qemu/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include <sys/types.h>
  17#include <sys/ioctl.h>
  18#include <sys/mman.h>
  19#include <stdarg.h>
  20
  21#include <linux/kvm.h>
  22
  23#include "qemu-common.h"
  24#include "qemu-barrier.h"
  25#include "sysemu.h"
  26#include "hw/hw.h"
  27#include "gdbstub.h"
  28#include "kvm.h"
  29#include "bswap.h"
  30#include "memory.h"
  31#include "exec-memory.h"
  32
  33/* This check must be after config-host.h is included */
  34#ifdef CONFIG_EVENTFD
  35#include <sys/eventfd.h>
  36#endif
  37
  38/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  39#define PAGE_SIZE TARGET_PAGE_SIZE
  40
  41//#define DEBUG_KVM
  42
  43#ifdef DEBUG_KVM
  44#define DPRINTF(fmt, ...) \
  45    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  46#else
  47#define DPRINTF(fmt, ...) \
  48    do { } while (0)
  49#endif
  50
  51typedef struct KVMSlot
  52{
  53    target_phys_addr_t start_addr;
  54    ram_addr_t memory_size;
  55    void *ram;
  56    int slot;
  57    int flags;
  58} KVMSlot;
  59
  60typedef struct kvm_dirty_log KVMDirtyLog;
  61
  62struct KVMState
  63{
  64    KVMSlot slots[32];
  65    int fd;
  66    int vmfd;
  67    int coalesced_mmio;
  68    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  69    bool coalesced_flush_in_progress;
  70    int broken_set_mem_region;
  71    int migration_log;
  72    int vcpu_events;
  73    int robust_singlestep;
  74    int debugregs;
  75#ifdef KVM_CAP_SET_GUEST_DEBUG
  76    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  77#endif
  78    int pit_state2;
  79    int xsave, xcrs;
  80    int many_ioeventfds;
  81    /* The man page (and posix) say ioctl numbers are signed int, but
  82     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
  83     * unsigned, and treating them as signed here can break things */
  84    unsigned irqchip_inject_ioctl;
  85#ifdef KVM_CAP_IRQ_ROUTING
  86    struct kvm_irq_routing *irq_routes;
  87    int nr_allocated_irq_routes;
  88    uint32_t *used_gsi_bitmap;
  89    unsigned int max_gsi;
  90#endif
  91};
  92
  93KVMState *kvm_state;
  94bool kvm_kernel_irqchip;
  95
  96static const KVMCapabilityInfo kvm_required_capabilites[] = {
  97    KVM_CAP_INFO(USER_MEMORY),
  98    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
  99    KVM_CAP_LAST_INFO
 100};
 101
 102static KVMSlot *kvm_alloc_slot(KVMState *s)
 103{
 104    int i;
 105
 106    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 107        if (s->slots[i].memory_size == 0) {
 108            return &s->slots[i];
 109        }
 110    }
 111
 112    fprintf(stderr, "%s: no free slot available\n", __func__);
 113    abort();
 114}
 115
 116static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
 117                                         target_phys_addr_t start_addr,
 118                                         target_phys_addr_t end_addr)
 119{
 120    int i;
 121
 122    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 123        KVMSlot *mem = &s->slots[i];
 124
 125        if (start_addr == mem->start_addr &&
 126            end_addr == mem->start_addr + mem->memory_size) {
 127            return mem;
 128        }
 129    }
 130
 131    return NULL;
 132}
 133
 134/*
 135 * Find overlapping slot with lowest start address
 136 */
 137static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
 138                                            target_phys_addr_t start_addr,
 139                                            target_phys_addr_t end_addr)
 140{
 141    KVMSlot *found = NULL;
 142    int i;
 143
 144    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 145        KVMSlot *mem = &s->slots[i];
 146
 147        if (mem->memory_size == 0 ||
 148            (found && found->start_addr < mem->start_addr)) {
 149            continue;
 150        }
 151
 152        if (end_addr > mem->start_addr &&
 153            start_addr < mem->start_addr + mem->memory_size) {
 154            found = mem;
 155        }
 156    }
 157
 158    return found;
 159}
 160
 161int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 162                                       target_phys_addr_t *phys_addr)
 163{
 164    int i;
 165
 166    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 167        KVMSlot *mem = &s->slots[i];
 168
 169        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 170            *phys_addr = mem->start_addr + (ram - mem->ram);
 171            return 1;
 172        }
 173    }
 174
 175    return 0;
 176}
 177
 178static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
 179{
 180    struct kvm_userspace_memory_region mem;
 181
 182    mem.slot = slot->slot;
 183    mem.guest_phys_addr = slot->start_addr;
 184    mem.memory_size = slot->memory_size;
 185    mem.userspace_addr = (unsigned long)slot->ram;
 186    mem.flags = slot->flags;
 187    if (s->migration_log) {
 188        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
 189    }
 190    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 191}
 192
 193static void kvm_reset_vcpu(void *opaque)
 194{
 195    CPUArchState *env = opaque;
 196
 197    kvm_arch_reset_vcpu(env);
 198}
 199
 200int kvm_init_vcpu(CPUArchState *env)
 201{
 202    KVMState *s = kvm_state;
 203    long mmap_size;
 204    int ret;
 205
 206    DPRINTF("kvm_init_vcpu\n");
 207
 208    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
 209    if (ret < 0) {
 210        DPRINTF("kvm_create_vcpu failed\n");
 211        goto err;
 212    }
 213
 214    env->kvm_fd = ret;
 215    env->kvm_state = s;
 216    env->kvm_vcpu_dirty = 1;
 217
 218    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 219    if (mmap_size < 0) {
 220        ret = mmap_size;
 221        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 222        goto err;
 223    }
 224
 225    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 226                        env->kvm_fd, 0);
 227    if (env->kvm_run == MAP_FAILED) {
 228        ret = -errno;
 229        DPRINTF("mmap'ing vcpu state failed\n");
 230        goto err;
 231    }
 232
 233    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 234        s->coalesced_mmio_ring =
 235            (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 236    }
 237
 238    ret = kvm_arch_init_vcpu(env);
 239    if (ret == 0) {
 240        qemu_register_reset(kvm_reset_vcpu, env);
 241        kvm_arch_reset_vcpu(env);
 242    }
 243err:
 244    return ret;
 245}
 246
 247/*
 248 * dirty pages logging control
 249 */
 250
 251static int kvm_mem_flags(KVMState *s, bool log_dirty)
 252{
 253    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
 254}
 255
 256static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
 257{
 258    KVMState *s = kvm_state;
 259    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
 260    int old_flags;
 261
 262    old_flags = mem->flags;
 263
 264    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
 265    mem->flags = flags;
 266
 267    /* If nothing changed effectively, no need to issue ioctl */
 268    if (s->migration_log) {
 269        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 270    }
 271
 272    if (flags == old_flags) {
 273        return 0;
 274    }
 275
 276    return kvm_set_user_memory_region(s, mem);
 277}
 278
 279static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
 280                                      ram_addr_t size, bool log_dirty)
 281{
 282    KVMState *s = kvm_state;
 283    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
 284
 285    if (mem == NULL)  {
 286        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
 287                TARGET_FMT_plx "\n", __func__, phys_addr,
 288                (target_phys_addr_t)(phys_addr + size - 1));
 289        return -EINVAL;
 290    }
 291    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
 292}
 293
 294static void kvm_log_start(MemoryListener *listener,
 295                          MemoryRegionSection *section)
 296{
 297    int r;
 298
 299    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
 300                                   section->size, true);
 301    if (r < 0) {
 302        abort();
 303    }
 304}
 305
 306static void kvm_log_stop(MemoryListener *listener,
 307                          MemoryRegionSection *section)
 308{
 309    int r;
 310
 311    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
 312                                   section->size, false);
 313    if (r < 0) {
 314        abort();
 315    }
 316}
 317
 318static int kvm_set_migration_log(int enable)
 319{
 320    KVMState *s = kvm_state;
 321    KVMSlot *mem;
 322    int i, err;
 323
 324    s->migration_log = enable;
 325
 326    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 327        mem = &s->slots[i];
 328
 329        if (!mem->memory_size) {
 330            continue;
 331        }
 332        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
 333            continue;
 334        }
 335        err = kvm_set_user_memory_region(s, mem);
 336        if (err) {
 337            return err;
 338        }
 339    }
 340    return 0;
 341}
 342
 343/* get kvm's dirty pages bitmap and update qemu's */
 344static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 345                                         unsigned long *bitmap)
 346{
 347    unsigned int i, j;
 348    unsigned long page_number, c;
 349    target_phys_addr_t addr, addr1;
 350    unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
 351    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
 352
 353    /*
 354     * bitmap-traveling is faster than memory-traveling (for addr...)
 355     * especially when most of the memory is not dirty.
 356     */
 357    for (i = 0; i < len; i++) {
 358        if (bitmap[i] != 0) {
 359            c = leul_to_cpu(bitmap[i]);
 360            do {
 361                j = ffsl(c) - 1;
 362                c &= ~(1ul << j);
 363                page_number = (i * HOST_LONG_BITS + j) * hpratio;
 364                addr1 = page_number * TARGET_PAGE_SIZE;
 365                addr = section->offset_within_region + addr1;
 366                memory_region_set_dirty(section->mr, addr,
 367                                        TARGET_PAGE_SIZE * hpratio);
 368            } while (c != 0);
 369        }
 370    }
 371    return 0;
 372}
 373
 374#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 375
 376/**
 377 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 378 * This function updates qemu's dirty bitmap using
 379 * memory_region_set_dirty().  This means all bits are set
 380 * to dirty.
 381 *
 382 * @start_add: start of logged region.
 383 * @end_addr: end of logged region.
 384 */
 385static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
 386{
 387    KVMState *s = kvm_state;
 388    unsigned long size, allocated_size = 0;
 389    KVMDirtyLog d;
 390    KVMSlot *mem;
 391    int ret = 0;
 392    target_phys_addr_t start_addr = section->offset_within_address_space;
 393    target_phys_addr_t end_addr = start_addr + section->size;
 394
 395    d.dirty_bitmap = NULL;
 396    while (start_addr < end_addr) {
 397        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
 398        if (mem == NULL) {
 399            break;
 400        }
 401
 402        /* XXX bad kernel interface alert
 403         * For dirty bitmap, kernel allocates array of size aligned to
 404         * bits-per-long.  But for case when the kernel is 64bits and
 405         * the userspace is 32bits, userspace can't align to the same
 406         * bits-per-long, since sizeof(long) is different between kernel
 407         * and user space.  This way, userspace will provide buffer which
 408         * may be 4 bytes less than the kernel will use, resulting in
 409         * userspace memory corruption (which is not detectable by valgrind
 410         * too, in most cases).
 411         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 412         * a hope that sizeof(long) wont become >8 any time soon.
 413         */
 414        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
 415                     /*HOST_LONG_BITS*/ 64) / 8;
 416        if (!d.dirty_bitmap) {
 417            d.dirty_bitmap = g_malloc(size);
 418        } else if (size > allocated_size) {
 419            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
 420        }
 421        allocated_size = size;
 422        memset(d.dirty_bitmap, 0, allocated_size);
 423
 424        d.slot = mem->slot;
 425
 426        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 427            DPRINTF("ioctl failed %d\n", errno);
 428            ret = -1;
 429            break;
 430        }
 431
 432        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
 433        start_addr = mem->start_addr + mem->memory_size;
 434    }
 435    g_free(d.dirty_bitmap);
 436
 437    return ret;
 438}
 439
 440int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
 441{
 442    int ret = -ENOSYS;
 443    KVMState *s = kvm_state;
 444
 445    if (s->coalesced_mmio) {
 446        struct kvm_coalesced_mmio_zone zone;
 447
 448        zone.addr = start;
 449        zone.size = size;
 450        zone.pad = 0;
 451
 452        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 453    }
 454
 455    return ret;
 456}
 457
 458int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
 459{
 460    int ret = -ENOSYS;
 461    KVMState *s = kvm_state;
 462
 463    if (s->coalesced_mmio) {
 464        struct kvm_coalesced_mmio_zone zone;
 465
 466        zone.addr = start;
 467        zone.size = size;
 468        zone.pad = 0;
 469
 470        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 471    }
 472
 473    return ret;
 474}
 475
 476int kvm_check_extension(KVMState *s, unsigned int extension)
 477{
 478    int ret;
 479
 480    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 481    if (ret < 0) {
 482        ret = 0;
 483    }
 484
 485    return ret;
 486}
 487
 488static int kvm_check_many_ioeventfds(void)
 489{
 490    /* Userspace can use ioeventfd for io notification.  This requires a host
 491     * that supports eventfd(2) and an I/O thread; since eventfd does not
 492     * support SIGIO it cannot interrupt the vcpu.
 493     *
 494     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 495     * can avoid creating too many ioeventfds.
 496     */
 497#if defined(CONFIG_EVENTFD)
 498    int ioeventfds[7];
 499    int i, ret = 0;
 500    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 501        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 502        if (ioeventfds[i] < 0) {
 503            break;
 504        }
 505        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
 506        if (ret < 0) {
 507            close(ioeventfds[i]);
 508            break;
 509        }
 510    }
 511
 512    /* Decide whether many devices are supported or not */
 513    ret = i == ARRAY_SIZE(ioeventfds);
 514
 515    while (i-- > 0) {
 516        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
 517        close(ioeventfds[i]);
 518    }
 519    return ret;
 520#else
 521    return 0;
 522#endif
 523}
 524
 525static const KVMCapabilityInfo *
 526kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 527{
 528    while (list->name) {
 529        if (!kvm_check_extension(s, list->value)) {
 530            return list;
 531        }
 532        list++;
 533    }
 534    return NULL;
 535}
 536
 537static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
 538{
 539    KVMState *s = kvm_state;
 540    KVMSlot *mem, old;
 541    int err;
 542    MemoryRegion *mr = section->mr;
 543    bool log_dirty = memory_region_is_logging(mr);
 544    target_phys_addr_t start_addr = section->offset_within_address_space;
 545    ram_addr_t size = section->size;
 546    void *ram = NULL;
 547    unsigned delta;
 548
 549    /* kvm works in page size chunks, but the function may be called
 550       with sub-page size and unaligned start address. */
 551    delta = TARGET_PAGE_ALIGN(size) - size;
 552    if (delta > size) {
 553        return;
 554    }
 555    start_addr += delta;
 556    size -= delta;
 557    size &= TARGET_PAGE_MASK;
 558    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
 559        return;
 560    }
 561
 562    if (!memory_region_is_ram(mr)) {
 563        return;
 564    }
 565
 566    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
 567
 568    while (1) {
 569        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
 570        if (!mem) {
 571            break;
 572        }
 573
 574        if (add && start_addr >= mem->start_addr &&
 575            (start_addr + size <= mem->start_addr + mem->memory_size) &&
 576            (ram - start_addr == mem->ram - mem->start_addr)) {
 577            /* The new slot fits into the existing one and comes with
 578             * identical parameters - update flags and done. */
 579            kvm_slot_dirty_pages_log_change(mem, log_dirty);
 580            return;
 581        }
 582
 583        old = *mem;
 584
 585        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 586            kvm_physical_sync_dirty_bitmap(section);
 587        }
 588
 589        /* unregister the overlapping slot */
 590        mem->memory_size = 0;
 591        err = kvm_set_user_memory_region(s, mem);
 592        if (err) {
 593            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 594                    __func__, strerror(-err));
 595            abort();
 596        }
 597
 598        /* Workaround for older KVM versions: we can't join slots, even not by
 599         * unregistering the previous ones and then registering the larger
 600         * slot. We have to maintain the existing fragmentation. Sigh.
 601         *
 602         * This workaround assumes that the new slot starts at the same
 603         * address as the first existing one. If not or if some overlapping
 604         * slot comes around later, we will fail (not seen in practice so far)
 605         * - and actually require a recent KVM version. */
 606        if (s->broken_set_mem_region &&
 607            old.start_addr == start_addr && old.memory_size < size && add) {
 608            mem = kvm_alloc_slot(s);
 609            mem->memory_size = old.memory_size;
 610            mem->start_addr = old.start_addr;
 611            mem->ram = old.ram;
 612            mem->flags = kvm_mem_flags(s, log_dirty);
 613
 614            err = kvm_set_user_memory_region(s, mem);
 615            if (err) {
 616                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 617                        strerror(-err));
 618                abort();
 619            }
 620
 621            start_addr += old.memory_size;
 622            ram += old.memory_size;
 623            size -= old.memory_size;
 624            continue;
 625        }
 626
 627        /* register prefix slot */
 628        if (old.start_addr < start_addr) {
 629            mem = kvm_alloc_slot(s);
 630            mem->memory_size = start_addr - old.start_addr;
 631            mem->start_addr = old.start_addr;
 632            mem->ram = old.ram;
 633            mem->flags =  kvm_mem_flags(s, log_dirty);
 634
 635            err = kvm_set_user_memory_region(s, mem);
 636            if (err) {
 637                fprintf(stderr, "%s: error registering prefix slot: %s\n",
 638                        __func__, strerror(-err));
 639#ifdef TARGET_PPC
 640                fprintf(stderr, "%s: This is probably because your kernel's " \
 641                                "PAGE_SIZE is too big. Please try to use 4k " \
 642                                "PAGE_SIZE!\n", __func__);
 643#endif
 644                abort();
 645            }
 646        }
 647
 648        /* register suffix slot */
 649        if (old.start_addr + old.memory_size > start_addr + size) {
 650            ram_addr_t size_delta;
 651
 652            mem = kvm_alloc_slot(s);
 653            mem->start_addr = start_addr + size;
 654            size_delta = mem->start_addr - old.start_addr;
 655            mem->memory_size = old.memory_size - size_delta;
 656            mem->ram = old.ram + size_delta;
 657            mem->flags = kvm_mem_flags(s, log_dirty);
 658
 659            err = kvm_set_user_memory_region(s, mem);
 660            if (err) {
 661                fprintf(stderr, "%s: error registering suffix slot: %s\n",
 662                        __func__, strerror(-err));
 663                abort();
 664            }
 665        }
 666    }
 667
 668    /* in case the KVM bug workaround already "consumed" the new slot */
 669    if (!size) {
 670        return;
 671    }
 672    if (!add) {
 673        return;
 674    }
 675    mem = kvm_alloc_slot(s);
 676    mem->memory_size = size;
 677    mem->start_addr = start_addr;
 678    mem->ram = ram;
 679    mem->flags = kvm_mem_flags(s, log_dirty);
 680
 681    err = kvm_set_user_memory_region(s, mem);
 682    if (err) {
 683        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 684                strerror(-err));
 685        abort();
 686    }
 687}
 688
 689static void kvm_begin(MemoryListener *listener)
 690{
 691}
 692
 693static void kvm_commit(MemoryListener *listener)
 694{
 695}
 696
 697static void kvm_region_add(MemoryListener *listener,
 698                           MemoryRegionSection *section)
 699{
 700    kvm_set_phys_mem(section, true);
 701}
 702
 703static void kvm_region_del(MemoryListener *listener,
 704                           MemoryRegionSection *section)
 705{
 706    kvm_set_phys_mem(section, false);
 707}
 708
 709static void kvm_region_nop(MemoryListener *listener,
 710                           MemoryRegionSection *section)
 711{
 712}
 713
 714static void kvm_log_sync(MemoryListener *listener,
 715                         MemoryRegionSection *section)
 716{
 717    int r;
 718
 719    r = kvm_physical_sync_dirty_bitmap(section);
 720    if (r < 0) {
 721        abort();
 722    }
 723}
 724
 725static void kvm_log_global_start(struct MemoryListener *listener)
 726{
 727    int r;
 728
 729    r = kvm_set_migration_log(1);
 730    assert(r >= 0);
 731}
 732
 733static void kvm_log_global_stop(struct MemoryListener *listener)
 734{
 735    int r;
 736
 737    r = kvm_set_migration_log(0);
 738    assert(r >= 0);
 739}
 740
 741static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
 742                                  bool match_data, uint64_t data, int fd)
 743{
 744    int r;
 745
 746    assert(match_data && section->size <= 8);
 747
 748    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 749                               data, true, section->size);
 750    if (r < 0) {
 751        abort();
 752    }
 753}
 754
 755static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
 756                                  bool match_data, uint64_t data, int fd)
 757{
 758    int r;
 759
 760    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 761                               data, false, section->size);
 762    if (r < 0) {
 763        abort();
 764    }
 765}
 766
 767static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
 768                                 bool match_data, uint64_t data, int fd)
 769{
 770    int r;
 771
 772    assert(match_data && section->size == 2);
 773
 774    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
 775                                   data, true);
 776    if (r < 0) {
 777        abort();
 778    }
 779}
 780
 781static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
 782                                 bool match_data, uint64_t data, int fd)
 783
 784{
 785    int r;
 786
 787    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
 788                                   data, false);
 789    if (r < 0) {
 790        abort();
 791    }
 792}
 793
 794static void kvm_eventfd_add(MemoryListener *listener,
 795                            MemoryRegionSection *section,
 796                            bool match_data, uint64_t data, int fd)
 797{
 798    if (section->address_space == get_system_memory()) {
 799        kvm_mem_ioeventfd_add(section, match_data, data, fd);
 800    } else {
 801        kvm_io_ioeventfd_add(section, match_data, data, fd);
 802    }
 803}
 804
 805static void kvm_eventfd_del(MemoryListener *listener,
 806                            MemoryRegionSection *section,
 807                            bool match_data, uint64_t data, int fd)
 808{
 809    if (section->address_space == get_system_memory()) {
 810        kvm_mem_ioeventfd_del(section, match_data, data, fd);
 811    } else {
 812        kvm_io_ioeventfd_del(section, match_data, data, fd);
 813    }
 814}
 815
 816static MemoryListener kvm_memory_listener = {
 817    .begin = kvm_begin,
 818    .commit = kvm_commit,
 819    .region_add = kvm_region_add,
 820    .region_del = kvm_region_del,
 821    .region_nop = kvm_region_nop,
 822    .log_start = kvm_log_start,
 823    .log_stop = kvm_log_stop,
 824    .log_sync = kvm_log_sync,
 825    .log_global_start = kvm_log_global_start,
 826    .log_global_stop = kvm_log_global_stop,
 827    .eventfd_add = kvm_eventfd_add,
 828    .eventfd_del = kvm_eventfd_del,
 829    .priority = 10,
 830};
 831
 832static void kvm_handle_interrupt(CPUArchState *env, int mask)
 833{
 834    env->interrupt_request |= mask;
 835
 836    if (!qemu_cpu_is_self(env)) {
 837        qemu_cpu_kick(env);
 838    }
 839}
 840
 841int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
 842{
 843    struct kvm_irq_level event;
 844    int ret;
 845
 846    assert(kvm_irqchip_in_kernel());
 847
 848    event.level = level;
 849    event.irq = irq;
 850    ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
 851    if (ret < 0) {
 852        perror("kvm_set_irqchip_line");
 853        abort();
 854    }
 855
 856    return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
 857}
 858
 859#ifdef KVM_CAP_IRQ_ROUTING
 860static void set_gsi(KVMState *s, unsigned int gsi)
 861{
 862    assert(gsi < s->max_gsi);
 863
 864    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
 865}
 866
 867static void kvm_init_irq_routing(KVMState *s)
 868{
 869    int gsi_count;
 870
 871    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
 872    if (gsi_count > 0) {
 873        unsigned int gsi_bits, i;
 874
 875        /* Round up so we can search ints using ffs */
 876        gsi_bits = ALIGN(gsi_count, 32);
 877        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
 878        s->max_gsi = gsi_bits;
 879
 880        /* Mark any over-allocated bits as already in use */
 881        for (i = gsi_count; i < gsi_bits; i++) {
 882            set_gsi(s, i);
 883        }
 884    }
 885
 886    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
 887    s->nr_allocated_irq_routes = 0;
 888
 889    kvm_arch_init_irq_routing(s);
 890}
 891
 892static void kvm_add_routing_entry(KVMState *s,
 893                                  struct kvm_irq_routing_entry *entry)
 894{
 895    struct kvm_irq_routing_entry *new;
 896    int n, size;
 897
 898    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
 899        n = s->nr_allocated_irq_routes * 2;
 900        if (n < 64) {
 901            n = 64;
 902        }
 903        size = sizeof(struct kvm_irq_routing);
 904        size += n * sizeof(*new);
 905        s->irq_routes = g_realloc(s->irq_routes, size);
 906        s->nr_allocated_irq_routes = n;
 907    }
 908    n = s->irq_routes->nr++;
 909    new = &s->irq_routes->entries[n];
 910    memset(new, 0, sizeof(*new));
 911    new->gsi = entry->gsi;
 912    new->type = entry->type;
 913    new->flags = entry->flags;
 914    new->u = entry->u;
 915
 916    set_gsi(s, entry->gsi);
 917}
 918
 919void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
 920{
 921    struct kvm_irq_routing_entry e;
 922
 923    e.gsi = irq;
 924    e.type = KVM_IRQ_ROUTING_IRQCHIP;
 925    e.flags = 0;
 926    e.u.irqchip.irqchip = irqchip;
 927    e.u.irqchip.pin = pin;
 928    kvm_add_routing_entry(s, &e);
 929}
 930
 931int kvm_irqchip_commit_routes(KVMState *s)
 932{
 933    s->irq_routes->flags = 0;
 934    return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
 935}
 936
 937#else /* !KVM_CAP_IRQ_ROUTING */
 938
 939static void kvm_init_irq_routing(KVMState *s)
 940{
 941}
 942#endif /* !KVM_CAP_IRQ_ROUTING */
 943
 944static int kvm_irqchip_create(KVMState *s)
 945{
 946    QemuOptsList *list = qemu_find_opts("machine");
 947    int ret;
 948
 949    if (QTAILQ_EMPTY(&list->head) ||
 950        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
 951                           "kernel_irqchip", false) ||
 952        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
 953        return 0;
 954    }
 955
 956    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
 957    if (ret < 0) {
 958        fprintf(stderr, "Create kernel irqchip failed\n");
 959        return ret;
 960    }
 961
 962    s->irqchip_inject_ioctl = KVM_IRQ_LINE;
 963    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
 964        s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
 965    }
 966    kvm_kernel_irqchip = true;
 967
 968    kvm_init_irq_routing(s);
 969
 970    return 0;
 971}
 972
 973int kvm_init(void)
 974{
 975    static const char upgrade_note[] =
 976        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
 977        "(see http://sourceforge.net/projects/kvm).\n";
 978    KVMState *s;
 979    const KVMCapabilityInfo *missing_cap;
 980    int ret;
 981    int i;
 982
 983    s = g_malloc0(sizeof(KVMState));
 984
 985    /*
 986     * On systems where the kernel can support different base page
 987     * sizes, host page size may be different from TARGET_PAGE_SIZE,
 988     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
 989     * page size for the system though.
 990     */
 991    assert(TARGET_PAGE_SIZE <= getpagesize());
 992
 993#ifdef KVM_CAP_SET_GUEST_DEBUG
 994    QTAILQ_INIT(&s->kvm_sw_breakpoints);
 995#endif
 996    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 997        s->slots[i].slot = i;
 998    }
 999    s->vmfd = -1;
1000    s->fd = qemu_open("/dev/kvm", O_RDWR);
1001    if (s->fd == -1) {
1002        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1003        ret = -errno;
1004        goto err;
1005    }
1006
1007    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1008    if (ret < KVM_API_VERSION) {
1009        if (ret > 0) {
1010            ret = -EINVAL;
1011        }
1012        fprintf(stderr, "kvm version too old\n");
1013        goto err;
1014    }
1015
1016    if (ret > KVM_API_VERSION) {
1017        ret = -EINVAL;
1018        fprintf(stderr, "kvm version not supported\n");
1019        goto err;
1020    }
1021
1022    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1023    if (s->vmfd < 0) {
1024#ifdef TARGET_S390X
1025        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1026                        "your host kernel command line\n");
1027#endif
1028        ret = s->vmfd;
1029        goto err;
1030    }
1031
1032    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1033    if (!missing_cap) {
1034        missing_cap =
1035            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1036    }
1037    if (missing_cap) {
1038        ret = -EINVAL;
1039        fprintf(stderr, "kvm does not support %s\n%s",
1040                missing_cap->name, upgrade_note);
1041        goto err;
1042    }
1043
1044    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1045
1046    s->broken_set_mem_region = 1;
1047    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1048    if (ret > 0) {
1049        s->broken_set_mem_region = 0;
1050    }
1051
1052#ifdef KVM_CAP_VCPU_EVENTS
1053    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1054#endif
1055
1056    s->robust_singlestep =
1057        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1058
1059#ifdef KVM_CAP_DEBUGREGS
1060    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1061#endif
1062
1063#ifdef KVM_CAP_XSAVE
1064    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1065#endif
1066
1067#ifdef KVM_CAP_XCRS
1068    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1069#endif
1070
1071#ifdef KVM_CAP_PIT_STATE2
1072    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1073#endif
1074
1075    ret = kvm_arch_init(s);
1076    if (ret < 0) {
1077        goto err;
1078    }
1079
1080    ret = kvm_irqchip_create(s);
1081    if (ret < 0) {
1082        goto err;
1083    }
1084
1085    kvm_state = s;
1086    memory_listener_register(&kvm_memory_listener, NULL);
1087
1088    s->many_ioeventfds = kvm_check_many_ioeventfds();
1089
1090    cpu_interrupt_handler = kvm_handle_interrupt;
1091
1092    return 0;
1093
1094err:
1095    if (s) {
1096        if (s->vmfd >= 0) {
1097            close(s->vmfd);
1098        }
1099        if (s->fd != -1) {
1100            close(s->fd);
1101        }
1102    }
1103    g_free(s);
1104
1105    return ret;
1106}
1107
1108static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1109                          uint32_t count)
1110{
1111    int i;
1112    uint8_t *ptr = data;
1113
1114    for (i = 0; i < count; i++) {
1115        if (direction == KVM_EXIT_IO_IN) {
1116            switch (size) {
1117            case 1:
1118                stb_p(ptr, cpu_inb(port));
1119                break;
1120            case 2:
1121                stw_p(ptr, cpu_inw(port));
1122                break;
1123            case 4:
1124                stl_p(ptr, cpu_inl(port));
1125                break;
1126            }
1127        } else {
1128            switch (size) {
1129            case 1:
1130                cpu_outb(port, ldub_p(ptr));
1131                break;
1132            case 2:
1133                cpu_outw(port, lduw_p(ptr));
1134                break;
1135            case 4:
1136                cpu_outl(port, ldl_p(ptr));
1137                break;
1138            }
1139        }
1140
1141        ptr += size;
1142    }
1143}
1144
1145static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1146{
1147    fprintf(stderr, "KVM internal error.");
1148    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1149        int i;
1150
1151        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1152        for (i = 0; i < run->internal.ndata; ++i) {
1153            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1154                    i, (uint64_t)run->internal.data[i]);
1155        }
1156    } else {
1157        fprintf(stderr, "\n");
1158    }
1159    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1160        fprintf(stderr, "emulation failure\n");
1161        if (!kvm_arch_stop_on_emulation_error(env)) {
1162            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1163            return EXCP_INTERRUPT;
1164        }
1165    }
1166    /* FIXME: Should trigger a qmp message to let management know
1167     * something went wrong.
1168     */
1169    return -1;
1170}
1171
1172void kvm_flush_coalesced_mmio_buffer(void)
1173{
1174    KVMState *s = kvm_state;
1175
1176    if (s->coalesced_flush_in_progress) {
1177        return;
1178    }
1179
1180    s->coalesced_flush_in_progress = true;
1181
1182    if (s->coalesced_mmio_ring) {
1183        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1184        while (ring->first != ring->last) {
1185            struct kvm_coalesced_mmio *ent;
1186
1187            ent = &ring->coalesced_mmio[ring->first];
1188
1189            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1190            smp_wmb();
1191            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1192        }
1193    }
1194
1195    s->coalesced_flush_in_progress = false;
1196}
1197
1198static void do_kvm_cpu_synchronize_state(void *_env)
1199{
1200    CPUArchState *env = _env;
1201
1202    if (!env->kvm_vcpu_dirty) {
1203        kvm_arch_get_registers(env);
1204        env->kvm_vcpu_dirty = 1;
1205    }
1206}
1207
1208void kvm_cpu_synchronize_state(CPUArchState *env)
1209{
1210    if (!env->kvm_vcpu_dirty) {
1211        run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1212    }
1213}
1214
1215void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1216{
1217    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1218    env->kvm_vcpu_dirty = 0;
1219}
1220
1221void kvm_cpu_synchronize_post_init(CPUArchState *env)
1222{
1223    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1224    env->kvm_vcpu_dirty = 0;
1225}
1226
1227int kvm_cpu_exec(CPUArchState *env)
1228{
1229    struct kvm_run *run = env->kvm_run;
1230    int ret, run_ret;
1231
1232    DPRINTF("kvm_cpu_exec()\n");
1233
1234    if (kvm_arch_process_async_events(env)) {
1235        env->exit_request = 0;
1236        return EXCP_HLT;
1237    }
1238
1239    do {
1240        if (env->kvm_vcpu_dirty) {
1241            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1242            env->kvm_vcpu_dirty = 0;
1243        }
1244
1245        kvm_arch_pre_run(env, run);
1246        if (env->exit_request) {
1247            DPRINTF("interrupt exit requested\n");
1248            /*
1249             * KVM requires us to reenter the kernel after IO exits to complete
1250             * instruction emulation. This self-signal will ensure that we
1251             * leave ASAP again.
1252             */
1253            qemu_cpu_kick_self();
1254        }
1255        qemu_mutex_unlock_iothread();
1256
1257        run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1258
1259        qemu_mutex_lock_iothread();
1260        kvm_arch_post_run(env, run);
1261
1262        kvm_flush_coalesced_mmio_buffer();
1263
1264        if (run_ret < 0) {
1265            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1266                DPRINTF("io window exit\n");
1267                ret = EXCP_INTERRUPT;
1268                break;
1269            }
1270            fprintf(stderr, "error: kvm run failed %s\n",
1271                    strerror(-run_ret));
1272            abort();
1273        }
1274
1275        switch (run->exit_reason) {
1276        case KVM_EXIT_IO:
1277            DPRINTF("handle_io\n");
1278            kvm_handle_io(run->io.port,
1279                          (uint8_t *)run + run->io.data_offset,
1280                          run->io.direction,
1281                          run->io.size,
1282                          run->io.count);
1283            ret = 0;
1284            break;
1285        case KVM_EXIT_MMIO:
1286            DPRINTF("handle_mmio\n");
1287            cpu_physical_memory_rw(run->mmio.phys_addr,
1288                                   run->mmio.data,
1289                                   run->mmio.len,
1290                                   run->mmio.is_write);
1291            ret = 0;
1292            break;
1293        case KVM_EXIT_IRQ_WINDOW_OPEN:
1294            DPRINTF("irq_window_open\n");
1295            ret = EXCP_INTERRUPT;
1296            break;
1297        case KVM_EXIT_SHUTDOWN:
1298            DPRINTF("shutdown\n");
1299            qemu_system_reset_request();
1300            ret = EXCP_INTERRUPT;
1301            break;
1302        case KVM_EXIT_UNKNOWN:
1303            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1304                    (uint64_t)run->hw.hardware_exit_reason);
1305            ret = -1;
1306            break;
1307        case KVM_EXIT_INTERNAL_ERROR:
1308            ret = kvm_handle_internal_error(env, run);
1309            break;
1310        default:
1311            DPRINTF("kvm_arch_handle_exit\n");
1312            ret = kvm_arch_handle_exit(env, run);
1313            break;
1314        }
1315    } while (ret == 0);
1316
1317    if (ret < 0) {
1318        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1319        vm_stop(RUN_STATE_INTERNAL_ERROR);
1320    }
1321
1322    env->exit_request = 0;
1323    return ret;
1324}
1325
1326int kvm_ioctl(KVMState *s, int type, ...)
1327{
1328    int ret;
1329    void *arg;
1330    va_list ap;
1331
1332    va_start(ap, type);
1333    arg = va_arg(ap, void *);
1334    va_end(ap);
1335
1336    ret = ioctl(s->fd, type, arg);
1337    if (ret == -1) {
1338        ret = -errno;
1339    }
1340    return ret;
1341}
1342
1343int kvm_vm_ioctl(KVMState *s, int type, ...)
1344{
1345    int ret;
1346    void *arg;
1347    va_list ap;
1348
1349    va_start(ap, type);
1350    arg = va_arg(ap, void *);
1351    va_end(ap);
1352
1353    ret = ioctl(s->vmfd, type, arg);
1354    if (ret == -1) {
1355        ret = -errno;
1356    }
1357    return ret;
1358}
1359
1360int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1361{
1362    int ret;
1363    void *arg;
1364    va_list ap;
1365
1366    va_start(ap, type);
1367    arg = va_arg(ap, void *);
1368    va_end(ap);
1369
1370    ret = ioctl(env->kvm_fd, type, arg);
1371    if (ret == -1) {
1372        ret = -errno;
1373    }
1374    return ret;
1375}
1376
1377int kvm_has_sync_mmu(void)
1378{
1379    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1380}
1381
1382int kvm_has_vcpu_events(void)
1383{
1384    return kvm_state->vcpu_events;
1385}
1386
1387int kvm_has_robust_singlestep(void)
1388{
1389    return kvm_state->robust_singlestep;
1390}
1391
1392int kvm_has_debugregs(void)
1393{
1394    return kvm_state->debugregs;
1395}
1396
1397int kvm_has_xsave(void)
1398{
1399    return kvm_state->xsave;
1400}
1401
1402int kvm_has_xcrs(void)
1403{
1404    return kvm_state->xcrs;
1405}
1406
1407int kvm_has_pit_state2(void)
1408{
1409    return kvm_state->pit_state2;
1410}
1411
1412int kvm_has_many_ioeventfds(void)
1413{
1414    if (!kvm_enabled()) {
1415        return 0;
1416    }
1417    return kvm_state->many_ioeventfds;
1418}
1419
1420int kvm_has_gsi_routing(void)
1421{
1422#ifdef KVM_CAP_IRQ_ROUTING
1423    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1424#else
1425    return false;
1426#endif
1427}
1428
1429int kvm_allows_irq0_override(void)
1430{
1431    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1432}
1433
1434void kvm_setup_guest_memory(void *start, size_t size)
1435{
1436    if (!kvm_has_sync_mmu()) {
1437        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1438
1439        if (ret) {
1440            perror("qemu_madvise");
1441            fprintf(stderr,
1442                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1443            exit(1);
1444        }
1445    }
1446}
1447
1448#ifdef KVM_CAP_SET_GUEST_DEBUG
1449struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1450                                                 target_ulong pc)
1451{
1452    struct kvm_sw_breakpoint *bp;
1453
1454    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1455        if (bp->pc == pc) {
1456            return bp;
1457        }
1458    }
1459    return NULL;
1460}
1461
1462int kvm_sw_breakpoints_active(CPUArchState *env)
1463{
1464    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1465}
1466
1467struct kvm_set_guest_debug_data {
1468    struct kvm_guest_debug dbg;
1469    CPUArchState *env;
1470    int err;
1471};
1472
1473static void kvm_invoke_set_guest_debug(void *data)
1474{
1475    struct kvm_set_guest_debug_data *dbg_data = data;
1476    CPUArchState *env = dbg_data->env;
1477
1478    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1479}
1480
1481int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1482{
1483    struct kvm_set_guest_debug_data data;
1484
1485    data.dbg.control = reinject_trap;
1486
1487    if (env->singlestep_enabled) {
1488        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1489    }
1490    kvm_arch_update_guest_debug(env, &data.dbg);
1491    data.env = env;
1492
1493    run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1494    return data.err;
1495}
1496
1497int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1498                          target_ulong len, int type)
1499{
1500    struct kvm_sw_breakpoint *bp;
1501    CPUArchState *env;
1502    int err;
1503
1504    if (type == GDB_BREAKPOINT_SW) {
1505        bp = kvm_find_sw_breakpoint(current_env, addr);
1506        if (bp) {
1507            bp->use_count++;
1508            return 0;
1509        }
1510
1511        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1512        if (!bp) {
1513            return -ENOMEM;
1514        }
1515
1516        bp->pc = addr;
1517        bp->use_count = 1;
1518        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1519        if (err) {
1520            g_free(bp);
1521            return err;
1522        }
1523
1524        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1525                          bp, entry);
1526    } else {
1527        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1528        if (err) {
1529            return err;
1530        }
1531    }
1532
1533    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1534        err = kvm_update_guest_debug(env, 0);
1535        if (err) {
1536            return err;
1537        }
1538    }
1539    return 0;
1540}
1541
1542int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1543                          target_ulong len, int type)
1544{
1545    struct kvm_sw_breakpoint *bp;
1546    CPUArchState *env;
1547    int err;
1548
1549    if (type == GDB_BREAKPOINT_SW) {
1550        bp = kvm_find_sw_breakpoint(current_env, addr);
1551        if (!bp) {
1552            return -ENOENT;
1553        }
1554
1555        if (bp->use_count > 1) {
1556            bp->use_count--;
1557            return 0;
1558        }
1559
1560        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1561        if (err) {
1562            return err;
1563        }
1564
1565        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1566        g_free(bp);
1567    } else {
1568        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1569        if (err) {
1570            return err;
1571        }
1572    }
1573
1574    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1575        err = kvm_update_guest_debug(env, 0);
1576        if (err) {
1577            return err;
1578        }
1579    }
1580    return 0;
1581}
1582
1583void kvm_remove_all_breakpoints(CPUArchState *current_env)
1584{
1585    struct kvm_sw_breakpoint *bp, *next;
1586    KVMState *s = current_env->kvm_state;
1587    CPUArchState *env;
1588
1589    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1590        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1591            /* Try harder to find a CPU that currently sees the breakpoint. */
1592            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1593                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1594                    break;
1595                }
1596            }
1597        }
1598    }
1599    kvm_arch_remove_all_hw_breakpoints();
1600
1601    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1602        kvm_update_guest_debug(env, 0);
1603    }
1604}
1605
1606#else /* !KVM_CAP_SET_GUEST_DEBUG */
1607
1608int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1609{
1610    return -EINVAL;
1611}
1612
1613int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1614                          target_ulong len, int type)
1615{
1616    return -EINVAL;
1617}
1618
1619int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1620                          target_ulong len, int type)
1621{
1622    return -EINVAL;
1623}
1624
1625void kvm_remove_all_breakpoints(CPUArchState *current_env)
1626{
1627}
1628#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1629
1630int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1631{
1632    struct kvm_signal_mask *sigmask;
1633    int r;
1634
1635    if (!sigset) {
1636        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1637    }
1638
1639    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1640
1641    sigmask->len = 8;
1642    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1643    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1644    g_free(sigmask);
1645
1646    return r;
1647}
1648
1649int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1650                           uint32_t size)
1651{
1652    int ret;
1653    struct kvm_ioeventfd iofd;
1654
1655    iofd.datamatch = val;
1656    iofd.addr = addr;
1657    iofd.len = size;
1658    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1659    iofd.fd = fd;
1660
1661    if (!kvm_enabled()) {
1662        return -ENOSYS;
1663    }
1664
1665    if (!assign) {
1666        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1667    }
1668
1669    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1670
1671    if (ret < 0) {
1672        return -errno;
1673    }
1674
1675    return 0;
1676}
1677
1678int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1679{
1680    struct kvm_ioeventfd kick = {
1681        .datamatch = val,
1682        .addr = addr,
1683        .len = 2,
1684        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1685        .fd = fd,
1686    };
1687    int r;
1688    if (!kvm_enabled()) {
1689        return -ENOSYS;
1690    }
1691    if (!assign) {
1692        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1693    }
1694    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1695    if (r < 0) {
1696        return r;
1697    }
1698    return 0;
1699}
1700
1701int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1702{
1703    return kvm_arch_on_sigbus_vcpu(env, code, addr);
1704}
1705
1706int kvm_on_sigbus(int code, void *addr)
1707{
1708    return kvm_arch_on_sigbus(code, addr);
1709}
1710