qemu/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ALL_H
  20#define CPU_ALL_H
  21
  22#include "qemu-common.h"
  23#include "cpu-common.h"
  24
  25/* some important defines:
  26 *
  27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
  28 * memory accesses.
  29 *
  30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
  31 * otherwise little endian.
  32 *
  33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
  34 *
  35 * TARGET_WORDS_BIGENDIAN : same for target cpu
  36 */
  37
  38#include "softfloat.h"
  39
  40#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
  41#define BSWAP_NEEDED
  42#endif
  43
  44#ifdef BSWAP_NEEDED
  45
  46static inline uint16_t tswap16(uint16_t s)
  47{
  48    return bswap16(s);
  49}
  50
  51static inline uint32_t tswap32(uint32_t s)
  52{
  53    return bswap32(s);
  54}
  55
  56static inline uint64_t tswap64(uint64_t s)
  57{
  58    return bswap64(s);
  59}
  60
  61static inline void tswap16s(uint16_t *s)
  62{
  63    *s = bswap16(*s);
  64}
  65
  66static inline void tswap32s(uint32_t *s)
  67{
  68    *s = bswap32(*s);
  69}
  70
  71static inline void tswap64s(uint64_t *s)
  72{
  73    *s = bswap64(*s);
  74}
  75
  76#else
  77
  78static inline uint16_t tswap16(uint16_t s)
  79{
  80    return s;
  81}
  82
  83static inline uint32_t tswap32(uint32_t s)
  84{
  85    return s;
  86}
  87
  88static inline uint64_t tswap64(uint64_t s)
  89{
  90    return s;
  91}
  92
  93static inline void tswap16s(uint16_t *s)
  94{
  95}
  96
  97static inline void tswap32s(uint32_t *s)
  98{
  99}
 100
 101static inline void tswap64s(uint64_t *s)
 102{
 103}
 104
 105#endif
 106
 107#if TARGET_LONG_SIZE == 4
 108#define tswapl(s) tswap32(s)
 109#define tswapls(s) tswap32s((uint32_t *)(s))
 110#define bswaptls(s) bswap32s(s)
 111#else
 112#define tswapl(s) tswap64(s)
 113#define tswapls(s) tswap64s((uint64_t *)(s))
 114#define bswaptls(s) bswap64s(s)
 115#endif
 116
 117typedef union {
 118    float32 f;
 119    uint32_t l;
 120} CPU_FloatU;
 121
 122/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
 123   endian ! */
 124typedef union {
 125    float64 d;
 126#if defined(HOST_WORDS_BIGENDIAN)
 127    struct {
 128        uint32_t upper;
 129        uint32_t lower;
 130    } l;
 131#else
 132    struct {
 133        uint32_t lower;
 134        uint32_t upper;
 135    } l;
 136#endif
 137    uint64_t ll;
 138} CPU_DoubleU;
 139
 140typedef union {
 141     floatx80 d;
 142     struct {
 143         uint64_t lower;
 144         uint16_t upper;
 145     } l;
 146} CPU_LDoubleU;
 147
 148typedef union {
 149    float128 q;
 150#if defined(HOST_WORDS_BIGENDIAN)
 151    struct {
 152        uint32_t upmost;
 153        uint32_t upper;
 154        uint32_t lower;
 155        uint32_t lowest;
 156    } l;
 157    struct {
 158        uint64_t upper;
 159        uint64_t lower;
 160    } ll;
 161#else
 162    struct {
 163        uint32_t lowest;
 164        uint32_t lower;
 165        uint32_t upper;
 166        uint32_t upmost;
 167    } l;
 168    struct {
 169        uint64_t lower;
 170        uint64_t upper;
 171    } ll;
 172#endif
 173} CPU_QuadU;
 174
 175/* CPU memory access without any memory or io remapping */
 176
 177/*
 178 * the generic syntax for the memory accesses is:
 179 *
 180 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 181 *
 182 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 183 *
 184 * type is:
 185 * (empty): integer access
 186 *   f    : float access
 187 *
 188 * sign is:
 189 * (empty): for floats or 32 bit size
 190 *   u    : unsigned
 191 *   s    : signed
 192 *
 193 * size is:
 194 *   b: 8 bits
 195 *   w: 16 bits
 196 *   l: 32 bits
 197 *   q: 64 bits
 198 *
 199 * endian is:
 200 * (empty): target cpu endianness or 8 bit access
 201 *   r    : reversed target cpu endianness (not implemented yet)
 202 *   be   : big endian (not implemented yet)
 203 *   le   : little endian (not implemented yet)
 204 *
 205 * access_type is:
 206 *   raw    : host memory access
 207 *   user   : user mode access using soft MMU
 208 *   kernel : kernel mode access using soft MMU
 209 */
 210static inline int ldub_p(const void *ptr)
 211{
 212    return *(uint8_t *)ptr;
 213}
 214
 215static inline int ldsb_p(const void *ptr)
 216{
 217    return *(int8_t *)ptr;
 218}
 219
 220static inline void stb_p(void *ptr, int v)
 221{
 222    *(uint8_t *)ptr = v;
 223}
 224
 225/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
 226   kernel handles unaligned load/stores may give better results, but
 227   it is a system wide setting : bad */
 228#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 229
 230/* conservative code for little endian unaligned accesses */
 231static inline int lduw_le_p(const void *ptr)
 232{
 233#ifdef _ARCH_PPC
 234    int val;
 235    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 236    return val;
 237#else
 238    const uint8_t *p = ptr;
 239    return p[0] | (p[1] << 8);
 240#endif
 241}
 242
 243static inline int ldsw_le_p(const void *ptr)
 244{
 245#ifdef _ARCH_PPC
 246    int val;
 247    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 248    return (int16_t)val;
 249#else
 250    const uint8_t *p = ptr;
 251    return (int16_t)(p[0] | (p[1] << 8));
 252#endif
 253}
 254
 255static inline int ldl_le_p(const void *ptr)
 256{
 257#ifdef _ARCH_PPC
 258    int val;
 259    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 260    return val;
 261#else
 262    const uint8_t *p = ptr;
 263    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
 264#endif
 265}
 266
 267static inline uint64_t ldq_le_p(const void *ptr)
 268{
 269    const uint8_t *p = ptr;
 270    uint32_t v1, v2;
 271    v1 = ldl_le_p(p);
 272    v2 = ldl_le_p(p + 4);
 273    return v1 | ((uint64_t)v2 << 32);
 274}
 275
 276static inline void stw_le_p(void *ptr, int v)
 277{
 278#ifdef _ARCH_PPC
 279    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
 280#else
 281    uint8_t *p = ptr;
 282    p[0] = v;
 283    p[1] = v >> 8;
 284#endif
 285}
 286
 287static inline void stl_le_p(void *ptr, int v)
 288{
 289#ifdef _ARCH_PPC
 290    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
 291#else
 292    uint8_t *p = ptr;
 293    p[0] = v;
 294    p[1] = v >> 8;
 295    p[2] = v >> 16;
 296    p[3] = v >> 24;
 297#endif
 298}
 299
 300static inline void stq_le_p(void *ptr, uint64_t v)
 301{
 302    uint8_t *p = ptr;
 303    stl_le_p(p, (uint32_t)v);
 304    stl_le_p(p + 4, v >> 32);
 305}
 306
 307/* float access */
 308
 309static inline float32 ldfl_le_p(const void *ptr)
 310{
 311    union {
 312        float32 f;
 313        uint32_t i;
 314    } u;
 315    u.i = ldl_le_p(ptr);
 316    return u.f;
 317}
 318
 319static inline void stfl_le_p(void *ptr, float32 v)
 320{
 321    union {
 322        float32 f;
 323        uint32_t i;
 324    } u;
 325    u.f = v;
 326    stl_le_p(ptr, u.i);
 327}
 328
 329static inline float64 ldfq_le_p(const void *ptr)
 330{
 331    CPU_DoubleU u;
 332    u.l.lower = ldl_le_p(ptr);
 333    u.l.upper = ldl_le_p(ptr + 4);
 334    return u.d;
 335}
 336
 337static inline void stfq_le_p(void *ptr, float64 v)
 338{
 339    CPU_DoubleU u;
 340    u.d = v;
 341    stl_le_p(ptr, u.l.lower);
 342    stl_le_p(ptr + 4, u.l.upper);
 343}
 344
 345#else
 346
 347static inline int lduw_le_p(const void *ptr)
 348{
 349    return *(uint16_t *)ptr;
 350}
 351
 352static inline int ldsw_le_p(const void *ptr)
 353{
 354    return *(int16_t *)ptr;
 355}
 356
 357static inline int ldl_le_p(const void *ptr)
 358{
 359    return *(uint32_t *)ptr;
 360}
 361
 362static inline uint64_t ldq_le_p(const void *ptr)
 363{
 364    return *(uint64_t *)ptr;
 365}
 366
 367static inline void stw_le_p(void *ptr, int v)
 368{
 369    *(uint16_t *)ptr = v;
 370}
 371
 372static inline void stl_le_p(void *ptr, int v)
 373{
 374    *(uint32_t *)ptr = v;
 375}
 376
 377static inline void stq_le_p(void *ptr, uint64_t v)
 378{
 379    *(uint64_t *)ptr = v;
 380}
 381
 382/* float access */
 383
 384static inline float32 ldfl_le_p(const void *ptr)
 385{
 386    return *(float32 *)ptr;
 387}
 388
 389static inline float64 ldfq_le_p(const void *ptr)
 390{
 391    return *(float64 *)ptr;
 392}
 393
 394static inline void stfl_le_p(void *ptr, float32 v)
 395{
 396    *(float32 *)ptr = v;
 397}
 398
 399static inline void stfq_le_p(void *ptr, float64 v)
 400{
 401    *(float64 *)ptr = v;
 402}
 403#endif
 404
 405#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 406
 407static inline int lduw_be_p(const void *ptr)
 408{
 409#if defined(__i386__)
 410    int val;
 411    asm volatile ("movzwl %1, %0\n"
 412                  "xchgb %b0, %h0\n"
 413                  : "=q" (val)
 414                  : "m" (*(uint16_t *)ptr));
 415    return val;
 416#else
 417    const uint8_t *b = ptr;
 418    return ((b[0] << 8) | b[1]);
 419#endif
 420}
 421
 422static inline int ldsw_be_p(const void *ptr)
 423{
 424#if defined(__i386__)
 425    int val;
 426    asm volatile ("movzwl %1, %0\n"
 427                  "xchgb %b0, %h0\n"
 428                  : "=q" (val)
 429                  : "m" (*(uint16_t *)ptr));
 430    return (int16_t)val;
 431#else
 432    const uint8_t *b = ptr;
 433    return (int16_t)((b[0] << 8) | b[1]);
 434#endif
 435}
 436
 437static inline int ldl_be_p(const void *ptr)
 438{
 439#if defined(__i386__) || defined(__x86_64__)
 440    int val;
 441    asm volatile ("movl %1, %0\n"
 442                  "bswap %0\n"
 443                  : "=r" (val)
 444                  : "m" (*(uint32_t *)ptr));
 445    return val;
 446#else
 447    const uint8_t *b = ptr;
 448    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
 449#endif
 450}
 451
 452static inline uint64_t ldq_be_p(const void *ptr)
 453{
 454    uint32_t a,b;
 455    a = ldl_be_p(ptr);
 456    b = ldl_be_p((uint8_t *)ptr + 4);
 457    return (((uint64_t)a<<32)|b);
 458}
 459
 460static inline void stw_be_p(void *ptr, int v)
 461{
 462#if defined(__i386__)
 463    asm volatile ("xchgb %b0, %h0\n"
 464                  "movw %w0, %1\n"
 465                  : "=q" (v)
 466                  : "m" (*(uint16_t *)ptr), "0" (v));
 467#else
 468    uint8_t *d = (uint8_t *) ptr;
 469    d[0] = v >> 8;
 470    d[1] = v;
 471#endif
 472}
 473
 474static inline void stl_be_p(void *ptr, int v)
 475{
 476#if defined(__i386__) || defined(__x86_64__)
 477    asm volatile ("bswap %0\n"
 478                  "movl %0, %1\n"
 479                  : "=r" (v)
 480                  : "m" (*(uint32_t *)ptr), "0" (v));
 481#else
 482    uint8_t *d = (uint8_t *) ptr;
 483    d[0] = v >> 24;
 484    d[1] = v >> 16;
 485    d[2] = v >> 8;
 486    d[3] = v;
 487#endif
 488}
 489
 490static inline void stq_be_p(void *ptr, uint64_t v)
 491{
 492    stl_be_p(ptr, v >> 32);
 493    stl_be_p((uint8_t *)ptr + 4, v);
 494}
 495
 496/* float access */
 497
 498static inline float32 ldfl_be_p(const void *ptr)
 499{
 500    union {
 501        float32 f;
 502        uint32_t i;
 503    } u;
 504    u.i = ldl_be_p(ptr);
 505    return u.f;
 506}
 507
 508static inline void stfl_be_p(void *ptr, float32 v)
 509{
 510    union {
 511        float32 f;
 512        uint32_t i;
 513    } u;
 514    u.f = v;
 515    stl_be_p(ptr, u.i);
 516}
 517
 518static inline float64 ldfq_be_p(const void *ptr)
 519{
 520    CPU_DoubleU u;
 521    u.l.upper = ldl_be_p(ptr);
 522    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
 523    return u.d;
 524}
 525
 526static inline void stfq_be_p(void *ptr, float64 v)
 527{
 528    CPU_DoubleU u;
 529    u.d = v;
 530    stl_be_p(ptr, u.l.upper);
 531    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
 532}
 533
 534#else
 535
 536static inline int lduw_be_p(const void *ptr)
 537{
 538    return *(uint16_t *)ptr;
 539}
 540
 541static inline int ldsw_be_p(const void *ptr)
 542{
 543    return *(int16_t *)ptr;
 544}
 545
 546static inline int ldl_be_p(const void *ptr)
 547{
 548    return *(uint32_t *)ptr;
 549}
 550
 551static inline uint64_t ldq_be_p(const void *ptr)
 552{
 553    return *(uint64_t *)ptr;
 554}
 555
 556static inline void stw_be_p(void *ptr, int v)
 557{
 558    *(uint16_t *)ptr = v;
 559}
 560
 561static inline void stl_be_p(void *ptr, int v)
 562{
 563    *(uint32_t *)ptr = v;
 564}
 565
 566static inline void stq_be_p(void *ptr, uint64_t v)
 567{
 568    *(uint64_t *)ptr = v;
 569}
 570
 571/* float access */
 572
 573static inline float32 ldfl_be_p(const void *ptr)
 574{
 575    return *(float32 *)ptr;
 576}
 577
 578static inline float64 ldfq_be_p(const void *ptr)
 579{
 580    return *(float64 *)ptr;
 581}
 582
 583static inline void stfl_be_p(void *ptr, float32 v)
 584{
 585    *(float32 *)ptr = v;
 586}
 587
 588static inline void stfq_be_p(void *ptr, float64 v)
 589{
 590    *(float64 *)ptr = v;
 591}
 592
 593#endif
 594
 595/* target CPU memory access functions */
 596#if defined(TARGET_WORDS_BIGENDIAN)
 597#define lduw_p(p) lduw_be_p(p)
 598#define ldsw_p(p) ldsw_be_p(p)
 599#define ldl_p(p) ldl_be_p(p)
 600#define ldq_p(p) ldq_be_p(p)
 601#define ldfl_p(p) ldfl_be_p(p)
 602#define ldfq_p(p) ldfq_be_p(p)
 603#define stw_p(p, v) stw_be_p(p, v)
 604#define stl_p(p, v) stl_be_p(p, v)
 605#define stq_p(p, v) stq_be_p(p, v)
 606#define stfl_p(p, v) stfl_be_p(p, v)
 607#define stfq_p(p, v) stfq_be_p(p, v)
 608#else
 609#define lduw_p(p) lduw_le_p(p)
 610#define ldsw_p(p) ldsw_le_p(p)
 611#define ldl_p(p) ldl_le_p(p)
 612#define ldq_p(p) ldq_le_p(p)
 613#define ldfl_p(p) ldfl_le_p(p)
 614#define ldfq_p(p) ldfq_le_p(p)
 615#define stw_p(p, v) stw_le_p(p, v)
 616#define stl_p(p, v) stl_le_p(p, v)
 617#define stq_p(p, v) stq_le_p(p, v)
 618#define stfl_p(p, v) stfl_le_p(p, v)
 619#define stfq_p(p, v) stfq_le_p(p, v)
 620#endif
 621
 622/* MMU memory access macros */
 623
 624#if defined(CONFIG_USER_ONLY)
 625#include <assert.h>
 626#include "qemu-types.h"
 627
 628/* On some host systems the guest address space is reserved on the host.
 629 * This allows the guest address space to be offset to a convenient location.
 630 */
 631#if defined(CONFIG_USE_GUEST_BASE)
 632extern unsigned long guest_base;
 633extern int have_guest_base;
 634extern unsigned long reserved_va;
 635#define GUEST_BASE guest_base
 636#define RESERVED_VA reserved_va
 637#else
 638#define GUEST_BASE 0ul
 639#define RESERVED_VA 0ul
 640#endif
 641
 642/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
 643#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
 644
 645#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
 646#define h2g_valid(x) 1
 647#else
 648#define h2g_valid(x) ({ \
 649    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
 650    __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
 651})
 652#endif
 653
 654#define h2g(x) ({ \
 655    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
 656    /* Check if given address fits target address space */ \
 657    assert(h2g_valid(x)); \
 658    (abi_ulong)__ret; \
 659})
 660
 661#define saddr(x) g2h(x)
 662#define laddr(x) g2h(x)
 663
 664#else /* !CONFIG_USER_ONLY */
 665/* NOTE: we use double casts if pointers and target_ulong have
 666   different sizes */
 667#define saddr(x) (uint8_t *)(long)(x)
 668#define laddr(x) (uint8_t *)(long)(x)
 669#endif
 670
 671#define ldub_raw(p) ldub_p(laddr((p)))
 672#define ldsb_raw(p) ldsb_p(laddr((p)))
 673#define lduw_raw(p) lduw_p(laddr((p)))
 674#define ldsw_raw(p) ldsw_p(laddr((p)))
 675#define ldl_raw(p) ldl_p(laddr((p)))
 676#define ldq_raw(p) ldq_p(laddr((p)))
 677#define ldfl_raw(p) ldfl_p(laddr((p)))
 678#define ldfq_raw(p) ldfq_p(laddr((p)))
 679#define stb_raw(p, v) stb_p(saddr((p)), v)
 680#define stw_raw(p, v) stw_p(saddr((p)), v)
 681#define stl_raw(p, v) stl_p(saddr((p)), v)
 682#define stq_raw(p, v) stq_p(saddr((p)), v)
 683#define stfl_raw(p, v) stfl_p(saddr((p)), v)
 684#define stfq_raw(p, v) stfq_p(saddr((p)), v)
 685
 686
 687#if defined(CONFIG_USER_ONLY)
 688
 689/* if user mode, no other memory access functions */
 690#define ldub(p) ldub_raw(p)
 691#define ldsb(p) ldsb_raw(p)
 692#define lduw(p) lduw_raw(p)
 693#define ldsw(p) ldsw_raw(p)
 694#define ldl(p) ldl_raw(p)
 695#define ldq(p) ldq_raw(p)
 696#define ldfl(p) ldfl_raw(p)
 697#define ldfq(p) ldfq_raw(p)
 698#define stb(p, v) stb_raw(p, v)
 699#define stw(p, v) stw_raw(p, v)
 700#define stl(p, v) stl_raw(p, v)
 701#define stq(p, v) stq_raw(p, v)
 702#define stfl(p, v) stfl_raw(p, v)
 703#define stfq(p, v) stfq_raw(p, v)
 704
 705#define ldub_code(p) ldub_raw(p)
 706#define ldsb_code(p) ldsb_raw(p)
 707#define lduw_code(p) lduw_raw(p)
 708#define ldsw_code(p) ldsw_raw(p)
 709#define ldl_code(p) ldl_raw(p)
 710#define ldq_code(p) ldq_raw(p)
 711
 712#define ldub_kernel(p) ldub_raw(p)
 713#define ldsb_kernel(p) ldsb_raw(p)
 714#define lduw_kernel(p) lduw_raw(p)
 715#define ldsw_kernel(p) ldsw_raw(p)
 716#define ldl_kernel(p) ldl_raw(p)
 717#define ldq_kernel(p) ldq_raw(p)
 718#define ldfl_kernel(p) ldfl_raw(p)
 719#define ldfq_kernel(p) ldfq_raw(p)
 720#define stb_kernel(p, v) stb_raw(p, v)
 721#define stw_kernel(p, v) stw_raw(p, v)
 722#define stl_kernel(p, v) stl_raw(p, v)
 723#define stq_kernel(p, v) stq_raw(p, v)
 724#define stfl_kernel(p, v) stfl_raw(p, v)
 725#define stfq_kernel(p, vt) stfq_raw(p, v)
 726
 727#endif /* defined(CONFIG_USER_ONLY) */
 728
 729/* page related stuff */
 730
 731#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
 732#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
 733#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
 734
 735/* ??? These should be the larger of unsigned long and target_ulong.  */
 736extern unsigned long qemu_real_host_page_size;
 737extern unsigned long qemu_host_page_bits;
 738extern unsigned long qemu_host_page_size;
 739extern unsigned long qemu_host_page_mask;
 740
 741#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
 742
 743/* same as PROT_xxx */
 744#define PAGE_READ      0x0001
 745#define PAGE_WRITE     0x0002
 746#define PAGE_EXEC      0x0004
 747#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 748#define PAGE_VALID     0x0008
 749/* original state of the write flag (used when tracking self-modifying
 750   code */
 751#define PAGE_WRITE_ORG 0x0010
 752#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 753/* FIXME: Code that sets/uses this is broken and needs to go away.  */
 754#define PAGE_RESERVED  0x0020
 755#endif
 756
 757#if defined(CONFIG_USER_ONLY)
 758void page_dump(FILE *f);
 759
 760typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
 761                                      abi_ulong, unsigned long);
 762int walk_memory_regions(void *, walk_memory_regions_fn);
 763
 764int page_get_flags(target_ulong address);
 765void page_set_flags(target_ulong start, target_ulong end, int flags);
 766int page_check_range(target_ulong start, target_ulong len, int flags);
 767#endif
 768
 769CPUState *cpu_copy(CPUState *env);
 770CPUState *qemu_get_cpu(int cpu);
 771
 772#define CPU_DUMP_CODE 0x00010000
 773
 774void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
 775                    int flags);
 776void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
 777                         int flags);
 778
 779void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
 780    GCC_FMT_ATTR(2, 3);
 781extern CPUState *first_cpu;
 782extern CPUState *cpu_single_env;
 783
 784/* Flags for use in ENV->INTERRUPT_PENDING.
 785
 786   The numbers assigned here are non-sequential in order to preserve
 787   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
 788   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
 789   the vmstate dump.  */
 790
 791/* External hardware interrupt pending.  This is typically used for
 792   interrupts from devices.  */
 793#define CPU_INTERRUPT_HARD        0x0002
 794
 795/* Exit the current TB.  This is typically used when some system-level device
 796   makes some change to the memory mapping.  E.g. the a20 line change.  */
 797#define CPU_INTERRUPT_EXITTB      0x0004
 798
 799/* Halt the CPU.  */
 800#define CPU_INTERRUPT_HALT        0x0020
 801
 802/* Debug event pending.  */
 803#define CPU_INTERRUPT_DEBUG       0x0080
 804
 805/* Several target-specific external hardware interrupts.  Each target/cpu.h
 806   should define proper names based on these defines.  */
 807#define CPU_INTERRUPT_TGT_EXT_0   0x0008
 808#define CPU_INTERRUPT_TGT_EXT_1   0x0010
 809#define CPU_INTERRUPT_TGT_EXT_2   0x0040
 810#define CPU_INTERRUPT_TGT_EXT_3   0x0200
 811#define CPU_INTERRUPT_TGT_EXT_4   0x1000
 812
 813/* Several target-specific internal interrupts.  These differ from the
 814   preceeding target-specific interrupts in that they are intended to
 815   originate from within the cpu itself, typically in response to some
 816   instruction being executed.  These, therefore, are not masked while
 817   single-stepping within the debugger.  */
 818#define CPU_INTERRUPT_TGT_INT_0   0x0100
 819#define CPU_INTERRUPT_TGT_INT_1   0x0400
 820#define CPU_INTERRUPT_TGT_INT_2   0x0800
 821
 822/* First unused bit: 0x2000.  */
 823
 824/* The set of all bits that should be masked when single-stepping.  */
 825#define CPU_INTERRUPT_SSTEP_MASK \
 826    (CPU_INTERRUPT_HARD          \
 827     | CPU_INTERRUPT_TGT_EXT_0   \
 828     | CPU_INTERRUPT_TGT_EXT_1   \
 829     | CPU_INTERRUPT_TGT_EXT_2   \
 830     | CPU_INTERRUPT_TGT_EXT_3   \
 831     | CPU_INTERRUPT_TGT_EXT_4)
 832
 833#ifndef CONFIG_USER_ONLY
 834typedef void (*CPUInterruptHandler)(CPUState *, int);
 835
 836extern CPUInterruptHandler cpu_interrupt_handler;
 837
 838static inline void cpu_interrupt(CPUState *s, int mask)
 839{
 840    cpu_interrupt_handler(s, mask);
 841}
 842#else /* USER_ONLY */
 843void cpu_interrupt(CPUState *env, int mask);
 844#endif /* USER_ONLY */
 845
 846void cpu_reset_interrupt(CPUState *env, int mask);
 847
 848void cpu_exit(CPUState *s);
 849
 850bool qemu_cpu_has_work(CPUState *env);
 851
 852/* Breakpoint/watchpoint flags */
 853#define BP_MEM_READ           0x01
 854#define BP_MEM_WRITE          0x02
 855#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
 856#define BP_STOP_BEFORE_ACCESS 0x04
 857#define BP_WATCHPOINT_HIT     0x08
 858#define BP_GDB                0x10
 859#define BP_CPU                0x20
 860
 861int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
 862                          CPUBreakpoint **breakpoint);
 863int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
 864void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
 865void cpu_breakpoint_remove_all(CPUState *env, int mask);
 866int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
 867                          int flags, CPUWatchpoint **watchpoint);
 868int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
 869                          target_ulong len, int flags);
 870void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
 871void cpu_watchpoint_remove_all(CPUState *env, int mask);
 872
 873#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
 874#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
 875#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
 876
 877void cpu_single_step(CPUState *env, int enabled);
 878void cpu_reset(CPUState *s);
 879int cpu_is_stopped(CPUState *env);
 880void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
 881
 882#define CPU_LOG_TB_OUT_ASM (1 << 0)
 883#define CPU_LOG_TB_IN_ASM  (1 << 1)
 884#define CPU_LOG_TB_OP      (1 << 2)
 885#define CPU_LOG_TB_OP_OPT  (1 << 3)
 886#define CPU_LOG_INT        (1 << 4)
 887#define CPU_LOG_EXEC       (1 << 5)
 888#define CPU_LOG_PCALL      (1 << 6)
 889#define CPU_LOG_IOPORT     (1 << 7)
 890#define CPU_LOG_TB_CPU     (1 << 8)
 891#define CPU_LOG_RESET      (1 << 9)
 892
 893/* define log items */
 894typedef struct CPULogItem {
 895    int mask;
 896    const char *name;
 897    const char *help;
 898} CPULogItem;
 899
 900extern const CPULogItem cpu_log_items[];
 901
 902void cpu_set_log(int log_flags);
 903void cpu_set_log_filename(const char *filename);
 904int cpu_str_to_log_mask(const char *str);
 905
 906#if !defined(CONFIG_USER_ONLY)
 907
 908/* Return the physical page corresponding to a virtual one. Use it
 909   only for debugging because no protection checks are done. Return -1
 910   if no page found. */
 911target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
 912
 913/* memory API */
 914
 915extern int phys_ram_fd;
 916extern ram_addr_t ram_size;
 917
 918/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 919#define RAM_PREALLOC_MASK   (1 << 0)
 920
 921typedef struct RAMBlock {
 922    uint8_t *host;
 923    ram_addr_t offset;
 924    ram_addr_t length;
 925    uint32_t flags;
 926    char idstr[256];
 927    QLIST_ENTRY(RAMBlock) next;
 928#if defined(__linux__) && !defined(TARGET_S390X)
 929    int fd;
 930#endif
 931} RAMBlock;
 932
 933typedef struct RAMList {
 934    uint8_t *phys_dirty;
 935    QLIST_HEAD(ram, RAMBlock) blocks;
 936} RAMList;
 937extern RAMList ram_list;
 938
 939extern const char *mem_path;
 940extern int mem_prealloc;
 941
 942/* physical memory access */
 943
 944/* MMIO pages are identified by a combination of an IO device index and
 945   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
 946   so only a limited number of ids are avaiable.  */
 947
 948#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
 949
 950/* Flags stored in the low bits of the TLB virtual address.  These are
 951   defined so that fast path ram access is all zeros.  */
 952/* Zero if TLB entry is valid.  */
 953#define TLB_INVALID_MASK   (1 << 3)
 954/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 955   contain the page physical address.  */
 956#define TLB_NOTDIRTY    (1 << 4)
 957/* Set if TLB entry is an IO callback.  */
 958#define TLB_MMIO        (1 << 5)
 959
 960#define VGA_DIRTY_FLAG       0x01
 961#define CODE_DIRTY_FLAG      0x02
 962#define MIGRATION_DIRTY_FLAG 0x08
 963
 964/* read dirty bit (return 0 or 1) */
 965static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
 966{
 967    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
 968}
 969
 970static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
 971{
 972    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
 973}
 974
 975static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
 976                                                int dirty_flags)
 977{
 978    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
 979}
 980
 981static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
 982{
 983    ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
 984}
 985
 986static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
 987                                                      int dirty_flags)
 988{
 989    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
 990}
 991
 992static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
 993                                                        int length,
 994                                                        int dirty_flags)
 995{
 996    int i, mask, len;
 997    uint8_t *p;
 998
 999    len = length >> TARGET_PAGE_BITS;
1000    mask = ~dirty_flags;
1001    p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
1002    for (i = 0; i < len; i++) {
1003        p[i] &= mask;
1004    }
1005}
1006
1007void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1008                                     int dirty_flags);
1009void cpu_tlb_update_dirty(CPUState *env);
1010
1011int cpu_physical_memory_set_dirty_tracking(int enable);
1012
1013int cpu_physical_memory_get_dirty_tracking(void);
1014
1015int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1016                                   target_phys_addr_t end_addr);
1017
1018int cpu_physical_log_start(target_phys_addr_t start_addr,
1019                           ram_addr_t size);
1020
1021int cpu_physical_log_stop(target_phys_addr_t start_addr,
1022                          ram_addr_t size);
1023
1024void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
1025#endif /* !CONFIG_USER_ONLY */
1026
1027int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1028                        uint8_t *buf, int len, int is_write);
1029
1030#endif /* CPU_ALL_H */
1031