qemu/alpha-dis.c
<<
>>
Prefs
   1/* alpha-dis.c -- Disassemble Alpha AXP instructions
   2   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
   3   Contributed by Richard Henderson <rth@tamu.edu>,
   4   patterned after the PPC opcode handling written by Ian Lance Taylor.
   5
   6This file is part of GDB, GAS, and the GNU binutils.
   7
   8GDB, GAS, and the GNU binutils are free software; you can redistribute
   9them and/or modify them under the terms of the GNU General Public
  10License as published by the Free Software Foundation; either version
  112, or (at your option) any later version.
  12
  13GDB, GAS, and the GNU binutils are distributed in the hope that they
  14will be useful, but WITHOUT ANY WARRANTY; without even the implied
  15warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
  16the GNU General Public License for more details.
  17
  18You should have received a copy of the GNU General Public License
  19along with this file; see the file COPYING.  If not, see
  20<http://www.gnu.org/licenses/>. */
  21
  22#include <stdio.h>
  23#include "dis-asm.h"
  24
  25/* MAX is redefined below, so remove any previous definition. */
  26#undef MAX
  27
  28/* The opcode table is an array of struct alpha_opcode.  */
  29
  30struct alpha_opcode
  31{
  32  /* The opcode name.  */
  33  const char *name;
  34
  35  /* The opcode itself.  Those bits which will be filled in with
  36     operands are zeroes.  */
  37  unsigned opcode;
  38
  39  /* The opcode mask.  This is used by the disassembler.  This is a
  40     mask containing ones indicating those bits which must match the
  41     opcode field, and zeroes indicating those bits which need not
  42     match (and are presumably filled in by operands).  */
  43  unsigned mask;
  44
  45  /* One bit flags for the opcode.  These are primarily used to
  46     indicate specific processors and environments support the
  47     instructions.  The defined values are listed below. */
  48  unsigned flags;
  49
  50  /* An array of operand codes.  Each code is an index into the
  51     operand table.  They appear in the order which the operands must
  52     appear in assembly code, and are terminated by a zero.  */
  53  unsigned char operands[4];
  54};
  55
  56/* The table itself is sorted by major opcode number, and is otherwise
  57   in the order in which the disassembler should consider
  58   instructions.  */
  59extern const struct alpha_opcode alpha_opcodes[];
  60extern const unsigned alpha_num_opcodes;
  61
  62/* Values defined for the flags field of a struct alpha_opcode.  */
  63
  64/* CPU Availability */
  65#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
  66#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
  67#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
  68#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
  69#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
  70#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
  71#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
  72
  73#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
  74
  75/* A macro to extract the major opcode from an instruction.  */
  76#define AXP_OP(i)       (((i) >> 26) & 0x3F)
  77
  78/* The total number of major opcodes. */
  79#define AXP_NOPS        0x40
  80
  81
  82/* The operands table is an array of struct alpha_operand.  */
  83
  84struct alpha_operand
  85{
  86  /* The number of bits in the operand.  */
  87  unsigned int bits : 5;
  88
  89  /* How far the operand is left shifted in the instruction.  */
  90  unsigned int shift : 5;
  91
  92  /* The default relocation type for this operand.  */
  93  signed int default_reloc : 16;
  94
  95  /* One bit syntax flags.  */
  96  unsigned int flags : 16;
  97
  98  /* Insertion function.  This is used by the assembler.  To insert an
  99     operand value into an instruction, check this field.
 100
 101     If it is NULL, execute
 102         i |= (op & ((1 << o->bits) - 1)) << o->shift;
 103     (i is the instruction which we are filling in, o is a pointer to
 104     this structure, and op is the opcode value; this assumes twos
 105     complement arithmetic).
 106
 107     If this field is not NULL, then simply call it with the
 108     instruction and the operand value.  It will return the new value
 109     of the instruction.  If the ERRMSG argument is not NULL, then if
 110     the operand value is illegal, *ERRMSG will be set to a warning
 111     string (the operand will be inserted in any case).  If the
 112     operand value is legal, *ERRMSG will be unchanged (most operands
 113     can accept any value).  */
 114  unsigned (*insert) (unsigned instruction, int op,
 115                      const char **errmsg);
 116
 117  /* Extraction function.  This is used by the disassembler.  To
 118     extract this operand type from an instruction, check this field.
 119
 120     If it is NULL, compute
 121         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
 122         if ((o->flags & AXP_OPERAND_SIGNED) != 0
 123             && (op & (1 << (o->bits - 1))) != 0)
 124           op -= 1 << o->bits;
 125     (i is the instruction, o is a pointer to this structure, and op
 126     is the result; this assumes twos complement arithmetic).
 127
 128     If this field is not NULL, then simply call it with the
 129     instruction value.  It will return the value of the operand.  If
 130     the INVALID argument is not NULL, *INVALID will be set to
 131     non-zero if this operand type can not actually be extracted from
 132     this operand (i.e., the instruction does not match).  If the
 133     operand is valid, *INVALID will not be changed.  */
 134  int (*extract) (unsigned instruction, int *invalid);
 135};
 136
 137/* Elements in the table are retrieved by indexing with values from
 138   the operands field of the alpha_opcodes table.  */
 139
 140extern const struct alpha_operand alpha_operands[];
 141extern const unsigned alpha_num_operands;
 142
 143/* Values defined for the flags field of a struct alpha_operand.  */
 144
 145/* Mask for selecting the type for typecheck purposes */
 146#define AXP_OPERAND_TYPECHECK_MASK                                      \
 147  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |            \
 148   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |        \
 149   AXP_OPERAND_UNSIGNED)
 150
 151/* This operand does not actually exist in the assembler input.  This
 152   is used to support extended mnemonics, for which two operands fields
 153   are identical.  The assembler should call the insert function with
 154   any op value.  The disassembler should call the extract function,
 155   ignore the return value, and check the value placed in the invalid
 156   argument.  */
 157#define AXP_OPERAND_FAKE        01
 158
 159/* The operand should be wrapped in parentheses rather than separated
 160   from the previous by a comma.  This is used for the load and store
 161   instructions which want their operands to look like "Ra,disp(Rb)".  */
 162#define AXP_OPERAND_PARENS      02
 163
 164/* Used in combination with PARENS, this suppresses the suppression of
 165   the comma.  This is used for "jmp Ra,(Rb),hint".  */
 166#define AXP_OPERAND_COMMA       04
 167
 168/* This operand names an integer register.  */
 169#define AXP_OPERAND_IR          010
 170
 171/* This operand names a floating point register.  */
 172#define AXP_OPERAND_FPR         020
 173
 174/* This operand is a relative branch displacement.  The disassembler
 175   prints these symbolically if possible.  */
 176#define AXP_OPERAND_RELATIVE    040
 177
 178/* This operand takes signed values.  */
 179#define AXP_OPERAND_SIGNED      0100
 180
 181/* This operand takes unsigned values.  This exists primarily so that
 182   a flags value of 0 can be treated as end-of-arguments.  */
 183#define AXP_OPERAND_UNSIGNED    0200
 184
 185/* Suppress overflow detection on this field.  This is used for hints. */
 186#define AXP_OPERAND_NOOVERFLOW  0400
 187
 188/* Mask for optional argument default value.  */
 189#define AXP_OPERAND_OPTIONAL_MASK 07000
 190
 191/* This operand defaults to zero.  This is used for jump hints.  */
 192#define AXP_OPERAND_DEFAULT_ZERO 01000
 193
 194/* This operand should default to the first (real) operand and is used
 195   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
 196   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
 197   it, but it's what DEC does.  */
 198#define AXP_OPERAND_DEFAULT_FIRST 02000
 199
 200/* Similarly, this operand should default to the second (real) operand.
 201   This allows "negl $0" instead of "negl $0,$0".  */
 202#define AXP_OPERAND_DEFAULT_SECOND 04000
 203
 204
 205/* Register common names */
 206
 207#define AXP_REG_V0      0
 208#define AXP_REG_T0      1
 209#define AXP_REG_T1      2
 210#define AXP_REG_T2      3
 211#define AXP_REG_T3      4
 212#define AXP_REG_T4      5
 213#define AXP_REG_T5      6
 214#define AXP_REG_T6      7
 215#define AXP_REG_T7      8
 216#define AXP_REG_S0      9
 217#define AXP_REG_S1      10
 218#define AXP_REG_S2      11
 219#define AXP_REG_S3      12
 220#define AXP_REG_S4      13
 221#define AXP_REG_S5      14
 222#define AXP_REG_FP      15
 223#define AXP_REG_A0      16
 224#define AXP_REG_A1      17
 225#define AXP_REG_A2      18
 226#define AXP_REG_A3      19
 227#define AXP_REG_A4      20
 228#define AXP_REG_A5      21
 229#define AXP_REG_T8      22
 230#define AXP_REG_T9      23
 231#define AXP_REG_T10     24
 232#define AXP_REG_T11     25
 233#define AXP_REG_RA      26
 234#define AXP_REG_PV      27
 235#define AXP_REG_T12     27
 236#define AXP_REG_AT      28
 237#define AXP_REG_GP      29
 238#define AXP_REG_SP      30
 239#define AXP_REG_ZERO    31
 240
 241enum bfd_reloc_code_real {
 242    BFD_RELOC_23_PCREL_S2,
 243    BFD_RELOC_ALPHA_HINT
 244};
 245
 246/* This file holds the Alpha AXP opcode table.  The opcode table includes
 247   almost all of the extended instruction mnemonics.  This permits the
 248   disassembler to use them, and simplifies the assembler logic, at the
 249   cost of increasing the table size.  The table is strictly constant
 250   data, so the compiler should be able to put it in the text segment.
 251
 252   This file also holds the operand table.  All knowledge about inserting
 253   and extracting operands from instructions is kept in this file.
 254
 255   The information for the base instruction set was compiled from the
 256   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
 257   version 2.
 258
 259   The information for the post-ev5 architecture extensions BWX, CIX and
 260   MAX came from version 3 of this same document, which is also available
 261   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
 262   /literature/alphahb2.pdf
 263
 264   The information for the EV4 PALcode instructions was compiled from
 265   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
 266   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
 267   revision dated June 1994.
 268
 269   The information for the EV5 PALcode instructions was compiled from
 270   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
 271   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
 272
 273/* Local insertion and extraction functions */
 274
 275static unsigned insert_rba (unsigned, int, const char **);
 276static unsigned insert_rca (unsigned, int, const char **);
 277static unsigned insert_za (unsigned, int, const char **);
 278static unsigned insert_zb (unsigned, int, const char **);
 279static unsigned insert_zc (unsigned, int, const char **);
 280static unsigned insert_bdisp (unsigned, int, const char **);
 281static unsigned insert_jhint (unsigned, int, const char **);
 282static unsigned insert_ev6hwjhint (unsigned, int, const char **);
 283
 284static int extract_rba (unsigned, int *);
 285static int extract_rca (unsigned, int *);
 286static int extract_za (unsigned, int *);
 287static int extract_zb (unsigned, int *);
 288static int extract_zc (unsigned, int *);
 289static int extract_bdisp (unsigned, int *);
 290static int extract_jhint (unsigned, int *);
 291static int extract_ev6hwjhint (unsigned, int *);
 292
 293
 294/* The operands table  */
 295
 296const struct alpha_operand alpha_operands[] =
 297{
 298  /* The fields are bits, shift, insert, extract, flags */
 299  /* The zero index is used to indicate end-of-list */
 300#define UNUSED          0
 301  { 0, 0, 0, 0, 0, 0 },
 302
 303  /* The plain integer register fields */
 304#define RA              (UNUSED + 1)
 305  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
 306#define RB              (RA + 1)
 307  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
 308#define RC              (RB + 1)
 309  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
 310
 311  /* The plain fp register fields */
 312#define FA              (RC + 1)
 313  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
 314#define FB              (FA + 1)
 315  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
 316#define FC              (FB + 1)
 317  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
 318
 319  /* The integer registers when they are ZERO */
 320#define ZA              (FC + 1)
 321  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
 322#define ZB              (ZA + 1)
 323  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
 324#define ZC              (ZB + 1)
 325  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
 326
 327  /* The RB field when it needs parentheses */
 328#define PRB             (ZC + 1)
 329  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
 330
 331  /* The RB field when it needs parentheses _and_ a preceding comma */
 332#define CPRB            (PRB + 1)
 333  { 5, 16, 0,
 334    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
 335
 336  /* The RB field when it must be the same as the RA field */
 337#define RBA             (CPRB + 1)
 338  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
 339
 340  /* The RC field when it must be the same as the RB field */
 341#define RCA             (RBA + 1)
 342  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
 343
 344  /* The RC field when it can *default* to RA */
 345#define DRC1            (RCA + 1)
 346  { 5, 0, 0,
 347    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
 348
 349  /* The RC field when it can *default* to RB */
 350#define DRC2            (DRC1 + 1)
 351  { 5, 0, 0,
 352    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
 353
 354  /* The FC field when it can *default* to RA */
 355#define DFC1            (DRC2 + 1)
 356  { 5, 0, 0,
 357    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
 358
 359  /* The FC field when it can *default* to RB */
 360#define DFC2            (DFC1 + 1)
 361  { 5, 0, 0,
 362    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
 363
 364  /* The unsigned 8-bit literal of Operate format insns */
 365#define LIT             (DFC2 + 1)
 366  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
 367
 368  /* The signed 16-bit displacement of Memory format insns.  From here
 369     we can't tell what relocation should be used, so don't use a default. */
 370#define MDISP           (LIT + 1)
 371  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
 372
 373  /* The signed "23-bit" aligned displacement of Branch format insns */
 374#define BDISP           (MDISP + 1)
 375  { 21, 0, BFD_RELOC_23_PCREL_S2,
 376    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
 377
 378  /* The 26-bit PALcode function */
 379#define PALFN           (BDISP + 1)
 380  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
 381
 382  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
 383#define JMPHINT         (PALFN + 1)
 384  { 14, 0, BFD_RELOC_ALPHA_HINT,
 385    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
 386    insert_jhint, extract_jhint },
 387
 388  /* The optional hint to RET/JSR_COROUTINE */
 389#define RETHINT         (JMPHINT + 1)
 390  { 14, 0, -RETHINT,
 391    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
 392
 393  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
 394#define EV4HWDISP       (RETHINT + 1)
 395#define EV6HWDISP       (EV4HWDISP)
 396  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
 397
 398  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
 399#define EV4HWINDEX      (EV4HWDISP + 1)
 400  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 401
 402  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
 403     that occur in DEC PALcode.  */
 404#define EV4EXTHWINDEX   (EV4HWINDEX + 1)
 405  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 406
 407  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
 408#define EV5HWDISP       (EV4EXTHWINDEX + 1)
 409  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
 410
 411  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
 412#define EV5HWINDEX      (EV5HWDISP + 1)
 413  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 414
 415  /* The 16-bit combined index/scoreboard mask for the ev6
 416     hw_m[ft]pr (pal19/pal1d) insns */
 417#define EV6HWINDEX      (EV5HWINDEX + 1)
 418  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
 419
 420  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
 421#define EV6HWJMPHINT    (EV6HWINDEX+ 1)
 422  { 8, 0, -EV6HWJMPHINT,
 423    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
 424    insert_ev6hwjhint, extract_ev6hwjhint }
 425};
 426
 427const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
 428
 429/* The RB field when it is the same as the RA field in the same insn.
 430   This operand is marked fake.  The insertion function just copies
 431   the RA field into the RB field, and the extraction function just
 432   checks that the fields are the same. */
 433
 434/*ARGSUSED*/
 435static unsigned
 436insert_rba(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 437{
 438  return insn | (((insn >> 21) & 0x1f) << 16);
 439}
 440
 441static int
 442extract_rba(unsigned insn, int *invalid)
 443{
 444  if (invalid != (int *) NULL
 445      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
 446    *invalid = 1;
 447  return 0;
 448}
 449
 450
 451/* The same for the RC field */
 452
 453/*ARGSUSED*/
 454static unsigned
 455insert_rca(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 456{
 457  return insn | ((insn >> 21) & 0x1f);
 458}
 459
 460static int
 461extract_rca(unsigned insn, int *invalid)
 462{
 463  if (invalid != (int *) NULL
 464      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
 465    *invalid = 1;
 466  return 0;
 467}
 468
 469
 470/* Fake arguments in which the registers must be set to ZERO */
 471
 472/*ARGSUSED*/
 473static unsigned
 474insert_za(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 475{
 476  return insn | (31 << 21);
 477}
 478
 479static int
 480extract_za(unsigned insn, int *invalid)
 481{
 482  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
 483    *invalid = 1;
 484  return 0;
 485}
 486
 487/*ARGSUSED*/
 488static unsigned
 489insert_zb(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 490{
 491  return insn | (31 << 16);
 492}
 493
 494static int
 495extract_zb(unsigned insn, int *invalid)
 496{
 497  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
 498    *invalid = 1;
 499  return 0;
 500}
 501
 502/*ARGSUSED*/
 503static unsigned
 504insert_zc(unsigned insn, int value ATTRIBUTE_UNUSED, const char **errmsg ATTRIBUTE_UNUSED)
 505{
 506  return insn | 31;
 507}
 508
 509static int
 510extract_zc(unsigned insn, int *invalid)
 511{
 512  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
 513    *invalid = 1;
 514  return 0;
 515}
 516
 517
 518/* The displacement field of a Branch format insn.  */
 519
 520static unsigned
 521insert_bdisp(unsigned insn, int value, const char **errmsg)
 522{
 523  if (errmsg != (const char **)NULL && (value & 3))
 524    *errmsg = _("branch operand unaligned");
 525  return insn | ((value / 4) & 0x1FFFFF);
 526}
 527
 528/*ARGSUSED*/
 529static int
 530extract_bdisp(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
 531{
 532  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
 533}
 534
 535
 536/* The hint field of a JMP/JSR insn.  */
 537
 538static unsigned
 539insert_jhint(unsigned insn, int value, const char **errmsg)
 540{
 541  if (errmsg != (const char **)NULL && (value & 3))
 542    *errmsg = _("jump hint unaligned");
 543  return insn | ((value / 4) & 0x3FFF);
 544}
 545
 546/*ARGSUSED*/
 547static int
 548extract_jhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
 549{
 550  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
 551}
 552
 553/* The hint field of an EV6 HW_JMP/JSR insn.  */
 554
 555static unsigned
 556insert_ev6hwjhint(unsigned insn, int value, const char **errmsg)
 557{
 558  if (errmsg != (const char **)NULL && (value & 3))
 559    *errmsg = _("jump hint unaligned");
 560  return insn | ((value / 4) & 0x1FFF);
 561}
 562
 563/*ARGSUSED*/
 564static int
 565extract_ev6hwjhint(unsigned insn, int *invalid ATTRIBUTE_UNUSED)
 566{
 567  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
 568}
 569
 570
 571/* Macros used to form opcodes */
 572
 573/* The main opcode */
 574#define OP(x)           (((x) & 0x3F) << 26)
 575#define OP_MASK         0xFC000000
 576
 577/* Branch format instructions */
 578#define BRA_(oo)        OP(oo)
 579#define BRA_MASK        OP_MASK
 580#define BRA(oo)         BRA_(oo), BRA_MASK
 581
 582/* Floating point format instructions */
 583#define FP_(oo,fff)     (OP(oo) | (((fff) & 0x7FF) << 5))
 584#define FP_MASK         (OP_MASK | 0xFFE0)
 585#define FP(oo,fff)      FP_(oo,fff), FP_MASK
 586
 587/* Memory format instructions */
 588#define MEM_(oo)        OP(oo)
 589#define MEM_MASK        OP_MASK
 590#define MEM(oo)         MEM_(oo), MEM_MASK
 591
 592/* Memory/Func Code format instructions */
 593#define MFC_(oo,ffff)   (OP(oo) | ((ffff) & 0xFFFF))
 594#define MFC_MASK        (OP_MASK | 0xFFFF)
 595#define MFC(oo,ffff)    MFC_(oo,ffff), MFC_MASK
 596
 597/* Memory/Branch format instructions */
 598#define MBR_(oo,h)      (OP(oo) | (((h) & 3) << 14))
 599#define MBR_MASK        (OP_MASK | 0xC000)
 600#define MBR(oo,h)       MBR_(oo,h), MBR_MASK
 601
 602/* Operate format instructions.  The OPRL variant specifies a
 603   literal second argument. */
 604#define OPR_(oo,ff)     (OP(oo) | (((ff) & 0x7F) << 5))
 605#define OPRL_(oo,ff)    (OPR_((oo),(ff)) | 0x1000)
 606#define OPR_MASK        (OP_MASK | 0x1FE0)
 607#define OPR(oo,ff)      OPR_(oo,ff), OPR_MASK
 608#define OPRL(oo,ff)     OPRL_(oo,ff), OPR_MASK
 609
 610/* Generic PALcode format instructions */
 611#define PCD_(oo)        OP(oo)
 612#define PCD_MASK        OP_MASK
 613#define PCD(oo)         PCD_(oo), PCD_MASK
 614
 615/* Specific PALcode instructions */
 616#define SPCD_(oo,ffff)  (OP(oo) | ((ffff) & 0x3FFFFFF))
 617#define SPCD_MASK       0xFFFFFFFF
 618#define SPCD(oo,ffff)   SPCD_(oo,ffff), SPCD_MASK
 619
 620/* Hardware memory (hw_{ld,st}) instructions */
 621#define EV4HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
 622#define EV4HWMEM_MASK   (OP_MASK | 0xF000)
 623#define EV4HWMEM(oo,f)  EV4HWMEM_(oo,f), EV4HWMEM_MASK
 624
 625#define EV5HWMEM_(oo,f) (OP(oo) | (((f) & 0x3F) << 10))
 626#define EV5HWMEM_MASK   (OP_MASK | 0xF800)
 627#define EV5HWMEM(oo,f)  EV5HWMEM_(oo,f), EV5HWMEM_MASK
 628
 629#define EV6HWMEM_(oo,f) (OP(oo) | (((f) & 0xF) << 12))
 630#define EV6HWMEM_MASK   (OP_MASK | 0xF000)
 631#define EV6HWMEM(oo,f)  EV6HWMEM_(oo,f), EV6HWMEM_MASK
 632
 633#define EV6HWMBR_(oo,h) (OP(oo) | (((h) & 7) << 13))
 634#define EV6HWMBR_MASK   (OP_MASK | 0xE000)
 635#define EV6HWMBR(oo,h)  EV6HWMBR_(oo,h), EV6HWMBR_MASK
 636
 637/* Abbreviations for instruction subsets.  */
 638#define BASE                    AXP_OPCODE_BASE
 639#define EV4                     AXP_OPCODE_EV4
 640#define EV5                     AXP_OPCODE_EV5
 641#define EV6                     AXP_OPCODE_EV6
 642#define BWX                     AXP_OPCODE_BWX
 643#define CIX                     AXP_OPCODE_CIX
 644#define MAX                     AXP_OPCODE_MAX
 645
 646/* Common combinations of arguments */
 647#define ARG_NONE                { 0 }
 648#define ARG_BRA                 { RA, BDISP }
 649#define ARG_FBRA                { FA, BDISP }
 650#define ARG_FP                  { FA, FB, DFC1 }
 651#define ARG_FPZ1                { ZA, FB, DFC1 }
 652#define ARG_MEM                 { RA, MDISP, PRB }
 653#define ARG_FMEM                { FA, MDISP, PRB }
 654#define ARG_OPR                 { RA, RB, DRC1 }
 655#define ARG_OPRL                { RA, LIT, DRC1 }
 656#define ARG_OPRZ1               { ZA, RB, DRC1 }
 657#define ARG_OPRLZ1              { ZA, LIT, RC }
 658#define ARG_PCD                 { PALFN }
 659#define ARG_EV4HWMEM            { RA, EV4HWDISP, PRB }
 660#define ARG_EV4HWMPR            { RA, RBA, EV4HWINDEX }
 661#define ARG_EV5HWMEM            { RA, EV5HWDISP, PRB }
 662#define ARG_EV6HWMEM            { RA, EV6HWDISP, PRB }
 663
 664/* The opcode table.
 665
 666   The format of the opcode table is:
 667
 668   NAME OPCODE MASK { OPERANDS }
 669
 670   NAME         is the name of the instruction.
 671
 672   OPCODE       is the instruction opcode.
 673
 674   MASK         is the opcode mask; this is used to tell the disassembler
 675                which bits in the actual opcode must match OPCODE.
 676
 677   OPERANDS     is the list of operands.
 678
 679   The preceding macros merge the text of the OPCODE and MASK fields.
 680
 681   The disassembler reads the table in order and prints the first
 682   instruction which matches, so this table is sorted to put more
 683   specific instructions before more general instructions.
 684
 685   Otherwise, it is sorted by major opcode and minor function code.
 686
 687   There are three classes of not-really-instructions in this table:
 688
 689   ALIAS        is another name for another instruction.  Some of
 690                these come from the Architecture Handbook, some
 691                come from the original gas opcode tables.  In all
 692                cases, the functionality of the opcode is unchanged.
 693
 694   PSEUDO       a stylized code form endorsed by Chapter A.4 of the
 695                Architecture Handbook.
 696
 697   EXTRA        a stylized code form found in the original gas tables.
 698
 699   And two annotations:
 700
 701   EV56 BUT     opcodes that are officially introduced as of the ev56,
 702                but with defined results on previous implementations.
 703
 704   EV56 UNA     opcodes that were introduced as of the ev56 with
 705                presumably undefined results on previous implementations
 706                that were not assigned to a particular extension.
 707*/
 708
 709const struct alpha_opcode alpha_opcodes[] = {
 710  { "halt",             SPCD(0x00,0x0000), BASE, ARG_NONE },
 711  { "draina",           SPCD(0x00,0x0002), BASE, ARG_NONE },
 712  { "bpt",              SPCD(0x00,0x0080), BASE, ARG_NONE },
 713  { "bugchk",           SPCD(0x00,0x0081), BASE, ARG_NONE },
 714  { "callsys",          SPCD(0x00,0x0083), BASE, ARG_NONE },
 715  { "chmk",             SPCD(0x00,0x0083), BASE, ARG_NONE },
 716  { "imb",              SPCD(0x00,0x0086), BASE, ARG_NONE },
 717  { "rduniq",           SPCD(0x00,0x009e), BASE, ARG_NONE },
 718  { "wruniq",           SPCD(0x00,0x009f), BASE, ARG_NONE },
 719  { "gentrap",          SPCD(0x00,0x00aa), BASE, ARG_NONE },
 720  { "call_pal",         PCD(0x00), BASE, ARG_PCD },
 721  { "pal",              PCD(0x00), BASE, ARG_PCD },             /* alias */
 722
 723  { "lda",              MEM(0x08), BASE, { RA, MDISP, ZB } },   /* pseudo */
 724  { "lda",              MEM(0x08), BASE, ARG_MEM },
 725  { "ldah",             MEM(0x09), BASE, { RA, MDISP, ZB } },   /* pseudo */
 726  { "ldah",             MEM(0x09), BASE, ARG_MEM },
 727  { "ldbu",             MEM(0x0A), BWX, ARG_MEM },
 728  { "unop",             MEM_(0x0B) | (30 << 16),
 729                        MEM_MASK, BASE, { ZA } },               /* pseudo */
 730  { "ldq_u",            MEM(0x0B), BASE, ARG_MEM },
 731  { "ldwu",             MEM(0x0C), BWX, ARG_MEM },
 732  { "stw",              MEM(0x0D), BWX, ARG_MEM },
 733  { "stb",              MEM(0x0E), BWX, ARG_MEM },
 734  { "stq_u",            MEM(0x0F), BASE, ARG_MEM },
 735
 736  { "sextl",            OPR(0x10,0x00), BASE, ARG_OPRZ1 },      /* pseudo */
 737  { "sextl",            OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },    /* pseudo */
 738  { "addl",             OPR(0x10,0x00), BASE, ARG_OPR },
 739  { "addl",             OPRL(0x10,0x00), BASE, ARG_OPRL },
 740  { "s4addl",           OPR(0x10,0x02), BASE, ARG_OPR },
 741  { "s4addl",           OPRL(0x10,0x02), BASE, ARG_OPRL },
 742  { "negl",             OPR(0x10,0x09), BASE, ARG_OPRZ1 },      /* pseudo */
 743  { "negl",             OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },    /* pseudo */
 744  { "subl",             OPR(0x10,0x09), BASE, ARG_OPR },
 745  { "subl",             OPRL(0x10,0x09), BASE, ARG_OPRL },
 746  { "s4subl",           OPR(0x10,0x0B), BASE, ARG_OPR },
 747  { "s4subl",           OPRL(0x10,0x0B), BASE, ARG_OPRL },
 748  { "cmpbge",           OPR(0x10,0x0F), BASE, ARG_OPR },
 749  { "cmpbge",           OPRL(0x10,0x0F), BASE, ARG_OPRL },
 750  { "s8addl",           OPR(0x10,0x12), BASE, ARG_OPR },
 751  { "s8addl",           OPRL(0x10,0x12), BASE, ARG_OPRL },
 752  { "s8subl",           OPR(0x10,0x1B), BASE, ARG_OPR },
 753  { "s8subl",           OPRL(0x10,0x1B), BASE, ARG_OPRL },
 754  { "cmpult",           OPR(0x10,0x1D), BASE, ARG_OPR },
 755  { "cmpult",           OPRL(0x10,0x1D), BASE, ARG_OPRL },
 756  { "addq",             OPR(0x10,0x20), BASE, ARG_OPR },
 757  { "addq",             OPRL(0x10,0x20), BASE, ARG_OPRL },
 758  { "s4addq",           OPR(0x10,0x22), BASE, ARG_OPR },
 759  { "s4addq",           OPRL(0x10,0x22), BASE, ARG_OPRL },
 760  { "negq",             OPR(0x10,0x29), BASE, ARG_OPRZ1 },      /* pseudo */
 761  { "negq",             OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },    /* pseudo */
 762  { "subq",             OPR(0x10,0x29), BASE, ARG_OPR },
 763  { "subq",             OPRL(0x10,0x29), BASE, ARG_OPRL },
 764  { "s4subq",           OPR(0x10,0x2B), BASE, ARG_OPR },
 765  { "s4subq",           OPRL(0x10,0x2B), BASE, ARG_OPRL },
 766  { "cmpeq",            OPR(0x10,0x2D), BASE, ARG_OPR },
 767  { "cmpeq",            OPRL(0x10,0x2D), BASE, ARG_OPRL },
 768  { "s8addq",           OPR(0x10,0x32), BASE, ARG_OPR },
 769  { "s8addq",           OPRL(0x10,0x32), BASE, ARG_OPRL },
 770  { "s8subq",           OPR(0x10,0x3B), BASE, ARG_OPR },
 771  { "s8subq",           OPRL(0x10,0x3B), BASE, ARG_OPRL },
 772  { "cmpule",           OPR(0x10,0x3D), BASE, ARG_OPR },
 773  { "cmpule",           OPRL(0x10,0x3D), BASE, ARG_OPRL },
 774  { "addl/v",           OPR(0x10,0x40), BASE, ARG_OPR },
 775  { "addl/v",           OPRL(0x10,0x40), BASE, ARG_OPRL },
 776  { "negl/v",           OPR(0x10,0x49), BASE, ARG_OPRZ1 },      /* pseudo */
 777  { "negl/v",           OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },    /* pseudo */
 778  { "subl/v",           OPR(0x10,0x49), BASE, ARG_OPR },
 779  { "subl/v",           OPRL(0x10,0x49), BASE, ARG_OPRL },
 780  { "cmplt",            OPR(0x10,0x4D), BASE, ARG_OPR },
 781  { "cmplt",            OPRL(0x10,0x4D), BASE, ARG_OPRL },
 782  { "addq/v",           OPR(0x10,0x60), BASE, ARG_OPR },
 783  { "addq/v",           OPRL(0x10,0x60), BASE, ARG_OPRL },
 784  { "negq/v",           OPR(0x10,0x69), BASE, ARG_OPRZ1 },      /* pseudo */
 785  { "negq/v",           OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },    /* pseudo */
 786  { "subq/v",           OPR(0x10,0x69), BASE, ARG_OPR },
 787  { "subq/v",           OPRL(0x10,0x69), BASE, ARG_OPRL },
 788  { "cmple",            OPR(0x10,0x6D), BASE, ARG_OPR },
 789  { "cmple",            OPRL(0x10,0x6D), BASE, ARG_OPRL },
 790
 791  { "and",              OPR(0x11,0x00), BASE, ARG_OPR },
 792  { "and",              OPRL(0x11,0x00), BASE, ARG_OPRL },
 793  { "andnot",           OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
 794  { "andnot",           OPRL(0x11,0x08), BASE, ARG_OPRL },      /* alias */
 795  { "bic",              OPR(0x11,0x08), BASE, ARG_OPR },
 796  { "bic",              OPRL(0x11,0x08), BASE, ARG_OPRL },
 797  { "cmovlbs",          OPR(0x11,0x14), BASE, ARG_OPR },
 798  { "cmovlbs",          OPRL(0x11,0x14), BASE, ARG_OPRL },
 799  { "cmovlbc",          OPR(0x11,0x16), BASE, ARG_OPR },
 800  { "cmovlbc",          OPRL(0x11,0x16), BASE, ARG_OPRL },
 801  { "nop",              OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
 802  { "clr",              OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
 803  { "mov",              OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
 804  { "mov",              OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
 805  { "mov",              OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
 806  { "or",               OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
 807  { "or",               OPRL(0x11,0x20), BASE, ARG_OPRL },      /* alias */
 808  { "bis",              OPR(0x11,0x20), BASE, ARG_OPR },
 809  { "bis",              OPRL(0x11,0x20), BASE, ARG_OPRL },
 810  { "cmoveq",           OPR(0x11,0x24), BASE, ARG_OPR },
 811  { "cmoveq",           OPRL(0x11,0x24), BASE, ARG_OPRL },
 812  { "cmovne",           OPR(0x11,0x26), BASE, ARG_OPR },
 813  { "cmovne",           OPRL(0x11,0x26), BASE, ARG_OPRL },
 814  { "not",              OPR(0x11,0x28), BASE, ARG_OPRZ1 },      /* pseudo */
 815  { "not",              OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },    /* pseudo */
 816  { "ornot",            OPR(0x11,0x28), BASE, ARG_OPR },
 817  { "ornot",            OPRL(0x11,0x28), BASE, ARG_OPRL },
 818  { "xor",              OPR(0x11,0x40), BASE, ARG_OPR },
 819  { "xor",              OPRL(0x11,0x40), BASE, ARG_OPRL },
 820  { "cmovlt",           OPR(0x11,0x44), BASE, ARG_OPR },
 821  { "cmovlt",           OPRL(0x11,0x44), BASE, ARG_OPRL },
 822  { "cmovge",           OPR(0x11,0x46), BASE, ARG_OPR },
 823  { "cmovge",           OPRL(0x11,0x46), BASE, ARG_OPRL },
 824  { "eqv",              OPR(0x11,0x48), BASE, ARG_OPR },
 825  { "eqv",              OPRL(0x11,0x48), BASE, ARG_OPRL },
 826  { "xornot",           OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
 827  { "xornot",           OPRL(0x11,0x48), BASE, ARG_OPRL },      /* alias */
 828  { "amask",            OPR(0x11,0x61), BASE, ARG_OPRZ1 },      /* ev56 but */
 829  { "amask",            OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },    /* ev56 but */
 830  { "cmovle",           OPR(0x11,0x64), BASE, ARG_OPR },
 831  { "cmovle",           OPRL(0x11,0x64), BASE, ARG_OPRL },
 832  { "cmovgt",           OPR(0x11,0x66), BASE, ARG_OPR },
 833  { "cmovgt",           OPRL(0x11,0x66), BASE, ARG_OPRL },
 834  { "implver",          OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
 835                        0xFFFFFFE0, BASE, { RC } },             /* ev56 but */
 836
 837  { "mskbl",            OPR(0x12,0x02), BASE, ARG_OPR },
 838  { "mskbl",            OPRL(0x12,0x02), BASE, ARG_OPRL },
 839  { "extbl",            OPR(0x12,0x06), BASE, ARG_OPR },
 840  { "extbl",            OPRL(0x12,0x06), BASE, ARG_OPRL },
 841  { "insbl",            OPR(0x12,0x0B), BASE, ARG_OPR },
 842  { "insbl",            OPRL(0x12,0x0B), BASE, ARG_OPRL },
 843  { "mskwl",            OPR(0x12,0x12), BASE, ARG_OPR },
 844  { "mskwl",            OPRL(0x12,0x12), BASE, ARG_OPRL },
 845  { "extwl",            OPR(0x12,0x16), BASE, ARG_OPR },
 846  { "extwl",            OPRL(0x12,0x16), BASE, ARG_OPRL },
 847  { "inswl",            OPR(0x12,0x1B), BASE, ARG_OPR },
 848  { "inswl",            OPRL(0x12,0x1B), BASE, ARG_OPRL },
 849  { "mskll",            OPR(0x12,0x22), BASE, ARG_OPR },
 850  { "mskll",            OPRL(0x12,0x22), BASE, ARG_OPRL },
 851  { "extll",            OPR(0x12,0x26), BASE, ARG_OPR },
 852  { "extll",            OPRL(0x12,0x26), BASE, ARG_OPRL },
 853  { "insll",            OPR(0x12,0x2B), BASE, ARG_OPR },
 854  { "insll",            OPRL(0x12,0x2B), BASE, ARG_OPRL },
 855  { "zap",              OPR(0x12,0x30), BASE, ARG_OPR },
 856  { "zap",              OPRL(0x12,0x30), BASE, ARG_OPRL },
 857  { "zapnot",           OPR(0x12,0x31), BASE, ARG_OPR },
 858  { "zapnot",           OPRL(0x12,0x31), BASE, ARG_OPRL },
 859  { "mskql",            OPR(0x12,0x32), BASE, ARG_OPR },
 860  { "mskql",            OPRL(0x12,0x32), BASE, ARG_OPRL },
 861  { "srl",              OPR(0x12,0x34), BASE, ARG_OPR },
 862  { "srl",              OPRL(0x12,0x34), BASE, ARG_OPRL },
 863  { "extql",            OPR(0x12,0x36), BASE, ARG_OPR },
 864  { "extql",            OPRL(0x12,0x36), BASE, ARG_OPRL },
 865  { "sll",              OPR(0x12,0x39), BASE, ARG_OPR },
 866  { "sll",              OPRL(0x12,0x39), BASE, ARG_OPRL },
 867  { "insql",            OPR(0x12,0x3B), BASE, ARG_OPR },
 868  { "insql",            OPRL(0x12,0x3B), BASE, ARG_OPRL },
 869  { "sra",              OPR(0x12,0x3C), BASE, ARG_OPR },
 870  { "sra",              OPRL(0x12,0x3C), BASE, ARG_OPRL },
 871  { "mskwh",            OPR(0x12,0x52), BASE, ARG_OPR },
 872  { "mskwh",            OPRL(0x12,0x52), BASE, ARG_OPRL },
 873  { "inswh",            OPR(0x12,0x57), BASE, ARG_OPR },
 874  { "inswh",            OPRL(0x12,0x57), BASE, ARG_OPRL },
 875  { "extwh",            OPR(0x12,0x5A), BASE, ARG_OPR },
 876  { "extwh",            OPRL(0x12,0x5A), BASE, ARG_OPRL },
 877  { "msklh",            OPR(0x12,0x62), BASE, ARG_OPR },
 878  { "msklh",            OPRL(0x12,0x62), BASE, ARG_OPRL },
 879  { "inslh",            OPR(0x12,0x67), BASE, ARG_OPR },
 880  { "inslh",            OPRL(0x12,0x67), BASE, ARG_OPRL },
 881  { "extlh",            OPR(0x12,0x6A), BASE, ARG_OPR },
 882  { "extlh",            OPRL(0x12,0x6A), BASE, ARG_OPRL },
 883  { "mskqh",            OPR(0x12,0x72), BASE, ARG_OPR },
 884  { "mskqh",            OPRL(0x12,0x72), BASE, ARG_OPRL },
 885  { "insqh",            OPR(0x12,0x77), BASE, ARG_OPR },
 886  { "insqh",            OPRL(0x12,0x77), BASE, ARG_OPRL },
 887  { "extqh",            OPR(0x12,0x7A), BASE, ARG_OPR },
 888  { "extqh",            OPRL(0x12,0x7A), BASE, ARG_OPRL },
 889
 890  { "mull",             OPR(0x13,0x00), BASE, ARG_OPR },
 891  { "mull",             OPRL(0x13,0x00), BASE, ARG_OPRL },
 892  { "mulq",             OPR(0x13,0x20), BASE, ARG_OPR },
 893  { "mulq",             OPRL(0x13,0x20), BASE, ARG_OPRL },
 894  { "umulh",            OPR(0x13,0x30), BASE, ARG_OPR },
 895  { "umulh",            OPRL(0x13,0x30), BASE, ARG_OPRL },
 896  { "mull/v",           OPR(0x13,0x40), BASE, ARG_OPR },
 897  { "mull/v",           OPRL(0x13,0x40), BASE, ARG_OPRL },
 898  { "mulq/v",           OPR(0x13,0x60), BASE, ARG_OPR },
 899  { "mulq/v",           OPRL(0x13,0x60), BASE, ARG_OPRL },
 900
 901  { "itofs",            FP(0x14,0x004), CIX, { RA, ZB, FC } },
 902  { "sqrtf/c",          FP(0x14,0x00A), CIX, ARG_FPZ1 },
 903  { "sqrts/c",          FP(0x14,0x00B), CIX, ARG_FPZ1 },
 904  { "itoff",            FP(0x14,0x014), CIX, { RA, ZB, FC } },
 905  { "itoft",            FP(0x14,0x024), CIX, { RA, ZB, FC } },
 906  { "sqrtg/c",          FP(0x14,0x02A), CIX, ARG_FPZ1 },
 907  { "sqrtt/c",          FP(0x14,0x02B), CIX, ARG_FPZ1 },
 908  { "sqrts/m",          FP(0x14,0x04B), CIX, ARG_FPZ1 },
 909  { "sqrtt/m",          FP(0x14,0x06B), CIX, ARG_FPZ1 },
 910  { "sqrtf",            FP(0x14,0x08A), CIX, ARG_FPZ1 },
 911  { "sqrts",            FP(0x14,0x08B), CIX, ARG_FPZ1 },
 912  { "sqrtg",            FP(0x14,0x0AA), CIX, ARG_FPZ1 },
 913  { "sqrtt",            FP(0x14,0x0AB), CIX, ARG_FPZ1 },
 914  { "sqrts/d",          FP(0x14,0x0CB), CIX, ARG_FPZ1 },
 915  { "sqrtt/d",          FP(0x14,0x0EB), CIX, ARG_FPZ1 },
 916  { "sqrtf/uc",         FP(0x14,0x10A), CIX, ARG_FPZ1 },
 917  { "sqrts/uc",         FP(0x14,0x10B), CIX, ARG_FPZ1 },
 918  { "sqrtg/uc",         FP(0x14,0x12A), CIX, ARG_FPZ1 },
 919  { "sqrtt/uc",         FP(0x14,0x12B), CIX, ARG_FPZ1 },
 920  { "sqrts/um",         FP(0x14,0x14B), CIX, ARG_FPZ1 },
 921  { "sqrtt/um",         FP(0x14,0x16B), CIX, ARG_FPZ1 },
 922  { "sqrtf/u",          FP(0x14,0x18A), CIX, ARG_FPZ1 },
 923  { "sqrts/u",          FP(0x14,0x18B), CIX, ARG_FPZ1 },
 924  { "sqrtg/u",          FP(0x14,0x1AA), CIX, ARG_FPZ1 },
 925  { "sqrtt/u",          FP(0x14,0x1AB), CIX, ARG_FPZ1 },
 926  { "sqrts/ud",         FP(0x14,0x1CB), CIX, ARG_FPZ1 },
 927  { "sqrtt/ud",         FP(0x14,0x1EB), CIX, ARG_FPZ1 },
 928  { "sqrtf/sc",         FP(0x14,0x40A), CIX, ARG_FPZ1 },
 929  { "sqrtg/sc",         FP(0x14,0x42A), CIX, ARG_FPZ1 },
 930  { "sqrtf/s",          FP(0x14,0x48A), CIX, ARG_FPZ1 },
 931  { "sqrtg/s",          FP(0x14,0x4AA), CIX, ARG_FPZ1 },
 932  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
 933  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
 934  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
 935  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
 936  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
 937  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
 938  { "sqrtf/su",         FP(0x14,0x58A), CIX, ARG_FPZ1 },
 939  { "sqrts/su",         FP(0x14,0x58B), CIX, ARG_FPZ1 },
 940  { "sqrtg/su",         FP(0x14,0x5AA), CIX, ARG_FPZ1 },
 941  { "sqrtt/su",         FP(0x14,0x5AB), CIX, ARG_FPZ1 },
 942  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
 943  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
 944  { "sqrts/suic",       FP(0x14,0x70B), CIX, ARG_FPZ1 },
 945  { "sqrtt/suic",       FP(0x14,0x72B), CIX, ARG_FPZ1 },
 946  { "sqrts/suim",       FP(0x14,0x74B), CIX, ARG_FPZ1 },
 947  { "sqrtt/suim",       FP(0x14,0x76B), CIX, ARG_FPZ1 },
 948  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
 949  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
 950  { "sqrts/suid",       FP(0x14,0x7CB), CIX, ARG_FPZ1 },
 951  { "sqrtt/suid",       FP(0x14,0x7EB), CIX, ARG_FPZ1 },
 952
 953  { "addf/c",           FP(0x15,0x000), BASE, ARG_FP },
 954  { "subf/c",           FP(0x15,0x001), BASE, ARG_FP },
 955  { "mulf/c",           FP(0x15,0x002), BASE, ARG_FP },
 956  { "divf/c",           FP(0x15,0x003), BASE, ARG_FP },
 957  { "cvtdg/c",          FP(0x15,0x01E), BASE, ARG_FPZ1 },
 958  { "addg/c",           FP(0x15,0x020), BASE, ARG_FP },
 959  { "subg/c",           FP(0x15,0x021), BASE, ARG_FP },
 960  { "mulg/c",           FP(0x15,0x022), BASE, ARG_FP },
 961  { "divg/c",           FP(0x15,0x023), BASE, ARG_FP },
 962  { "cvtgf/c",          FP(0x15,0x02C), BASE, ARG_FPZ1 },
 963  { "cvtgd/c",          FP(0x15,0x02D), BASE, ARG_FPZ1 },
 964  { "cvtgq/c",          FP(0x15,0x02F), BASE, ARG_FPZ1 },
 965  { "cvtqf/c",          FP(0x15,0x03C), BASE, ARG_FPZ1 },
 966  { "cvtqg/c",          FP(0x15,0x03E), BASE, ARG_FPZ1 },
 967  { "addf",             FP(0x15,0x080), BASE, ARG_FP },
 968  { "negf",             FP(0x15,0x081), BASE, ARG_FPZ1 },       /* pseudo */
 969  { "subf",             FP(0x15,0x081), BASE, ARG_FP },
 970  { "mulf",             FP(0x15,0x082), BASE, ARG_FP },
 971  { "divf",             FP(0x15,0x083), BASE, ARG_FP },
 972  { "cvtdg",            FP(0x15,0x09E), BASE, ARG_FPZ1 },
 973  { "addg",             FP(0x15,0x0A0), BASE, ARG_FP },
 974  { "negg",             FP(0x15,0x0A1), BASE, ARG_FPZ1 },       /* pseudo */
 975  { "subg",             FP(0x15,0x0A1), BASE, ARG_FP },
 976  { "mulg",             FP(0x15,0x0A2), BASE, ARG_FP },
 977  { "divg",             FP(0x15,0x0A3), BASE, ARG_FP },
 978  { "cmpgeq",           FP(0x15,0x0A5), BASE, ARG_FP },
 979  { "cmpglt",           FP(0x15,0x0A6), BASE, ARG_FP },
 980  { "cmpgle",           FP(0x15,0x0A7), BASE, ARG_FP },
 981  { "cvtgf",            FP(0x15,0x0AC), BASE, ARG_FPZ1 },
 982  { "cvtgd",            FP(0x15,0x0AD), BASE, ARG_FPZ1 },
 983  { "cvtgq",            FP(0x15,0x0AF), BASE, ARG_FPZ1 },
 984  { "cvtqf",            FP(0x15,0x0BC), BASE, ARG_FPZ1 },
 985  { "cvtqg",            FP(0x15,0x0BE), BASE, ARG_FPZ1 },
 986  { "addf/uc",          FP(0x15,0x100), BASE, ARG_FP },
 987  { "subf/uc",          FP(0x15,0x101), BASE, ARG_FP },
 988  { "mulf/uc",          FP(0x15,0x102), BASE, ARG_FP },
 989  { "divf/uc",          FP(0x15,0x103), BASE, ARG_FP },
 990  { "cvtdg/uc",         FP(0x15,0x11E), BASE, ARG_FPZ1 },
 991  { "addg/uc",          FP(0x15,0x120), BASE, ARG_FP },
 992  { "subg/uc",          FP(0x15,0x121), BASE, ARG_FP },
 993  { "mulg/uc",          FP(0x15,0x122), BASE, ARG_FP },
 994  { "divg/uc",          FP(0x15,0x123), BASE, ARG_FP },
 995  { "cvtgf/uc",         FP(0x15,0x12C), BASE, ARG_FPZ1 },
 996  { "cvtgd/uc",         FP(0x15,0x12D), BASE, ARG_FPZ1 },
 997  { "cvtgq/vc",         FP(0x15,0x12F), BASE, ARG_FPZ1 },
 998  { "addf/u",           FP(0x15,0x180), BASE, ARG_FP },
 999  { "subf/u",           FP(0x15,0x181), BASE, ARG_FP },
1000  { "mulf/u",           FP(0x15,0x182), BASE, ARG_FP },
1001  { "divf/u",           FP(0x15,0x183), BASE, ARG_FP },
1002  { "cvtdg/u",          FP(0x15,0x19E), BASE, ARG_FPZ1 },
1003  { "addg/u",           FP(0x15,0x1A0), BASE, ARG_FP },
1004  { "subg/u",           FP(0x15,0x1A1), BASE, ARG_FP },
1005  { "mulg/u",           FP(0x15,0x1A2), BASE, ARG_FP },
1006  { "divg/u",           FP(0x15,0x1A3), BASE, ARG_FP },
1007  { "cvtgf/u",          FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1008  { "cvtgd/u",          FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1009  { "cvtgq/v",          FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1010  { "addf/sc",          FP(0x15,0x400), BASE, ARG_FP },
1011  { "subf/sc",          FP(0x15,0x401), BASE, ARG_FP },
1012  { "mulf/sc",          FP(0x15,0x402), BASE, ARG_FP },
1013  { "divf/sc",          FP(0x15,0x403), BASE, ARG_FP },
1014  { "cvtdg/sc",         FP(0x15,0x41E), BASE, ARG_FPZ1 },
1015  { "addg/sc",          FP(0x15,0x420), BASE, ARG_FP },
1016  { "subg/sc",          FP(0x15,0x421), BASE, ARG_FP },
1017  { "mulg/sc",          FP(0x15,0x422), BASE, ARG_FP },
1018  { "divg/sc",          FP(0x15,0x423), BASE, ARG_FP },
1019  { "cvtgf/sc",         FP(0x15,0x42C), BASE, ARG_FPZ1 },
1020  { "cvtgd/sc",         FP(0x15,0x42D), BASE, ARG_FPZ1 },
1021  { "cvtgq/sc",         FP(0x15,0x42F), BASE, ARG_FPZ1 },
1022  { "addf/s",           FP(0x15,0x480), BASE, ARG_FP },
1023  { "negf/s",           FP(0x15,0x481), BASE, ARG_FPZ1 },       /* pseudo */
1024  { "subf/s",           FP(0x15,0x481), BASE, ARG_FP },
1025  { "mulf/s",           FP(0x15,0x482), BASE, ARG_FP },
1026  { "divf/s",           FP(0x15,0x483), BASE, ARG_FP },
1027  { "cvtdg/s",          FP(0x15,0x49E), BASE, ARG_FPZ1 },
1028  { "addg/s",           FP(0x15,0x4A0), BASE, ARG_FP },
1029  { "negg/s",           FP(0x15,0x4A1), BASE, ARG_FPZ1 },       /* pseudo */
1030  { "subg/s",           FP(0x15,0x4A1), BASE, ARG_FP },
1031  { "mulg/s",           FP(0x15,0x4A2), BASE, ARG_FP },
1032  { "divg/s",           FP(0x15,0x4A3), BASE, ARG_FP },
1033  { "cmpgeq/s",         FP(0x15,0x4A5), BASE, ARG_FP },
1034  { "cmpglt/s",         FP(0x15,0x4A6), BASE, ARG_FP },
1035  { "cmpgle/s",         FP(0x15,0x4A7), BASE, ARG_FP },
1036  { "cvtgf/s",          FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1037  { "cvtgd/s",          FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1038  { "cvtgq/s",          FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1039  { "addf/suc",         FP(0x15,0x500), BASE, ARG_FP },
1040  { "subf/suc",         FP(0x15,0x501), BASE, ARG_FP },
1041  { "mulf/suc",         FP(0x15,0x502), BASE, ARG_FP },
1042  { "divf/suc",         FP(0x15,0x503), BASE, ARG_FP },
1043  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1044  { "addg/suc",         FP(0x15,0x520), BASE, ARG_FP },
1045  { "subg/suc",         FP(0x15,0x521), BASE, ARG_FP },
1046  { "mulg/suc",         FP(0x15,0x522), BASE, ARG_FP },
1047  { "divg/suc",         FP(0x15,0x523), BASE, ARG_FP },
1048  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1049  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1050  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1051  { "addf/su",          FP(0x15,0x580), BASE, ARG_FP },
1052  { "subf/su",          FP(0x15,0x581), BASE, ARG_FP },
1053  { "mulf/su",          FP(0x15,0x582), BASE, ARG_FP },
1054  { "divf/su",          FP(0x15,0x583), BASE, ARG_FP },
1055  { "cvtdg/su",         FP(0x15,0x59E), BASE, ARG_FPZ1 },
1056  { "addg/su",          FP(0x15,0x5A0), BASE, ARG_FP },
1057  { "subg/su",          FP(0x15,0x5A1), BASE, ARG_FP },
1058  { "mulg/su",          FP(0x15,0x5A2), BASE, ARG_FP },
1059  { "divg/su",          FP(0x15,0x5A3), BASE, ARG_FP },
1060  { "cvtgf/su",         FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1061  { "cvtgd/su",         FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1062  { "cvtgq/sv",         FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1063
1064  { "adds/c",           FP(0x16,0x000), BASE, ARG_FP },
1065  { "subs/c",           FP(0x16,0x001), BASE, ARG_FP },
1066  { "muls/c",           FP(0x16,0x002), BASE, ARG_FP },
1067  { "divs/c",           FP(0x16,0x003), BASE, ARG_FP },
1068  { "addt/c",           FP(0x16,0x020), BASE, ARG_FP },
1069  { "subt/c",           FP(0x16,0x021), BASE, ARG_FP },
1070  { "mult/c",           FP(0x16,0x022), BASE, ARG_FP },
1071  { "divt/c",           FP(0x16,0x023), BASE, ARG_FP },
1072  { "cvtts/c",          FP(0x16,0x02C), BASE, ARG_FPZ1 },
1073  { "cvttq/c",          FP(0x16,0x02F), BASE, ARG_FPZ1 },
1074  { "cvtqs/c",          FP(0x16,0x03C), BASE, ARG_FPZ1 },
1075  { "cvtqt/c",          FP(0x16,0x03E), BASE, ARG_FPZ1 },
1076  { "adds/m",           FP(0x16,0x040), BASE, ARG_FP },
1077  { "subs/m",           FP(0x16,0x041), BASE, ARG_FP },
1078  { "muls/m",           FP(0x16,0x042), BASE, ARG_FP },
1079  { "divs/m",           FP(0x16,0x043), BASE, ARG_FP },
1080  { "addt/m",           FP(0x16,0x060), BASE, ARG_FP },
1081  { "subt/m",           FP(0x16,0x061), BASE, ARG_FP },
1082  { "mult/m",           FP(0x16,0x062), BASE, ARG_FP },
1083  { "divt/m",           FP(0x16,0x063), BASE, ARG_FP },
1084  { "cvtts/m",          FP(0x16,0x06C), BASE, ARG_FPZ1 },
1085  { "cvttq/m",          FP(0x16,0x06F), BASE, ARG_FPZ1 },
1086  { "cvtqs/m",          FP(0x16,0x07C), BASE, ARG_FPZ1 },
1087  { "cvtqt/m",          FP(0x16,0x07E), BASE, ARG_FPZ1 },
1088  { "adds",             FP(0x16,0x080), BASE, ARG_FP },
1089  { "negs",             FP(0x16,0x081), BASE, ARG_FPZ1 },       /* pseudo */
1090  { "subs",             FP(0x16,0x081), BASE, ARG_FP },
1091  { "muls",             FP(0x16,0x082), BASE, ARG_FP },
1092  { "divs",             FP(0x16,0x083), BASE, ARG_FP },
1093  { "addt",             FP(0x16,0x0A0), BASE, ARG_FP },
1094  { "negt",             FP(0x16,0x0A1), BASE, ARG_FPZ1 },       /* pseudo */
1095  { "subt",             FP(0x16,0x0A1), BASE, ARG_FP },
1096  { "mult",             FP(0x16,0x0A2), BASE, ARG_FP },
1097  { "divt",             FP(0x16,0x0A3), BASE, ARG_FP },
1098  { "cmptun",           FP(0x16,0x0A4), BASE, ARG_FP },
1099  { "cmpteq",           FP(0x16,0x0A5), BASE, ARG_FP },
1100  { "cmptlt",           FP(0x16,0x0A6), BASE, ARG_FP },
1101  { "cmptle",           FP(0x16,0x0A7), BASE, ARG_FP },
1102  { "cvtts",            FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1103  { "cvttq",            FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1104  { "cvtqs",            FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1105  { "cvtqt",            FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1106  { "adds/d",           FP(0x16,0x0C0), BASE, ARG_FP },
1107  { "subs/d",           FP(0x16,0x0C1), BASE, ARG_FP },
1108  { "muls/d",           FP(0x16,0x0C2), BASE, ARG_FP },
1109  { "divs/d",           FP(0x16,0x0C3), BASE, ARG_FP },
1110  { "addt/d",           FP(0x16,0x0E0), BASE, ARG_FP },
1111  { "subt/d",           FP(0x16,0x0E1), BASE, ARG_FP },
1112  { "mult/d",           FP(0x16,0x0E2), BASE, ARG_FP },
1113  { "divt/d",           FP(0x16,0x0E3), BASE, ARG_FP },
1114  { "cvtts/d",          FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1115  { "cvttq/d",          FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1116  { "cvtqs/d",          FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1117  { "cvtqt/d",          FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1118  { "adds/uc",          FP(0x16,0x100), BASE, ARG_FP },
1119  { "subs/uc",          FP(0x16,0x101), BASE, ARG_FP },
1120  { "muls/uc",          FP(0x16,0x102), BASE, ARG_FP },
1121  { "divs/uc",          FP(0x16,0x103), BASE, ARG_FP },
1122  { "addt/uc",          FP(0x16,0x120), BASE, ARG_FP },
1123  { "subt/uc",          FP(0x16,0x121), BASE, ARG_FP },
1124  { "mult/uc",          FP(0x16,0x122), BASE, ARG_FP },
1125  { "divt/uc",          FP(0x16,0x123), BASE, ARG_FP },
1126  { "cvtts/uc",         FP(0x16,0x12C), BASE, ARG_FPZ1 },
1127  { "cvttq/vc",         FP(0x16,0x12F), BASE, ARG_FPZ1 },
1128  { "adds/um",          FP(0x16,0x140), BASE, ARG_FP },
1129  { "subs/um",          FP(0x16,0x141), BASE, ARG_FP },
1130  { "muls/um",          FP(0x16,0x142), BASE, ARG_FP },
1131  { "divs/um",          FP(0x16,0x143), BASE, ARG_FP },
1132  { "addt/um",          FP(0x16,0x160), BASE, ARG_FP },
1133  { "subt/um",          FP(0x16,0x161), BASE, ARG_FP },
1134  { "mult/um",          FP(0x16,0x162), BASE, ARG_FP },
1135  { "divt/um",          FP(0x16,0x163), BASE, ARG_FP },
1136  { "cvtts/um",         FP(0x16,0x16C), BASE, ARG_FPZ1 },
1137  { "cvttq/vm",         FP(0x16,0x16F), BASE, ARG_FPZ1 },
1138  { "adds/u",           FP(0x16,0x180), BASE, ARG_FP },
1139  { "subs/u",           FP(0x16,0x181), BASE, ARG_FP },
1140  { "muls/u",           FP(0x16,0x182), BASE, ARG_FP },
1141  { "divs/u",           FP(0x16,0x183), BASE, ARG_FP },
1142  { "addt/u",           FP(0x16,0x1A0), BASE, ARG_FP },
1143  { "subt/u",           FP(0x16,0x1A1), BASE, ARG_FP },
1144  { "mult/u",           FP(0x16,0x1A2), BASE, ARG_FP },
1145  { "divt/u",           FP(0x16,0x1A3), BASE, ARG_FP },
1146  { "cvtts/u",          FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1147  { "cvttq/v",          FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1148  { "adds/ud",          FP(0x16,0x1C0), BASE, ARG_FP },
1149  { "subs/ud",          FP(0x16,0x1C1), BASE, ARG_FP },
1150  { "muls/ud",          FP(0x16,0x1C2), BASE, ARG_FP },
1151  { "divs/ud",          FP(0x16,0x1C3), BASE, ARG_FP },
1152  { "addt/ud",          FP(0x16,0x1E0), BASE, ARG_FP },
1153  { "subt/ud",          FP(0x16,0x1E1), BASE, ARG_FP },
1154  { "mult/ud",          FP(0x16,0x1E2), BASE, ARG_FP },
1155  { "divt/ud",          FP(0x16,0x1E3), BASE, ARG_FP },
1156  { "cvtts/ud",         FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1157  { "cvttq/vd",         FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1158  { "cvtst",            FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1159  { "adds/suc",         FP(0x16,0x500), BASE, ARG_FP },
1160  { "subs/suc",         FP(0x16,0x501), BASE, ARG_FP },
1161  { "muls/suc",         FP(0x16,0x502), BASE, ARG_FP },
1162  { "divs/suc",         FP(0x16,0x503), BASE, ARG_FP },
1163  { "addt/suc",         FP(0x16,0x520), BASE, ARG_FP },
1164  { "subt/suc",         FP(0x16,0x521), BASE, ARG_FP },
1165  { "mult/suc",         FP(0x16,0x522), BASE, ARG_FP },
1166  { "divt/suc",         FP(0x16,0x523), BASE, ARG_FP },
1167  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1168  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1169  { "adds/sum",         FP(0x16,0x540), BASE, ARG_FP },
1170  { "subs/sum",         FP(0x16,0x541), BASE, ARG_FP },
1171  { "muls/sum",         FP(0x16,0x542), BASE, ARG_FP },
1172  { "divs/sum",         FP(0x16,0x543), BASE, ARG_FP },
1173  { "addt/sum",         FP(0x16,0x560), BASE, ARG_FP },
1174  { "subt/sum",         FP(0x16,0x561), BASE, ARG_FP },
1175  { "mult/sum",         FP(0x16,0x562), BASE, ARG_FP },
1176  { "divt/sum",         FP(0x16,0x563), BASE, ARG_FP },
1177  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1178  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1179  { "adds/su",          FP(0x16,0x580), BASE, ARG_FP },
1180  { "negs/su",          FP(0x16,0x581), BASE, ARG_FPZ1 },       /* pseudo */
1181  { "subs/su",          FP(0x16,0x581), BASE, ARG_FP },
1182  { "muls/su",          FP(0x16,0x582), BASE, ARG_FP },
1183  { "divs/su",          FP(0x16,0x583), BASE, ARG_FP },
1184  { "addt/su",          FP(0x16,0x5A0), BASE, ARG_FP },
1185  { "negt/su",          FP(0x16,0x5A1), BASE, ARG_FPZ1 },       /* pseudo */
1186  { "subt/su",          FP(0x16,0x5A1), BASE, ARG_FP },
1187  { "mult/su",          FP(0x16,0x5A2), BASE, ARG_FP },
1188  { "divt/su",          FP(0x16,0x5A3), BASE, ARG_FP },
1189  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1190  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1191  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1192  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1193  { "cvtts/su",         FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1194  { "cvttq/sv",         FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1195  { "adds/sud",         FP(0x16,0x5C0), BASE, ARG_FP },
1196  { "subs/sud",         FP(0x16,0x5C1), BASE, ARG_FP },
1197  { "muls/sud",         FP(0x16,0x5C2), BASE, ARG_FP },
1198  { "divs/sud",         FP(0x16,0x5C3), BASE, ARG_FP },
1199  { "addt/sud",         FP(0x16,0x5E0), BASE, ARG_FP },
1200  { "subt/sud",         FP(0x16,0x5E1), BASE, ARG_FP },
1201  { "mult/sud",         FP(0x16,0x5E2), BASE, ARG_FP },
1202  { "divt/sud",         FP(0x16,0x5E3), BASE, ARG_FP },
1203  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1204  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1205  { "cvtst/s",          FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1206  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1207  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1208  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1209  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1210  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1211  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1212  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1213  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1214  { "cvtts/suic",       FP(0x16,0x72C), BASE, ARG_FPZ1 },
1215  { "cvttq/svic",       FP(0x16,0x72F), BASE, ARG_FPZ1 },
1216  { "cvtqs/suic",       FP(0x16,0x73C), BASE, ARG_FPZ1 },
1217  { "cvtqt/suic",       FP(0x16,0x73E), BASE, ARG_FPZ1 },
1218  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1219  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1220  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1221  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1222  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1223  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1224  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1225  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1226  { "cvtts/suim",       FP(0x16,0x76C), BASE, ARG_FPZ1 },
1227  { "cvttq/svim",       FP(0x16,0x76F), BASE, ARG_FPZ1 },
1228  { "cvtqs/suim",       FP(0x16,0x77C), BASE, ARG_FPZ1 },
1229  { "cvtqt/suim",       FP(0x16,0x77E), BASE, ARG_FPZ1 },
1230  { "adds/sui",         FP(0x16,0x780), BASE, ARG_FP },
1231  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },       /* pseudo */
1232  { "subs/sui",         FP(0x16,0x781), BASE, ARG_FP },
1233  { "muls/sui",         FP(0x16,0x782), BASE, ARG_FP },
1234  { "divs/sui",         FP(0x16,0x783), BASE, ARG_FP },
1235  { "addt/sui",         FP(0x16,0x7A0), BASE, ARG_FP },
1236  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },       /* pseudo */
1237  { "subt/sui",         FP(0x16,0x7A1), BASE, ARG_FP },
1238  { "mult/sui",         FP(0x16,0x7A2), BASE, ARG_FP },
1239  { "divt/sui",         FP(0x16,0x7A3), BASE, ARG_FP },
1240  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1241  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1242  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1243  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1244  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1245  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1246  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1247  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1248  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1249  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1250  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1251  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1252  { "cvtts/suid",       FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1253  { "cvttq/svid",       FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1254  { "cvtqs/suid",       FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1255  { "cvtqt/suid",       FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1256
1257  { "cvtlq",            FP(0x17,0x010), BASE, ARG_FPZ1 },
1258  { "fnop",             FP(0x17,0x020), BASE, { ZA, ZB, ZC } }, /* pseudo */
1259  { "fclr",             FP(0x17,0x020), BASE, { ZA, ZB, FC } }, /* pseudo */
1260  { "fabs",             FP(0x17,0x020), BASE, ARG_FPZ1 },       /* pseudo */
1261  { "fmov",             FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1262  { "cpys",             FP(0x17,0x020), BASE, ARG_FP },
1263  { "fneg",             FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1264  { "cpysn",            FP(0x17,0x021), BASE, ARG_FP },
1265  { "cpyse",            FP(0x17,0x022), BASE, ARG_FP },
1266  { "mt_fpcr",          FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1267  { "mf_fpcr",          FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1268  { "fcmoveq",          FP(0x17,0x02A), BASE, ARG_FP },
1269  { "fcmovne",          FP(0x17,0x02B), BASE, ARG_FP },
1270  { "fcmovlt",          FP(0x17,0x02C), BASE, ARG_FP },
1271  { "fcmovge",          FP(0x17,0x02D), BASE, ARG_FP },
1272  { "fcmovle",          FP(0x17,0x02E), BASE, ARG_FP },
1273  { "fcmovgt",          FP(0x17,0x02F), BASE, ARG_FP },
1274  { "cvtql",            FP(0x17,0x030), BASE, ARG_FPZ1 },
1275  { "cvtql/v",          FP(0x17,0x130), BASE, ARG_FPZ1 },
1276  { "cvtql/sv",         FP(0x17,0x530), BASE, ARG_FPZ1 },
1277
1278  { "trapb",            MFC(0x18,0x0000), BASE, ARG_NONE },
1279  { "draint",           MFC(0x18,0x0000), BASE, ARG_NONE },     /* alias */
1280  { "excb",             MFC(0x18,0x0400), BASE, ARG_NONE },
1281  { "mb",               MFC(0x18,0x4000), BASE, ARG_NONE },
1282  { "wmb",              MFC(0x18,0x4400), BASE, ARG_NONE },
1283  { "fetch",            MFC(0x18,0x8000), BASE, { ZA, PRB } },
1284  { "fetch_m",          MFC(0x18,0xA000), BASE, { ZA, PRB } },
1285  { "rpcc",             MFC(0x18,0xC000), BASE, { RA } },
1286  { "rc",               MFC(0x18,0xE000), BASE, { RA } },
1287  { "ecb",              MFC(0x18,0xE800), BASE, { ZA, PRB } },  /* ev56 una */
1288  { "rs",               MFC(0x18,0xF000), BASE, { RA } },
1289  { "wh64",             MFC(0x18,0xF800), BASE, { ZA, PRB } },  /* ev56 una */
1290  { "wh64en",           MFC(0x18,0xFC00), BASE, { ZA, PRB } },  /* ev7 una */
1291
1292  { "hw_mfpr",          OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1293  { "hw_mfpr",          OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1294  { "hw_mfpr",          OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1295  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1296  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1297  { "hw_mfpr/ai",       OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1298  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1299  { "hw_mfpr/pi",       OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1300  { "hw_mfpr/pa",       OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1301  { "hw_mfpr/pai",      OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1302  { "pal19",            PCD(0x19), BASE, ARG_PCD },
1303
1304  { "jmp",              MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1305                        BASE, { ZA, CPRB } },
1306  { "jmp",              MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1307  { "jsr",              MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1308  { "ret",              MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1309                        0xFFFFFFFF, BASE, { 0 } },
1310  { "ret",              MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1311  { "jcr",              MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1312  { "jsr_coroutine",    MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1313
1314  { "hw_ldl",           EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1315  { "hw_ldl",           EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1316  { "hw_ldl",           EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1317  { "hw_ldl/a",         EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1318  { "hw_ldl/a",         EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1319  { "hw_ldl/a",         EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1320  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1321  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1322  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1323  { "hw_ldl/avl",       EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1324  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1325  { "hw_ldl/awl",       EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1326  { "hw_ldl/awv",       EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1327  { "hw_ldl/awvl",      EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1328  { "hw_ldl/l",         EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1329  { "hw_ldl/p",         EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1330  { "hw_ldl/p",         EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1331  { "hw_ldl/p",         EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1332  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1333  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1334  { "hw_ldl/pal",       EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1335  { "hw_ldl/par",       EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1336  { "hw_ldl/pav",       EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1337  { "hw_ldl/pavl",      EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1338  { "hw_ldl/paw",       EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1339  { "hw_ldl/pawl",      EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1340  { "hw_ldl/pawv",      EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1341  { "hw_ldl/pawvl",     EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1342  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1343  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1344  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1345  { "hw_ldl/pvl",       EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1346  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1347  { "hw_ldl/pwl",       EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1348  { "hw_ldl/pwv",       EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1349  { "hw_ldl/pwvl",      EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1350  { "hw_ldl/r",         EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1351  { "hw_ldl/v",         EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1352  { "hw_ldl/v",         EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1353  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1354  { "hw_ldl/w",         EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1355  { "hw_ldl/w",         EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1356  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1357  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1358  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1359  { "hw_ldl/wvl",       EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1360  { "hw_ldl_l",         EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1361  { "hw_ldl_l/a",       EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1362  { "hw_ldl_l/av",      EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1363  { "hw_ldl_l/aw",      EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1364  { "hw_ldl_l/awv",     EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1365  { "hw_ldl_l/p",       EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1366  { "hw_ldl_l/p",       EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1367  { "hw_ldl_l/pa",      EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1368  { "hw_ldl_l/pav",     EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1369  { "hw_ldl_l/paw",     EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1370  { "hw_ldl_l/pawv",    EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1371  { "hw_ldl_l/pv",      EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1372  { "hw_ldl_l/pw",      EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1373  { "hw_ldl_l/pwv",     EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1374  { "hw_ldl_l/v",       EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1375  { "hw_ldl_l/w",       EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1376  { "hw_ldl_l/wv",      EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1377  { "hw_ldq",           EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1378  { "hw_ldq",           EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1379  { "hw_ldq",           EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1380  { "hw_ldq/a",         EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1381  { "hw_ldq/a",         EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1382  { "hw_ldq/a",         EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1383  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1384  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1385  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1386  { "hw_ldq/avl",       EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1387  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1388  { "hw_ldq/awl",       EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1389  { "hw_ldq/awv",       EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1390  { "hw_ldq/awvl",      EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1391  { "hw_ldq/l",         EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1392  { "hw_ldq/p",         EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1393  { "hw_ldq/p",         EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1394  { "hw_ldq/p",         EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1395  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1396  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1397  { "hw_ldq/pal",       EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1398  { "hw_ldq/par",       EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1399  { "hw_ldq/pav",       EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1400  { "hw_ldq/pavl",      EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1401  { "hw_ldq/paw",       EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1402  { "hw_ldq/pawl",      EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1403  { "hw_ldq/pawv",      EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1404  { "hw_ldq/pawvl",     EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1405  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1406  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1407  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1408  { "hw_ldq/pvl",       EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1409  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1410  { "hw_ldq/pwl",       EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1411  { "hw_ldq/pwv",       EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1412  { "hw_ldq/pwvl",      EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1413  { "hw_ldq/r",         EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1414  { "hw_ldq/v",         EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1415  { "hw_ldq/v",         EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1416  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1417  { "hw_ldq/w",         EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1418  { "hw_ldq/w",         EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1419  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1420  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1421  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1422  { "hw_ldq/wvl",       EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1423  { "hw_ldq_l",         EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1424  { "hw_ldq_l/a",       EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1425  { "hw_ldq_l/av",      EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1426  { "hw_ldq_l/aw",      EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1427  { "hw_ldq_l/awv",     EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1428  { "hw_ldq_l/p",       EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1429  { "hw_ldq_l/p",       EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1430  { "hw_ldq_l/pa",      EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1431  { "hw_ldq_l/pav",     EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1432  { "hw_ldq_l/paw",     EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1433  { "hw_ldq_l/pawv",    EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1434  { "hw_ldq_l/pv",      EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1435  { "hw_ldq_l/pw",      EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1436  { "hw_ldq_l/pwv",     EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1437  { "hw_ldq_l/v",       EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1438  { "hw_ldq_l/w",       EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1439  { "hw_ldq_l/wv",      EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1440  { "hw_ld",            EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1441  { "hw_ld",            EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1442  { "hw_ld/a",          EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1443  { "hw_ld/a",          EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1444  { "hw_ld/al",         EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1445  { "hw_ld/aq",         EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1446  { "hw_ld/aq",         EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1447  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1448  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1449  { "hw_ld/aqvl",       EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1450  { "hw_ld/ar",         EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1451  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1452  { "hw_ld/av",         EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1453  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1454  { "hw_ld/aw",         EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1455  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1456  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1457  { "hw_ld/awql",       EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1458  { "hw_ld/awqv",       EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1459  { "hw_ld/awqvl",      EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1460  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1461  { "hw_ld/awvl",       EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1462  { "hw_ld/l",          EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1463  { "hw_ld/p",          EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1464  { "hw_ld/p",          EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1465  { "hw_ld/pa",         EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1466  { "hw_ld/pa",         EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1467  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1468  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1469  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1470  { "hw_ld/paql",       EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1471  { "hw_ld/paqv",       EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1472  { "hw_ld/paqvl",      EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1473  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1474  { "hw_ld/parq",       EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1475  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1476  { "hw_ld/pavl",       EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1477  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1478  { "hw_ld/pawl",       EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1479  { "hw_ld/pawq",       EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1480  { "hw_ld/pawql",      EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1481  { "hw_ld/pawqv",      EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1482  { "hw_ld/pawqvl",     EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1483  { "hw_ld/pawv",       EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1484  { "hw_ld/pawvl",      EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1485  { "hw_ld/pl",         EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1486  { "hw_ld/pq",         EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1487  { "hw_ld/pq",         EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1488  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1489  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1490  { "hw_ld/pqvl",       EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1491  { "hw_ld/pr",         EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1492  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1493  { "hw_ld/pv",         EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1494  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1495  { "hw_ld/pw",         EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1496  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1497  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1498  { "hw_ld/pwql",       EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1499  { "hw_ld/pwqv",       EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1500  { "hw_ld/pwqvl",      EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1501  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1502  { "hw_ld/pwvl",       EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1503  { "hw_ld/q",          EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1504  { "hw_ld/q",          EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1505  { "hw_ld/ql",         EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1506  { "hw_ld/qv",         EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1507  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1508  { "hw_ld/r",          EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1509  { "hw_ld/rq",         EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1510  { "hw_ld/v",          EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1511  { "hw_ld/vl",         EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1512  { "hw_ld/w",          EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1513  { "hw_ld/wl",         EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1514  { "hw_ld/wq",         EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1515  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1516  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1517  { "hw_ld/wqvl",       EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1518  { "hw_ld/wv",         EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1519  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1520  { "pal1b",            PCD(0x1B), BASE, ARG_PCD },
1521
1522  { "sextb",            OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1523  { "sextw",            OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1524  { "ctpop",            OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1525  { "perr",             OPR(0x1C, 0x31), MAX, ARG_OPR },
1526  { "ctlz",             OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1527  { "cttz",             OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1528  { "unpkbw",           OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1529  { "unpkbl",           OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1530  { "pkwb",             OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1531  { "pklb",             OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1532  { "minsb8",           OPR(0x1C, 0x38), MAX, ARG_OPR },
1533  { "minsb8",           OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1534  { "minsw4",           OPR(0x1C, 0x39), MAX, ARG_OPR },
1535  { "minsw4",           OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1536  { "minub8",           OPR(0x1C, 0x3A), MAX, ARG_OPR },
1537  { "minub8",           OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1538  { "minuw4",           OPR(0x1C, 0x3B), MAX, ARG_OPR },
1539  { "minuw4",           OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1540  { "maxub8",           OPR(0x1C, 0x3C), MAX, ARG_OPR },
1541  { "maxub8",           OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1542  { "maxuw4",           OPR(0x1C, 0x3D), MAX, ARG_OPR },
1543  { "maxuw4",           OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1544  { "maxsb8",           OPR(0x1C, 0x3E), MAX, ARG_OPR },
1545  { "maxsb8",           OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1546  { "maxsw4",           OPR(0x1C, 0x3F), MAX, ARG_OPR },
1547  { "maxsw4",           OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1548  { "ftoit",            FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1549  { "ftois",            FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1550
1551  { "hw_mtpr",          OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1552  { "hw_mtpr",          OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1553  { "hw_mtpr",          OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1554  { "hw_mtpr/i",        OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1555  { "hw_mtpr/a",        OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1556  { "hw_mtpr/ai",       OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1557  { "hw_mtpr/p",        OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1558  { "hw_mtpr/pi",       OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1559  { "hw_mtpr/pa",       OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1560  { "hw_mtpr/pai",      OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1561  { "pal1d",            PCD(0x1D), BASE, ARG_PCD },
1562
1563  { "hw_rei",           SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1564  { "hw_rei_stall",     SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1565  { "hw_jmp",           EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1566  { "hw_jsr",           EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1567  { "hw_ret",           EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1568  { "hw_jcr",           EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1569  { "hw_coroutine",     EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1570  { "hw_jmp/stall",     EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1571  { "hw_jsr/stall",     EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1572  { "hw_ret/stall",     EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1573  { "hw_jcr/stall",     EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1574  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1575  { "pal1e",            PCD(0x1E), BASE, ARG_PCD },
1576
1577  { "hw_stl",           EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1578  { "hw_stl",           EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1579  { "hw_stl",           EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1580  { "hw_stl/a",         EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1581  { "hw_stl/a",         EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1582  { "hw_stl/a",         EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1583  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1584  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1585  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1586  { "hw_stl/avc",       EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1587  { "hw_stl/c",         EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1588  { "hw_stl/p",         EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1589  { "hw_stl/p",         EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1590  { "hw_stl/p",         EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1591  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1592  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1593  { "hw_stl/pac",       EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1594  { "hw_stl/pav",       EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1595  { "hw_stl/pavc",      EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1596  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1597  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1598  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1599  { "hw_stl/pvc",       EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1600  { "hw_stl/r",         EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1601  { "hw_stl/v",         EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1602  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1603  { "hw_stl_c",         EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1604  { "hw_stl_c/a",       EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1605  { "hw_stl_c/av",      EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1606  { "hw_stl_c/p",       EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1607  { "hw_stl_c/p",       EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1608  { "hw_stl_c/pa",      EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1609  { "hw_stl_c/pav",     EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1610  { "hw_stl_c/pv",      EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1611  { "hw_stl_c/v",       EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1612  { "hw_stq",           EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1613  { "hw_stq",           EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1614  { "hw_stq",           EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1615  { "hw_stq/a",         EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1616  { "hw_stq/a",         EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1617  { "hw_stq/a",         EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1618  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1619  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1620  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1621  { "hw_stq/avc",       EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1622  { "hw_stq/c",         EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1623  { "hw_stq/p",         EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1624  { "hw_stq/p",         EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1625  { "hw_stq/p",         EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1626  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1627  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1628  { "hw_stq/pac",       EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1629  { "hw_stq/par",       EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1630  { "hw_stq/par",       EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1631  { "hw_stq/pav",       EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1632  { "hw_stq/pavc",      EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1633  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1634  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1635  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1636  { "hw_stq/pvc",       EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1637  { "hw_stq/r",         EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1638  { "hw_stq/v",         EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1639  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1640  { "hw_stq_c",         EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1641  { "hw_stq_c/a",       EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1642  { "hw_stq_c/av",      EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1643  { "hw_stq_c/p",       EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1644  { "hw_stq_c/p",       EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1645  { "hw_stq_c/pa",      EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1646  { "hw_stq_c/pav",     EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1647  { "hw_stq_c/pv",      EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1648  { "hw_stq_c/v",       EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1649  { "hw_st",            EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1650  { "hw_st",            EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1651  { "hw_st/a",          EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1652  { "hw_st/a",          EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1653  { "hw_st/ac",         EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1654  { "hw_st/aq",         EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1655  { "hw_st/aq",         EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1656  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1657  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1658  { "hw_st/aqvc",       EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1659  { "hw_st/ar",         EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1660  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1661  { "hw_st/av",         EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1662  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1663  { "hw_st/c",          EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1664  { "hw_st/p",          EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1665  { "hw_st/p",          EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1666  { "hw_st/pa",         EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1667  { "hw_st/pa",         EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1668  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1669  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1670  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1671  { "hw_st/paqc",       EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1672  { "hw_st/paqv",       EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1673  { "hw_st/paqvc",      EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1674  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1675  { "hw_st/parq",       EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1676  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1677  { "hw_st/pavc",       EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1678  { "hw_st/pc",         EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1679  { "hw_st/pq",         EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1680  { "hw_st/pq",         EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1681  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1682  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1683  { "hw_st/pqvc",       EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1684  { "hw_st/pr",         EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1685  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1686  { "hw_st/pv",         EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1687  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1688  { "hw_st/q",          EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1689  { "hw_st/q",          EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1690  { "hw_st/qc",         EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1691  { "hw_st/qv",         EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1692  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1693  { "hw_st/r",          EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1694  { "hw_st/v",          EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1695  { "hw_st/vc",         EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1696  { "pal1f",            PCD(0x1F), BASE, ARG_PCD },
1697
1698  { "ldf",              MEM(0x20), BASE, ARG_FMEM },
1699  { "ldg",              MEM(0x21), BASE, ARG_FMEM },
1700  { "lds",              MEM(0x22), BASE, ARG_FMEM },
1701  { "ldt",              MEM(0x23), BASE, ARG_FMEM },
1702  { "stf",              MEM(0x24), BASE, ARG_FMEM },
1703  { "stg",              MEM(0x25), BASE, ARG_FMEM },
1704  { "sts",              MEM(0x26), BASE, ARG_FMEM },
1705  { "stt",              MEM(0x27), BASE, ARG_FMEM },
1706
1707  { "ldl",              MEM(0x28), BASE, ARG_MEM },
1708  { "ldq",              MEM(0x29), BASE, ARG_MEM },
1709  { "ldl_l",            MEM(0x2A), BASE, ARG_MEM },
1710  { "ldq_l",            MEM(0x2B), BASE, ARG_MEM },
1711  { "stl",              MEM(0x2C), BASE, ARG_MEM },
1712  { "stq",              MEM(0x2D), BASE, ARG_MEM },
1713  { "stl_c",            MEM(0x2E), BASE, ARG_MEM },
1714  { "stq_c",            MEM(0x2F), BASE, ARG_MEM },
1715
1716  { "br",               BRA(0x30), BASE, { ZA, BDISP } },       /* pseudo */
1717  { "br",               BRA(0x30), BASE, ARG_BRA },
1718  { "fbeq",             BRA(0x31), BASE, ARG_FBRA },
1719  { "fblt",             BRA(0x32), BASE, ARG_FBRA },
1720  { "fble",             BRA(0x33), BASE, ARG_FBRA },
1721  { "bsr",              BRA(0x34), BASE, ARG_BRA },
1722  { "fbne",             BRA(0x35), BASE, ARG_FBRA },
1723  { "fbge",             BRA(0x36), BASE, ARG_FBRA },
1724  { "fbgt",             BRA(0x37), BASE, ARG_FBRA },
1725  { "blbc",             BRA(0x38), BASE, ARG_BRA },
1726  { "beq",              BRA(0x39), BASE, ARG_BRA },
1727  { "blt",              BRA(0x3A), BASE, ARG_BRA },
1728  { "ble",              BRA(0x3B), BASE, ARG_BRA },
1729  { "blbs",             BRA(0x3C), BASE, ARG_BRA },
1730  { "bne",              BRA(0x3D), BASE, ARG_BRA },
1731  { "bge",              BRA(0x3E), BASE, ARG_BRA },
1732  { "bgt",              BRA(0x3F), BASE, ARG_BRA },
1733};
1734
1735const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1736
1737/* OSF register names.  */
1738
1739static const char * const osf_regnames[64] = {
1740  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1741  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1742  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1743  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1744  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1745  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1746  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1747  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1748};
1749
1750/* VMS register names.  */
1751
1752static const char * const vms_regnames[64] = {
1753  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1754  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1755  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1756  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1757  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1758  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1759  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1760  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1761};
1762
1763/* Disassemble Alpha instructions.  */
1764
1765int
1766print_insn_alpha (bfd_vma memaddr, struct disassemble_info *info)
1767{
1768  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1769  const char * const * regnames;
1770  const struct alpha_opcode *opcode, *opcode_end;
1771  const unsigned char *opindex;
1772  unsigned insn, op, isa_mask;
1773  int need_comma;
1774
1775  /* Initialize the majorop table the first time through */
1776  if (!opcode_index[0])
1777    {
1778      opcode = alpha_opcodes;
1779      opcode_end = opcode + alpha_num_opcodes;
1780
1781      for (op = 0; op < AXP_NOPS; ++op)
1782        {
1783          opcode_index[op] = opcode;
1784          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1785            ++opcode;
1786        }
1787      opcode_index[op] = opcode;
1788    }
1789
1790  if (info->flavour == bfd_target_evax_flavour)
1791    regnames = vms_regnames;
1792  else
1793    regnames = osf_regnames;
1794
1795  isa_mask = AXP_OPCODE_NOPAL;
1796  switch (info->mach)
1797    {
1798    case bfd_mach_alpha_ev4:
1799      isa_mask |= AXP_OPCODE_EV4;
1800      break;
1801    case bfd_mach_alpha_ev5:
1802      isa_mask |= AXP_OPCODE_EV5;
1803      break;
1804    case bfd_mach_alpha_ev6:
1805      isa_mask |= AXP_OPCODE_EV6;
1806      break;
1807    }
1808
1809  /* Read the insn into a host word */
1810  {
1811    bfd_byte buffer[4];
1812    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1813    if (status != 0)
1814      {
1815        (*info->memory_error_func) (status, memaddr, info);
1816        return -1;
1817      }
1818    insn = bfd_getl32 (buffer);
1819  }
1820
1821  /* Get the major opcode of the instruction.  */
1822  op = AXP_OP (insn);
1823
1824  /* Find the first match in the opcode table.  */
1825  opcode_end = opcode_index[op + 1];
1826  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1827    {
1828      if ((insn ^ opcode->opcode) & opcode->mask)
1829        continue;
1830
1831      if (!(opcode->flags & isa_mask))
1832        continue;
1833
1834      /* Make two passes over the operands.  First see if any of them
1835         have extraction functions, and, if they do, make sure the
1836         instruction is valid.  */
1837      {
1838        int invalid = 0;
1839        for (opindex = opcode->operands; *opindex != 0; opindex++)
1840          {
1841            const struct alpha_operand *operand = alpha_operands + *opindex;
1842            if (operand->extract)
1843              (*operand->extract) (insn, &invalid);
1844          }
1845        if (invalid)
1846          continue;
1847      }
1848
1849      /* The instruction is valid.  */
1850      goto found;
1851    }
1852
1853  /* No instruction found */
1854  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1855
1856  return 4;
1857
1858found:
1859  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1860  if (opcode->operands[0] != 0)
1861    (*info->fprintf_func) (info->stream, "\t");
1862
1863  /* Now extract and print the operands.  */
1864  need_comma = 0;
1865  for (opindex = opcode->operands; *opindex != 0; opindex++)
1866    {
1867      const struct alpha_operand *operand = alpha_operands + *opindex;
1868      int value;
1869
1870      /* Operands that are marked FAKE are simply ignored.  We
1871         already made sure that the extract function considered
1872         the instruction to be valid.  */
1873      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1874        continue;
1875
1876      /* Extract the value from the instruction.  */
1877      if (operand->extract)
1878        value = (*operand->extract) (insn, (int *) NULL);
1879      else
1880        {
1881          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1882          if (operand->flags & AXP_OPERAND_SIGNED)
1883            {
1884              int signbit = 1 << (operand->bits - 1);
1885              value = (value ^ signbit) - signbit;
1886            }
1887        }
1888
1889      if (need_comma &&
1890          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1891           != AXP_OPERAND_PARENS))
1892        {
1893          (*info->fprintf_func) (info->stream, ",");
1894        }
1895      if (operand->flags & AXP_OPERAND_PARENS)
1896        (*info->fprintf_func) (info->stream, "(");
1897
1898      /* Print the operand as directed by the flags.  */
1899      if (operand->flags & AXP_OPERAND_IR)
1900        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1901      else if (operand->flags & AXP_OPERAND_FPR)
1902        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1903      else if (operand->flags & AXP_OPERAND_RELATIVE)
1904        (*info->print_address_func) (memaddr + 4 + value, info);
1905      else if (operand->flags & AXP_OPERAND_SIGNED)
1906        (*info->fprintf_func) (info->stream, "%d", value);
1907      else
1908        (*info->fprintf_func) (info->stream, "%#x", value);
1909
1910      if (operand->flags & AXP_OPERAND_PARENS)
1911        (*info->fprintf_func) (info->stream, ")");
1912      need_comma = 1;
1913    }
1914
1915  return 4;
1916}
1917