1\input texinfo @c -*- texinfo -*- 2@c %**start of header 3@setfilename qemu-doc.info 4@settitle QEMU Emulator User Documentation 5@exampleindent 0 6@paragraphindent 0 7@c %**end of header 8 9@iftex 10@titlepage 11@sp 7 12@center @titlefont{QEMU Emulator} 13@sp 1 14@center @titlefont{User Documentation} 15@sp 3 16@end titlepage 17@end iftex 18 19@ifnottex 20@node Top 21@top 22 23@menu 24* Introduction:: 25* Installation:: 26* QEMU PC System emulator:: 27* QEMU System emulator for non PC targets:: 28* QEMU User space emulator:: 29* compilation:: Compilation from the sources 30* Index:: 31@end menu 32@end ifnottex 33 34@contents 35 36@node Introduction 37@chapter Introduction 38 39@menu 40* intro_features:: Features 41@end menu 42 43@node intro_features 44@section Features 45 46QEMU is a FAST! processor emulator using dynamic translation to 47achieve good emulation speed. 48 49QEMU has two operating modes: 50 51@itemize @minus 52 53@item 54Full system emulation. In this mode, QEMU emulates a full system (for 55example a PC), including one or several processors and various 56peripherals. It can be used to launch different Operating Systems 57without rebooting the PC or to debug system code. 58 59@item 60User mode emulation. In this mode, QEMU can launch 61processes compiled for one CPU on another CPU. It can be used to 62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or 63to ease cross-compilation and cross-debugging. 64 65@end itemize 66 67QEMU can run without an host kernel driver and yet gives acceptable 68performance. 69 70For system emulation, the following hardware targets are supported: 71@itemize 72@item PC (x86 or x86_64 processor) 73@item ISA PC (old style PC without PCI bus) 74@item PREP (PowerPC processor) 75@item G3 Beige PowerMac (PowerPC processor) 76@item Mac99 PowerMac (PowerPC processor, in progress) 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor) 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress) 79@item Malta board (32-bit and 64-bit MIPS processors) 80@item MIPS Magnum (64-bit MIPS processor) 81@item ARM Integrator/CP (ARM) 82@item ARM Versatile baseboard (ARM) 83@item ARM RealView Emulation/Platform baseboard (ARM) 84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor) 85@item Luminary Micro LM3S811EVB (ARM Cortex-M3) 86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3) 87@item Freescale MCF5208EVB (ColdFire V2). 88@item Arnewsh MCF5206 evaluation board (ColdFire V2). 89@item Palm Tungsten|E PDA (OMAP310 processor) 90@item N800 and N810 tablets (OMAP2420 processor) 91@item MusicPal (MV88W8618 ARM processor) 92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270). 93@item Siemens SX1 smartphone (OMAP310 processor) 94@item Syborg SVP base model (ARM Cortex-A8). 95@item AXIS-Devboard88 (CRISv32 ETRAX-FS). 96@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze). 97@end itemize 98 99For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported. 100 101@node Installation 102@chapter Installation 103 104If you want to compile QEMU yourself, see @ref{compilation}. 105 106@menu 107* install_linux:: Linux 108* install_windows:: Windows 109* install_mac:: Macintosh 110@end menu 111 112@node install_linux 113@section Linux 114 115If a precompiled package is available for your distribution - you just 116have to install it. Otherwise, see @ref{compilation}. 117 118@node install_windows 119@section Windows 120 121Download the experimental binary installer at 122@url{http://www.free.oszoo.org/@/download.html}. 123 124@node install_mac 125@section Mac OS X 126 127Download the experimental binary installer at 128@url{http://www.free.oszoo.org/@/download.html}. 129 130@node QEMU PC System emulator 131@chapter QEMU PC System emulator 132 133@menu 134* pcsys_introduction:: Introduction 135* pcsys_quickstart:: Quick Start 136* sec_invocation:: Invocation 137* pcsys_keys:: Keys 138* pcsys_monitor:: QEMU Monitor 139* disk_images:: Disk Images 140* pcsys_network:: Network emulation 141* direct_linux_boot:: Direct Linux Boot 142* pcsys_usb:: USB emulation 143* vnc_security:: VNC security 144* gdb_usage:: GDB usage 145* pcsys_os_specific:: Target OS specific information 146@end menu 147 148@node pcsys_introduction 149@section Introduction 150 151@c man begin DESCRIPTION 152 153The QEMU PC System emulator simulates the 154following peripherals: 155 156@itemize @minus 157@item 158i440FX host PCI bridge and PIIX3 PCI to ISA bridge 159@item 160Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA 161extensions (hardware level, including all non standard modes). 162@item 163PS/2 mouse and keyboard 164@item 1652 PCI IDE interfaces with hard disk and CD-ROM support 166@item 167Floppy disk 168@item 169PCI and ISA network adapters 170@item 171Serial ports 172@item 173Creative SoundBlaster 16 sound card 174@item 175ENSONIQ AudioPCI ES1370 sound card 176@item 177Intel 82801AA AC97 Audio compatible sound card 178@item 179Adlib(OPL2) - Yamaha YM3812 compatible chip 180@item 181Gravis Ultrasound GF1 sound card 182@item 183CS4231A compatible sound card 184@item 185PCI UHCI USB controller and a virtual USB hub. 186@end itemize 187 188SMP is supported with up to 255 CPUs. 189 190Note that adlib, gus and cs4231a are only available when QEMU was 191configured with --audio-card-list option containing the name(s) of 192required card(s). 193 194QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL 195VGA BIOS. 196 197QEMU uses YM3812 emulation by Tatsuyuki Satoh. 198 199QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/}) 200by Tibor "TS" Schütz. 201 202Not that, by default, GUS shares IRQ(7) with parallel ports and so 203qemu must be told to not have parallel ports to have working GUS 204 205@example 206qemu dos.img -soundhw gus -parallel none 207@end example 208 209Alternatively: 210@example 211qemu dos.img -device gus,irq=5 212@end example 213 214Or some other unclaimed IRQ. 215 216CS4231A is the chip used in Windows Sound System and GUSMAX products 217 218@c man end 219 220@node pcsys_quickstart 221@section Quick Start 222 223Download and uncompress the linux image (@file{linux.img}) and type: 224 225@example 226qemu linux.img 227@end example 228 229Linux should boot and give you a prompt. 230 231@node sec_invocation 232@section Invocation 233 234@example 235@c man begin SYNOPSIS 236usage: qemu [options] [@var{disk_image}] 237@c man end 238@end example 239 240@c man begin OPTIONS 241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some 242targets do not need a disk image. 243 244@include qemu-options.texi 245 246@c man end 247 248@node pcsys_keys 249@section Keys 250 251@c man begin OPTIONS 252 253During the graphical emulation, you can use the following keys: 254@table @key 255@item Ctrl-Alt-f 256Toggle full screen 257 258@item Ctrl-Alt-u 259Restore the screen's un-scaled dimensions 260 261@item Ctrl-Alt-n 262Switch to virtual console 'n'. Standard console mappings are: 263@table @emph 264@item 1 265Target system display 266@item 2 267Monitor 268@item 3 269Serial port 270@end table 271 272@item Ctrl-Alt 273Toggle mouse and keyboard grab. 274@end table 275 276In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down}, 277@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log. 278 279During emulation, if you are using the @option{-nographic} option, use 280@key{Ctrl-a h} to get terminal commands: 281 282@table @key 283@item Ctrl-a h 284@item Ctrl-a ? 285Print this help 286@item Ctrl-a x 287Exit emulator 288@item Ctrl-a s 289Save disk data back to file (if -snapshot) 290@item Ctrl-a t 291Toggle console timestamps 292@item Ctrl-a b 293Send break (magic sysrq in Linux) 294@item Ctrl-a c 295Switch between console and monitor 296@item Ctrl-a Ctrl-a 297Send Ctrl-a 298@end table 299@c man end 300 301@ignore 302 303@c man begin SEEALSO 304The HTML documentation of QEMU for more precise information and Linux 305user mode emulator invocation. 306@c man end 307 308@c man begin AUTHOR 309Fabrice Bellard 310@c man end 311 312@end ignore 313 314@node pcsys_monitor 315@section QEMU Monitor 316 317The QEMU monitor is used to give complex commands to the QEMU 318emulator. You can use it to: 319 320@itemize @minus 321 322@item 323Remove or insert removable media images 324(such as CD-ROM or floppies). 325 326@item 327Freeze/unfreeze the Virtual Machine (VM) and save or restore its state 328from a disk file. 329 330@item Inspect the VM state without an external debugger. 331 332@end itemize 333 334@subsection Commands 335 336The following commands are available: 337 338@include qemu-monitor.texi 339 340@subsection Integer expressions 341 342The monitor understands integers expressions for every integer 343argument. You can use register names to get the value of specifics 344CPU registers by prefixing them with @emph{$}. 345 346@node disk_images 347@section Disk Images 348 349Since version 0.6.1, QEMU supports many disk image formats, including 350growable disk images (their size increase as non empty sectors are 351written), compressed and encrypted disk images. Version 0.8.3 added 352the new qcow2 disk image format which is essential to support VM 353snapshots. 354 355@menu 356* disk_images_quickstart:: Quick start for disk image creation 357* disk_images_snapshot_mode:: Snapshot mode 358* vm_snapshots:: VM snapshots 359* qemu_img_invocation:: qemu-img Invocation 360* qemu_nbd_invocation:: qemu-nbd Invocation 361* host_drives:: Using host drives 362* disk_images_fat_images:: Virtual FAT disk images 363* disk_images_nbd:: NBD access 364@end menu 365 366@node disk_images_quickstart 367@subsection Quick start for disk image creation 368 369You can create a disk image with the command: 370@example 371qemu-img create myimage.img mysize 372@end example 373where @var{myimage.img} is the disk image filename and @var{mysize} is its 374size in kilobytes. You can add an @code{M} suffix to give the size in 375megabytes and a @code{G} suffix for gigabytes. 376 377See @ref{qemu_img_invocation} for more information. 378 379@node disk_images_snapshot_mode 380@subsection Snapshot mode 381 382If you use the option @option{-snapshot}, all disk images are 383considered as read only. When sectors in written, they are written in 384a temporary file created in @file{/tmp}. You can however force the 385write back to the raw disk images by using the @code{commit} monitor 386command (or @key{C-a s} in the serial console). 387 388@node vm_snapshots 389@subsection VM snapshots 390 391VM snapshots are snapshots of the complete virtual machine including 392CPU state, RAM, device state and the content of all the writable 393disks. In order to use VM snapshots, you must have at least one non 394removable and writable block device using the @code{qcow2} disk image 395format. Normally this device is the first virtual hard drive. 396 397Use the monitor command @code{savevm} to create a new VM snapshot or 398replace an existing one. A human readable name can be assigned to each 399snapshot in addition to its numerical ID. 400 401Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove 402a VM snapshot. @code{info snapshots} lists the available snapshots 403with their associated information: 404 405@example 406(qemu) info snapshots 407Snapshot devices: hda 408Snapshot list (from hda): 409ID TAG VM SIZE DATE VM CLOCK 4101 start 41M 2006-08-06 12:38:02 00:00:14.954 4112 40M 2006-08-06 12:43:29 00:00:18.633 4123 msys 40M 2006-08-06 12:44:04 00:00:23.514 413@end example 414 415A VM snapshot is made of a VM state info (its size is shown in 416@code{info snapshots}) and a snapshot of every writable disk image. 417The VM state info is stored in the first @code{qcow2} non removable 418and writable block device. The disk image snapshots are stored in 419every disk image. The size of a snapshot in a disk image is difficult 420to evaluate and is not shown by @code{info snapshots} because the 421associated disk sectors are shared among all the snapshots to save 422disk space (otherwise each snapshot would need a full copy of all the 423disk images). 424 425When using the (unrelated) @code{-snapshot} option 426(@ref{disk_images_snapshot_mode}), you can always make VM snapshots, 427but they are deleted as soon as you exit QEMU. 428 429VM snapshots currently have the following known limitations: 430@itemize 431@item 432They cannot cope with removable devices if they are removed or 433inserted after a snapshot is done. 434@item 435A few device drivers still have incomplete snapshot support so their 436state is not saved or restored properly (in particular USB). 437@end itemize 438 439@node qemu_img_invocation 440@subsection @code{qemu-img} Invocation 441 442@include qemu-img.texi 443 444@node qemu_nbd_invocation 445@subsection @code{qemu-nbd} Invocation 446 447@include qemu-nbd.texi 448 449@node host_drives 450@subsection Using host drives 451 452In addition to disk image files, QEMU can directly access host 453devices. We describe here the usage for QEMU version >= 0.8.3. 454 455@subsubsection Linux 456 457On Linux, you can directly use the host device filename instead of a 458disk image filename provided you have enough privileges to access 459it. For example, use @file{/dev/cdrom} to access to the CDROM or 460@file{/dev/fd0} for the floppy. 461 462@table @code 463@item CD 464You can specify a CDROM device even if no CDROM is loaded. QEMU has 465specific code to detect CDROM insertion or removal. CDROM ejection by 466the guest OS is supported. Currently only data CDs are supported. 467@item Floppy 468You can specify a floppy device even if no floppy is loaded. Floppy 469removal is currently not detected accurately (if you change floppy 470without doing floppy access while the floppy is not loaded, the guest 471OS will think that the same floppy is loaded). 472@item Hard disks 473Hard disks can be used. Normally you must specify the whole disk 474(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can 475see it as a partitioned disk. WARNING: unless you know what you do, it 476is better to only make READ-ONLY accesses to the hard disk otherwise 477you may corrupt your host data (use the @option{-snapshot} command 478line option or modify the device permissions accordingly). 479@end table 480 481@subsubsection Windows 482 483@table @code 484@item CD 485The preferred syntax is the drive letter (e.g. @file{d:}). The 486alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is 487supported as an alias to the first CDROM drive. 488 489Currently there is no specific code to handle removable media, so it 490is better to use the @code{change} or @code{eject} monitor commands to 491change or eject media. 492@item Hard disks 493Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}} 494where @var{N} is the drive number (0 is the first hard disk). 495 496WARNING: unless you know what you do, it is better to only make 497READ-ONLY accesses to the hard disk otherwise you may corrupt your 498host data (use the @option{-snapshot} command line so that the 499modifications are written in a temporary file). 500@end table 501 502 503@subsubsection Mac OS X 504 505@file{/dev/cdrom} is an alias to the first CDROM. 506 507Currently there is no specific code to handle removable media, so it 508is better to use the @code{change} or @code{eject} monitor commands to 509change or eject media. 510 511@node disk_images_fat_images 512@subsection Virtual FAT disk images 513 514QEMU can automatically create a virtual FAT disk image from a 515directory tree. In order to use it, just type: 516 517@example 518qemu linux.img -hdb fat:/my_directory 519@end example 520 521Then you access access to all the files in the @file{/my_directory} 522directory without having to copy them in a disk image or to export 523them via SAMBA or NFS. The default access is @emph{read-only}. 524 525Floppies can be emulated with the @code{:floppy:} option: 526 527@example 528qemu linux.img -fda fat:floppy:/my_directory 529@end example 530 531A read/write support is available for testing (beta stage) with the 532@code{:rw:} option: 533 534@example 535qemu linux.img -fda fat:floppy:rw:/my_directory 536@end example 537 538What you should @emph{never} do: 539@itemize 540@item use non-ASCII filenames ; 541@item use "-snapshot" together with ":rw:" ; 542@item expect it to work when loadvm'ing ; 543@item write to the FAT directory on the host system while accessing it with the guest system. 544@end itemize 545 546@node disk_images_nbd 547@subsection NBD access 548 549QEMU can access directly to block device exported using the Network Block Device 550protocol. 551 552@example 553qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024 554@end example 555 556If the NBD server is located on the same host, you can use an unix socket instead 557of an inet socket: 558 559@example 560qemu linux.img -hdb nbd:unix:/tmp/my_socket 561@end example 562 563In this case, the block device must be exported using qemu-nbd: 564 565@example 566qemu-nbd --socket=/tmp/my_socket my_disk.qcow2 567@end example 568 569The use of qemu-nbd allows to share a disk between several guests: 570@example 571qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2 572@end example 573 574and then you can use it with two guests: 575@example 576qemu linux1.img -hdb nbd:unix:/tmp/my_socket 577qemu linux2.img -hdb nbd:unix:/tmp/my_socket 578@end example 579 580@node pcsys_network 581@section Network emulation 582 583QEMU can simulate several network cards (PCI or ISA cards on the PC 584target) and can connect them to an arbitrary number of Virtual Local 585Area Networks (VLANs). Host TAP devices can be connected to any QEMU 586VLAN. VLAN can be connected between separate instances of QEMU to 587simulate large networks. For simpler usage, a non privileged user mode 588network stack can replace the TAP device to have a basic network 589connection. 590 591@subsection VLANs 592 593QEMU simulates several VLANs. A VLAN can be symbolised as a virtual 594connection between several network devices. These devices can be for 595example QEMU virtual Ethernet cards or virtual Host ethernet devices 596(TAP devices). 597 598@subsection Using TAP network interfaces 599 600This is the standard way to connect QEMU to a real network. QEMU adds 601a virtual network device on your host (called @code{tapN}), and you 602can then configure it as if it was a real ethernet card. 603 604@subsubsection Linux host 605 606As an example, you can download the @file{linux-test-xxx.tar.gz} 607archive and copy the script @file{qemu-ifup} in @file{/etc} and 608configure properly @code{sudo} so that the command @code{ifconfig} 609contained in @file{qemu-ifup} can be executed as root. You must verify 610that your host kernel supports the TAP network interfaces: the 611device @file{/dev/net/tun} must be present. 612 613See @ref{sec_invocation} to have examples of command lines using the 614TAP network interfaces. 615 616@subsubsection Windows host 617 618There is a virtual ethernet driver for Windows 2000/XP systems, called 619TAP-Win32. But it is not included in standard QEMU for Windows, 620so you will need to get it separately. It is part of OpenVPN package, 621so download OpenVPN from : @url{http://openvpn.net/}. 622 623@subsection Using the user mode network stack 624 625By using the option @option{-net user} (default configuration if no 626@option{-net} option is specified), QEMU uses a completely user mode 627network stack (you don't need root privilege to use the virtual 628network). The virtual network configuration is the following: 629 630@example 631 632 QEMU VLAN <------> Firewall/DHCP server <-----> Internet 633 | (10.0.2.2) 634 | 635 ----> DNS server (10.0.2.3) 636 | 637 ----> SMB server (10.0.2.4) 638@end example 639 640The QEMU VM behaves as if it was behind a firewall which blocks all 641incoming connections. You can use a DHCP client to automatically 642configure the network in the QEMU VM. The DHCP server assign addresses 643to the hosts starting from 10.0.2.15. 644 645In order to check that the user mode network is working, you can ping 646the address 10.0.2.2 and verify that you got an address in the range 64710.0.2.x from the QEMU virtual DHCP server. 648 649Note that @code{ping} is not supported reliably to the internet as it 650would require root privileges. It means you can only ping the local 651router (10.0.2.2). 652 653When using the built-in TFTP server, the router is also the TFTP 654server. 655 656When using the @option{-redir} option, TCP or UDP connections can be 657redirected from the host to the guest. It allows for example to 658redirect X11, telnet or SSH connections. 659 660@subsection Connecting VLANs between QEMU instances 661 662Using the @option{-net socket} option, it is possible to make VLANs 663that span several QEMU instances. See @ref{sec_invocation} to have a 664basic example. 665 666@node direct_linux_boot 667@section Direct Linux Boot 668 669This section explains how to launch a Linux kernel inside QEMU without 670having to make a full bootable image. It is very useful for fast Linux 671kernel testing. 672 673The syntax is: 674@example 675qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda" 676@end example 677 678Use @option{-kernel} to provide the Linux kernel image and 679@option{-append} to give the kernel command line arguments. The 680@option{-initrd} option can be used to provide an INITRD image. 681 682When using the direct Linux boot, a disk image for the first hard disk 683@file{hda} is required because its boot sector is used to launch the 684Linux kernel. 685 686If you do not need graphical output, you can disable it and redirect 687the virtual serial port and the QEMU monitor to the console with the 688@option{-nographic} option. The typical command line is: 689@example 690qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ 691 -append "root=/dev/hda console=ttyS0" -nographic 692@end example 693 694Use @key{Ctrl-a c} to switch between the serial console and the 695monitor (@pxref{pcsys_keys}). 696 697@node pcsys_usb 698@section USB emulation 699 700QEMU emulates a PCI UHCI USB controller. You can virtually plug 701virtual USB devices or real host USB devices (experimental, works only 702on Linux hosts). Qemu will automatically create and connect virtual USB hubs 703as necessary to connect multiple USB devices. 704 705@menu 706* usb_devices:: 707* host_usb_devices:: 708@end menu 709@node usb_devices 710@subsection Connecting USB devices 711 712USB devices can be connected with the @option{-usbdevice} commandline option 713or the @code{usb_add} monitor command. Available devices are: 714 715@table @code 716@item mouse 717Virtual Mouse. This will override the PS/2 mouse emulation when activated. 718@item tablet 719Pointer device that uses absolute coordinates (like a touchscreen). 720This means qemu is able to report the mouse position without having 721to grab the mouse. Also overrides the PS/2 mouse emulation when activated. 722@item disk:@var{file} 723Mass storage device based on @var{file} (@pxref{disk_images}) 724@item host:@var{bus.addr} 725Pass through the host device identified by @var{bus.addr} 726(Linux only) 727@item host:@var{vendor_id:product_id} 728Pass through the host device identified by @var{vendor_id:product_id} 729(Linux only) 730@item wacom-tablet 731Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet} 732above but it can be used with the tslib library because in addition to touch 733coordinates it reports touch pressure. 734@item keyboard 735Standard USB keyboard. Will override the PS/2 keyboard (if present). 736@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev} 737Serial converter. This emulates an FTDI FT232BM chip connected to host character 738device @var{dev}. The available character devices are the same as for the 739@code{-serial} option. The @code{vendorid} and @code{productid} options can be 740used to override the default 0403:6001. For instance, 741@example 742usb_add serial:productid=FA00:tcp:192.168.0.2:4444 743@end example 744will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual 745serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00). 746@item braille 747Braille device. This will use BrlAPI to display the braille output on a real 748or fake device. 749@item net:@var{options} 750Network adapter that supports CDC ethernet and RNDIS protocols. @var{options} 751specifies NIC options as with @code{-net nic,}@var{options} (see description). 752For instance, user-mode networking can be used with 753@example 754qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0 755@end example 756Currently this cannot be used in machines that support PCI NICs. 757@item bt[:@var{hci-type}] 758Bluetooth dongle whose type is specified in the same format as with 759the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If 760no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}. 761This USB device implements the USB Transport Layer of HCI. Example 762usage: 763@example 764qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3 765@end example 766@end table 767 768@node host_usb_devices 769@subsection Using host USB devices on a Linux host 770 771WARNING: this is an experimental feature. QEMU will slow down when 772using it. USB devices requiring real time streaming (i.e. USB Video 773Cameras) are not supported yet. 774 775@enumerate 776@item If you use an early Linux 2.4 kernel, verify that no Linux driver 777is actually using the USB device. A simple way to do that is simply to 778disable the corresponding kernel module by renaming it from @file{mydriver.o} 779to @file{mydriver.o.disabled}. 780 781@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that: 782@example 783ls /proc/bus/usb 784001 devices drivers 785@end example 786 787@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices: 788@example 789chown -R myuid /proc/bus/usb 790@end example 791 792@item Launch QEMU and do in the monitor: 793@example 794info usbhost 795 Device 1.2, speed 480 Mb/s 796 Class 00: USB device 1234:5678, USB DISK 797@end example 798You should see the list of the devices you can use (Never try to use 799hubs, it won't work). 800 801@item Add the device in QEMU by using: 802@example 803usb_add host:1234:5678 804@end example 805 806Normally the guest OS should report that a new USB device is 807plugged. You can use the option @option{-usbdevice} to do the same. 808 809@item Now you can try to use the host USB device in QEMU. 810 811@end enumerate 812 813When relaunching QEMU, you may have to unplug and plug again the USB 814device to make it work again (this is a bug). 815 816@node vnc_security 817@section VNC security 818 819The VNC server capability provides access to the graphical console 820of the guest VM across the network. This has a number of security 821considerations depending on the deployment scenarios. 822 823@menu 824* vnc_sec_none:: 825* vnc_sec_password:: 826* vnc_sec_certificate:: 827* vnc_sec_certificate_verify:: 828* vnc_sec_certificate_pw:: 829* vnc_sec_sasl:: 830* vnc_sec_certificate_sasl:: 831* vnc_generate_cert:: 832* vnc_setup_sasl:: 833@end menu 834@node vnc_sec_none 835@subsection Without passwords 836 837The simplest VNC server setup does not include any form of authentication. 838For this setup it is recommended to restrict it to listen on a UNIX domain 839socket only. For example 840 841@example 842qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc 843@end example 844 845This ensures that only users on local box with read/write access to that 846path can access the VNC server. To securely access the VNC server from a 847remote machine, a combination of netcat+ssh can be used to provide a secure 848tunnel. 849 850@node vnc_sec_password 851@subsection With passwords 852 853The VNC protocol has limited support for password based authentication. Since 854the protocol limits passwords to 8 characters it should not be considered 855to provide high security. The password can be fairly easily brute-forced by 856a client making repeat connections. For this reason, a VNC server using password 857authentication should be restricted to only listen on the loopback interface 858or UNIX domain sockets. Password authentication is requested with the @code{password} 859option, and then once QEMU is running the password is set with the monitor. Until 860the monitor is used to set the password all clients will be rejected. 861 862@example 863qemu [...OPTIONS...] -vnc :1,password -monitor stdio 864(qemu) change vnc password 865Password: ******** 866(qemu) 867@end example 868 869@node vnc_sec_certificate 870@subsection With x509 certificates 871 872The QEMU VNC server also implements the VeNCrypt extension allowing use of 873TLS for encryption of the session, and x509 certificates for authentication. 874The use of x509 certificates is strongly recommended, because TLS on its 875own is susceptible to man-in-the-middle attacks. Basic x509 certificate 876support provides a secure session, but no authentication. This allows any 877client to connect, and provides an encrypted session. 878 879@example 880qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio 881@end example 882 883In the above example @code{/etc/pki/qemu} should contain at least three files, 884@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged 885users will want to use a private directory, for example @code{$HOME/.pki/qemu}. 886NB the @code{server-key.pem} file should be protected with file mode 0600 to 887only be readable by the user owning it. 888 889@node vnc_sec_certificate_verify 890@subsection With x509 certificates and client verification 891 892Certificates can also provide a means to authenticate the client connecting. 893The server will request that the client provide a certificate, which it will 894then validate against the CA certificate. This is a good choice if deploying 895in an environment with a private internal certificate authority. 896 897@example 898qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio 899@end example 900 901 902@node vnc_sec_certificate_pw 903@subsection With x509 certificates, client verification and passwords 904 905Finally, the previous method can be combined with VNC password authentication 906to provide two layers of authentication for clients. 907 908@example 909qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio 910(qemu) change vnc password 911Password: ******** 912(qemu) 913@end example 914 915 916@node vnc_sec_sasl 917@subsection With SASL authentication 918 919The SASL authentication method is a VNC extension, that provides an 920easily extendable, pluggable authentication method. This allows for 921integration with a wide range of authentication mechanisms, such as 922PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more. 923The strength of the authentication depends on the exact mechanism 924configured. If the chosen mechanism also provides a SSF layer, then 925it will encrypt the datastream as well. 926 927Refer to the later docs on how to choose the exact SASL mechanism 928used for authentication, but assuming use of one supporting SSF, 929then QEMU can be launched with: 930 931@example 932qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio 933@end example 934 935@node vnc_sec_certificate_sasl 936@subsection With x509 certificates and SASL authentication 937 938If the desired SASL authentication mechanism does not supported 939SSF layers, then it is strongly advised to run it in combination 940with TLS and x509 certificates. This provides securely encrypted 941data stream, avoiding risk of compromising of the security 942credentials. This can be enabled, by combining the 'sasl' option 943with the aforementioned TLS + x509 options: 944 945@example 946qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio 947@end example 948 949 950@node vnc_generate_cert 951@subsection Generating certificates for VNC 952 953The GNU TLS packages provides a command called @code{certtool} which can 954be used to generate certificates and keys in PEM format. At a minimum it 955is neccessary to setup a certificate authority, and issue certificates to 956each server. If using certificates for authentication, then each client 957will also need to be issued a certificate. The recommendation is for the 958server to keep its certificates in either @code{/etc/pki/qemu} or for 959unprivileged users in @code{$HOME/.pki/qemu}. 960 961@menu 962* vnc_generate_ca:: 963* vnc_generate_server:: 964* vnc_generate_client:: 965@end menu 966@node vnc_generate_ca 967@subsubsection Setup the Certificate Authority 968 969This step only needs to be performed once per organization / organizational 970unit. First the CA needs a private key. This key must be kept VERY secret 971and secure. If this key is compromised the entire trust chain of the certificates 972issued with it is lost. 973 974@example 975# certtool --generate-privkey > ca-key.pem 976@end example 977 978A CA needs to have a public certificate. For simplicity it can be a self-signed 979certificate, or one issue by a commercial certificate issuing authority. To 980generate a self-signed certificate requires one core piece of information, the 981name of the organization. 982 983@example 984# cat > ca.info <<EOF 985cn = Name of your organization 986ca 987cert_signing_key 988EOF 989# certtool --generate-self-signed \ 990 --load-privkey ca-key.pem 991 --template ca.info \ 992 --outfile ca-cert.pem 993@end example 994 995The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize 996TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all. 997 998@node vnc_generate_server 999@subsubsection Issuing server certificates 1000
1001Each server (or host) needs to be issued with a key and certificate. When connecting 1002the certificate is sent to the client which validates it against the CA certificate. 1003The core piece of information for a server certificate is the hostname. This should 1004be the fully qualified hostname that the client will connect with, since the client 1005will typically also verify the hostname in the certificate. On the host holding the 1006secure CA private key: 1007 1008@example 1009# cat > server.info <<EOF 1010organization = Name of your organization 1011cn = server.foo.example.com 1012tls_www_server 1013encryption_key 1014signing_key 1015EOF 1016# certtool --generate-privkey > server-key.pem 1017# certtool --generate-certificate \ 1018 --load-ca-certificate ca-cert.pem \ 1019 --load-ca-privkey ca-key.pem \ 1020 --load-privkey server server-key.pem \ 1021 --template server.info \ 1022 --outfile server-cert.pem 1023@end example 1024 1025The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied 1026to the server for which they were generated. The @code{server-key.pem} is security 1027sensitive and should be kept protected with file mode 0600 to prevent disclosure. 1028 1029@node vnc_generate_client 1030@subsubsection Issuing client certificates 1031 1032If the QEMU VNC server is to use the @code{x509verify} option to validate client 1033certificates as its authentication mechanism, each client also needs to be issued 1034a certificate. The client certificate contains enough metadata to uniquely identify 1035the client, typically organization, state, city, building, etc. On the host holding 1036the secure CA private key: 1037 1038@example 1039# cat > client.info <<EOF 1040country = GB 1041state = London 1042locality = London 1043organiazation = Name of your organization 1044cn = client.foo.example.com 1045tls_www_client 1046encryption_key 1047signing_key 1048EOF 1049# certtool --generate-privkey > client-key.pem 1050# certtool --generate-certificate \ 1051 --load-ca-certificate ca-cert.pem \ 1052 --load-ca-privkey ca-key.pem \ 1053 --load-privkey client-key.pem \ 1054 --template client.info \ 1055 --outfile client-cert.pem 1056@end example 1057 1058The @code{client-key.pem} and @code{client-cert.pem} files should now be securely 1059copied to the client for which they were generated. 1060 1061 1062@node vnc_setup_sasl 1063 1064@subsection Configuring SASL mechanisms 1065 1066The following documentation assumes use of the Cyrus SASL implementation on a 1067Linux host, but the principals should apply to any other SASL impl. When SASL 1068is enabled, the mechanism configuration will be loaded from system default 1069SASL service config /etc/sasl2/qemu.conf. If running QEMU as an 1070unprivileged user, an environment variable SASL_CONF_PATH can be used 1071to make it search alternate locations for the service config. 1072 1073The default configuration might contain 1074 1075@example 1076mech_list: digest-md5 1077sasldb_path: /etc/qemu/passwd.db 1078@end example 1079 1080This says to use the 'Digest MD5' mechanism, which is similar to the HTTP 1081Digest-MD5 mechanism. The list of valid usernames & passwords is maintained 1082in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2 1083command. While this mechanism is easy to configure and use, it is not 1084considered secure by modern standards, so only suitable for developers / 1085ad-hoc testing. 1086 1087A more serious deployment might use Kerberos, which is done with the 'gssapi' 1088mechanism 1089 1090@example 1091mech_list: gssapi 1092keytab: /etc/qemu/krb5.tab 1093@end example 1094 1095For this to work the administrator of your KDC must generate a Kerberos 1096principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' 1097replacing 'somehost.example.com' with the fully qualified host name of the 1098machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm. 1099 1100Other configurations will be left as an exercise for the reader. It should 1101be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data 1102encryption. For all other mechanisms, VNC should always be configured to 1103use TLS and x509 certificates to protect security credentials from snooping. 1104 1105@node gdb_usage 1106@section GDB usage 1107 1108QEMU has a primitive support to work with gdb, so that you can do 1109'Ctrl-C' while the virtual machine is running and inspect its state. 1110 1111In order to use gdb, launch qemu with the '-s' option. It will wait for a 1112gdb connection: 1113@example 1114> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ 1115 -append "root=/dev/hda" 1116Connected to host network interface: tun0 1117Waiting gdb connection on port 1234 1118@end example 1119 1120Then launch gdb on the 'vmlinux' executable: 1121@example 1122> gdb vmlinux 1123@end example 1124 1125In gdb, connect to QEMU: 1126@example 1127(gdb) target remote localhost:1234 1128@end example 1129 1130Then you can use gdb normally. For example, type 'c' to launch the kernel: 1131@example 1132(gdb) c 1133@end example 1134 1135Here are some useful tips in order to use gdb on system code: 1136 1137@enumerate 1138@item 1139Use @code{info reg} to display all the CPU registers. 1140@item 1141Use @code{x/10i $eip} to display the code at the PC position. 1142@item 1143Use @code{set architecture i8086} to dump 16 bit code. Then use 1144@code{x/10i $cs*16+$eip} to dump the code at the PC position. 1145@end enumerate 1146 1147Advanced debugging options: 1148 1149The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior: 1150@table @code 1151@item maintenance packet qqemu.sstepbits 1152 1153This will display the MASK bits used to control the single stepping IE: 1154@example 1155(gdb) maintenance packet qqemu.sstepbits 1156sending: "qqemu.sstepbits" 1157received: "ENABLE=1,NOIRQ=2,NOTIMER=4" 1158@end example 1159@item maintenance packet qqemu.sstep 1160 1161This will display the current value of the mask used when single stepping IE: 1162@example 1163(gdb) maintenance packet qqemu.sstep 1164sending: "qqemu.sstep" 1165received: "0x7" 1166@end example 1167@item maintenance packet Qqemu.sstep=HEX_VALUE 1168 1169This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use: 1170@example 1171(gdb) maintenance packet Qqemu.sstep=0x5 1172sending: "qemu.sstep=0x5" 1173received: "OK" 1174@end example 1175@end table 1176 1177@node pcsys_os_specific 1178@section Target OS specific information 1179 1180@subsection Linux 1181 1182To have access to SVGA graphic modes under X11, use the @code{vesa} or 1183the @code{cirrus} X11 driver. For optimal performances, use 16 bit 1184color depth in the guest and the host OS. 1185 1186When using a 2.6 guest Linux kernel, you should add the option 1187@code{clock=pit} on the kernel command line because the 2.6 Linux 1188kernels make very strict real time clock checks by default that QEMU 1189cannot simulate exactly. 1190 1191When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is 1192not activated because QEMU is slower with this patch. The QEMU 1193Accelerator Module is also much slower in this case. Earlier Fedora 1194Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this 1195patch by default. Newer kernels don't have it. 1196 1197@subsection Windows 1198 1199If you have a slow host, using Windows 95 is better as it gives the 1200best speed. Windows 2000 is also a good choice. 1201 1202@subsubsection SVGA graphic modes support 1203 1204QEMU emulates a Cirrus Logic GD5446 Video 1205card. All Windows versions starting from Windows 95 should recognize 1206and use this graphic card. For optimal performances, use 16 bit color 1207depth in the guest and the host OS. 1208 1209If you are using Windows XP as guest OS and if you want to use high 1210resolution modes which the Cirrus Logic BIOS does not support (i.e. >= 12111280x1024x16), then you should use the VESA VBE virtual graphic card 1212(option @option{-std-vga}). 1213 1214@subsubsection CPU usage reduction 1215 1216Windows 9x does not correctly use the CPU HLT 1217instruction. The result is that it takes host CPU cycles even when 1218idle. You can install the utility from 1219@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this 1220problem. Note that no such tool is needed for NT, 2000 or XP. 1221 1222@subsubsection Windows 2000 disk full problem 1223 1224Windows 2000 has a bug which gives a disk full problem during its 1225installation. When installing it, use the @option{-win2k-hack} QEMU 1226option to enable a specific workaround. After Windows 2000 is 1227installed, you no longer need this option (this option slows down the 1228IDE transfers). 1229 1230@subsubsection Windows 2000 shutdown 1231 1232Windows 2000 cannot automatically shutdown in QEMU although Windows 98 1233can. It comes from the fact that Windows 2000 does not automatically 1234use the APM driver provided by the BIOS. 1235 1236In order to correct that, do the following (thanks to Struan 1237Bartlett): go to the Control Panel => Add/Remove Hardware & Next => 1238Add/Troubleshoot a device => Add a new device & Next => No, select the 1239hardware from a list & Next => NT Apm/Legacy Support & Next => Next 1240(again) a few times. Now the driver is installed and Windows 2000 now 1241correctly instructs QEMU to shutdown at the appropriate moment. 1242 1243@subsubsection Share a directory between Unix and Windows 1244 1245See @ref{sec_invocation} about the help of the option @option{-smb}. 1246 1247@subsubsection Windows XP security problem 1248 1249Some releases of Windows XP install correctly but give a security 1250error when booting: 1251@example 1252A problem is preventing Windows from accurately checking the 1253license for this computer. Error code: 0x800703e6. 1254@end example 1255 1256The workaround is to install a service pack for XP after a boot in safe 1257mode. Then reboot, and the problem should go away. Since there is no 1258network while in safe mode, its recommended to download the full 1259installation of SP1 or SP2 and transfer that via an ISO or using the 1260vvfat block device ("-hdb fat:directory_which_holds_the_SP"). 1261 1262@subsection MS-DOS and FreeDOS 1263 1264@subsubsection CPU usage reduction 1265 1266DOS does not correctly use the CPU HLT instruction. The result is that 1267it takes host CPU cycles even when idle. You can install the utility 1268from @url{http://www.vmware.com/software/dosidle210.zip} to solve this 1269problem. 1270 1271@node QEMU System emulator for non PC targets 1272@chapter QEMU System emulator for non PC targets 1273 1274QEMU is a generic emulator and it emulates many non PC 1275machines. Most of the options are similar to the PC emulator. The 1276differences are mentioned in the following sections. 1277 1278@menu 1279* QEMU PowerPC System emulator:: 1280* Sparc32 System emulator:: 1281* Sparc64 System emulator:: 1282* MIPS System emulator:: 1283* ARM System emulator:: 1284* ColdFire System emulator:: 1285@end menu 1286 1287@node QEMU PowerPC System emulator 1288@section QEMU PowerPC System emulator 1289 1290Use the executable @file{qemu-system-ppc} to simulate a complete PREP 1291or PowerMac PowerPC system. 1292 1293QEMU emulates the following PowerMac peripherals: 1294 1295@itemize @minus 1296@item 1297UniNorth or Grackle PCI Bridge 1298@item 1299PCI VGA compatible card with VESA Bochs Extensions 1300@item 13012 PMAC IDE interfaces with hard disk and CD-ROM support 1302@item 1303NE2000 PCI adapters 1304@item 1305Non Volatile RAM 1306@item 1307VIA-CUDA with ADB keyboard and mouse. 1308@end itemize 1309 1310QEMU emulates the following PREP peripherals: 1311 1312@itemize @minus 1313@item 1314PCI Bridge 1315@item 1316PCI VGA compatible card with VESA Bochs Extensions 1317@item 13182 IDE interfaces with hard disk and CD-ROM support 1319@item 1320Floppy disk 1321@item 1322NE2000 network adapters 1323@item 1324Serial port 1325@item 1326PREP Non Volatile RAM 1327@item 1328PC compatible keyboard and mouse. 1329@end itemize 1330 1331QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at 1332@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}. 1333 1334Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/} 1335for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL 1336v2) portable firmware implementation. The goal is to implement a 100% 1337IEEE 1275-1994 (referred to as Open Firmware) compliant firmware. 1338 1339@c man begin OPTIONS 1340 1341The following options are specific to the PowerPC emulation: 1342 1343@table @option 1344 1345@item -g @var{W}x@var{H}[x@var{DEPTH}] 1346 1347Set the initial VGA graphic mode. The default is 800x600x15. 1348 1349@item -prom-env @var{string} 1350 1351Set OpenBIOS variables in NVRAM, for example: 1352 1353@example 1354qemu-system-ppc -prom-env 'auto-boot?=false' \ 1355 -prom-env 'boot-device=hd:2,\yaboot' \ 1356 -prom-env 'boot-args=conf=hd:2,\yaboot.conf' 1357@end example 1358 1359These variables are not used by Open Hack'Ware. 1360 1361@end table 1362 1363@c man end 1364 1365 1366More information is available at 1367@url{http://perso.magic.fr/l_indien/qemu-ppc/}. 1368 1369@node Sparc32 System emulator 1370@section Sparc32 System emulator 1371 1372Use the executable @file{qemu-system-sparc} to simulate the following 1373Sun4m architecture machines: 1374@itemize @minus 1375@item 1376SPARCstation 4 1377@item 1378SPARCstation 5 1379@item 1380SPARCstation 10 1381@item 1382SPARCstation 20 1383@item 1384SPARCserver 600MP 1385@item 1386SPARCstation LX 1387@item 1388SPARCstation Voyager 1389@item 1390SPARCclassic 1391@item 1392SPARCbook 1393@end itemize 1394 1395The emulation is somewhat complete. SMP up to 16 CPUs is supported, 1396but Linux limits the number of usable CPUs to 4. 1397 1398It's also possible to simulate a SPARCstation 2 (sun4c architecture), 1399SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these 1400emulators are not usable yet. 1401 1402QEMU emulates the following sun4m/sun4c/sun4d peripherals: 1403 1404@itemize @minus 1405@item 1406IOMMU or IO-UNITs 1407@item 1408TCX Frame buffer 1409@item 1410Lance (Am7990) Ethernet 1411@item 1412Non Volatile RAM M48T02/M48T08 1413@item 1414Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard 1415and power/reset logic 1416@item 1417ESP SCSI controller with hard disk and CD-ROM support 1418@item 1419Floppy drive (not on SS-600MP) 1420@item 1421CS4231 sound device (only on SS-5, not working yet) 1422@end itemize 1423 1424The number of peripherals is fixed in the architecture. Maximum 1425memory size depends on the machine type, for SS-5 it is 256MB and for 1426others 2047MB. 1427 1428Since version 0.8.2, QEMU uses OpenBIOS 1429@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable 1430firmware implementation. The goal is to implement a 100% IEEE 14311275-1994 (referred to as Open Firmware) compliant firmware. 1432 1433A sample Linux 2.6 series kernel and ram disk image are available on 1434the QEMU web site. There are still issues with NetBSD and OpenBSD, but 1435some kernel versions work. Please note that currently Solaris kernels 1436don't work probably due to interface issues between OpenBIOS and 1437Solaris. 1438 1439@c man begin OPTIONS 1440 1441The following options are specific to the Sparc32 emulation: 1442 1443@table @option 1444 1445@item -g @var{W}x@var{H}x[x@var{DEPTH}] 1446 1447Set the initial TCX graphic mode. The default is 1024x768x8, currently 1448the only other possible mode is 1024x768x24. 1449 1450@item -prom-env @var{string} 1451 1452Set OpenBIOS variables in NVRAM, for example: 1453 1454@example 1455qemu-system-sparc -prom-env 'auto-boot?=false' \ 1456 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single' 1457@end example 1458 1459@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000] 1460 1461Set the emulated machine type. Default is SS-5. 1462 1463@end table 1464 1465@c man end 1466 1467@node Sparc64 System emulator 1468@section Sparc64 System emulator 1469 1470Use the executable @file{qemu-system-sparc64} to simulate a Sun4u 1471(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic 1472Niagara (T1) machine. The emulator is not usable for anything yet, but 1473it can launch some kernels. 1474 1475QEMU emulates the following peripherals: 1476 1477@itemize @minus 1478@item 1479UltraSparc IIi APB PCI Bridge 1480@item 1481PCI VGA compatible card with VESA Bochs Extensions 1482@item 1483PS/2 mouse and keyboard 1484@item 1485Non Volatile RAM M48T59 1486@item 1487PC-compatible serial ports 1488@item 14892 PCI IDE interfaces with hard disk and CD-ROM support 1490@item 1491Floppy disk 1492@end itemize 1493 1494@c man begin OPTIONS 1495 1496The following options are specific to the Sparc64 emulation: 1497 1498@table @option 1499 1500@item -prom-env @var{string} 1501 1502Set OpenBIOS variables in NVRAM, for example: 1503 1504@example 1505qemu-system-sparc64 -prom-env 'auto-boot?=false' 1506@end example 1507 1508@item -M [sun4u|sun4v|Niagara] 1509 1510Set the emulated machine type. The default is sun4u. 1511 1512@end table 1513 1514@c man end 1515 1516@node MIPS System emulator 1517@section MIPS System emulator 1518 1519Four executables cover simulation of 32 and 64-bit MIPS systems in 1520both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel} 1521@file{qemu-system-mips64} and @file{qemu-system-mips64el}. 1522Five different machine types are emulated: 1523 1524@itemize @minus 1525@item 1526A generic ISA PC-like machine "mips" 1527@item 1528The MIPS Malta prototype board "malta" 1529@item 1530An ACER Pica "pica61". This machine needs the 64-bit emulator. 1531@item 1532MIPS emulator pseudo board "mipssim" 1533@item 1534A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator. 1535@end itemize 1536 1537The generic emulation is supported by Debian 'Etch' and is able to 1538install Debian into a virtual disk image. The following devices are 1539emulated: 1540 1541@itemize @minus 1542@item 1543A range of MIPS CPUs, default is the 24Kf 1544@item 1545PC style serial port 1546@item 1547PC style IDE disk 1548@item 1549NE2000 network card 1550@end itemize 1551 1552The Malta emulation supports the following devices: 1553 1554@itemize @minus 1555@item 1556Core board with MIPS 24Kf CPU and Galileo system controller 1557@item 1558PIIX4 PCI/USB/SMbus controller 1559@item 1560The Multi-I/O chip's serial device 1561@item 1562PCI network cards (PCnet32 and others) 1563@item 1564Malta FPGA serial device 1565@item 1566Cirrus (default) or any other PCI VGA graphics card 1567@end itemize 1568 1569The ACER Pica emulation supports: 1570 1571@itemize @minus 1572@item 1573MIPS R4000 CPU 1574@item 1575PC-style IRQ and DMA controllers 1576@item 1577PC Keyboard 1578@item 1579IDE controller 1580@end itemize 1581 1582The mipssim pseudo board emulation provides an environment similiar 1583to what the proprietary MIPS emulator uses for running Linux. 1584It supports: 1585 1586@itemize @minus 1587@item 1588A range of MIPS CPUs, default is the 24Kf 1589@item 1590PC style serial port 1591@item 1592MIPSnet network emulation 1593@end itemize 1594 1595The MIPS Magnum R4000 emulation supports: 1596 1597@itemize @minus 1598@item 1599MIPS R4000 CPU 1600@item 1601PC-style IRQ controller 1602@item 1603PC Keyboard 1604@item 1605SCSI controller 1606@item 1607G364 framebuffer 1608@end itemize 1609 1610 1611@node ARM System emulator 1612@section ARM System emulator 1613 1614Use the executable @file{qemu-system-arm} to simulate a ARM 1615machine. The ARM Integrator/CP board is emulated with the following 1616devices: 1617 1618@itemize @minus 1619@item 1620ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU 1621@item 1622Two PL011 UARTs 1623@item 1624SMC 91c111 Ethernet adapter 1625@item 1626PL110 LCD controller 1627@item 1628PL050 KMI with PS/2 keyboard and mouse. 1629@item 1630PL181 MultiMedia Card Interface with SD card. 1631@end itemize 1632 1633The ARM Versatile baseboard is emulated with the following devices: 1634 1635@itemize @minus 1636@item 1637ARM926E, ARM1136 or Cortex-A8 CPU 1638@item 1639PL190 Vectored Interrupt Controller 1640@item 1641Four PL011 UARTs 1642@item 1643SMC 91c111 Ethernet adapter 1644@item 1645PL110 LCD controller 1646@item 1647PL050 KMI with PS/2 keyboard and mouse. 1648@item 1649PCI host bridge. Note the emulated PCI bridge only provides access to 1650PCI memory space. It does not provide access to PCI IO space. 1651This means some devices (eg. ne2k_pci NIC) are not usable, and others 1652(eg. rtl8139 NIC) are only usable when the guest drivers use the memory 1653mapped control registers. 1654@item 1655PCI OHCI USB controller. 1656@item 1657LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices. 1658@item 1659PL181 MultiMedia Card Interface with SD card. 1660@end itemize 1661 1662The ARM RealView Emulation/Platform baseboard is emulated with the following 1663devices: 1664 1665@itemize @minus 1666@item 1667ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU 1668@item 1669ARM AMBA Generic/Distributed Interrupt Controller 1670@item 1671Four PL011 UARTs 1672@item 1673SMC 91c111 or SMSC LAN9118 Ethernet adapter 1674@item 1675PL110 LCD controller 1676@item 1677PL050 KMI with PS/2 keyboard and mouse 1678@item 1679PCI host bridge 1680@item 1681PCI OHCI USB controller 1682@item 1683LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices 1684@item 1685PL181 MultiMedia Card Interface with SD card. 1686@end itemize 1687 1688The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi" 1689and "Terrier") emulation includes the following peripherals: 1690 1691@itemize @minus 1692@item 1693Intel PXA270 System-on-chip (ARM V5TE core) 1694@item 1695NAND Flash memory 1696@item 1697IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita" 1698@item 1699On-chip OHCI USB controller 1700@item 1701On-chip LCD controller 1702@item 1703On-chip Real Time Clock 1704@item 1705TI ADS7846 touchscreen controller on SSP bus 1706@item 1707Maxim MAX1111 analog-digital converter on I@math{^2}C bus 1708@item 1709GPIO-connected keyboard controller and LEDs 1710@item 1711Secure Digital card connected to PXA MMC/SD host 1712@item 1713Three on-chip UARTs 1714@item 1715WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses 1716@end itemize 1717 1718The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the 1719following elements: 1720 1721@itemize @minus 1722@item 1723Texas Instruments OMAP310 System-on-chip (ARM 925T core) 1724@item 1725ROM and RAM memories (ROM firmware image can be loaded with -option-rom) 1726@item 1727On-chip LCD controller 1728@item 1729On-chip Real Time Clock 1730@item 1731TI TSC2102i touchscreen controller / analog-digital converter / Audio 1732CODEC, connected through MicroWire and I@math{^2}S busses 1733@item 1734GPIO-connected matrix keypad 1735@item 1736Secure Digital card connected to OMAP MMC/SD host 1737@item 1738Three on-chip UARTs 1739@end itemize 1740 1741Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48) 1742emulation supports the following elements: 1743 1744@itemize @minus 1745@item 1746Texas Instruments OMAP2420 System-on-chip (ARM 1136 core) 1747@item 1748RAM and non-volatile OneNAND Flash memories 1749@item 1750Display connected to EPSON remote framebuffer chip and OMAP on-chip 1751display controller and a LS041y3 MIPI DBI-C controller 1752@item 1753TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers 1754driven through SPI bus 1755@item 1756National Semiconductor LM8323-controlled qwerty keyboard driven 1757through I@math{^2}C bus 1758@item 1759Secure Digital card connected to OMAP MMC/SD host 1760@item 1761Three OMAP on-chip UARTs and on-chip STI debugging console 1762@item 1763A Bluetooth(R) transciever and HCI connected to an UART 1764@item 1765Mentor Graphics "Inventra" dual-role USB controller embedded in a TI 1766TUSB6010 chip - only USB host mode is supported 1767@item 1768TI TMP105 temperature sensor driven through I@math{^2}C bus 1769@item 1770TI TWL92230C power management companion with an RTC on I@math{^2}C bus 1771@item 1772Nokia RETU and TAHVO multi-purpose chips with an RTC, connected 1773through CBUS 1774@end itemize 1775 1776The Luminary Micro Stellaris LM3S811EVB emulation includes the following 1777devices: 1778 1779@itemize @minus 1780@item 1781Cortex-M3 CPU core. 1782@item 178364k Flash and 8k SRAM. 1784@item 1785Timers, UARTs, ADC and I@math{^2}C interface. 1786@item 1787OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus. 1788@end itemize 1789 1790The Luminary Micro Stellaris LM3S6965EVB emulation includes the following 1791devices: 1792 1793@itemize @minus 1794@item 1795Cortex-M3 CPU core. 1796@item 1797256k Flash and 64k SRAM. 1798@item 1799Timers, UARTs, ADC, I@math{^2}C and SSI interfaces. 1800@item 1801OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI. 1802@end itemize 1803 1804The Freecom MusicPal internet radio emulation includes the following 1805elements: 1806 1807@itemize @minus 1808@item 1809Marvell MV88W8618 ARM core. 1810@item 181132 MB RAM, 256 KB SRAM, 8 MB flash. 1812@item 1813Up to 2 16550 UARTs 1814@item 1815MV88W8xx8 Ethernet controller 1816@item 1817MV88W8618 audio controller, WM8750 CODEC and mixer 1818@item 1819128×64 display with brightness control 1820@item 18212 buttons, 2 navigation wheels with button function 1822@end itemize 1823 1824The Siemens SX1 models v1 and v2 (default) basic emulation. 1825The emulaton includes the following elements: 1826 1827@itemize @minus 1828@item 1829Texas Instruments OMAP310 System-on-chip (ARM 925T core) 1830@item 1831ROM and RAM memories (ROM firmware image can be loaded with -pflash) 1832V1 18331 Flash of 16MB and 1 Flash of 8MB 1834V2 18351 Flash of 32MB 1836@item 1837On-chip LCD controller 1838@item 1839On-chip Real Time Clock 1840@item 1841Secure Digital card connected to OMAP MMC/SD host 1842@item 1843Three on-chip UARTs 1844@end itemize 1845 1846The "Syborg" Symbian Virtual Platform base model includes the following 1847elements: 1848 1849@itemize @minus 1850@item 1851ARM Cortex-A8 CPU 1852@item 1853Interrupt controller 1854@item 1855Timer 1856@item 1857Real Time Clock 1858@item 1859Keyboard 1860@item 1861Framebuffer 1862@item 1863Touchscreen 1864@item 1865UARTs 1866@end itemize 1867 1868A Linux 2.6 test image is available on the QEMU web site. More 1869information is available in the QEMU mailing-list archive. 1870 1871@c man begin OPTIONS 1872 1873The following options are specific to the ARM emulation: 1874 1875@table @option 1876 1877@item -semihosting 1878Enable semihosting syscall emulation. 1879 1880On ARM this implements the "Angel" interface. 1881 1882Note that this allows guest direct access to the host filesystem, 1883so should only be used with trusted guest OS. 1884 1885@end table 1886 1887@node ColdFire System emulator 1888@section ColdFire System emulator 1889 1890Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine. 1891The emulator is able to boot a uClinux kernel. 1892 1893The M5208EVB emulation includes the following devices: 1894 1895@itemize @minus 1896@item 1897MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC). 1898@item 1899Three Two on-chip UARTs. 1900@item 1901Fast Ethernet Controller (FEC) 1902@end itemize 1903 1904The AN5206 emulation includes the following devices: 1905 1906@itemize @minus 1907@item 1908MCF5206 ColdFire V2 Microprocessor. 1909@item 1910Two on-chip UARTs. 1911@end itemize 1912 1913@c man begin OPTIONS 1914 1915The following options are specific to the ARM emulation: 1916 1917@table @option 1918 1919@item -semihosting 1920Enable semihosting syscall emulation. 1921 1922On M68K this implements the "ColdFire GDB" interface used by libgloss. 1923 1924Note that this allows guest direct access to the host filesystem, 1925so should only be used with trusted guest OS. 1926 1927@end table 1928 1929@node QEMU User space emulator 1930@chapter QEMU User space emulator 1931 1932@menu 1933* Supported Operating Systems :: 1934* Linux User space emulator:: 1935* Mac OS X/Darwin User space emulator :: 1936* BSD User space emulator :: 1937@end menu 1938 1939@node Supported Operating Systems 1940@section Supported Operating Systems 1941 1942The following OS are supported in user space emulation: 1943 1944@itemize @minus 1945@item 1946Linux (referred as qemu-linux-user) 1947@item 1948Mac OS X/Darwin (referred as qemu-darwin-user) 1949@item 1950BSD (referred as qemu-bsd-user) 1951@end itemize 1952 1953@node Linux User space emulator 1954@section Linux User space emulator 1955 1956@menu 1957* Quick Start:: 1958* Wine launch:: 1959* Command line options:: 1960* Other binaries:: 1961@end menu 1962 1963@node Quick Start 1964@subsection Quick Start 1965 1966In order to launch a Linux process, QEMU needs the process executable 1967itself and all the target (x86) dynamic libraries used by it. 1968 1969@itemize 1970 1971@item On x86, you can just try to launch any process by using the native 1972libraries: 1973 1974@example 1975qemu-i386 -L / /bin/ls 1976@end example 1977 1978@code{-L /} tells that the x86 dynamic linker must be searched with a 1979@file{/} prefix. 1980 1981@item Since QEMU is also a linux process, you can launch qemu with 1982qemu (NOTE: you can only do that if you compiled QEMU from the sources): 1983 1984@example 1985qemu-i386 -L / qemu-i386 -L / /bin/ls 1986@end example 1987 1988@item On non x86 CPUs, you need first to download at least an x86 glibc 1989(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that 1990@code{LD_LIBRARY_PATH} is not set: 1991 1992@example 1993unset LD_LIBRARY_PATH 1994@end example 1995 1996Then you can launch the precompiled @file{ls} x86 executable: 1997 1998@example 1999qemu-i386 tests/i386/ls 2000@end example
2001You can look at @file{qemu-binfmt-conf.sh} so that 2002QEMU is automatically launched by the Linux kernel when you try to 2003launch x86 executables. It requires the @code{binfmt_misc} module in the 2004Linux kernel. 2005 2006@item The x86 version of QEMU is also included. You can try weird things such as: 2007@example 2008qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \ 2009 /usr/local/qemu-i386/bin/ls-i386 2010@end example 2011 2012@end itemize 2013 2014@node Wine launch 2015@subsection Wine launch 2016 2017@itemize 2018 2019@item Ensure that you have a working QEMU with the x86 glibc 2020distribution (see previous section). In order to verify it, you must be 2021able to do: 2022 2023@example 2024qemu-i386 /usr/local/qemu-i386/bin/ls-i386 2025@end example 2026 2027@item Download the binary x86 Wine install 2028(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 2029 2030@item Configure Wine on your account. Look at the provided script 2031@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous 2032@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}. 2033 2034@item Then you can try the example @file{putty.exe}: 2035 2036@example 2037qemu-i386 /usr/local/qemu-i386/wine/bin/wine \ 2038 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe 2039@end example 2040 2041@end itemize 2042 2043@node Command line options 2044@subsection Command line options 2045 2046@example 2047usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...] 2048@end example 2049 2050@table @option 2051@item -h 2052Print the help 2053@item -L path 2054Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386) 2055@item -s size 2056Set the x86 stack size in bytes (default=524288) 2057@item -cpu model 2058Select CPU model (-cpu ? for list and additional feature selection) 2059@item -B offset 2060Offset guest address by the specified number of bytes. This is useful when 2061the address region rewuired by guest applications is reserved on the host. 2062Ths option is currently only supported on some hosts. 2063@end table 2064 2065Debug options: 2066 2067@table @option 2068@item -d 2069Activate log (logfile=/tmp/qemu.log) 2070@item -p pagesize 2071Act as if the host page size was 'pagesize' bytes 2072@item -g port 2073Wait gdb connection to port 2074@item -singlestep 2075Run the emulation in single step mode. 2076@end table 2077 2078Environment variables: 2079 2080@table @env 2081@item QEMU_STRACE 2082Print system calls and arguments similar to the 'strace' program 2083(NOTE: the actual 'strace' program will not work because the user 2084space emulator hasn't implemented ptrace). At the moment this is 2085incomplete. All system calls that don't have a specific argument 2086format are printed with information for six arguments. Many 2087flag-style arguments don't have decoders and will show up as numbers. 2088@end table 2089 2090@node Other binaries 2091@subsection Other binaries 2092 2093@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF 2094binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB 2095configurations), and arm-uclinux bFLT format binaries. 2096 2097@command{qemu-m68k} is capable of running semihosted binaries using the BDM 2098(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and 2099coldfire uClinux bFLT format binaries. 2100 2101The binary format is detected automatically. 2102 2103@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI). 2104 2105@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries 2106(Sparc64 CPU, 32 bit ABI). 2107 2108@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and 2109SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI). 2110 2111@node Mac OS X/Darwin User space emulator 2112@section Mac OS X/Darwin User space emulator 2113 2114@menu 2115* Mac OS X/Darwin Status:: 2116* Mac OS X/Darwin Quick Start:: 2117* Mac OS X/Darwin Command line options:: 2118@end menu 2119 2120@node Mac OS X/Darwin Status 2121@subsection Mac OS X/Darwin Status 2122 2123@itemize @minus 2124@item 2125target x86 on x86: Most apps (Cocoa and Carbon too) works. [1] 2126@item 2127target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!) 2128@item 2129target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1] 2130@item 2131target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported. 2132@end itemize 2133 2134[1] If you're host commpage can be executed by qemu. 2135 2136@node Mac OS X/Darwin Quick Start 2137@subsection Quick Start 2138 2139In order to launch a Mac OS X/Darwin process, QEMU needs the process executable 2140itself and all the target dynamic libraries used by it. If you don't have the FAT 2141libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X 2142CD or compile them by hand. 2143 2144@itemize 2145 2146@item On x86, you can just try to launch any process by using the native 2147libraries: 2148 2149@example 2150qemu-i386 /bin/ls 2151@end example 2152 2153or to run the ppc version of the executable: 2154 2155@example 2156qemu-ppc /bin/ls 2157@end example 2158 2159@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker) 2160are installed: 2161 2162@example 2163qemu-i386 -L /opt/x86_root/ /bin/ls 2164@end example 2165 2166@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in 2167@file{/opt/x86_root/usr/bin/dyld}. 2168 2169@end itemize 2170 2171@node Mac OS X/Darwin Command line options 2172@subsection Command line options 2173 2174@example 2175usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...] 2176@end example 2177 2178@table @option 2179@item -h 2180Print the help 2181@item -L path 2182Set the library root path (default=/) 2183@item -s size 2184Set the stack size in bytes (default=524288) 2185@end table 2186 2187Debug options: 2188 2189@table @option 2190@item -d 2191Activate log (logfile=/tmp/qemu.log) 2192@item -p pagesize 2193Act as if the host page size was 'pagesize' bytes 2194@item -singlestep 2195Run the emulation in single step mode. 2196@end table 2197 2198@node BSD User space emulator 2199@section BSD User space emulator 2200 2201@menu 2202* BSD Status:: 2203* BSD Quick Start:: 2204* BSD Command line options:: 2205@end menu 2206 2207@node BSD Status 2208@subsection BSD Status 2209 2210@itemize @minus 2211@item 2212target Sparc64 on Sparc64: Some trivial programs work. 2213@end itemize 2214 2215@node BSD Quick Start 2216@subsection Quick Start 2217 2218In order to launch a BSD process, QEMU needs the process executable 2219itself and all the target dynamic libraries used by it. 2220 2221@itemize 2222 2223@item On Sparc64, you can just try to launch any process by using the native 2224libraries: 2225 2226@example 2227qemu-sparc64 /bin/ls 2228@end example 2229 2230@end itemize 2231 2232@node BSD Command line options 2233@subsection Command line options 2234 2235@example 2236usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...] 2237@end example 2238 2239@table @option 2240@item -h 2241Print the help 2242@item -L path 2243Set the library root path (default=/) 2244@item -s size 2245Set the stack size in bytes (default=524288) 2246@item -bsd type 2247Set the type of the emulated BSD Operating system. Valid values are 2248FreeBSD, NetBSD and OpenBSD (default). 2249@end table 2250 2251Debug options: 2252 2253@table @option 2254@item -d 2255Activate log (logfile=/tmp/qemu.log) 2256@item -p pagesize 2257Act as if the host page size was 'pagesize' bytes 2258@item -singlestep 2259Run the emulation in single step mode. 2260@end table 2261 2262@node compilation 2263@chapter Compilation from the sources 2264 2265@menu 2266* Linux/Unix:: 2267* Windows:: 2268* Cross compilation for Windows with Linux:: 2269* Mac OS X:: 2270@end menu 2271 2272@node Linux/Unix 2273@section Linux/Unix 2274 2275@subsection Compilation 2276 2277First you must decompress the sources: 2278@example 2279cd /tmp 2280tar zxvf qemu-x.y.z.tar.gz 2281cd qemu-x.y.z 2282@end example 2283 2284Then you configure QEMU and build it (usually no options are needed): 2285@example 2286./configure 2287make 2288@end example 2289 2290Then type as root user: 2291@example 2292make install 2293@end example 2294to install QEMU in @file{/usr/local}. 2295 2296@node Windows 2297@section Windows 2298 2299@itemize 2300@item Install the current versions of MSYS and MinGW from 2301@url{http://www.mingw.org/}. You can find detailed installation 2302instructions in the download section and the FAQ. 2303 2304@item Download 2305the MinGW development library of SDL 1.2.x 2306(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from 2307@url{http://www.libsdl.org}. Unpack it in a temporary place, and 2308unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool 2309directory. Edit the @file{sdl-config} script so that it gives the 2310correct SDL directory when invoked. 2311 2312@item Extract the current version of QEMU. 2313 2314@item Start the MSYS shell (file @file{msys.bat}). 2315 2316@item Change to the QEMU directory. Launch @file{./configure} and 2317@file{make}. If you have problems using SDL, verify that 2318@file{sdl-config} can be launched from the MSYS command line. 2319 2320@item You can install QEMU in @file{Program Files/Qemu} by typing 2321@file{make install}. Don't forget to copy @file{SDL.dll} in 2322@file{Program Files/Qemu}. 2323 2324@end itemize 2325 2326@node Cross compilation for Windows with Linux 2327@section Cross compilation for Windows with Linux 2328 2329@itemize 2330@item 2331Install the MinGW cross compilation tools available at 2332@url{http://www.mingw.org/}. 2333 2334@item 2335Install the Win32 version of SDL (@url{http://www.libsdl.org}) by 2336unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment 2337variable so that @file{i386-mingw32msvc-sdl-config} can be launched by 2338the QEMU configuration script. 2339 2340@item 2341Configure QEMU for Windows cross compilation: 2342@example 2343./configure --enable-mingw32 2344@end example 2345If necessary, you can change the cross-prefix according to the prefix 2346chosen for the MinGW tools with --cross-prefix. You can also use 2347--prefix to set the Win32 install path. 2348 2349@item You can install QEMU in the installation directory by typing 2350@file{make install}. Don't forget to copy @file{SDL.dll} in the 2351installation directory. 2352 2353@end itemize 2354 2355Note: Currently, Wine does not seem able to launch 2356QEMU for Win32. 2357 2358@node Mac OS X 2359@section Mac OS X 2360 2361The Mac OS X patches are not fully merged in QEMU, so you should look 2362at the QEMU mailing list archive to have all the necessary 2363information. 2364 2365@node Index 2366@chapter Index 2367@printindex cp 2368 2369@bye 2370