qemu/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ALL_H
  20#define CPU_ALL_H
  21
  22#include "qemu-common.h"
  23#include "qemu-tls.h"
  24#include "cpu-common.h"
  25
  26/* some important defines:
  27 *
  28 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
  29 * memory accesses.
  30 *
  31 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
  32 * otherwise little endian.
  33 *
  34 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
  35 *
  36 * TARGET_WORDS_BIGENDIAN : same for target cpu
  37 */
  38
  39#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
  40#define BSWAP_NEEDED
  41#endif
  42
  43#ifdef BSWAP_NEEDED
  44
  45static inline uint16_t tswap16(uint16_t s)
  46{
  47    return bswap16(s);
  48}
  49
  50static inline uint32_t tswap32(uint32_t s)
  51{
  52    return bswap32(s);
  53}
  54
  55static inline uint64_t tswap64(uint64_t s)
  56{
  57    return bswap64(s);
  58}
  59
  60static inline void tswap16s(uint16_t *s)
  61{
  62    *s = bswap16(*s);
  63}
  64
  65static inline void tswap32s(uint32_t *s)
  66{
  67    *s = bswap32(*s);
  68}
  69
  70static inline void tswap64s(uint64_t *s)
  71{
  72    *s = bswap64(*s);
  73}
  74
  75#else
  76
  77static inline uint16_t tswap16(uint16_t s)
  78{
  79    return s;
  80}
  81
  82static inline uint32_t tswap32(uint32_t s)
  83{
  84    return s;
  85}
  86
  87static inline uint64_t tswap64(uint64_t s)
  88{
  89    return s;
  90}
  91
  92static inline void tswap16s(uint16_t *s)
  93{
  94}
  95
  96static inline void tswap32s(uint32_t *s)
  97{
  98}
  99
 100static inline void tswap64s(uint64_t *s)
 101{
 102}
 103
 104#endif
 105
 106#if TARGET_LONG_SIZE == 4
 107#define tswapl(s) tswap32(s)
 108#define tswapls(s) tswap32s((uint32_t *)(s))
 109#define bswaptls(s) bswap32s(s)
 110#else
 111#define tswapl(s) tswap64(s)
 112#define tswapls(s) tswap64s((uint64_t *)(s))
 113#define bswaptls(s) bswap64s(s)
 114#endif
 115
 116/* CPU memory access without any memory or io remapping */
 117
 118/*
 119 * the generic syntax for the memory accesses is:
 120 *
 121 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 122 *
 123 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 124 *
 125 * type is:
 126 * (empty): integer access
 127 *   f    : float access
 128 *
 129 * sign is:
 130 * (empty): for floats or 32 bit size
 131 *   u    : unsigned
 132 *   s    : signed
 133 *
 134 * size is:
 135 *   b: 8 bits
 136 *   w: 16 bits
 137 *   l: 32 bits
 138 *   q: 64 bits
 139 *
 140 * endian is:
 141 * (empty): target cpu endianness or 8 bit access
 142 *   r    : reversed target cpu endianness (not implemented yet)
 143 *   be   : big endian (not implemented yet)
 144 *   le   : little endian (not implemented yet)
 145 *
 146 * access_type is:
 147 *   raw    : host memory access
 148 *   user   : user mode access using soft MMU
 149 *   kernel : kernel mode access using soft MMU
 150 */
 151
 152/* target-endianness CPU memory access functions */
 153#if defined(TARGET_WORDS_BIGENDIAN)
 154#define lduw_p(p) lduw_be_p(p)
 155#define ldsw_p(p) ldsw_be_p(p)
 156#define ldl_p(p) ldl_be_p(p)
 157#define ldq_p(p) ldq_be_p(p)
 158#define ldfl_p(p) ldfl_be_p(p)
 159#define ldfq_p(p) ldfq_be_p(p)
 160#define stw_p(p, v) stw_be_p(p, v)
 161#define stl_p(p, v) stl_be_p(p, v)
 162#define stq_p(p, v) stq_be_p(p, v)
 163#define stfl_p(p, v) stfl_be_p(p, v)
 164#define stfq_p(p, v) stfq_be_p(p, v)
 165#else
 166#define lduw_p(p) lduw_le_p(p)
 167#define ldsw_p(p) ldsw_le_p(p)
 168#define ldl_p(p) ldl_le_p(p)
 169#define ldq_p(p) ldq_le_p(p)
 170#define ldfl_p(p) ldfl_le_p(p)
 171#define ldfq_p(p) ldfq_le_p(p)
 172#define stw_p(p, v) stw_le_p(p, v)
 173#define stl_p(p, v) stl_le_p(p, v)
 174#define stq_p(p, v) stq_le_p(p, v)
 175#define stfl_p(p, v) stfl_le_p(p, v)
 176#define stfq_p(p, v) stfq_le_p(p, v)
 177#endif
 178
 179/* MMU memory access macros */
 180
 181#if defined(CONFIG_USER_ONLY)
 182#include <assert.h>
 183#include "qemu-types.h"
 184
 185/* On some host systems the guest address space is reserved on the host.
 186 * This allows the guest address space to be offset to a convenient location.
 187 */
 188#if defined(CONFIG_USE_GUEST_BASE)
 189extern unsigned long guest_base;
 190extern int have_guest_base;
 191extern unsigned long reserved_va;
 192#define GUEST_BASE guest_base
 193#define RESERVED_VA reserved_va
 194#else
 195#define GUEST_BASE 0ul
 196#define RESERVED_VA 0ul
 197#endif
 198
 199/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
 200#define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
 201
 202#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
 203#define h2g_valid(x) 1
 204#else
 205#define h2g_valid(x) ({ \
 206    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
 207    (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
 208    (!RESERVED_VA || (__guest < RESERVED_VA)); \
 209})
 210#endif
 211
 212#define h2g(x) ({ \
 213    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
 214    /* Check if given address fits target address space */ \
 215    assert(h2g_valid(x)); \
 216    (abi_ulong)__ret; \
 217})
 218
 219#define saddr(x) g2h(x)
 220#define laddr(x) g2h(x)
 221
 222#else /* !CONFIG_USER_ONLY */
 223/* NOTE: we use double casts if pointers and target_ulong have
 224   different sizes */
 225#define saddr(x) (uint8_t *)(intptr_t)(x)
 226#define laddr(x) (uint8_t *)(intptr_t)(x)
 227#endif
 228
 229#define ldub_raw(p) ldub_p(laddr((p)))
 230#define ldsb_raw(p) ldsb_p(laddr((p)))
 231#define lduw_raw(p) lduw_p(laddr((p)))
 232#define ldsw_raw(p) ldsw_p(laddr((p)))
 233#define ldl_raw(p) ldl_p(laddr((p)))
 234#define ldq_raw(p) ldq_p(laddr((p)))
 235#define ldfl_raw(p) ldfl_p(laddr((p)))
 236#define ldfq_raw(p) ldfq_p(laddr((p)))
 237#define stb_raw(p, v) stb_p(saddr((p)), v)
 238#define stw_raw(p, v) stw_p(saddr((p)), v)
 239#define stl_raw(p, v) stl_p(saddr((p)), v)
 240#define stq_raw(p, v) stq_p(saddr((p)), v)
 241#define stfl_raw(p, v) stfl_p(saddr((p)), v)
 242#define stfq_raw(p, v) stfq_p(saddr((p)), v)
 243
 244
 245#if defined(CONFIG_USER_ONLY)
 246
 247/* if user mode, no other memory access functions */
 248#define ldub(p) ldub_raw(p)
 249#define ldsb(p) ldsb_raw(p)
 250#define lduw(p) lduw_raw(p)
 251#define ldsw(p) ldsw_raw(p)
 252#define ldl(p) ldl_raw(p)
 253#define ldq(p) ldq_raw(p)
 254#define ldfl(p) ldfl_raw(p)
 255#define ldfq(p) ldfq_raw(p)
 256#define stb(p, v) stb_raw(p, v)
 257#define stw(p, v) stw_raw(p, v)
 258#define stl(p, v) stl_raw(p, v)
 259#define stq(p, v) stq_raw(p, v)
 260#define stfl(p, v) stfl_raw(p, v)
 261#define stfq(p, v) stfq_raw(p, v)
 262
 263#ifndef CONFIG_TCG_PASS_AREG0
 264#define ldub_code(p) ldub_raw(p)
 265#define ldsb_code(p) ldsb_raw(p)
 266#define lduw_code(p) lduw_raw(p)
 267#define ldsw_code(p) ldsw_raw(p)
 268#define ldl_code(p) ldl_raw(p)
 269#define ldq_code(p) ldq_raw(p)
 270#else
 271#define cpu_ldub_code(env1, p) ldub_raw(p)
 272#define cpu_ldsb_code(env1, p) ldsb_raw(p)
 273#define cpu_lduw_code(env1, p) lduw_raw(p)
 274#define cpu_ldsw_code(env1, p) ldsw_raw(p)
 275#define cpu_ldl_code(env1, p) ldl_raw(p)
 276#define cpu_ldq_code(env1, p) ldq_raw(p)
 277
 278#define cpu_ldub_data(env, addr) ldub_raw(addr)
 279#define cpu_lduw_data(env, addr) lduw_raw(addr)
 280#define cpu_ldsw_data(env, addr) ldsw_raw(addr)
 281#define cpu_ldl_data(env, addr) ldl_raw(addr)
 282#define cpu_ldq_data(env, addr) ldq_raw(addr)
 283
 284#define cpu_stb_data(env, addr, data) stb_raw(addr, data)
 285#define cpu_stw_data(env, addr, data) stw_raw(addr, data)
 286#define cpu_stl_data(env, addr, data) stl_raw(addr, data)
 287#define cpu_stq_data(env, addr, data) stq_raw(addr, data)
 288
 289#define cpu_ldub_kernel(env, addr) ldub_raw(addr)
 290#define cpu_lduw_kernel(env, addr) lduw_raw(addr)
 291#define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
 292#define cpu_ldl_kernel(env, addr) ldl_raw(addr)
 293#define cpu_ldq_kernel(env, addr) ldq_raw(addr)
 294
 295#define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
 296#define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
 297#define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
 298#define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
 299#endif
 300
 301#define ldub_kernel(p) ldub_raw(p)
 302#define ldsb_kernel(p) ldsb_raw(p)
 303#define lduw_kernel(p) lduw_raw(p)
 304#define ldsw_kernel(p) ldsw_raw(p)
 305#define ldl_kernel(p) ldl_raw(p)
 306#define ldq_kernel(p) ldq_raw(p)
 307#define ldfl_kernel(p) ldfl_raw(p)
 308#define ldfq_kernel(p) ldfq_raw(p)
 309#define stb_kernel(p, v) stb_raw(p, v)
 310#define stw_kernel(p, v) stw_raw(p, v)
 311#define stl_kernel(p, v) stl_raw(p, v)
 312#define stq_kernel(p, v) stq_raw(p, v)
 313#define stfl_kernel(p, v) stfl_raw(p, v)
 314#define stfq_kernel(p, vt) stfq_raw(p, v)
 315
 316#ifdef CONFIG_TCG_PASS_AREG0
 317#define cpu_ldub_data(env, addr) ldub_raw(addr)
 318#define cpu_lduw_data(env, addr) lduw_raw(addr)
 319#define cpu_ldl_data(env, addr) ldl_raw(addr)
 320
 321#define cpu_stb_data(env, addr, data) stb_raw(addr, data)
 322#define cpu_stw_data(env, addr, data) stw_raw(addr, data)
 323#define cpu_stl_data(env, addr, data) stl_raw(addr, data)
 324#endif
 325#endif /* defined(CONFIG_USER_ONLY) */
 326
 327/* page related stuff */
 328
 329#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
 330#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
 331#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
 332
 333/* ??? These should be the larger of uintptr_t and target_ulong.  */
 334extern uintptr_t qemu_real_host_page_size;
 335extern uintptr_t qemu_host_page_size;
 336extern uintptr_t qemu_host_page_mask;
 337
 338#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
 339
 340/* same as PROT_xxx */
 341#define PAGE_READ      0x0001
 342#define PAGE_WRITE     0x0002
 343#define PAGE_EXEC      0x0004
 344#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 345#define PAGE_VALID     0x0008
 346/* original state of the write flag (used when tracking self-modifying
 347   code */
 348#define PAGE_WRITE_ORG 0x0010
 349#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 350/* FIXME: Code that sets/uses this is broken and needs to go away.  */
 351#define PAGE_RESERVED  0x0020
 352#endif
 353
 354#if defined(CONFIG_USER_ONLY)
 355void page_dump(FILE *f);
 356
 357typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
 358                                      abi_ulong, unsigned long);
 359int walk_memory_regions(void *, walk_memory_regions_fn);
 360
 361int page_get_flags(target_ulong address);
 362void page_set_flags(target_ulong start, target_ulong end, int flags);
 363int page_check_range(target_ulong start, target_ulong len, int flags);
 364#endif
 365
 366CPUArchState *cpu_copy(CPUArchState *env);
 367CPUArchState *qemu_get_cpu(int cpu);
 368
 369#define CPU_DUMP_CODE 0x00010000
 370
 371void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
 372                    int flags);
 373void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
 374                         int flags);
 375
 376void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
 377    GCC_FMT_ATTR(2, 3);
 378extern CPUArchState *first_cpu;
 379DECLARE_TLS(CPUArchState *,cpu_single_env);
 380#define cpu_single_env tls_var(cpu_single_env)
 381
 382/* Flags for use in ENV->INTERRUPT_PENDING.
 383
 384   The numbers assigned here are non-sequential in order to preserve
 385   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
 386   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
 387   the vmstate dump.  */
 388
 389/* External hardware interrupt pending.  This is typically used for
 390   interrupts from devices.  */
 391#define CPU_INTERRUPT_HARD        0x0002
 392
 393/* Exit the current TB.  This is typically used when some system-level device
 394   makes some change to the memory mapping.  E.g. the a20 line change.  */
 395#define CPU_INTERRUPT_EXITTB      0x0004
 396
 397/* Halt the CPU.  */
 398#define CPU_INTERRUPT_HALT        0x0020
 399
 400/* Debug event pending.  */
 401#define CPU_INTERRUPT_DEBUG       0x0080
 402
 403/* Several target-specific external hardware interrupts.  Each target/cpu.h
 404   should define proper names based on these defines.  */
 405#define CPU_INTERRUPT_TGT_EXT_0   0x0008
 406#define CPU_INTERRUPT_TGT_EXT_1   0x0010
 407#define CPU_INTERRUPT_TGT_EXT_2   0x0040
 408#define CPU_INTERRUPT_TGT_EXT_3   0x0200
 409#define CPU_INTERRUPT_TGT_EXT_4   0x1000
 410
 411/* Several target-specific internal interrupts.  These differ from the
 412   preceding target-specific interrupts in that they are intended to
 413   originate from within the cpu itself, typically in response to some
 414   instruction being executed.  These, therefore, are not masked while
 415   single-stepping within the debugger.  */
 416#define CPU_INTERRUPT_TGT_INT_0   0x0100
 417#define CPU_INTERRUPT_TGT_INT_1   0x0400
 418#define CPU_INTERRUPT_TGT_INT_2   0x0800
 419#define CPU_INTERRUPT_TGT_INT_3   0x2000
 420
 421/* First unused bit: 0x4000.  */
 422
 423/* The set of all bits that should be masked when single-stepping.  */
 424#define CPU_INTERRUPT_SSTEP_MASK \
 425    (CPU_INTERRUPT_HARD          \
 426     | CPU_INTERRUPT_TGT_EXT_0   \
 427     | CPU_INTERRUPT_TGT_EXT_1   \
 428     | CPU_INTERRUPT_TGT_EXT_2   \
 429     | CPU_INTERRUPT_TGT_EXT_3   \
 430     | CPU_INTERRUPT_TGT_EXT_4)
 431
 432#ifndef CONFIG_USER_ONLY
 433typedef void (*CPUInterruptHandler)(CPUArchState *, int);
 434
 435extern CPUInterruptHandler cpu_interrupt_handler;
 436
 437static inline void cpu_interrupt(CPUArchState *s, int mask)
 438{
 439    cpu_interrupt_handler(s, mask);
 440}
 441#else /* USER_ONLY */
 442void cpu_interrupt(CPUArchState *env, int mask);
 443#endif /* USER_ONLY */
 444
 445void cpu_reset_interrupt(CPUArchState *env, int mask);
 446
 447void cpu_exit(CPUArchState *s);
 448
 449bool qemu_cpu_has_work(CPUArchState *env);
 450
 451/* Breakpoint/watchpoint flags */
 452#define BP_MEM_READ           0x01
 453#define BP_MEM_WRITE          0x02
 454#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
 455#define BP_STOP_BEFORE_ACCESS 0x04
 456#define BP_WATCHPOINT_HIT     0x08
 457#define BP_GDB                0x10
 458#define BP_CPU                0x20
 459
 460int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
 461                          CPUBreakpoint **breakpoint);
 462int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
 463void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
 464void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
 465int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 466                          int flags, CPUWatchpoint **watchpoint);
 467int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
 468                          target_ulong len, int flags);
 469void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
 470void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
 471
 472#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
 473#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
 474#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
 475
 476void cpu_single_step(CPUArchState *env, int enabled);
 477int cpu_is_stopped(CPUArchState *env);
 478void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
 479
 480#if !defined(CONFIG_USER_ONLY)
 481
 482/* Return the physical page corresponding to a virtual one. Use it
 483   only for debugging because no protection checks are done. Return -1
 484   if no page found. */
 485target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
 486
 487/* memory API */
 488
 489extern int phys_ram_fd;
 490extern ram_addr_t ram_size;
 491
 492/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 493#define RAM_PREALLOC_MASK   (1 << 0)
 494
 495typedef struct RAMBlock {
 496    struct MemoryRegion *mr;
 497    uint8_t *host;
 498    ram_addr_t offset;
 499    ram_addr_t length;
 500    uint32_t flags;
 501    char idstr[256];
 502    QLIST_ENTRY(RAMBlock) next;
 503#if defined(__linux__) && !defined(TARGET_S390X)
 504    int fd;
 505#endif
 506} RAMBlock;
 507
 508typedef struct RAMList {
 509    uint8_t *phys_dirty;
 510    QLIST_HEAD(, RAMBlock) blocks;
 511    uint64_t dirty_pages;
 512} RAMList;
 513extern RAMList ram_list;
 514
 515extern const char *mem_path;
 516extern int mem_prealloc;
 517
 518/* Flags stored in the low bits of the TLB virtual address.  These are
 519   defined so that fast path ram access is all zeros.  */
 520/* Zero if TLB entry is valid.  */
 521#define TLB_INVALID_MASK   (1 << 3)
 522/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 523   contain the page physical address.  */
 524#define TLB_NOTDIRTY    (1 << 4)
 525/* Set if TLB entry is an IO callback.  */
 526#define TLB_MMIO        (1 << 5)
 527
 528void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
 529#endif /* !CONFIG_USER_ONLY */
 530
 531int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 532                        uint8_t *buf, int len, int is_write);
 533
 534#endif /* CPU_ALL_H */
 535