qemu/cputlb.c
<<
>>
Prefs
   1/*
   2 *  Common CPU TLB handling
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "config.h"
  21#include "cpu.h"
  22#include "exec-all.h"
  23#include "memory.h"
  24#include "exec-memory.h"
  25
  26#include "cputlb.h"
  27
  28#include "memory-internal.h"
  29
  30//#define DEBUG_TLB
  31//#define DEBUG_TLB_CHECK
  32
  33/* statistics */
  34int tlb_flush_count;
  35
  36static const CPUTLBEntry s_cputlb_empty_entry = {
  37    .addr_read  = -1,
  38    .addr_write = -1,
  39    .addr_code  = -1,
  40    .addend     = -1,
  41};
  42
  43/* NOTE:
  44 * If flush_global is true (the usual case), flush all tlb entries.
  45 * If flush_global is false, flush (at least) all tlb entries not
  46 * marked global.
  47 *
  48 * Since QEMU doesn't currently implement a global/not-global flag
  49 * for tlb entries, at the moment tlb_flush() will also flush all
  50 * tlb entries in the flush_global == false case. This is OK because
  51 * CPU architectures generally permit an implementation to drop
  52 * entries from the TLB at any time, so flushing more entries than
  53 * required is only an efficiency issue, not a correctness issue.
  54 */
  55void tlb_flush(CPUArchState *env, int flush_global)
  56{
  57    int i;
  58
  59#if defined(DEBUG_TLB)
  60    printf("tlb_flush:\n");
  61#endif
  62    /* must reset current TB so that interrupts cannot modify the
  63       links while we are modifying them */
  64    env->current_tb = NULL;
  65
  66    for (i = 0; i < CPU_TLB_SIZE; i++) {
  67        int mmu_idx;
  68
  69        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
  70            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
  71        }
  72    }
  73
  74    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
  75
  76    env->tlb_flush_addr = -1;
  77    env->tlb_flush_mask = 0;
  78    tlb_flush_count++;
  79}
  80
  81static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
  82{
  83    if (addr == (tlb_entry->addr_read &
  84                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  85        addr == (tlb_entry->addr_write &
  86                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  87        addr == (tlb_entry->addr_code &
  88                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
  89        *tlb_entry = s_cputlb_empty_entry;
  90    }
  91}
  92
  93void tlb_flush_page(CPUArchState *env, target_ulong addr)
  94{
  95    int i;
  96    int mmu_idx;
  97
  98#if defined(DEBUG_TLB)
  99    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 100#endif
 101    /* Check if we need to flush due to large pages.  */
 102    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 103#if defined(DEBUG_TLB)
 104        printf("tlb_flush_page: forced full flush ("
 105               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 106               env->tlb_flush_addr, env->tlb_flush_mask);
 107#endif
 108        tlb_flush(env, 1);
 109        return;
 110    }
 111    /* must reset current TB so that interrupts cannot modify the
 112       links while we are modifying them */
 113    env->current_tb = NULL;
 114
 115    addr &= TARGET_PAGE_MASK;
 116    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 117    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 118        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 119    }
 120
 121    tb_flush_jmp_cache(env, addr);
 122}
 123
 124/* update the TLBs so that writes to code in the virtual page 'addr'
 125   can be detected */
 126void tlb_protect_code(ram_addr_t ram_addr)
 127{
 128    cpu_physical_memory_reset_dirty(ram_addr,
 129                                    ram_addr + TARGET_PAGE_SIZE,
 130                                    CODE_DIRTY_FLAG);
 131}
 132
 133/* update the TLB so that writes in physical page 'phys_addr' are no longer
 134   tested for self modifying code */
 135void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
 136                             target_ulong vaddr)
 137{
 138    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
 139}
 140
 141static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
 142{
 143    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
 144}
 145
 146void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
 147                           uintptr_t length)
 148{
 149    uintptr_t addr;
 150
 151    if (tlb_is_dirty_ram(tlb_entry)) {
 152        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 153        if ((addr - start) < length) {
 154            tlb_entry->addr_write |= TLB_NOTDIRTY;
 155        }
 156    }
 157}
 158
 159static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
 160{
 161    ram_addr_t ram_addr;
 162    void *p;
 163
 164    if (tlb_is_dirty_ram(tlb_entry)) {
 165        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
 166            + tlb_entry->addend);
 167        ram_addr = qemu_ram_addr_from_host_nofail(p);
 168        if (!cpu_physical_memory_is_dirty(ram_addr)) {
 169            tlb_entry->addr_write |= TLB_NOTDIRTY;
 170        }
 171    }
 172}
 173
 174void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
 175{
 176    CPUArchState *env;
 177
 178    for (env = first_cpu; env != NULL; env = env->next_cpu) {
 179        int mmu_idx;
 180
 181        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 182            unsigned int i;
 183
 184            for (i = 0; i < CPU_TLB_SIZE; i++) {
 185                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 186                                      start1, length);
 187            }
 188        }
 189    }
 190}
 191
 192static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 193{
 194    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 195        tlb_entry->addr_write = vaddr;
 196    }
 197}
 198
 199/* update the TLB corresponding to virtual page vaddr
 200   so that it is no longer dirty */
 201void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
 202{
 203    int i;
 204    int mmu_idx;
 205
 206    vaddr &= TARGET_PAGE_MASK;
 207    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 208    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 209        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 210    }
 211}
 212
 213/* Our TLB does not support large pages, so remember the area covered by
 214   large pages and trigger a full TLB flush if these are invalidated.  */
 215static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
 216                               target_ulong size)
 217{
 218    target_ulong mask = ~(size - 1);
 219
 220    if (env->tlb_flush_addr == (target_ulong)-1) {
 221        env->tlb_flush_addr = vaddr & mask;
 222        env->tlb_flush_mask = mask;
 223        return;
 224    }
 225    /* Extend the existing region to include the new page.
 226       This is a compromise between unnecessary flushes and the cost
 227       of maintaining a full variable size TLB.  */
 228    mask &= env->tlb_flush_mask;
 229    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 230        mask <<= 1;
 231    }
 232    env->tlb_flush_addr &= mask;
 233    env->tlb_flush_mask = mask;
 234}
 235
 236/* Add a new TLB entry. At most one entry for a given virtual address
 237   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 238   supplied size is only used by tlb_flush_page.  */
 239void tlb_set_page(CPUArchState *env, target_ulong vaddr,
 240                  hwaddr paddr, int prot,
 241                  int mmu_idx, target_ulong size)
 242{
 243    MemoryRegionSection *section;
 244    unsigned int index;
 245    target_ulong address;
 246    target_ulong code_address;
 247    uintptr_t addend;
 248    CPUTLBEntry *te;
 249    hwaddr iotlb;
 250
 251    assert(size >= TARGET_PAGE_SIZE);
 252    if (size != TARGET_PAGE_SIZE) {
 253        tlb_add_large_page(env, vaddr, size);
 254    }
 255    section = phys_page_find(address_space_memory.dispatch, paddr >> TARGET_PAGE_BITS);
 256#if defined(DEBUG_TLB)
 257    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 258           " prot=%x idx=%d pd=0x%08lx\n",
 259           vaddr, paddr, prot, mmu_idx, pd);
 260#endif
 261
 262    address = vaddr;
 263    if (!(memory_region_is_ram(section->mr) ||
 264          memory_region_is_romd(section->mr))) {
 265        /* IO memory case (romd handled later) */
 266        address |= TLB_MMIO;
 267    }
 268    if (memory_region_is_ram(section->mr) ||
 269        memory_region_is_romd(section->mr)) {
 270        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
 271        + memory_region_section_addr(section, paddr);
 272    } else {
 273        addend = 0;
 274    }
 275
 276    code_address = address;
 277    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
 278                                            &address);
 279
 280    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 281    env->iotlb[mmu_idx][index] = iotlb - vaddr;
 282    te = &env->tlb_table[mmu_idx][index];
 283    te->addend = addend - vaddr;
 284    if (prot & PAGE_READ) {
 285        te->addr_read = address;
 286    } else {
 287        te->addr_read = -1;
 288    }
 289
 290    if (prot & PAGE_EXEC) {
 291        te->addr_code = code_address;
 292    } else {
 293        te->addr_code = -1;
 294    }
 295    if (prot & PAGE_WRITE) {
 296        if ((memory_region_is_ram(section->mr) && section->readonly)
 297            || memory_region_is_romd(section->mr)) {
 298            /* Write access calls the I/O callback.  */
 299            te->addr_write = address | TLB_MMIO;
 300        } else if (memory_region_is_ram(section->mr)
 301                   && !cpu_physical_memory_is_dirty(
 302                           section->mr->ram_addr
 303                           + memory_region_section_addr(section, paddr))) {
 304            te->addr_write = address | TLB_NOTDIRTY;
 305        } else {
 306            te->addr_write = address;
 307        }
 308    } else {
 309        te->addr_write = -1;
 310    }
 311}
 312
 313/* NOTE: this function can trigger an exception */
 314/* NOTE2: the returned address is not exactly the physical address: it
 315 * is actually a ram_addr_t (in system mode; the user mode emulation
 316 * version of this function returns a guest virtual address).
 317 */
 318tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 319{
 320    int mmu_idx, page_index, pd;
 321    void *p;
 322    MemoryRegion *mr;
 323
 324    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 325    mmu_idx = cpu_mmu_index(env1);
 326    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
 327                 (addr & TARGET_PAGE_MASK))) {
 328        cpu_ldub_code(env1, addr);
 329    }
 330    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
 331    mr = iotlb_to_region(pd);
 332    if (memory_region_is_unassigned(mr)) {
 333#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
 334        cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
 335#else
 336        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
 337                  TARGET_FMT_lx "\n", addr);
 338#endif
 339    }
 340    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
 341    return qemu_ram_addr_from_host_nofail(p);
 342}
 343
 344#define MMUSUFFIX _cmmu
 345#undef GETPC
 346#define GETPC() ((uintptr_t)0)
 347#define SOFTMMU_CODE_ACCESS
 348
 349#define SHIFT 0
 350#include "softmmu_template.h"
 351
 352#define SHIFT 1
 353#include "softmmu_template.h"
 354
 355#define SHIFT 2
 356#include "softmmu_template.h"
 357
 358#define SHIFT 3
 359#include "softmmu_template.h"
 360
 361#undef env
 362