tools with --cross-prefix. You can also use
2347--prefix to set the Win32 install path.
2348
2349@item You can install QEMU in the installation directory by typing
2350@file{make install}. Don't forget to copy @file{SDL.dll} in the
2351installation directory.
2352
2353@end itemize
2354
2355Note: Currently, Wine does not seem able to launch
2356QEMU for Win32.
2357
2358@node Mac OS X
2359@section Mac OS X
2360
2361The Mac OS X patches are not fully merged in QEMU, so you should look
2362at the QEMU mailing list archive to have all the necessary
2363information.
2364
2365@node Index
2366@chapter Index
2367@printindex cp
2368
2369@bye
2370