qemu/alpha-dis.c
<<
>>
Prefs
   1/* alpha-dis.c -- Disassemble Alpha AXP instructions
   2   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
   3   Contributed by Richard Henderson <rth@tamu.edu>,
   4   patterned after the PPC opcode handling written by Ian Lance Taylor.
   5
   6This file is part of GDB, GAS, and the GNU binutils.
   7
   8GDB, GAS, and the GNU binutils are free software; you can redistribute
   9them and/or modify them under the terms of the GNU General Public
  10License as published by the Free Software Foundation; either version
  112, or (at your option) any later version.
  12
  13GDB, GAS, and the GNU binutils are distributed in the hope that they
  14will be useful, but WITHOUT ANY WARRANTY; without even the implied
  15warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
  16the GNU General Public License for more details.
  17
  18You should have received a copy of the GNU General Public License
  19along with this file; see the file COPYING.  If not, see
  20<http://www.gnu.org/licenses/>. */
  21
  22#include <stdio.h>
  23#include "dis-asm.h"
  24
  25/* MAX is redefined below, so remove any previous definition. */
  26#undef MAX
  27
  28/* The opcode table is an array of struct alpha_opcode.  */
  29
  30struct alpha_opcode
  31{
  32  /* The opcode name.  */
  33  const char *name;
  34
  35  /* The opcode itself.  Those bits which will be filled in with
  36     operands are zeroes.  */
  37  unsigned opcode;
  38
  39  /* The opcode mask.  This is used by the disassembler.  This is a
  40     mask containing ones indicating those bits which must match the
  41     opcode field, and zeroes indicating those bits which need not
  42     match (and are presumably filled in by operands).  */
  43  unsigned mask;
  44
  45  /* One bit flags for the opcode.  These are primarily used to
  46     indicate specific processors and environments support the
  47     instructions.  The defined values are listed below. */
  48  unsigned flags;
  49
  50  /* An array of operand codes.  Each code is an index into the
  51     operand table.  They appear in the order which the operands must
  52     appear in assembly code, and are terminated by a zero.  */
  53  unsigned char operands[4];
  54};
  55
  56/* The table itself is sorted by major opcode number, and is otherwise
  57   in the order in which the disassembler should consider
  58   instructions.  */
  59extern const struct alpha_opcode alpha_opcodes[];
  60extern const unsigned alpha_num_opcodes;
  61
  62/* Values defined for the flags field of a struct alpha_opcode.  */
  63
  64/* CPU Availability */
  65#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
  66#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
  67#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
  68#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
  69#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
  70#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
  71#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
  72
  73#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
  74
  75/* A macro to extract the major opcode from an instruction.  */
  76#define AXP_OP(i)       (((i) >> 26) & 0x3F)
  77
  78/* The total number of major opcodes. */
  79#define AXP_NOPS        0x40
  80
  81
  82/* The operands table is an array of struct alpha_operand.  */
  83
  84struct alpha_operand
  85{
  86  /* The number of bits in the operand.  */
  87  unsigned int bits : 5;
  88
  89  /* How far the operand is left shifted in the instruction.  */
  90  unsigned int shift : 5;
  91
  92  /* The default relocation type for this operand.  */
  93  signed int default_reloc : 16;
  94
  95  /* One bit syntax flags.  */
  96  unsigned int flags : 16;
  97
  98  /* Insertion function.  This is used by the assembler.  To insert an
  99     operand value into an instruction, check this field.
 100
 101     If it is NULL, execute
 102         i |= (op & ((1 << o->bits) - 1)) << o->shift;
 103     (i is the instruction which we are filling in, o is a pointer to
 104     this structure, and op is the opcode value; this assumes twos
 105     complement arithmetic).
 106
 107     If this field is not NULL, then simply call it with the
 108     instruction and the operand value.  It will return the new value
 109     of the instruction.  If the ERRMSG argument is not NULL, then if
 110     the operand value is illegal, *ERRMSG will be set to a warning
 111     string (the operand will be inserted in any case).  If the
 112     operand value is legal, *ERRMSG will be unchanged (most operands
 113     can accept any value).  */
 114  unsigned (*insert) (unsigned instruction, int op,
 115                      const char **errmsg);
 116
 117  /* Extraction function.  This is used by the disassembler.  To
 118     extract this operand type from an instruction, check this field.
 119
 120     If it is NULL, compute
 121         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
 122         if ((o->flags & AXP_OPERAND_SIGNED) != 0
 123             && (op & (1 << (o->bits - 1))) != 0)
 124           op -= 1 << o->bits;
 125     (i is the instruction, o is a pointer to this structure, and op
 126     is the result; this assumes twos complement arithmetic).
 127
 128     If this field is not NULL, then simply call it with the
 129     instruction value.  It will return the value of the operand.  If
 130     the INVALID argument is not NULL, *INVALID will be set to
 131     non-zero if this operand type can not actually be extracted from
 132     this operand (i.e., the instruction does not match).  If the
 133     operand is valid, *INVALID will not be changed.  */
 134  int (*extract) (unsigned instruction, int *invalid);
 135};
 136
 137/* Elements in the table are retrieved by indexing with values from
 138   the operands field of the alpha_opcodes table.  */
 139
 140extern const struct alpha_operand alpha_operands[];
 141extern const unsigned alpha_num_operands;
 142
 143/* Values defined for the flags field of a struct alpha_operand.  */
 144
 145/* Mask for selecting the type for typecheck purposes */
 146#define AXP_OPERAND_TYPECHECK_MASK                                      \
 147  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |            \
 148   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |        \
 149   AXP_OPERAND_UNSIGNED)
 150
 151/* This operand does not actually exist in the assembler input.  This
 152   is used to support extended mnemonics, for which two operands fields
 153   are identical.  The assembler should call the insert function with
 154   any op value.  The disassembler should call the extract function,
 155   ignore the return value, and check the value placed in the invalid
 156   argument.  */
 157#define AXP_OPERAND_FAKE        01
 158
 159/* The operand should be wrapped in parentheses rather than separated
 160   from the previous by a comma.  This is used for the load and store
 161   instructions which want their operands to look like "Ra,disp(Rb)".  */
 162#define AXP_OPERAND_PARENS      02
 163
 164/* Used in combination with PARENS, this suppresses the suppression of
 165   the comma.  This is used for "jmp Ra,(Rb),hint".  */
 166#define AXP_OPERAND_COMMA       04
 167
 168/* This operand names an integer register.  */
 169#define AXP_OPERAND_IR          010
 170
 171/* This operand names a floating point register.  */
 172#define AXP_OPERAND_FPR         020
 173
 174/* This operand is a relative branch displacement.  The disassembler
 175   prints these symbolically if possible.  */
 176#define AXP_OPERAND_RELATIVE    040
 177
 178/* This operand takes signed values.  */
 179#define AXP_OPERAND_SIGNED      0100
 180
 181/* This operand takes unsigned values.  This exists primarily so that
 182   a flags value of 0 can be treated as end-of-arguments.  */
 183#define AXP_OPERAND_UNSIGNED    0200
 184
 185/* Suppress overflow detection on this field.  This is used for hints. */
 186#define AXP_OPERAND_NOOVERFLOW  0400
 187
 188/* Mask for optional argument default value.  */
 189#define AXP_OPERAND_OPTIONAL_MASK 07000
 190
 191/* This operand defaults to zero.  This is used for jump hints.  */
 192#define AXP_OPERAND_DEFAULT_ZERO 01000
 193
 194/* This operand should default to the first (real) operand and is used
 195   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
 196   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
 197   it, but it's what DEC does.  */
 198#define AXP_OPERAND_DEFAULT_FIRST 02000
 199
 200/* Similarly, this operand should default to the second (real) operand.
 201   This allows "negl $0" instead of "negl $0,$0".  */
 202#define AXP_OPERAND_DEFAULT_SECOND 04000
 203
 204
 205/* Register common names */
 206
 207#define AXP_REG_V0      0
 208#define AXP_REG_T0      1
 209#define AXP_REG_T1      2
 210#define AXP_REG_T2      3
 211#define AXP_REG_T3      4
 212#define AXP_REG_T4      5
 213#define AXP_REG_T5      6
 214#define AXP_REG_T6      7
 215#define AXP_REG_T7      8
 216#define AXP_REG_S0      9
 217#define AXP_REG_S1      10
 218#define AXP_REG_S2      11
 219#define AXP_REG_S3      12
 220#define AXP_REG_S4      13
 221#define AXP_REG_S5      14
 222#define AXP_REG_FP      15
 223#define AXP_REG_A0      16
 224#define AXP_REG_A1      17
 225#define AXP_REG_A2      18
 226#define AXP_REG_A3      19
 227#define AXP_REG_A4      20
 228#define AXP_REG_A5      21
 229#define AXP_REG_T8      22
 230#define AXP_REG_T9      23
 231#define AXP_REG_T10     24
 232#define AXP_REG_T11     25
 233#define AXP_REG_RA      26
 234#define AXP_REG_PV      27
 235#define AXP_REG_T12     27
 236#define AXP_REG_AT      28
 237#define AXP_REG_GP      29
 238#define AXP_REG_SP      30
 239#define AXP_REG_ZERO    31
 240
 241#define bfd_mach_alpha_ev4  0x10
 242#define bfd_mach_alpha_ev5  0x20
 243#define bfd_mach_alpha_ev6  0x30
 244
 245enum bfd_reloc_code_real {
 246    BFD_RELOC_23_PCREL_S2,
 247    BFD_RELOC_ALPHA_HINT
 248};
 249
 250/* This file holds the Alpha AXP opcode table.  The opcode table includes
 251   almost all of the extended instruction mnemonics.  This permits the
 252   disassembler to use them, and simplifies the assembler logic, at the
 253   cost of increasing the table size.  The table is strictly constant
 254   data, so the compiler should be able to put it in the text segment.
 255
 256   This file also holds the operand table.  All knowledge about inserting
 257   and extracting operands from instructions is kept in this file.
 258
 259   The information for the base instruction set was compiled from the
 260   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
 261   version 2.
 262
 263   The information for the post-ev5 architecture extensions BWX, CIX and
 264   MAX came from version 3 of this same document, which is also available
 265   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
 266   /literature/alphahb2.pdf
 267
 268   The information for the EV4 PALcode instructions was compiled from
 269   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
 270   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
 271   revision dated June 1994.
 272
 273   The information for the EV5 PALcode instructions was compiled from
 274   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
 275   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
 276
 277/* Local insertion and extraction functions */
 278
 279static unsigned insert_rba (unsigned, int, const char **);
 280static unsigned insert_rca (unsigned, int, const char **);
 281static unsigned insert_za (unsigned, int, const char **);
 282static unsigned insert_zb (unsigned, int, const char **);
 283static unsigned insert_zc (unsigned, int, const char **);
 284static unsigned insert_bdisp (unsigned, int, const char **);
 285static unsigned insert_jhint (unsigned, int, const char **);
 286static unsigned insert_ev6hwjhint (unsigned, int, const char **);
 287
 288static int extract_rba (unsigned, int *);
 289static int extract_rca (unsigned, int *);
 290static int extract_za (unsigned, int *);
 291static int extract_zb (unsigned, int *);
 292static int extract_zc (unsigned, int *);
 293static int extract_bdisp (unsigned, int *);
 294static int extract_jhint (unsigned, int *);
 295static int extract_ev6hwjhint (unsigned, int *);
 296
 297
 298/* The operands table  */
 299
 300const struct alpha_operand alpha_operands[] =
 301{
 302  /* The fields are bits, shift, insert, extract, flags */
 303  /* The zero index is used to indicate end-of-list */
 304#define UNUSED          0
 305  { 0, 0, 0, 0, 0, 0 },
 306
 307  /* The plain integer register fields */
 308#define RA              (UNUSED + 1)
 309  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
 310#define RB              (RA + 1)
 311  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
 312#define RC              (RB + 1)
 313  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
 314
 315  /* The plain fp register fields */
 316#define FA              (RC + 1)
 317  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
 318#define FB              (FA + 1)
 319  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
 320#define FC              (FB + 1)
 321  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
 322
 323  /* The integer registers when they are ZERO */
 324#define ZA              (FC + 1)
 325  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
 326#define ZB              (ZA + 1)
 327  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
 328#define ZC              (ZB + 1)
 329  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
 330
 331  /* The RB field when it needs parentheses */
 332#define PRB             (ZC + 1)
 333  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
 334
 335  /* The RB field when it needs parentheses _and_ a preceding comma */
 336#define CPRB            (PRB + 1)
 337  { 5, 16, 0,
 338    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
 339
 340  /* The RB field when it must be the same as the RA field */
 341#define RBA             (CPRB + 1)
 342  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
 343
 344  /* The RC field when it must be the same as the RB field */
 345#define RCA             (RBA + 1)
 346  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
 347
 348  /* The RC field when it can *default* to RA */
 349#define DRC1            (RCA + 1)
 350  { 5, 0, 0,
 351    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
 352
 353  /* The RC field when it can *default* to RB */
 354#define DRC2            (DRC1 + 1)
 355  { 5, 0, 0,
 356    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
 357
 358  /* The FC field when it can *default* to RA */
 359#define DFC1            (DRC2 + 1)
 360  { 5, 0, 0,
 361    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
 362
 363  /* The FC field when it can *default* to RB */
 364#define DFC2            (DFC1 + 1)
 365  { 5, 0, 0,
 366    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
 367
 368  /* The unsigned 8-bit literal of Operate format insns */
 369#define LIT             (DFC2 + 1)
 370  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
 371
 372  /* The signed 16-bit displacement of Memory format insns.  From here
 373     we can't tell what relocation should be used, so don't use a default. */
 374#define MDISP           (LIT + 1)
 375  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
 376
 377  /* The signed "23-bit" aligned displacement of Branch format insns */
 378#define BDISP           (MDISP + 1)
 379  { 21, 0, BFD_RELOC_23_PCREL_S2,
 380    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
 381
 382  /* The 26-bit PALcode function */
 383#define PALFN           (BDISP + 1)
 384  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
 385
 386  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
 387#define JMPHINT         (PALFN + 1)
 388  { 14, 0, BFD_RELOC_ALPHA_HINT,
 389    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
 390    insert_jhint, extract_jhint },
 391
 392  /* The optional hint to RET/JSR_COROUTINE */
 393#define RETHINT         (JMPHINT + 1)
 394  { 14, 0, -RETHINT,
 395    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
 396
 397  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
 398#define EV4HWDISP       (RETHINT + 1)
 399#define EV6HWDISP       (EV4HWDISP)
 400  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
 401
 402  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
 403#define EV4HWINDEX      (EV4HWDISP + 1)
 404  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 405
 406  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
 407     that occur in DEC PALcode.  */
 408#define EV4EXTHWINDEX   (EV4HWINDEX + 1)
 409  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 410
 411  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
 412#define EV5HWDISP       (EV4EXTHWINDEX + 1)
 413  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
 414
 415  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
 416#define EV5HWINDEX      (EV5HWDISP + 1)
 417  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 418
 419  /* The 16-bit combined index/scoreboard mask for the ev6
 420     hw_m[ft]pr (pal19/pal1d) insns */
 421#define EV6HWINDEX      (EV5HWINDEX + 1)
 422  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 423
 424  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
 425#define EV6HWJMPHINT    (EV6HWINDEX+ 1)
 426  { 8, 0, -EV6HWJMPHINT,
 427    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
 428    insert_ev6hwjhint, extract_ev6hwjhint }
 429};
 430
 431const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
 432
 433/* The RB field when it is the same as the RA field in the same insn.
 434   This operand is marked fake.  The insertion function just copies
 435   the RA field into the RB field, and the extraction function just
 436   checks that the fields are the same. */
 437
 438/*ARGSUSED*/
 439static unsigned
 440insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 441{
 442  return insn | (((insn >> 21) & 0x1f) << 16);
 443}
 444
 445static int
 446extract_rba(unsigned insn, int *invalid)
 447{
 448  if (invalid != (int *) NULL
 449      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
 450    *invalid = 1;
 451  return 0;
 452}
 453
 454
 455/* The same for the RC field */
 456
 457/*ARGSUSED*/
 458static unsigned
 459insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 460{
 461  return insn | ((insn >> 21) & 0x1f);
 462}
 463
 464static int
 465extract_rca(unsigned insn, int *invalid)
 466{
 467  if (invalid != (int *) NULL
 468      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
 469    *invalid = 1;
 470  return 0;
 471}
 472
 473
 474/* Fake arguments in which the registers must be set to ZERO */
 475
 476/*ARGSUSED*/
 477static unsigned
 478insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 479{
 480  return insn | (31 << 21);
 481}
 482
 483static int
 484extract_za(unsigned insn, int *invalid)
 485{
 486  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
 487    *invalid = 1;
 488  return 0;
 489}
 490
 491/*ARGSUSED*/
 492static unsigned
 493insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 494{
 495  return insn | (31 << 16);
 496}
 497
 498static int
 499extract_zb(unsigned insn, int *invalid)
 500{
 501  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
 502    *invalid = 1;
 503  return 0;
 504}
 505
 506/*ARGSUSED*/
 507static unsigned
 508insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 509{
 510  return insn | 31;
 511}
 512
 513static int
 514extract_zc(unsigned insn, int *invalid)
 515{
 516  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
 517    *invalid = 1;
 518  return 0;
 519}
 520
 521
 522/* The displacement field of a Branch format insn.  */
 523
 524static unsigned
 525insert_bdisp(unsigned insn, int value, const char **errmsg)
 526{
 527  if (errmsg != (const char **)NULL && (value & 3))
 528    *errmsg = _("branch operand unaligned");
 529  return insn | ((value / 4) & 0x1FFFFF);
 530}
 531
 532/*ARGSUSED*/
 533static int
 534extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
 535{
 536  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
 537}
 538
 539
 540/* The hint field of a JMP/JSR insn.  */
 541
 542static unsigned
 543insert_jhint(unsigned insn, int value, const char **errmsg)
 544{
 545  if (errmsg != (const char **)NULL && (value & 3))
 546    *errmsg = _("jump hint unaligned");
 547  return insn | ((value / 4) & 0x3FFF);
 548}
 549
 550/*ARGSUSED*/
 551static int
 552extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
 553{
 554  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
 555}
 556
 557/* The hint field of an EV6 HW_JMP/JSR insn.  */
 558
 559static unsigned
 560insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
 561{
 562  if (errmsg != (const char **)NULL && (value & 3))
 563    *errmsg = _("jump hint unaligned");
 564  return insn | ((value / 4) & 0x1FFF);
 565}
 566
 567/*ARGSUSED*/
 568static int
 569extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
 570{
 571  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
 572}
 573
 574
 575/* Macros used to form opcodes */
 576
 577/* The main opcode */
 578#define OP(x)           (((x) & 0x3F) << 26)
 579#define OP_MASK         0xFC000000
 580
 581/* Branch format instructions */
 582#define BRA_(oo)        OP(oo)
 583#define BRA_MASK        OP_MASK
 584#define BRA(oo)         BRA_(oo), BRA_MASK
 585
 586/* Floating point format instructions */
 587#define FP_(oo,fff)     (OP(oo) | (((fff) & 0x7FF) << 5))
 588#define FP_MASK         (OP_MASK | 0xFFE0)
 589#define FP(oo,fff)      FP_(oo,fff), FP_MASK
 590
 591/* Memory format instructions */
 592#define MEM_(oo)        OP(oo)
 593#define MEM_MASK        OP_MASK
 594#define MEM(oo)         MEM_(oo), MEM_MASK
 595
 596/* Memory/Func Code format instructions */
 597#define MFC_(oo,ffff)   (OP(oo) | ((ffff) & 0xFFFF))
 598#define MFC_MASK        (OP_MASK | 0xFFFF)
 599#define MFC(oo,ffff)    MFC_(oo,ffff), MFC_MASK
 600
 601/* Memory/Branch format instructions */
 602#define MBR_(oo,h)      (OP(oo) | (((h) & 3) << 14))
 603#define MBR_MASK        (OP_MASK | 0xC000)
 604#define MBR(oo,h)       MBR_(oo,h), MBR_MASK
 605
 606/* Operate format instructions.  The OPRL variant specifies a
 607   literal second argument. */
 608#define OPR_(oo,ff)     (OP(oo) | (((ff) & 0x7F) << 5))
 609#define OPRL_(oo,ff)    (OPR_((oo),(ff)) | 0x1000)
 610#define OPR_MASK        (OP_MASK | 0x1FE0)
 611#define OPR(oo,ff)      OPR_(oo,ff), OPR_MASK
 612#define OPRL(oo,ff)     OPRL_(oo,ff), OPR_MASK
 613
 614/* Generic PALcode format instructions */
 615#define PCD_(oo)        OP(oo)
 616#define PCD_MASK        OP_MASK
 617#define PCD(oo)         PCD_(oo), PCD_MASK
 618
 619/* Specific PALcode instructions */
 620#define SPCD_(oo,ffff)  (OP(oo) | ((ffff) & 0x3FFFFFF))
 621#define SPCD_MASK       0xFFFFFFFF
 622#define SPCD(oo,ffff)   SPCD_(oo,ffff), SPCD_MASK
 623
 624/* Hardware memory (hw_{ld,st}) instructions */
 625#define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
 626#define EV4HWMEM_MASK   (OP_MASK | 0xF000)
 627#define EV4HWMEM(oo,f)  EV4HWMEM_(oo,f), EV4HWMEM_MASK
 628
 629#define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
 630#define EV5HWMEM_MASK   (OP_MASK | 0xF800)
 631#define EV5HWMEM(oo,f)  EV5HWMEM_(oo,f), EV5HWMEM_MASK
 632
 633#define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
 634#define EV6HWMEM_MASK   (OP_MASK | 0xF000)
 635#define EV6HWMEM(oo,f)  EV6HWMEM_(oo,f), EV6HWMEM_MASK
 636
 637#define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
 638#define EV6HWMBR_MASK   (OP_MASK | 0xE000)
 639#define EV6HWMBR(oo,h)  EV6HWMBR_(oo,h), EV6HWMBR_MASK
 640
 641/* Abbreviations for instruction subsets.  */
 642#define BASE                    AXP_OPCODE_BASE
 643#define EV4                     AXP_OPCODE_EV4
 644#define EV5                     AXP_OPCODE_EV5
 645#define EV6                     AXP_OPCODE_EV6
 646#define BWX                     AXP_OPCODE_BWX
 647#define CIX                     AXP_OPCODE_CIX
 648#define MAX                     AXP_OPCODE_MAX
 649
 650/* Common combinations of arguments */
 651#define ARG_NONE                { 0 }
 652#define ARG_BRA                 { RA, BDISP }
 653#define ARG_FBRA                { FA, BDISP }
 654#define ARG_FP                  { FA, FB, DFC1 }
 655#define ARG_FPZ1                { ZA, FB, DFC1 }
 656#define ARG_MEM                 { RA, MDISP, PRB }
 657#define ARG_FMEM                { FA, MDISP, PRB }
 658#define ARG_OPR                 { RA, RB, DRC1 }
 659#define ARG_OPRL                { RA, LIT, DRC1 }
 660#define ARG_OPRZ1               { ZA, RB, DRC1 }
 661#define ARG_OPRLZ1              { ZA, LIT, RC }
 662#define ARG_PCD                 { PALFN }
 663#define ARG_EV4HWMEM            { RA, EV4HWDISP, PRB }
 664#define ARG_EV4HWMPR            { RA, RBA, EV4HWINDEX }
 665#define ARG_EV5HWMEM            { RA, EV5HWDISP, PRB }
 666#define ARG_EV6HWMEM            { RA, EV6HWDISP, PRB }
 667
 668/* The opcode table.
 669
 670   The format of the opcode table is:
 671
 672   NAME OPCODE MASK { OPERANDS }
 673
 674   NAME         is the name of the instruction.
 675
 676   OPCODE       is the instruction opcode.
 677
 678   MASK         is the opcode mask; this is used to tell the disassembler
 679                which bits in the actual opcode must match OPCODE.
 680
 681   OPERANDS     is the list of operands.
 682
 683   The preceding macros merge the text of the OPCODE and MASK fields.
 684
 685   The disassembler reads the table in order and prints the first
 686   instruction which matches, so this table is sorted to put more
 687   specific instructions before more general instructions.
 688
 689   Otherwise, it is sorted by major opcode and minor function code.
 690
 691   There are three classes of not-really-instructions in this table:
 692
 693   ALIAS        is another name for another instruction.  Some of
 694                these come from the Architecture Handbook, some
 695                come from the original gas opcode tables.  In all
 696                cases, the functionality of the opcode is unchanged.
 697
 698   PSEUDO       a stylized code form endorsed by Chapter A.4 of the
 699                Architecture Handbook.
 700
 701   EXTRA        a stylized code form found in the original gas tables.
 702
 703   And two annotations:
 704
 705   EV56 BUT     opcodes that are officially introduced as of the ev56,
 706                but with defined results on previous implementations.
 707
 708   EV56 UNA     opcodes that were introduced as of the ev56 with
 709                presumably undefined results on previous implementations
 710                that were not assigned to a particular extension.
 711*/
 712
 713const struct alpha_opcode alpha_opcodes[] = {
 714  { "halt",             SPCD(0x00,0x0000), BASE, ARG_NONE },
 715  { "draina",           SPCD(0x00,0x0002), BASE, ARG_NONE },
 716  { "bpt",              SPCD(0x00,0x0080), BASE, ARG_NONE },
 717  { "bugchk",           SPCD(0x00,0x0081), BASE, ARG_NONE },
 718  { "callsys",          SPCD(0x00,0x0083), BASE, ARG_NONE },
 719  { "chmk",             SPCD(0x00,0x0083), BASE, ARG_NONE },
 720  { "imb",              SPCD(0x00,0x0086), BASE, ARG_NONE },
 721  { "rduniq",           SPCD(0x00,0x009e), BASE, ARG_NONE },
 722  { "wruniq",           SPCD(0x00,0x009f), BASE, ARG_NONE },
 723  { "gentrap",          SPCD(0x00,0x00aa), BASE, ARG_NONE },
 724  { "call_pal",         PCD(0x00), BASE, ARG_PCD },
 725  { "pal",              PCD(0x00), BASE, ARG_PCD },             /* alias */
 726
 727  { "lda",              MEM(0x08), BASE, { RA, MDISP, ZB } },   /* pseudo */
 728  { "lda",              MEM(0x08), BASE, ARG_MEM },
 729  { "ldah",             MEM(0x09), BASE, { RA, MDISP, ZB } },   /* pseudo */
 730  { "ldah",             MEM(0x09), BASE, ARG_MEM },
 731  { "ldbu",             MEM(0x0A), BWX, ARG_MEM },
 732  { "unop",             MEM_(0x0B) | (30 << 16),
 733                        MEM_MASK, BASE, { ZA } },               /* pseudo */
 734  { "ldq_u",            MEM(0x0B), BASE, ARG_MEM },
 735  { "ldwu",             MEM(0x0C), BWX, ARG_MEM },
 736  { "stw",              MEM(0x0D), BWX, ARG_MEM },
 737  { "stb",              MEM(0x0E), BWX, ARG_MEM },
 738  { "stq_u",            MEM(0x0F), BASE, ARG_MEM },
 739
 740  { "sextl",            OPR(0x10,0x00), BASE, ARG_OPRZ1 },      /* pseudo */
 741  { "sextl",            OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },    /* pseudo */
 742  { "addl",             OPR(0x10,0x00), BASE, ARG_OPR },
 743  { "addl",             OPRL(0x10,0x00), BASE, ARG_OPRL },
 744  { "s4addl",           OPR(0x10,0x02), BASE, ARG_OPR },
 745  { "s4addl",           OPRL(0x10,0x02), BASE, ARG_OPRL },
 746  { "negl",             OPR(0x10,0x09), BASE, ARG_OPRZ1 },      /* pseudo */
 747  { "negl",             OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },    /* pseudo */
 748  { "subl",             OPR(0x10,0x09), BASE, ARG_OPR },
 749  { "subl",             OPRL(0x10,0x09), BASE, ARG_OPRL },
 750  { "s4subl",           OPR(0x10,0x0B), BASE, ARG_OPR },
 751  { "s4subl",           OPRL(0x10,0x0B), BASE, ARG_OPRL },
 752  { "cmpbge",           OPR(0x10,0x0F), BASE, ARG_OPR },
 753  { "cmpbge",           OPRL(0x10,0x0F), BASE, ARG_OPRL },
 754  { "s8addl",           OPR(0x10,0x12), BASE, ARG_OPR },
 755  { "s8addl",           OPRL(0x10,0x12), BASE, ARG_OPRL },
 756  { "s8subl",           OPR(0x10,0x1B), BASE, ARG_OPR },
 757  { "s8subl",           OPRL(0x10,0x1B), BASE, ARG_OPRL },
 758  { "cmpult",           OPR(0x10,0x1D), BASE, ARG_OPR },
 759  { "cmpult",           OPRL(0x10,0x1D), BASE, ARG_OPRL },
 760  { "addq",             OPR(0x10,0x20), BASE, ARG_OPR },
 761  { "addq",             OPRL(0x10,0x20), BASE, ARG_OPRL },
 762  { "s4addq",           OPR(0x10,0x22), BASE, ARG_OPR },
 763  { "s4addq",           OPRL(0x10,0x22), BASE, ARG_OPRL },
 764  { "negq",             OPR(0x10,0x29), BASE, ARG_OPRZ1 },      /* pseudo */
 765  { "negq",             OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },    /* pseudo */
 766  { "subq",             OPR(0x10,0x29), BASE, ARG_OPR },
 767  { "subq",             OPRL(0x10,0x29), BASE, ARG_OPRL },
 768  { "s4subq",           OPR(0x10,0x2B), BASE, ARG_OPR },
 769  { "s4subq",           OPRL(0x10,0x2B), BASE, ARG_OPRL },
 770  { "cmpeq",            OPR(0x10,0x2D), BASE, ARG_OPR },
 771  { "cmpeq",            OPRL(0x10,0x2D), BASE, ARG_OPRL },
 772  { "s8addq",           OPR(0x10,0x32), BASE, ARG_OPR },
 773  { "s8addq",           OPRL(0x10,0x32), BASE, ARG_OPRL },
 774  { "s8subq",           OPR(0x10,0x3B), BASE, ARG_OPR },
 775  { "s8subq",           OPRL(0x10,0x3B), BASE, ARG_OPRL },
 776  { "cmpule",           OPR(0x10,0x3D), BASE, ARG_OPR },
 777  { "cmpule",           OPRL(0x10,0x3D), BASE, ARG_OPRL },
 778  { "addl/v",           OPR(0x10,0x40), BASE, ARG_OPR },
 779  { "addl/v",           OPRL(0x10,0x40), BASE, ARG_OPRL },
 780  { "negl/v",           OPR(0x10,0x49), BASE, ARG_OPRZ1 },      /* pseudo */
 781  { "negl/v",           OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },    /* pseudo */
 782  { "subl/v",           OPR(0x10,0x49), BASE, ARG_OPR },
 783  { "subl/v",           OPRL(0x10,0x49), BASE, ARG_OPRL },
 784  { "cmplt",            OPR(0x10,0x4D), BASE, ARG_OPR },
 785  { "cmplt",            OPRL(0x10,0x4D), BASE, ARG_OPRL },
 786  { "addq/v",           OPR(0x10,0x60), BASE, ARG_OPR },
 787  { "addq/v",           OPRL(0x10,0x60), BASE, ARG_OPRL },
 788  { "negq/v",           OPR(0x10,0x69), BASE, ARG_OPRZ1 },      /* pseudo */
 789  { "negq/v",           OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },    /* pseudo */
 790  { "subq/v",           OPR(0x10,0x69), BASE, ARG_OPR },
 791  { "subq/v",           OPRL(0x10,0x69), BASE, ARG_OPRL },
 792  { "cmple",            OPR(0x10,0x6D), BASE, ARG_OPR },
 793  { "cmple",            OPRL(0x10,0x6D), BASE, ARG_OPRL },
 794
 795  { "and",              OPR(0x11,0x00), BASE, ARG_OPR },
 796  { "and",              OPRL(0x11,0x00), BASE, ARG_OPRL },
 797  { "andnot",           OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
 798  { "andnot",           OPRL(0x11,0x08), BASE, ARG_OPRL },      /* alias */
 799  { "bic",              OPR(0x11,0x08), BASE, ARG_OPR },
 800  { "bic",              OPRL(0x11,0x08), BASE, ARG_OPRL },
 801  { "cmovlbs",          OPR(0x11,0x14), BASE, ARG_OPR },
 802  { "cmovlbs",          OPRL(0x11,0x14), BASE, ARG_OPRL },
 803  { "cmovlbc",          OPR(0x11,0x16), BASE, ARG_OPR },
 804  { "cmovlbc",          OPRL(0x11,0x16), BASE, ARG_OPRL },
 805  { "nop",              OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
 806  { "clr",              OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
 807  { "mov",              OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
 808  { "mov",              OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
 809  { "mov",              OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
 810  { "or",               OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
 811  { "or",               OPRL(0x11,0x20), BASE, ARG_OPRL },      /* alias */
 812  { "bis",              OPR(0x11,0x20), BASE, ARG_OPR },
 813  { "bis",              OPRL(0x11,0x20), BASE, ARG_OPRL },
 814  { "cmoveq",           OPR(0x11,0x24), BASE, ARG_OPR },
 815  { "cmoveq",           OPRL(0x11,0x24), BASE, ARG_OPRL },
 816  { "cmovne",           OPR(0x11,0x26), BASE, ARG_OPR },
 817  { "cmovne",           OPRL(0x11,0x26), BASE, ARG_OPRL },
 818  { "not",              OPR(0x11,0x28), BASE, ARG_OPRZ1 },      /* pseudo */
 819  { "not",              OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },    /* pseudo */
 820  { "ornot",            OPR(0x11,0x28), BASE, ARG_OPR },
 821  { "ornot",            OPRL(0x11,0x28), BASE, ARG_OPRL },
 822  { "xor",              OPR(0x11,0x40), BASE, ARG_OPR },
 823  { "xor",              OPRL(0x11,0x40), BASE, ARG_OPRL },
 824  { "cmovlt",           OPR(0x11,0x44), BASE, ARG_OPR },
 825  { "cmovlt",           OPRL(0x11,0x44), BASE, ARG_OPRL },
 826  { "cmovge",           OPR(0x11,0x46), BASE, ARG_OPR },
 827  { "cmovge",           OPRL(0x11,0x46), BASE, ARG_OPRL },
 828  { "eqv",              OPR(0x11,0x48), BASE, ARG_OPR },
 829  { "eqv",              OPRL(0x11,0x48), BASE, ARG_OPRL },
 830  { "xornot",           OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
 831  { "xornot",           OPRL(0x11,0x48), BASE, ARG_OPRL },      /* alias */
 832  { "amask",            OPR(0x11,0x61), BASE, ARG_OPRZ1 },      /* ev56 but */
 833  { "amask",            OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },    /* ev56 but */
 834  { "cmovle",           OPR(0x11,0x64), BASE, ARG_OPR },
 835  { "cmovle",           OPRL(0x11,0x64), BASE, ARG_OPRL },
 836  { "cmovgt",           OPR(0x11,0x66), BASE, ARG_OPR },
 837  { "cmovgt",           OPRL(0x11,0x66), BASE, ARG_OPRL },
 838  { "implver",          OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
 839                        0xFFFFFFE0, BASE, { RC } },             /* ev56 but */
 840
 841  { "mskbl",            OPR(0x12,0x02), BASE, ARG_OPR },
 842  { "mskbl",            OPRL(0x12,0x02), BASE, ARG_OPRL },
 843  { "extbl",            OPR(0x12,0x06), BASE, ARG_OPR },
 844  { "extbl",            OPRL(0x12,0x06), BASE, ARG_OPRL },
 845  { "insbl",            OPR(0x12,0x0B), BASE, ARG_OPR },
 846  { "insbl",            OPRL(0x12,0x0B), BASE, ARG_OPRL },
 847  { "mskwl",            OPR(0x12,0x12), BASE, ARG_OPR },
 848  { "mskwl",            OPRL(0x12,0x12), BASE, ARG_OPRL },
 849  { "extwl",            OPR(0x12,0x16), BASE, ARG_OPR },
 850  { "extwl",            OPRL(0x12,0x16), BASE, ARG_OPRL },
 851  { "inswl",            OPR(0x12,0x1B), BASE, ARG_OPR },
 852  { "inswl",            OPRL(0x12,0x1B), BASE, ARG_OPRL },
 853  { "mskll",            OPR(0x12,0x22), BASE, ARG_OPR },
 854  { "mskll",            OPRL(0x12,0x22), BASE, ARG_OPRL },
 855  { "extll",            OPR(0x12,0x26), BASE, ARG_OPR },
 856  { "extll",            OPRL(0x12,0x26), BASE, ARG_OPRL },
 857  { "insll",            OPR(0x12,0x2B), BASE, ARG_OPR },
 858  { "insll",            OPRL(0x12,0x2B), BASE, ARG_OPRL },
 859  { "zap",              OPR(0x12,0x30), BASE, ARG_OPR },
 860  { "zap",              OPRL(0x12,0x30), BASE, ARG_OPRL },
 861  { "zapnot",           OPR(0x12,0x31), BASE, ARG_OPR },
 862  { "zapnot",           OPRL(0x12,0x31), BASE, ARG_OPRL },
 863  { "mskql",            OPR(0x12,0x32), BASE, ARG_OPR },
 864  { "mskql",            OPRL(0x12,0x32), BASE, ARG_OPRL },
 865  { "srl",              OPR(0x12,0x34), BASE, ARG_OPR },
 866  { "srl",              OPRL(0x12,0x34), BASE, ARG_OPRL },
 867  { "extql",            OPR(0x12,0x36), BASE, ARG_OPR },
 868  { "extql",            OPRL(0x12,0x36), BASE, ARG_OPRL },
 869  { "sll",              OPR(0x12,0x39), BASE, ARG_OPR },
 870  { "sll",              OPRL(0x12,0x39), BASE, ARG_OPRL },
 871  { "insql",            OPR(0x12,0x3B), BASE, ARG_OPR },
 872  { "insql",            OPRL(0x12,0x3B), BASE, ARG_OPRL },
 873  { "sra",              OPR(0x12,0x3C), BASE, ARG_OPR },
 874  { "sra",              OPRL(0x12,0x3C), BASE, ARG_OPRL },
 875  { "mskwh",            OPR(0x12,0x52), BASE, ARG_OPR },
 876  { "mskwh",            OPRL(0x12,0x52), BASE, ARG_OPRL },
 877  { "inswh",            OPR(0x12,0x57), BASE, ARG_OPR },
 878  { "inswh",            OPRL(0x12,0x57), BASE, ARG_OPRL },
 879  { "extwh",            OPR(0x12,0x5A), BASE, ARG_OPR },
 880  { "extwh",            OPRL(0x12,0x5A), BASE, ARG_OPRL },
 881  { "msklh",            OPR(0x12,0x62), BASE, ARG_OPR },
 882  { "msklh",            OPRL(0x12,0x62), BASE, ARG_OPRL },
 883  { "inslh",            OPR(0x12,0x67), BASE, ARG_OPR },
 884  { "inslh",            OPRL(0x12,0x67), BASE, ARG_OPRL },
 885  { "extlh",            OPR(0x12,0x6A), BASE, ARG_OPR },
 886  { "extlh",            OPRL(0x12,0x6A), BASE, ARG_OPRL },
 887  { "mskqh",            OPR(0x12,0x72), BASE, ARG_OPR },
 888  { "mskqh",            OPRL(0x12,0x72), BASE, ARG_OPRL },
 889  { "insqh",            OPR(0x12,0x77), BASE, ARG_OPR },
 890  { "insqh",            OPRL(0x12,0x77), BASE, ARG_OPRL },
 891  { "extqh",            OPR(0x12,0x7A), BASE, ARG_OPR },
 892  { "extqh",            OPRL(0x12,0x7A), BASE, ARG_OPRL },
 893
 894  { "mull",             OPR(0x13,0x00), BASE, ARG_OPR },
 895  { "mull",             OPRL(0x13,0x00), BASE, ARG_OPRL },
 896  { "mulq",             OPR(0x13,0x20), BASE, ARG_OPR },
 897  { "mulq",             OPRL(0x13,0x20), BASE, ARG_OPRL },
 898  { "umulh",            OPR(0x13,0x30), BASE, ARG_OPR },
 899  { "umulh",            OPRL(0x13,0x30), BASE, ARG_OPRL },
 900  { "mull/v",           OPR(0x13,0x40), BASE, ARG_OPR },
 901  { "mull/v",           OPRL(0x13,0x40), BASE, ARG_OPRL },
 902  { "mulq/v",           OPR(0x13,0x60), BASE, ARG_OPR },
 903  { "mulq/v",           OPRL(0x13,0x60), BASE, ARG_OPRL },
 904
 905  { "itofs",            FP(0x14,0x004), CIX, { RA, ZB, FC } },
 906  { "sqrtf/c",          FP(0x14,0x00A), CIX, ARG_FPZ1 },
 907  { "sqrts/c",          FP(0x14,0x00B), CIX, ARG_FPZ1 },
 908  { "itoff",            FP(0x14,0x014), CIX, { RA, ZB, FC } },
 909  { "itoft",            FP(0x14,0x024), CIX, { RA, ZB, FC } },
 910  { "sqrtg/c",          FP(0x14,0x02A), CIX, ARG_FPZ1 },
 911  { "sqrtt/c",          FP(0x14,0x02B), CIX, ARG_FPZ1 },
 912  { "sqrts/m",          FP(0x14,0x04B), CIX, ARG_FPZ1 },
 913  { "sqrtt/m",          FP(0x14,0x06B), CIX, ARG_FPZ1 },
 914  { "sqrtf",            FP(0x14,0x08A), CIX, ARG_FPZ1 },
 915  { "sqrts",            FP(0x14,0x08B), CIX, ARG_FPZ1 },
 916  { "sqrtg",            FP(0x14,0x0AA), CIX, ARG_FPZ1 },
 917  { "sqrtt",            FP(0x14,0x0AB), CIX, ARG_FPZ1 },
 918  { "sqrts/d",          FP(0x14,0x0CB), CIX, ARG_FPZ1 },
 919  { "sqrtt/d",          FP(0x14,0x0EB), CIX, ARG_FPZ1 },
 920  { "sqrtf/uc",         FP(0x14,0x10A), CIX, ARG_FPZ1 },
 921  { "sqrts/uc",         FP(0x14,0x10B), CIX, ARG_FPZ1 },
 922  { "sqrtg/uc",         FP(0x14,0x12A), CIX, ARG_FPZ1 },
 923  { "sqrtt/uc",         FP(0x14,0x12B), CIX, ARG_FPZ1 },
 924  { "sqrts/um",         FP(0x14,0x14B), CIX, ARG_FPZ1 },
 925  { "sqrtt/um",         FP(0x14,0x16B), CIX, ARG_FPZ1 },
 926  { "sqrtf/u",          FP(0x14,0x18A), CIX, ARG_FPZ1 },
 927  { "sqrts/u",          FP(0x14,0x18B), CIX, ARG_FPZ1 },
 928  { "sqrtg/u",          FP(0x14,0x1AA), CIX, ARG_FPZ1 },
 929  { "sqrtt/u",          FP(0x14,0x1AB), CIX, ARG_FPZ1 },
 930  { "sqrts/ud",         FP(0x14,0x1CB), CIX, ARG_FPZ1 },
 931  { "sqrtt/ud",         FP(0x14,0x1EB), CIX, ARG_FPZ1 },
 932  { "sqrtf/sc",         FP(0x14,0x40A), CIX, ARG_FPZ1 },
 933  { "sqrtg/sc",         FP(0x14,0x42A), CIX, ARG_FPZ1 },
 934  { "sqrtf/s",          FP(0x14,0x48A), CIX, ARG_FPZ1 },
 935  { "sqrtg/s",          FP(0x14,0x4AA), CIX, ARG_FPZ1 },
 936  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
 937  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
 938  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
 939  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
 940  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
 941  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
 942  { "sqrtf/su",         FP(0x14,0x58A), CIX, ARG_FPZ1 },
 943  { "sqrts/su",         FP(0x14,0x58B), CIX, ARG_FPZ1 },
 944  { "sqrtg/su",         FP(0x14,0x5AA), CIX, ARG_FPZ1 },
 945  { "sqrtt/su",         FP(0x14,0x5AB), CIX, ARG_FPZ1 },
 946  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
 947  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
 948  { "sqrts/suic",       FP(0x14,0x70B), CIX, ARG_FPZ1 },
 949  { "sqrtt/suic",       FP(0x14,0x72B), CIX, ARG_FPZ1 },
 950  { "sqrts/suim",       FP(0x14,0x74B), CIX, ARG_FPZ1 },
 951  { "sqrtt/suim",       FP(0x14,0x76B), CIX, ARG_FPZ1 },
 952  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
 953  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
 954  { "sqrts/suid",       FP(0x14,0x7CB), CIX, ARG_FPZ1 },
 955  { "sqrtt/suid",       FP(0x14,0x7EB), CIX, ARG_FPZ1 },
 956
 957  { "addf/c",           FP(0x15,0x000), BASE, ARG_FP },
 958  { "subf/c",           FP(0x15,0x001), BASE, ARG_FP },
 959  { "mulf/c",           FP(0x15,0x002), BASE, ARG_FP },
 960  { "divf/c",           FP(0x15,0x003), BASE, ARG_FP },
 961  { "cvtdg/c",          FP(0x15,0x01E), BASE, ARG_FPZ1 },
 962  { "addg/c",           FP(0x15,0x020), BASE, ARG_FP },
 963  { "subg/c",           FP(0x15,0x021), BASE, ARG_FP },
 964  { "mulg/c",           FP(0x15,0x022), BASE, ARG_FP },
 965  { "divg/c",           FP(0x15,0x023), BASE, ARG_FP },
 966  { "cvtgf/c",          FP(0x15,0x02C), BASE, ARG_FPZ1 },
 967  { "cvtgd/c",          FP(0x15,0x02D), BASE, ARG_FPZ1 },
 968  { "cvtgq/c",          FP(0x15,0x02F), BASE, ARG_FPZ1 },
 969  { "cvtqf/c",          FP(0x15,0x03C), BASE, ARG_FPZ1 },
 970  { "cvtqg/c",          FP(0x15,0x03E), BASE, ARG_FPZ1 },
 971  { "addf",             FP(0x15,0x080), BASE, ARG_FP },
 972  { "negf",             FP(0x15,0x081), BASE, ARG_FPZ1 },       /* pseudo */
 973  { "subf",             FP(0x15,0x081), BASE, ARG_FP },
 974  { "mulf",             FP(0x15,0x082), BASE, ARG_FP },
 975  { "divf",             FP(0x15,0x083), BASE, ARG_FP },
 976  { "cvtdg",            FP(0x15,0x09E), BASE, ARG_FPZ1 },
 977  { "addg",             FP(0x15,0x0A0), BASE, ARG_FP },
 978  { "negg",             FP(0x15,0x0A1), BASE, ARG_FPZ1 },       /* pseudo */
 979  { "subg",             FP(0x15,0x0A1), BASE, ARG_FP },
 980  { "mulg",             FP(0x15,0x0A2), BASE, ARG_FP },
 981  { "divg",             FP(0x15,0x0A3), BASE, ARG_FP },
 982  { "cmpgeq",           FP(0x15,0x0A5), BASE, ARG_FP },
 983  { "cmpglt",           FP(0x15,0x0A6), BASE, ARG_FP },
 984  { "cmpgle",           FP(0x15,0x0A7), BASE, ARG_FP },
 985  { "cvtgf",            FP(0x15,0x0AC), BASE, ARG_FPZ1 },
 986  { "cvtgd",            FP(0x15,0x0AD), BASE, ARG_FPZ1 },
 987  { "cvtgq",            FP(0x15,0x0AF), BASE, ARG_FPZ1 },
 988  { "cvtqf",            FP(0x15,0x0BC), BASE, ARG_FPZ1 },
 989  { "cvtqg",            FP(0x15,0x0BE), BASE, ARG_FPZ1 },
 990  { "addf/uc",          FP(0x15,0x100), BASE, ARG_FP },
 991  { "subf/uc",          FP(0x15,0x101), BASE, ARG_FP },
 992  { "mulf/uc",          FP(0x15,0x102), BASE, ARG_FP },
 993  { "divf/uc",          FP(0x15,0x103), BASE, ARG_FP },
 994  { "cvtdg/uc",         FP(0x15,0x11E), BASE, ARG_FPZ1 },
 995  { "addg/uc",          FP(0x15,0x120), BASE, ARG_FP },
 996  { "subg/uc",          FP(0x15,0x121), BASE, ARG_FP },
 997  { "mulg/uc",          FP(0x15,0x122), BASE, ARG_FP },
 998  { "divg/uc",          FP(0x15,0x123), BASE, ARG_FP },
 999  { "cvtgf/uc",         FP(0x15,0x12C), BASE, ARG_FPZ1 },
1000  { "cvtgd/uc",         FP(0x15,0x12D), BASE, ARG_FPZ1 },
1001  { "cvtgq/vc",         FP(0x15,0x12F), BASE, ARG_FPZ1 },
1002  { "addf/u",           FP(0x15,0x180), BASE, ARG_FP },
1003  { "subf/u",           FP(0x15,0x181), BASE, ARG_FP },
1004  { "mulf/u",           FP(0x15,0x182), BASE, ARG_FP },
1005  { "divf/u",           FP(0x15,0x183), BASE, ARG_FP },
1006  { "cvtdg/u",          FP(0x15,0x19E), BASE, ARG_FPZ1 },
1007  { "addg/u",           FP(0x15,0x1A0), BASE, ARG_FP },
1008  { "subg/u",           FP(0x15,0x1A1), BASE, ARG_FP },
1009  { "mulg/u",           FP(0x15,0x1A2), BASE, ARG_FP },
1010  { "divg/u",           FP(0x15,0x1A3), BASE, ARG_FP },
1011  { "cvtgf/u",          FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1012  { "cvtgd/u",          FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1013  { "cvtgq/v",          FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1014  { "addf/sc",          FP(0x15,0x400), BASE, ARG_FP },
1015  { "subf/sc",          FP(0x15,0x401), BASE, ARG_FP },
1016  { "mulf/sc",          FP(0x15,0x402), BASE, ARG_FP },
1017  { "divf/sc",          FP(0x15,0x403), BASE, ARG_FP },
1018  { "cvtdg/sc",         FP(0x15,0x41E), BASE, ARG_FPZ1 },
1019  { "addg/sc",          FP(0x15,0x420), BASE, ARG_FP },
1020  { "subg/sc",          FP(0x15,0x421), BASE, ARG_FP },
1021  { "mulg/sc",          FP(0x15,0x422), BASE, ARG_FP },
1022  { "divg/sc",          FP(0x15,0x423), BASE, ARG_FP },
1023  { "cvtgf/sc",         FP(0x15,0x42C), BASE, ARG_FPZ1 },
1024  { "cvtgd/sc",         FP(0x15,0x42D), BASE, ARG_FPZ1 },
1025  { "cvtgq/sc",         FP(0x15,0x42F), BASE, ARG_FPZ1 },
1026  { "addf/s",           FP(0x15,0x480), BASE, ARG_FP },
1027  { "negf/s",           FP(0x15,0x481), BASE, ARG_FPZ1 },       /* pseudo */
1028  { "subf/s",           FP(0x15,0x481), BASE, ARG_FP },
1029  { "mulf/s",           FP(0x15,0x482), BASE, ARG_FP },
1030  { "divf/s",           FP(0x15,0x483), BASE, ARG_FP },
1031  { "cvtdg/s",          FP(0x15,0x49E), BASE, ARG_FPZ1 },
1032  { "addg/s",           FP(0x15,0x4A0), BASE, ARG_FP },
1033  { "negg/s",           FP(0x15,0x4A1), BASE, ARG_FPZ1 },       /* pseudo */
1034  { "subg/s",           FP(0x15,0x4A1), BASE, ARG_FP },
1035  { "mulg/s",           FP(0x15,0x4A2), BASE, ARG_FP },
1036  { "divg/s",           FP(0x15,0x4A3), BASE, ARG_FP },
1037  { "cmpgeq/s",         FP(0x15,0x4A5), BASE, ARG_FP },
1038  { "cmpglt/s",         FP(0x15,0x4A6), BASE, ARG_FP },
1039  { "cmpgle/s",         FP(0x15,0x4A7), BASE, ARG_FP },
1040  { "cvtgf/s",          FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1041  { "cvtgd/s",          FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1042  { "cvtgq/s",          FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1043  { "addf/suc",         FP(0x15,0x500), BASE, ARG_FP },
1044  { "subf/suc",         FP(0x15,0x501), BASE, ARG_FP },
1045  { "mulf/suc",         FP(0x15,0x502), BASE, ARG_FP },
1046  { "divf/suc",         FP(0x15,0x503), BASE, ARG_FP },
1047  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1048  { "addg/suc",         FP(0x15,0x520), BASE, ARG_FP },
1049  { "subg/suc",         FP(0x15,0x521), BASE, ARG_FP },
1050  { "mulg/suc",         FP(0x15,0x522), BASE, ARG_FP },
1051  { "divg/suc",         FP(0x15,0x523), BASE, ARG_FP },
1052  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1053  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1054  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1055  { "addf/su",          FP(0x15,0x580), BASE, ARG_FP },
1056  { "subf/su",          FP(0x15,0x581), BASE, ARG_FP },
1057  { "mulf/su",          FP(0x15,0x582), BASE, ARG_FP },
1058  { "divf/su",          FP(0x15,0x583), BASE, ARG_FP },
1059  { "cvtdg/su",         FP(0x15,0x59E), BASE, ARG_FPZ1 },
1060  { "addg/su",          FP(0x15,0x5A0), BASE, ARG_FP },
1061  { "subg/su",          FP(0x15,0x5A1), BASE, ARG_FP },
1062  { "mulg/su",          FP(0x15,0x5A2), BASE, ARG_FP },
1063  { "divg/su",          FP(0x15,0x5A3), BASE, ARG_FP },
1064  { "cvtgf/su",         FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1065  { "cvtgd/su",         FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1066  { "cvtgq/sv",         FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1067
1068  { "adds/c",           FP(0x16,0x000), BASE, ARG_FP },
1069  { "subs/c",           FP(0x16,0x001), BASE, ARG_FP },
1070  { "muls/c",           FP(0x16,0x002), BASE, ARG_FP },
1071  { "divs/c",           FP(0x16,0x003), BASE, ARG_FP },
1072  { "addt/c",           FP(0x16,0x020), BASE, ARG_FP },
1073  { "subt/c",           FP(0x16,0x021), BASE, ARG_FP },
1074  { "mult/c",           FP(0x16,0x022), BASE, ARG_FP },
1075  { "divt/c",           FP(0x16,0x023), BASE, ARG_FP },
1076  { "cvtts/c",          FP(0x16,0x02C), BASE, ARG_FPZ1 },
1077  { "cvttq/c",          FP(0x16,0x02F), BASE, ARG_FPZ1 },
1078  { "cvtqs/c",          FP(0x16,0x03C), BASE, ARG_FPZ1 },
1079  { "cvtqt/c",          FP(0x16,0x03E), BASE, ARG_FPZ1 },
1080  { "adds/m",           FP(0x16,0x040), BASE, ARG_FP },
1081  { "subs/m",           FP(0x16,0x041), BASE, ARG_FP },
1082  { "muls/m",           FP(0x16,0x042), BASE, ARG_FP },
1083  { "divs/m",           FP(0x16,0x043), BASE, ARG_FP },
1084  { "addt/m",           FP(0x16,0x060), BASE, ARG_FP },
1085  { "subt/m",           FP(0x16,0x061), BASE, ARG_FP },
1086  { "mult/m",           FP(0x16,0x062), BASE, ARG_FP },
1087  { "divt/m",           FP(0x16,0x063), BASE, ARG_FP },
1088  { "cvtts/m",          FP(0x16,0x06C), BASE, ARG_FPZ1 },
1089  { "cvttq/m",          FP(0x16,0x06F), BASE, ARG_FPZ1 },
1090  { "cvtqs/m",          FP(0x16,0x07C), BASE, ARG_FPZ1 },
1091  { "cvtqt/m",          FP(0x16,0x07E), BASE, ARG_FPZ1 },
1092  { "adds",             FP(0x16,0x080), BASE, ARG_FP },
1093  { "negs",             FP(0x16,0x081), BASE, ARG_FPZ1 },       /* pseudo */
1094  { "subs",             FP(0x16,0x081), BASE, ARG_FP },
1095  { "muls",             FP(0x16,0x082), BASE, ARG_FP },
1096  { "divs",             FP(0x16,0x083), BASE, ARG_FP },
1097  { "addt",             FP(0x16,0x0A0), BASE, ARG_FP },
1098  { "negt",             FP(0x16,0x0A1), BASE, ARG_FPZ1 },       /* pseudo */
1099  { "subt",             FP(0x16,0x0A1), BASE, ARG_FP },
1100  { "mult",             FP(0x16,0x0A2), BASE, ARG_FP },
1101  { "divt",             FP(0x16,0x0A3), BASE, ARG_FP },
1102  { "cmptun",           FP(0x16,0x0A4), BASE, ARG_FP },
1103  { "cmpteq",           FP(0x16,0x0A5), BASE, ARG_FP },
1104  { "cmptlt",           FP(0x16,0x0A6), BASE, ARG_FP },
1105  { "cmptle",           FP(0x16,0x0A7), BASE, ARG_FP },
1106  { "cvtts",            FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1107  { "cvttq",            FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1108  { "cvtqs",            FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1109  { "cvtqt",            FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1110  { "adds/d",           FP(0x16,0x0C0), BASE, ARG_FP },
1111  { "subs/d",           FP(0x16,0x0C1), BASE, ARG_FP },
1112  { "muls/d",           FP(0x16,0x0C2), BASE, ARG_FP },
1113  { "divs/d",           FP(0x16,0x0C3), BASE, ARG_FP },
1114  { "addt/d",           FP(0x16,0x0E0), BASE, ARG_FP },
1115  { "subt/d",           FP(0x16,0x0E1), BASE, ARG_FP },
1116  { "mult/d",           FP(0x16,0x0E2), BASE, ARG_FP },
1117  { "divt/d",           FP(0x16,0x0E3), BASE, ARG_FP },
1118  { "cvtts/d",          FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1119  { "cvttq/d",          FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1120  { "cvtqs/d",          FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1121  { "cvtqt/d",          FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1122  { "adds/uc",          FP(0x16,0x100), BASE, ARG_FP },
1123  { "subs/uc",          FP(0x16,0x101), BASE, ARG_FP },
1124  { "muls/uc",          FP(0x16,0x102), BASE, ARG_FP },
1125  { "divs/uc",          FP(0x16,0x103), BASE, ARG_FP },
1126  { "addt/uc",          FP(0x16,0x120), BASE, ARG_FP },
1127  { "subt/uc",          FP(0x16,0x121), BASE, ARG_FP },
1128  { "mult/uc",          FP(0x16,0x122), BASE, ARG_FP },
1129  { "divt/uc",          FP(0x16,0x123), BASE, ARG_FP },
1130  { "cvtts/uc",         FP(0x16,0x12C), BASE, ARG_FPZ1 },
1131  { "cvttq/vc",         FP(0x16,0x12F), BASE, ARG_FPZ1 },
1132  { "adds/um",          FP(0x16,0x140), BASE, ARG_FP },
1133  { "subs/um",          FP(0x16,0x141), BASE, ARG_FP },
1134  { "muls/um",          FP(0x16,0x142), BASE, ARG_FP },
1135  { "divs/um",          FP(0x16,0x143), BASE, ARG_FP },
1136  { "addt/um",          FP(0x16,0x160), BASE, ARG_FP },
1137  { "subt/um",          FP(0x16,0x161), BASE, ARG_FP },
1138  { "mult/um",          FP(0x16,0x162), BASE, ARG_FP },
1139  { "divt/um",          FP(0x16,0x163), BASE, ARG_FP },
1140  { "cvtts/um",         FP(0x16,0x16C), BASE, ARG_FPZ1 },
1141  { "cvttq/vm",         FP(0x16,0x16F), BASE, ARG_FPZ1 },
1142  { "adds/u",           FP(0x16,0x180), BASE, ARG_FP },
1143  { "subs/u",           FP(0x16,0x181), BASE, ARG_FP },
1144  { "muls/u",           FP(0x16,0x182), BASE, ARG_FP },
1145  { "divs/u",           FP(0x16,0x183), BASE, ARG_FP },
1146  { "addt/u",           FP(0x16,0x1A0), BASE, ARG_FP },
1147  { "subt/u",           FP(0x16,0x1A1), BASE, ARG_FP },
1148  { "mult/u",           FP(0x16,0x1A2), BASE, ARG_FP },
1149  { "divt/u",           FP(0x16,0x1A3), BASE, ARG_FP },
1150  { "cvtts/u",          FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1151  { "cvttq/v",          FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1152  { "adds/ud",          FP(0x16,0x1C0), BASE, ARG_FP },
1153  { "subs/ud",          FP(0x16,0x1C1), BASE, ARG_FP },
1154  { "muls/ud",          FP(0x16,0x1C2), BASE, ARG_FP },
1155  { "divs/ud",          FP(0x16,0x1C3), BASE, ARG_FP },
1156  { "addt/ud",          FP(0x16,0x1E0), BASE, ARG_FP },
1157  { "subt/ud",          FP(0x16,0x1E1), BASE, ARG_FP },
1158  { "mult/ud",          FP(0x16,0x1E2), BASE, ARG_FP },
1159  { "divt/ud",          FP(0x16,0x1E3), BASE, ARG_FP },
1160  { "cvtts/ud",         FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1161  { "cvttq/vd",         FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1162  { "cvtst",            FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1163  { "adds/suc",         FP(0x16,0x500), BASE, ARG_FP },
1164  { "subs/suc",         FP(0x16,0x501), BASE, ARG_FP },
1165  { "muls/suc",         FP(0x16,0x502), BASE, ARG_FP },
1166  { "divs/suc",         FP(0x16,0x503), BASE, ARG_FP },
1167  { "addt/suc",         FP(0x16,0x520), BASE, ARG_FP },
1168  { "subt/suc",         FP(0x16,0x521), BASE, ARG_FP },
1169  { "mult/suc",         FP(0x16,0x522), BASE, ARG_FP },
1170  { "divt/suc",         FP(0x16,0x523), BASE, ARG_FP },
1171  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1172  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1173  { "adds/sum",         FP(0x16,0x540), BASE, ARG_FP },
1174  { "subs/sum",         FP(0x16,0x541), BASE, ARG_FP },
1175  { "muls/sum",         FP(0x16,0x542), BASE, ARG_FP },
1176  { "divs/sum",         FP(0x16,0x543), BASE, ARG_FP },
1177  { "addt/sum",         FP(0x16,0x560), BASE, ARG_FP },
1178  { "subt/sum",         FP(0x16,0x561), BASE, ARG_FP },
1179  { "mult/sum",         FP(0x16,0x562), BASE, ARG_FP },
1180  { "divt/sum",         FP(0x16,0x563), BASE, ARG_FP },
1181  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1182  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1183  { "adds/su",          FP(0x16,0x580), BASE, ARG_FP },
1184  { "negs/su",          FP(0x16,0x581), BASE, ARG_FPZ1 },       /* pseudo */
1185  { "subs/su",          FP(0x16,0x581), BASE, ARG_FP },
1186  { "muls/su",          FP(0x16,0x582), BASE, ARG_FP },
1187  { "divs/su",          FP(0x16,0x583), BASE, ARG_FP },
1188  { "addt/su",          FP(0x16,0x5A0), BASE, ARG_FP },
1189  { "negt/su",          FP(0x16,0x5A1), BASE, ARG_FPZ1 },       /* pseudo */
1190  { "subt/su",          FP(0x16,0x5A1), BASE, ARG_FP },
1191  { "mult/su",          FP(0x16,0x5A2), BASE, ARG_FP },
1192  { "divt/su",          FP(0x16,0x5A3), BASE, ARG_FP },
1193  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1194  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1195  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1196  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1197  { "cvtts/su",         FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1198  { "cvttq/sv",         FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1199  { "adds/sud",         FP(0x16,0x5C0), BASE, ARG_FP },
1200  { "subs/sud",         FP(0x16,0x5C1), BASE, ARG_FP },
1201  { "muls/sud",         FP(0x16,0x5C2), BASE, ARG_FP },
1202  { "divs/sud",         FP(0x16,0x5C3), BASE, ARG_FP },
1203  { "addt/sud",         FP(0x16,0x5E0), BASE, ARG_FP },
1204  { "subt/sud",         FP(0x16,0x5E1), BASE, ARG_FP },
1205  { "mult/sud",         FP(0x16,0x5E2), BASE, ARG_FP },
1206  { "divt/sud",         FP(0x16,0x5E3), BASE, ARG_FP },
1207  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1208  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1209  { "cvtst/s",          FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1210  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1211  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1212  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1213  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1214  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1215  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1216  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1217  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1218  { "cvtts/suic",       FP(0x16,0x72C), BASE, ARG_FPZ1 },
1219  { "cvttq/svic",       FP(0x16,0x72F), BASE, ARG_FPZ1 },
1220  { "cvtqs/suic",       FP(0x16,0x73C), BASE, ARG_FPZ1 },
1221  { "cvtqt/suic",       FP(0x16,0x73E), BASE, ARG_FPZ1 },
1222  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1223  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1224  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1225  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1226  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1227  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1228  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1229  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1230  { "cvtts/suim",       FP(0x16,0x76C), BASE, ARG_FPZ1 },
1231  { "cvttq/svim",       FP(0x16,0x76F), BASE, ARG_FPZ1 },
1232  { "cvtqs/suim",       FP(0x16,0x77C), BASE, ARG_FPZ1 },
1233  { "cvtqt/suim",       FP(0x16,0x77E), BASE, ARG_FPZ1 },
1234  { "adds/sui",         FP(0x16,0x780), BASE, ARG_FP },
1235  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },       /* pseudo */
1236  { "subs/sui",         FP(0x16,0x781), BASE, ARG_FP },
1237  { "muls/sui",         FP(0x16,0x782), BASE, ARG_FP },
1238  { "divs/sui",         FP(0x16,0x783), BASE, ARG_FP },
1239  { "addt/sui",         FP(0x16,0x7A0), BASE, ARG_FP },
1240  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },       /* pseudo */
1241  { "subt/sui",         FP(0x16,0x7A1), BASE, ARG_FP },
1242  { "mult/sui",         FP(0x16,0x7A2), BASE, ARG_FP },
1243  { "divt/sui",         FP(0x16,0x7A3), BASE, ARG_FP },
1244  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1245  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1246  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1247  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1248  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1249  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1250  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1251  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1252  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1253  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1254  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1255  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1256  { "cvtts/suid",       FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1257  { "cvttq/svid",       FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1258  { "cvtqs/suid",       FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1259  { "cvtqt/suid",       FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1260
1261  { "cvtlq",            FP(0x17,0x010), BASE, ARG_FPZ1 },
1262  { "fnop",             FP(0x17,0x020), BASE, { ZA, ZB, ZC } }, /* pseudo */
1263  { "fclr",             FP(0x17,0x020), BASE, { ZA, ZB, FC } }, /* pseudo */
1264  { "fabs",             FP(0x17,0x020), BASE, ARG_FPZ1 },       /* pseudo */
1265  { "fmov",             FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1266  { "cpys",             FP(0x17,0x020), BASE, ARG_FP },
1267  { "fneg",             FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1268  { "cpysn",            FP(0x17,0x021), BASE, ARG_FP },
1269  { "cpyse",            FP(0x17,0x022), BASE, ARG_FP },
1270  { "mt_fpcr",          FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1271  { "mf_fpcr",          FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1272  { "fcmoveq",          FP(0x17,0x02A), BASE, ARG_FP },
1273  { "fcmovne",          FP(0x17,0x02B), BASE, ARG_FP },
1274  { "fcmovlt",          FP(0x17,0x02C), BASE, ARG_FP },
1275  { "fcmovge",          FP(0x17,0x02D), BASE, ARG_FP },
1276  { "fcmovle",          FP(0x17,0x02E), BASE, ARG_FP },
1277  { "fcmovgt",          FP(0x17,0x02F), BASE, ARG_FP },
1278  { "cvtql",            FP(0x17,0x030), BASE, ARG_FPZ1 },
1279  { "cvtql/v",          FP(0x17,0x130), BASE, ARG_FPZ1 },
1280  { "cvtql/sv",         FP(0x17,0x530), BASE, ARG_FPZ1 },
1281
1282  { "trapb",            MFC(0x18,0x0000), BASE, ARG_NONE },
1283  { "draint",           MFC(0x18,0x0000), BASE, ARG_NONE },     /* alias */
1284  { "excb",             MFC(0x18,0x0400), BASE, ARG_NONE },
1285  { "mb",               MFC(0x18,0x4000), BASE, ARG_NONE },
1286  { "wmb",              MFC(0x18,0x4400), BASE, ARG_NONE },
1287  { "fetch",            MFC(0x18,0x8000), BASE, { ZA, PRB } },
1288  { "fetch_m",          MFC(0x18,0xA000), BASE, { ZA, PRB } },
1289  { "rpcc",             MFC(0x18,0xC000), BASE, { RA } },
1290  { "rc",               MFC(0x18,0xE000), BASE, { RA } },
1291  { "ecb",              MFC(0x18,0xE800), BASE, { ZA, PRB } },  /* ev56 una */
1292  { "rs",               MFC(0x18,0xF000), BASE, { RA } },
1293  { "wh64",             MFC(0x18,0xF800), BASE, { ZA, PRB } },  /* ev56 una */
1294  { "wh64en",           MFC(0x18,0xFC00), BASE, { ZA, PRB } },  /* ev7 una */
1295
1296  { "hw_mfpr",          OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1297  { "hw_mfpr",          OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1298  { "hw_mfpr",          OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1299  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1300  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1301  { "hw_mfpr/ai",       OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1302  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1303  { "hw_mfpr/pi",       OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1304  { "hw_mfpr/pa",       OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1305  { "hw_mfpr/pai",      OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1306  { "pal19",            PCD(0x19), BASE, ARG_PCD },
1307
1308  { "jmp",              MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1309                        BASE, { ZA, CPRB } },
1310  { "jmp",              MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1311  { "jsr",              MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1312  { "ret",              MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1313                        0xFFFFFFFF, BASE, { 0 } },
1314  { "ret",              MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1315  { "jcr",              MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1316  { "jsr_coroutine",    MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1317
1318  { "hw_ldl",           EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1319  { "hw_ldl",           EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1320  { "hw_ldl",           EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1321  { "hw_ldl/a",         EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1322  { "hw_ldl/a",         EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1323  { "hw_ldl/a",         EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1324  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1325  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1326  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1327  { "hw_ldl/avl",       EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1328  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1329  { "hw_ldl/awl",       EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1330  { "hw_ldl/awv",       EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1331  { "hw_ldl/awvl",      EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1332  { "hw_ldl/l",         EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1333  { "hw_ldl/p",         EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1334  { "hw_ldl/p",         EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1335  { "hw_ldl/p",         EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1336  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1337  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1338  { "hw_ldl/pal",       EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1339  { "hw_ldl/par",       EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1340  { "hw_ldl/pav",       EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1341  { "hw_ldl/pavl",      EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1342  { "hw_ldl/paw",       EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1343  { "hw_ldl/pawl",      EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1344  { "hw_ldl/pawv",      EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1345  { "hw_ldl/pawvl",     EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1346  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1347  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1348  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1349  { "hw_ldl/pvl",       EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1350  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1351  { "hw_ldl/pwl",       EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1352  { "hw_ldl/pwv",       EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1353  { "hw_ldl/pwvl",      EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1354  { "hw_ldl/r",         EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1355  { "hw_ldl/v",         EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1356  { "hw_ldl/v",         EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1357  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1358  { "hw_ldl/w",         EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1359  { "hw_ldl/w",         EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1360  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1361  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1362  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1363  { "hw_ldl/wvl",       EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1364  { "hw_ldl_l",         EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1365  { "hw_ldl_l/a",       EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1366  { "hw_ldl_l/av",      EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1367  { "hw_ldl_l/aw",      EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1368  { "hw_ldl_l/awv",     EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1369  { "hw_ldl_l/p",       EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1370  { "hw_ldl_l/p",       EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1371  { "hw_ldl_l/pa",      EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1372  { "hw_ldl_l/pav",     EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1373  { "hw_ldl_l/paw",     EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1374  { "hw_ldl_l/pawv",    EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1375  { "hw_ldl_l/pv",      EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1376  { "hw_ldl_l/pw",      EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1377  { "hw_ldl_l/pwv",     EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1378  { "hw_ldl_l/v",       EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1379  { "hw_ldl_l/w",       EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1380  { "hw_ldl_l/wv",      EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1381  { "hw_ldq",           EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1382  { "hw_ldq",           EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1383  { "hw_ldq",           EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1384  { "hw_ldq/a",         EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1385  { "hw_ldq/a",         EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1386  { "hw_ldq/a",         EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1387  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1388  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1389  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1390  { "hw_ldq/avl",       EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1391  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1392  { "hw_ldq/awl",       EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1393  { "hw_ldq/awv",       EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1394  { "hw_ldq/awvl",      EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1395  { "hw_ldq/l",         EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1396  { "hw_ldq/p",         EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1397  { "hw_ldq/p",         EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1398  { "hw_ldq/p",         EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1399  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1400  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1401  { "hw_ldq/pal",       EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1402  { "hw_ldq/par",       EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1403  { "hw_ldq/pav",       EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1404  { "hw_ldq/pavl",      EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1405  { "hw_ldq/paw",       EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1406  { "hw_ldq/pawl",      EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1407  { "hw_ldq/pawv",      EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1408  { "hw_ldq/pawvl",     EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1409  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1410  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1411  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1412  { "hw_ldq/pvl",       EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1413  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1414  { "hw_ldq/pwl",       EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1415  { "hw_ldq/pwv",       EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1416  { "hw_ldq/pwvl",      EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1417  { "hw_ldq/r",         EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1418  { "hw_ldq/v",         EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1419  { "hw_ldq/v",         EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1420  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1421  { "hw_ldq/w",         EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1422  { "hw_ldq/w",         EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1423  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1424  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1425  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1426  { "hw_ldq/wvl",       EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1427  { "hw_ldq_l",         EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1428  { "hw_ldq_l/a",       EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1429  { "hw_ldq_l/av",      EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1430  { "hw_ldq_l/aw",      EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1431  { "hw_ldq_l/awv",     EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1432  { "hw_ldq_l/p",       EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1433  { "hw_ldq_l/p",       EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1434  { "hw_ldq_l/pa",      EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1435  { "hw_ldq_l/pav",     EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1436  { "hw_ldq_l/paw",     EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1437  { "hw_ldq_l/pawv",    EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1438  { "hw_ldq_l/pv",      EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1439  { "hw_ldq_l/pw",      EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1440  { "hw_ldq_l/pwv",     EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1441  { "hw_ldq_l/v",       EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1442  { "hw_ldq_l/w",       EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1443  { "hw_ldq_l/wv",      EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1444  { "hw_ld",            EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1445  { "hw_ld",            EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1446  { "hw_ld/a",          EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1447  { "hw_ld/a",          EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1448  { "hw_ld/al",         EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1449  { "hw_ld/aq",         EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1450  { "hw_ld/aq",         EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1451  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1452  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1453  { "hw_ld/aqvl",       EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1454  { "hw_ld/ar",         EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1455  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1456  { "hw_ld/av",         EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1457  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1458  { "hw_ld/aw",         EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1459  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1460  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1461  { "hw_ld/awql",       EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1462  { "hw_ld/awqv",       EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1463  { "hw_ld/awqvl",      EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1464  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1465  { "hw_ld/awvl",       EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1466  { "hw_ld/l",          EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1467  { "hw_ld/p",          EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1468  { "hw_ld/p",          EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1469  { "hw_ld/pa",         EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1470  { "hw_ld/pa",         EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1471  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1472  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1473  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1474  { "hw_ld/paql",       EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1475  { "hw_ld/paqv",       EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1476  { "hw_ld/paqvl",      EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1477  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1478  { "hw_ld/parq",       EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1479  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1480  { "hw_ld/pavl",       EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1481  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1482  { "hw_ld/pawl",       EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1483  { "hw_ld/pawq",       EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1484  { "hw_ld/pawql",      EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1485  { "hw_ld/pawqv",      EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1486  { "hw_ld/pawqvl",     EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1487  { "hw_ld/pawv",       EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1488  { "hw_ld/pawvl",      EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1489  { "hw_ld/pl",         EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1490  { "hw_ld/pq",         EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1491  { "hw_ld/pq",         EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1492  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1493  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1494  { "hw_ld/pqvl",       EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1495  { "hw_ld/pr",         EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1496  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1497  { "hw_ld/pv",         EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1498  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1499  { "hw_ld/pw",         EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1500  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1501  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1502  { "hw_ld/pwql",       EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1503  { "hw_ld/pwqv",       EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1504  { "hw_ld/pwqvl",      EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1505  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1506  { "hw_ld/pwvl",       EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1507  { "hw_ld/q",          EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1508  { "hw_ld/q",          EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1509  { "hw_ld/ql",         EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1510  { "hw_ld/qv",         EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1511  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1512  { "hw_ld/r",          EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1513  { "hw_ld/rq",         EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1514  { "hw_ld/v",          EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1515  { "hw_ld/vl",         EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1516  { "hw_ld/w",          EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1517  { "hw_ld/wl",         EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1518  { "hw_ld/wq",         EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1519  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1520  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1521  { "hw_ld/wqvl",       EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1522  { "hw_ld/wv",         EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1523  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1524  { "pal1b",            PCD(0x1B), BASE, ARG_PCD },
1525
1526  { "sextb",            OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1527  { "sextw",            OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1528  { "ctpop",            OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1529  { "perr",             OPR(0x1C, 0x31), MAX, ARG_OPR },
1530  { "ctlz",             OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1531  { "cttz",             OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1532  { "unpkbw",           OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1533  { "unpkbl",           OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1534  { "pkwb",             OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1535  { "pklb",             OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1536  { "minsb8",           OPR(0x1C, 0x38), MAX, ARG_OPR },
1537  { "minsb8",           OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1538  { "minsw4",           OPR(0x1C, 0x39), MAX, ARG_OPR },
1539  { "minsw4",           OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1540  { "minub8",           OPR(0x1C, 0x3A), MAX, ARG_OPR },
1541  { "minub8",           OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1542  { "minuw4",           OPR(0x1C, 0x3B), MAX, ARG_OPR },
1543  { "minuw4",           OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1544  { "maxub8",           OPR(0x1C, 0x3C), MAX, ARG_OPR },
1545  { "maxub8",           OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1546  { "maxuw4",           OPR(0x1C, 0x3D), MAX, ARG_OPR },
1547  { "maxuw4",           OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1548  { "maxsb8",           OPR(0x1C, 0x3E), MAX, ARG_OPR },
1549  { "maxsb8",           OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1550  { "maxsw4",           OPR(0x1C, 0x3F), MAX, ARG_OPR },
1551  { "maxsw4",           OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1552  { "ftoit",            FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1553  { "ftois",            FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1554
1555  { "hw_mtpr",          OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1556  { "hw_mtpr",          OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1557  { "hw_mtpr",          OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1558  { "hw_mtpr/i",        OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1559  { "hw_mtpr/a",        OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1560  { "hw_mtpr/ai",       OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1561  { "hw_mtpr/p",        OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1562  { "hw_mtpr/pi",       OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1563  { "hw_mtpr/pa",       OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1564  { "hw_mtpr/pai",      OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1565  { "pal1d",            PCD(0x1D), BASE, ARG_PCD },
1566
1567  { "hw_rei",           SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1568  { "hw_rei_stall",     SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1569  { "hw_jmp",           EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1570  { "hw_jsr",           EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571  { "hw_ret",           EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1572  { "hw_jcr",           EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1573  { "hw_coroutine",     EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1574  { "hw_jmp/stall",     EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1575  { "hw_jsr/stall",     EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1576  { "hw_ret/stall",     EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1577  { "hw_jcr/stall",     EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1578  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1579  { "pal1e",            PCD(0x1E), BASE, ARG_PCD },
1580
1581  { "hw_stl",           EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1582  { "hw_stl",           EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1583  { "hw_stl",           EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1584  { "hw_stl/a",         EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1585  { "hw_stl/a",         EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1586  { "hw_stl/a",         EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1587  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1588  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1589  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1590  { "hw_stl/avc",       EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1591  { "hw_stl/c",         EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1592  { "hw_stl/p",         EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1593  { "hw_stl/p",         EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1594  { "hw_stl/p",         EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1595  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1596  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1597  { "hw_stl/pac",       EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1598  { "hw_stl/pav",       EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1599  { "hw_stl/pavc",      EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1600  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1601  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1602  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1603  { "hw_stl/pvc",       EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1604  { "hw_stl/r",         EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1605  { "hw_stl/v",         EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1606  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1607  { "hw_stl_c",         EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1608  { "hw_stl_c/a",       EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1609  { "hw_stl_c/av",      EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1610  { "hw_stl_c/p",       EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1611  { "hw_stl_c/p",       EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1612  { "hw_stl_c/pa",      EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1613  { "hw_stl_c/pav",     EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1614  { "hw_stl_c/pv",      EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1615  { "hw_stl_c/v",       EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1616  { "hw_stq",           EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1617  { "hw_stq",           EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1618  { "hw_stq",           EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1619  { "hw_stq/a",         EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1620  { "hw_stq/a",         EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1621  { "hw_stq/a",         EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1622  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1623  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1624  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1625  { "hw_stq/avc",       EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1626  { "hw_stq/c",         EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1627  { "hw_stq/p",         EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1628  { "hw_stq/p",         EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1629  { "hw_stq/p",         EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1630  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1631  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1632  { "hw_stq/pac",       EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1633  { "hw_stq/par",       EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1634  { "hw_stq/par",       EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1635  { "hw_stq/pav",       EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1636  { "hw_stq/pavc",      EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1637  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1638  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1639  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1640  { "hw_stq/pvc",       EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1641  { "hw_stq/r",         EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1642  { "hw_stq/v",         EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1643  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1644  { "hw_stq_c",         EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1645  { "hw_stq_c/a",       EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1646  { "hw_stq_c/av",      EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1647  { "hw_stq_c/p",       EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1648  { "hw_stq_c/p",       EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1649  { "hw_stq_c/pa",      EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1650  { "hw_stq_c/pav",     EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1651  { "hw_stq_c/pv",      EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1652  { "hw_stq_c/v",       EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1653  { "hw_st",            EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1654  { "hw_st",            EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1655  { "hw_st/a",          EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1656  { "hw_st/a",          EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1657  { "hw_st/ac",         EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1658  { "hw_st/aq",         EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1659  { "hw_st/aq",         EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1660  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1661  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1662  { "hw_st/aqvc",       EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1663  { "hw_st/ar",         EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1664  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1665  { "hw_st/av",         EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1666  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1667  { "hw_st/c",          EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1668  { "hw_st/p",          EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1669  { "hw_st/p",          EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1670  { "hw_st/pa",         EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1671  { "hw_st/pa",         EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1672  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1673  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1674  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1675  { "hw_st/paqc",       EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1676  { "hw_st/paqv",       EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1677  { "hw_st/paqvc",      EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1678  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1679  { "hw_st/parq",       EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1680  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1681  { "hw_st/pavc",       EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1682  { "hw_st/pc",         EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1683  { "hw_st/pq",         EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1684  { "hw_st/pq",         EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1685  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1686  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1687  { "hw_st/pqvc",       EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1688  { "hw_st/pr",         EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1689  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1690  { "hw_st/pv",         EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1691  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1692  { "hw_st/q",          EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1693  { "hw_st/q",          EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1694  { "hw_st/qc",         EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1695  { "hw_st/qv",         EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1696  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1697  { "hw_st/r",          EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1698  { "hw_st/v",          EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1699  { "hw_st/vc",         EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1700  { "pal1f",            PCD(0x1F), BASE, ARG_PCD },
1701
1702  { "ldf",              MEM(0x20), BASE, ARG_FMEM },
1703  { "ldg",              MEM(0x21), BASE, ARG_FMEM },
1704  { "lds",              MEM(0x22), BASE, ARG_FMEM },
1705  { "ldt",              MEM(0x23), BASE, ARG_FMEM },
1706  { "stf",              MEM(0x24), BASE, ARG_FMEM },
1707  { "stg",              MEM(0x25), BASE, ARG_FMEM },
1708  { "sts",              MEM(0x26), BASE, ARG_FMEM },
1709  { "stt",              MEM(0x27), BASE, ARG_FMEM },
1710
1711  { "ldl",              MEM(0x28), BASE, ARG_MEM },
1712  { "ldq",              MEM(0x29), BASE, ARG_MEM },
1713  { "ldl_l",            MEM(0x2A), BASE, ARG_MEM },
1714  { "ldq_l",            MEM(0x2B), BASE, ARG_MEM },
1715  { "stl",              MEM(0x2C), BASE, ARG_MEM },
1716  { "stq",              MEM(0x2D), BASE, ARG_MEM },
1717  { "stl_c",            MEM(0x2E), BASE, ARG_MEM },
1718  { "stq_c",            MEM(0x2F), BASE, ARG_MEM },
1719
1720  { "br",               BRA(0x30), BASE, { ZA, BDISP } },       /* pseudo */
1721  { "br",               BRA(0x30), BASE, ARG_BRA },
1722  { "fbeq",             BRA(0x31), BASE, ARG_FBRA },
1723  { "fblt",             BRA(0x32), BASE, ARG_FBRA },
1724  { "fble",             BRA(0x33), BASE, ARG_FBRA },
1725  { "bsr",              BRA(0x34), BASE, ARG_BRA },
1726  { "fbne",             BRA(0x35), BASE, ARG_FBRA },
1727  { "fbge",             BRA(0x36), BASE, ARG_FBRA },
1728  { "fbgt",             BRA(0x37), BASE, ARG_FBRA },
1729  { "blbc",             BRA(0x38), BASE, ARG_BRA },
1730  { "beq",              BRA(0x39), BASE, ARG_BRA },
1731  { "blt",              BRA(0x3A), BASE, ARG_BRA },
1732  { "ble",              BRA(0x3B), BASE, ARG_BRA },
1733  { "blbs",             BRA(0x3C), BASE, ARG_BRA },
1734  { "bne",              BRA(0x3D), BASE, ARG_BRA },
1735  { "bge",              BRA(0x3E), BASE, ARG_BRA },
1736  { "bgt",              BRA(0x3F), BASE, ARG_BRA },
1737};
1738
1739const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1740
1741/* OSF register names.  */
1742
1743static const char * const osf_regnames[64] = {
1744  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1745  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1746  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1747  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1748  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1749  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1750  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1751  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1752};
1753
1754/* VMS register names.  */
1755
1756static const char * const vms_regnames[64] = {
1757  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1758  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1759  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1760  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1761  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1762  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1763  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1764  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1765};
1766
1767/* Disassemble Alpha instructions.  */
1768
1769int
1770print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1771{
1772  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1773  const char * const * regnames;
1774  const struct alpha_opcode *opcode, *opcode_end;
1775  const unsigned char *opindex;
1776  unsigned insn, op, isa_mask;
1777  int need_comma;
1778
1779  /* Initialize the majorop table the first time through */
1780  if (!opcode_index[0])
1781    {
1782      opcode = alpha_opcodes;
1783      opcode_end = opcode + alpha_num_opcodes;
1784
1785      for (op = 0; op < AXP_NOPS; ++op)
1786        {
1787          opcode_index[op] = opcode;
1788          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1789            ++opcode;
1790        }
1791      opcode_index[op] = opcode;
1792    }
1793
1794  if (info->flavour == bfd_target_evax_flavour)
1795    regnames = vms_regnames;
1796  else
1797    regnames = osf_regnames;
1798
1799  isa_mask = AXP_OPCODE_NOPAL;
1800  switch (info->mach)
1801    {
1802    case bfd_mach_alpha_ev4:
1803      isa_mask |= AXP_OPCODE_EV4;
1804      break;
1805    case bfd_mach_alpha_ev5:
1806      isa_mask |= AXP_OPCODE_EV5;
1807      break;
1808    case bfd_mach_alpha_ev6:
1809      isa_mask |= AXP_OPCODE_EV6;
1810      break;
1811    }
1812
1813  /* Read the insn into a host word */
1814  {
1815    bfd_byte buffer[4];
1816    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1817    if (status != 0)
1818      {
1819        (*info->memory_error_func) (status, memaddr, info);
1820        return -1;
1821      }
1822    insn = bfd_getl32 (buffer);
1823  }
1824
1825  /* Get the major opcode of the instruction.  */
1826  op = AXP_OP (insn);
1827
1828  /* Find the first match in the opcode table.  */
1829  opcode_end = opcode_index[op + 1];
1830  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1831    {
1832      if ((insn ^ opcode->opcode) & opcode->mask)
1833        continue;
1834
1835      if (!(opcode->flags & isa_mask))
1836        continue;
1837
1838      /* Make two passes over the operands.  First see if any of them
1839         have extraction functions, and, if they do, make sure the
1840         instruction is valid.  */
1841      {
1842        int invalid = 0;
1843        for (opindex = opcode->operands; *opindex != 0; opindex++)
1844          {
1845            const struct alpha_operand *operand = alpha_operands + *opindex;
1846            if (operand->extract)
1847              (*operand->extract) (insn, &invalid);
1848          }
1849        if (invalid)
1850          continue;
1851      }
1852
1853      /* The instruction is valid.  */
1854      goto found;
1855    }
1856
1857  /* No instruction found */
1858  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1859
1860  return 4;
1861
1862found:
1863  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1864  if (opcode->operands[0] != 0)
1865    (*info->fprintf_func) (info->stream, "\t");
1866
1867  /* Now extract and print the operands.  */
1868  need_comma = 0;
1869  for (opindex = opcode->operands; *opindex != 0; opindex++)
1870    {
1871      const struct alpha_operand *operand = alpha_operands + *opindex;
1872      int value;
1873
1874      /* Operands that are marked FAKE are simply ignored.  We
1875         already made sure that the extract function considered
1876         the instruction to be valid.  */
1877      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1878        continue;
1879
1880      /* Extract the value from the instruction.  */
1881      if (operand->extract)
1882        value = (*operand->extract) (insn, (int *) NULL);
1883      else
1884        {
1885          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1886          if (operand->flags & AXP_OPERAND_SIGNED)
1887            {
1888              int signbit = 1 << (operand->bits - 1);
1889              value = (value ^ signbit) - signbit;
1890            }
1891        }
1892
1893      if (need_comma &&
1894          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1895           != AXP_OPERAND_PARENS))
1896        {
1897          (*info->fprintf_func) (info->stream, ",");
1898        }
1899      if (operand->flags & AXP_OPERAND_PARENS)
1900        (*info->fprintf_func) (info->stream, "(");
1901
1902      /* Print the operand as directed by the flags.  */
1903      if (operand->flags & AXP_OPERAND_IR)
1904        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1905      else if (operand->flags & AXP_OPERAND_FPR)
1906        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1907      else if (operand->flags & AXP_OPERAND_RELATIVE)
1908        (*info->print_address_func) (memaddr + 4 + value, info);
1909      else if (operand->flags & AXP_OPERAND_SIGNED)
1910        (*info->fprintf_func) (info->stream, "%d", value);
1911      else
1912        (*info->fprintf_func) (info->stream, "%#x", value);
1913
1914      if (operand->flags & AXP_OPERAND_PARENS)
1915        (*info->fprintf_func) (info->stream, ")");
1916      need_comma = 1;
1917    }
1918
1919  return 4;
1920}
1921