qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4
   5@documentlanguage en
   6@documentencoding UTF-8
   7
   8@settitle QEMU Emulator User Documentation
   9@exampleindent 0
  10@paragraphindent 0
  11@c %**end of header
  12
  13@ifinfo
  14@direntry
  15* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  16@end direntry
  17@end ifinfo
  18
  19@iftex
  20@titlepage
  21@sp 7
  22@center @titlefont{QEMU Emulator}
  23@sp 1
  24@center @titlefont{User Documentation}
  25@sp 3
  26@end titlepage
  27@end iftex
  28
  29@ifnottex
  30@node Top
  31@top
  32
  33@menu
  34* Introduction::
  35* Installation::
  36* QEMU PC System emulator::
  37* QEMU System emulator for non PC targets::
  38* QEMU User space emulator::
  39* compilation:: Compilation from the sources
  40* License::
  41* Index::
  42@end menu
  43@end ifnottex
  44
  45@contents
  46
  47@node Introduction
  48@chapter Introduction
  49
  50@menu
  51* intro_features:: Features
  52@end menu
  53
  54@node intro_features
  55@section Features
  56
  57QEMU is a FAST! processor emulator using dynamic translation to
  58achieve good emulation speed.
  59
  60QEMU has two operating modes:
  61
  62@itemize
  63@cindex operating modes
  64
  65@item
  66@cindex system emulation
  67Full system emulation. In this mode, QEMU emulates a full system (for
  68example a PC), including one or several processors and various
  69peripherals. It can be used to launch different Operating Systems
  70without rebooting the PC or to debug system code.
  71
  72@item
  73@cindex user mode emulation
  74User mode emulation. In this mode, QEMU can launch
  75processes compiled for one CPU on another CPU. It can be used to
  76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
  77to ease cross-compilation and cross-debugging.
  78
  79@end itemize
  80
  81QEMU can run without a host kernel driver and yet gives acceptable
  82performance.
  83
  84For system emulation, the following hardware targets are supported:
  85@itemize
  86@cindex emulated target systems
  87@cindex supported target systems
  88@item PC (x86 or x86_64 processor)
  89@item ISA PC (old style PC without PCI bus)
  90@item PREP (PowerPC processor)
  91@item G3 Beige PowerMac (PowerPC processor)
  92@item Mac99 PowerMac (PowerPC processor, in progress)
  93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
  94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
  95@item Malta board (32-bit and 64-bit MIPS processors)
  96@item MIPS Magnum (64-bit MIPS processor)
  97@item ARM Integrator/CP (ARM)
  98@item ARM Versatile baseboard (ARM)
  99@item ARM RealView Emulation/Platform baseboard (ARM)
 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
 101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
 102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
 103@item Freescale MCF5208EVB (ColdFire V2).
 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
 105@item Palm Tungsten|E PDA (OMAP310 processor)
 106@item N800 and N810 tablets (OMAP2420 processor)
 107@item MusicPal (MV88W8618 ARM processor)
 108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
 109@item Siemens SX1 smartphone (OMAP310 processor)
 110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
 111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
 113@end itemize
 114
 115@cindex supported user mode targets
 116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
 117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
 118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
 119
 120@node Installation
 121@chapter Installation
 122
 123If you want to compile QEMU yourself, see @ref{compilation}.
 124
 125@menu
 126* install_linux::   Linux
 127* install_windows:: Windows
 128* install_mac::     Macintosh
 129@end menu
 130
 131@node install_linux
 132@section Linux
 133@cindex installation (Linux)
 134
 135If a precompiled package is available for your distribution - you just
 136have to install it. Otherwise, see @ref{compilation}.
 137
 138@node install_windows
 139@section Windows
 140@cindex installation (Windows)
 141
 142Download the experimental binary installer at
 143@url{http://www.free.oszoo.org/@/download.html}.
 144TODO (no longer available)
 145
 146@node install_mac
 147@section Mac OS X
 148
 149Download the experimental binary installer at
 150@url{http://www.free.oszoo.org/@/download.html}.
 151TODO (no longer available)
 152
 153@node QEMU PC System emulator
 154@chapter QEMU PC System emulator
 155@cindex system emulation (PC)
 156
 157@menu
 158* pcsys_introduction:: Introduction
 159* pcsys_quickstart::   Quick Start
 160* sec_invocation::     Invocation
 161* pcsys_keys::         Keys
 162* pcsys_monitor::      QEMU Monitor
 163* disk_images::        Disk Images
 164* pcsys_network::      Network emulation
 165* pcsys_other_devs::   Other Devices
 166* direct_linux_boot::  Direct Linux Boot
 167* pcsys_usb::          USB emulation
 168* vnc_security::       VNC security
 169* gdb_usage::          GDB usage
 170* pcsys_os_specific::  Target OS specific information
 171@end menu
 172
 173@node pcsys_introduction
 174@section Introduction
 175
 176@c man begin DESCRIPTION
 177
 178The QEMU PC System emulator simulates the
 179following peripherals:
 180
 181@itemize @minus
 182@item
 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 184@item
 185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 186extensions (hardware level, including all non standard modes).
 187@item
 188PS/2 mouse and keyboard
 189@item
 1902 PCI IDE interfaces with hard disk and CD-ROM support
 191@item
 192Floppy disk
 193@item
 194PCI and ISA network adapters
 195@item
 196Serial ports
 197@item
 198Creative SoundBlaster 16 sound card
 199@item
 200ENSONIQ AudioPCI ES1370 sound card
 201@item
 202Intel 82801AA AC97 Audio compatible sound card
 203@item
 204Intel HD Audio Controller and HDA codec
 205@item
 206Adlib (OPL2) - Yamaha YM3812 compatible chip
 207@item
 208Gravis Ultrasound GF1 sound card
 209@item
 210CS4231A compatible sound card
 211@item
 212PCI UHCI USB controller and a virtual USB hub.
 213@end itemize
 214
 215SMP is supported with up to 255 CPUs.
 216
 217Note that adlib, gus and cs4231a are only available when QEMU was
 218configured with --audio-card-list option containing the name(s) of
 219required card(s).
 220
 221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
 222VGA BIOS.
 223
 224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 225
 226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 227by Tibor "TS" Schütz.
 228
 229Note that, by default, GUS shares IRQ(7) with parallel ports and so
 230QEMU must be told to not have parallel ports to have working GUS.
 231
 232@example
 233qemu-system-i386 dos.img -soundhw gus -parallel none
 234@end example
 235
 236Alternatively:
 237@example
 238qemu-system-i386 dos.img -device gus,irq=5
 239@end example
 240
 241Or some other unclaimed IRQ.
 242
 243CS4231A is the chip used in Windows Sound System and GUSMAX products
 244
 245@c man end
 246
 247@node pcsys_quickstart
 248@section Quick Start
 249@cindex quick start
 250
 251Download and uncompress the linux image (@file{linux.img}) and type:
 252
 253@example
 254qemu-system-i386 linux.img
 255@end example
 256
 257Linux should boot and give you a prompt.
 258
 259@node sec_invocation
 260@section Invocation
 261
 262@example
 263@c man begin SYNOPSIS
 264usage: qemu-system-i386 [options] [@var{disk_image}]
 265@c man end
 266@end example
 267
 268@c man begin OPTIONS
 269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 270targets do not need a disk image.
 271
 272@include qemu-options.texi
 273
 274@c man end
 275
 276@node pcsys_keys
 277@section Keys
 278
 279@c man begin OPTIONS
 280
 281During the graphical emulation, you can use special key combinations to change
 282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 285
 286@table @key
 287@item Ctrl-Alt-f
 288@kindex Ctrl-Alt-f
 289Toggle full screen
 290
 291@item Ctrl-Alt-+
 292@kindex Ctrl-Alt-+
 293Enlarge the screen
 294
 295@item Ctrl-Alt--
 296@kindex Ctrl-Alt--
 297Shrink the screen
 298
 299@item Ctrl-Alt-u
 300@kindex Ctrl-Alt-u
 301Restore the screen's un-scaled dimensions
 302
 303@item Ctrl-Alt-n
 304@kindex Ctrl-Alt-n
 305Switch to virtual console 'n'. Standard console mappings are:
 306@table @emph
 307@item 1
 308Target system display
 309@item 2
 310Monitor
 311@item 3
 312Serial port
 313@end table
 314
 315@item Ctrl-Alt
 316@kindex Ctrl-Alt
 317Toggle mouse and keyboard grab.
 318@end table
 319
 320@kindex Ctrl-Up
 321@kindex Ctrl-Down
 322@kindex Ctrl-PageUp
 323@kindex Ctrl-PageDown
 324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 326
 327@kindex Ctrl-a h
 328During emulation, if you are using the @option{-nographic} option, use
 329@key{Ctrl-a h} to get terminal commands:
 330
 331@table @key
 332@item Ctrl-a h
 333@kindex Ctrl-a h
 334@item Ctrl-a ?
 335@kindex Ctrl-a ?
 336Print this help
 337@item Ctrl-a x
 338@kindex Ctrl-a x
 339Exit emulator
 340@item Ctrl-a s
 341@kindex Ctrl-a s
 342Save disk data back to file (if -snapshot)
 343@item Ctrl-a t
 344@kindex Ctrl-a t
 345Toggle console timestamps
 346@item Ctrl-a b
 347@kindex Ctrl-a b
 348Send break (magic sysrq in Linux)
 349@item Ctrl-a c
 350@kindex Ctrl-a c
 351Switch between console and monitor
 352@item Ctrl-a Ctrl-a
 353@kindex Ctrl-a a
 354Send Ctrl-a
 355@end table
 356@c man end
 357
 358@ignore
 359
 360@c man begin SEEALSO
 361The HTML documentation of QEMU for more precise information and Linux
 362user mode emulator invocation.
 363@c man end
 364
 365@c man begin AUTHOR
 366Fabrice Bellard
 367@c man end
 368
 369@end ignore
 370
 371@node pcsys_monitor
 372@section QEMU Monitor
 373@cindex QEMU monitor
 374
 375The QEMU monitor is used to give complex commands to the QEMU
 376emulator. You can use it to:
 377
 378@itemize @minus
 379
 380@item
 381Remove or insert removable media images
 382(such as CD-ROM or floppies).
 383
 384@item
 385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 386from a disk file.
 387
 388@item Inspect the VM state without an external debugger.
 389
 390@end itemize
 391
 392@subsection Commands
 393
 394The following commands are available:
 395
 396@include qemu-monitor.texi
 397
 398@subsection Integer expressions
 399
 400The monitor understands integers expressions for every integer
 401argument. You can use register names to get the value of specifics
 402CPU registers by prefixing them with @emph{$}.
 403
 404@node disk_images
 405@section Disk Images
 406
 407Since version 0.6.1, QEMU supports many disk image formats, including
 408growable disk images (their size increase as non empty sectors are
 409written), compressed and encrypted disk images. Version 0.8.3 added
 410the new qcow2 disk image format which is essential to support VM
 411snapshots.
 412
 413@menu
 414* disk_images_quickstart::    Quick start for disk image creation
 415* disk_images_snapshot_mode:: Snapshot mode
 416* vm_snapshots::              VM snapshots
 417* qemu_img_invocation::       qemu-img Invocation
 418* qemu_nbd_invocation::       qemu-nbd Invocation
 419* disk_images_formats::       Disk image file formats
 420* host_drives::               Using host drives
 421* disk_images_fat_images::    Virtual FAT disk images
 422* disk_images_nbd::           NBD access
 423* disk_images_sheepdog::      Sheepdog disk images
 424* disk_images_iscsi::         iSCSI LUNs
 425* disk_images_gluster::       GlusterFS disk images
 426@end menu
 427
 428@node disk_images_quickstart
 429@subsection Quick start for disk image creation
 430
 431You can create a disk image with the command:
 432@example
 433qemu-img create myimage.img mysize
 434@end example
 435where @var{myimage.img} is the disk image filename and @var{mysize} is its
 436size in kilobytes. You can add an @code{M} suffix to give the size in
 437megabytes and a @code{G} suffix for gigabytes.
 438
 439See @ref{qemu_img_invocation} for more information.
 440
 441@node disk_images_snapshot_mode
 442@subsection Snapshot mode
 443
 444If you use the option @option{-snapshot}, all disk images are
 445considered as read only. When sectors in written, they are written in
 446a temporary file created in @file{/tmp}. You can however force the
 447write back to the raw disk images by using the @code{commit} monitor
 448command (or @key{C-a s} in the serial console).
 449
 450@node vm_snapshots
 451@subsection VM snapshots
 452
 453VM snapshots are snapshots of the complete virtual machine including
 454CPU state, RAM, device state and the content of all the writable
 455disks. In order to use VM snapshots, you must have at least one non
 456removable and writable block device using the @code{qcow2} disk image
 457format. Normally this device is the first virtual hard drive.
 458
 459Use the monitor command @code{savevm} to create a new VM snapshot or
 460replace an existing one. A human readable name can be assigned to each
 461snapshot in addition to its numerical ID.
 462
 463Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 464a VM snapshot. @code{info snapshots} lists the available snapshots
 465with their associated information:
 466
 467@example
 468(qemu) info snapshots
 469Snapshot devices: hda
 470Snapshot list (from hda):
 471ID        TAG                 VM SIZE                DATE       VM CLOCK
 4721         start                   41M 2006-08-06 12:38:02   00:00:14.954
 4732                                 40M 2006-08-06 12:43:29   00:00:18.633
 4743         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 475@end example
 476
 477A VM snapshot is made of a VM state info (its size is shown in
 478@code{info snapshots}) and a snapshot of every writable disk image.
 479The VM state info is stored in the first @code{qcow2} non removable
 480and writable block device. The disk image snapshots are stored in
 481every disk image. The size of a snapshot in a disk image is difficult
 482to evaluate and is not shown by @code{info snapshots} because the
 483associated disk sectors are shared among all the snapshots to save
 484disk space (otherwise each snapshot would need a full copy of all the
 485disk images).
 486
 487When using the (unrelated) @code{-snapshot} option
 488(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 489but they are deleted as soon as you exit QEMU.
 490
 491VM snapshots currently have the following known limitations:
 492@itemize
 493@item
 494They cannot cope with removable devices if they are removed or
 495inserted after a snapshot is done.
 496@item
 497A few device drivers still have incomplete snapshot support so their
 498state is not saved or restored properly (in particular USB).
 499@end itemize
 500
 501@node qemu_img_invocation
 502@subsection @code{qemu-img} Invocation
 503
 504@include qemu-img.texi
 505
 506@node qemu_nbd_invocation
 507@subsection @code{qemu-nbd} Invocation
 508
 509@include qemu-nbd.texi
 510
 511@node disk_images_formats
 512@subsection Disk image file formats
 513
 514QEMU supports many image file formats that can be used with VMs as well as with
 515any of the tools (like @code{qemu-img}). This includes the preferred formats
 516raw and qcow2 as well as formats that are supported for compatibility with
 517older QEMU versions or other hypervisors.
 518
 519Depending on the image format, different options can be passed to
 520@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
 521This section describes each format and the options that are supported for it.
 522
 523@table @option
 524@item raw
 525
 526Raw disk image format. This format has the advantage of
 527being simple and easily exportable to all other emulators. If your
 528file system supports @emph{holes} (for example in ext2 or ext3 on
 529Linux or NTFS on Windows), then only the written sectors will reserve
 530space. Use @code{qemu-img info} to know the real size used by the
 531image or @code{ls -ls} on Unix/Linux.
 532
 533@item qcow2
 534QEMU image format, the most versatile format. Use it to have smaller
 535images (useful if your filesystem does not supports holes, for example
 536on Windows), optional AES encryption, zlib based compression and
 537support of multiple VM snapshots.
 538
 539Supported options:
 540@table @code
 541@item compat
 542Determines the qcow2 version to use. @code{compat=0.10} uses the traditional
 543image format that can be read by any QEMU since 0.10 (this is the default).
 544@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
 545newer understand. Amongst others, this includes zero clusters, which allow
 546efficient copy-on-read for sparse images.
 547
 548@item backing_file
 549File name of a base image (see @option{create} subcommand)
 550@item backing_fmt
 551Image format of the base image
 552@item encryption
 553If this option is set to @code{on}, the image is encrypted.
 554
 555Encryption uses the AES format which is very secure (128 bit keys). Use
 556a long password (16 characters) to get maximum protection.
 557
 558@item cluster_size
 559Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
 560sizes can improve the image file size whereas larger cluster sizes generally
 561provide better performance.
 562
 563@item preallocation
 564Preallocation mode (allowed values: off, metadata). An image with preallocated
 565metadata is initially larger but can improve performance when the image needs
 566to grow.
 567
 568@item lazy_refcounts
 569If this option is set to @code{on}, reference count updates are postponed with
 570the goal of avoiding metadata I/O and improving performance. This is
 571particularly interesting with @option{cache=writethrough} which doesn't batch
 572metadata updates. The tradeoff is that after a host crash, the reference count
 573tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
 574check -r all} is required, which may take some time.
 575
 576This option can only be enabled if @code{compat=1.1} is specified.
 577
 578@end table
 579
 580@item qed
 581Old QEMU image format with support for backing files and compact image files
 582(when your filesystem or transport medium does not support holes).
 583
 584When converting QED images to qcow2, you might want to consider using the
 585@code{lazy_refcounts=on} option to get a more QED-like behaviour.
 586
 587Supported options:
 588@table @code
 589@item backing_file
 590File name of a base image (see @option{create} subcommand).
 591@item backing_fmt
 592Image file format of backing file (optional).  Useful if the format cannot be
 593autodetected because it has no header, like some vhd/vpc files.
 594@item cluster_size
 595Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
 596cluster sizes can improve the image file size whereas larger cluster sizes
 597generally provide better performance.
 598@item table_size
 599Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
 600and 16).  There is normally no need to change this value but this option can be
 601used for performance benchmarking.
 602@end table
 603
 604@item qcow
 605Old QEMU image format with support for backing files, compact image files,
 606encryption and compression.
 607
 608Supported options:
 609@table @code
 610@item backing_file
 611File name of a base image (see @option{create} subcommand)
 612@item encryption
 613If this option is set to @code{on}, the image is encrypted.
 614@end table
 615
 616@item cow
 617User Mode Linux Copy On Write image format. It is supported only for
 618compatibility with previous versions.
 619Supported options:
 620@table @code
 621@item backing_file
 622File name of a base image (see @option{create} subcommand)
 623@end table
 624
 625@item vdi
 626VirtualBox 1.1 compatible image format.
 627Supported options:
 628@table @code
 629@item static
 630If this option is set to @code{on}, the image is created with metadata
 631preallocation.
 632@end table
 633
 634@item vmdk
 635VMware 3 and 4 compatible image format.
 636
 637Supported options:
 638@table @code
 639@item backing_file
 640File name of a base image (see @option{create} subcommand).
 641@item compat6
 642Create a VMDK version 6 image (instead of version 4)
 643@item subformat
 644Specifies which VMDK subformat to use. Valid options are
 645@code{monolithicSparse} (default),
 646@code{monolithicFlat},
 647@code{twoGbMaxExtentSparse},
 648@code{twoGbMaxExtentFlat} and
 649@code{streamOptimized}.
 650@end table
 651
 652@item vpc
 653VirtualPC compatible image format (VHD).
 654Supported options:
 655@table @code
 656@item subformat
 657Specifies which VHD subformat to use. Valid options are
 658@code{dynamic} (default) and @code{fixed}.
 659@end table
 660@end table
 661
 662@subsubsection Read-only formats
 663More disk image file formats are supported in a read-only mode.
 664@table @option
 665@item bochs
 666Bochs images of @code{growing} type.
 667@item cloop
 668Linux Compressed Loop image, useful only to reuse directly compressed
 669CD-ROM images present for example in the Knoppix CD-ROMs.
 670@item dmg
 671Apple disk image.
 672@item parallels
 673Parallels disk image format.
 674@end table
 675
 676
 677@node host_drives
 678@subsection Using host drives
 679
 680In addition to disk image files, QEMU can directly access host
 681devices. We describe here the usage for QEMU version >= 0.8.3.
 682
 683@subsubsection Linux
 684
 685On Linux, you can directly use the host device filename instead of a
 686disk image filename provided you have enough privileges to access
 687it. For example, use @file{/dev/cdrom} to access to the CDROM or
 688@file{/dev/fd0} for the floppy.
 689
 690@table @code
 691@item CD
 692You can specify a CDROM device even if no CDROM is loaded. QEMU has
 693specific code to detect CDROM insertion or removal. CDROM ejection by
 694the guest OS is supported. Currently only data CDs are supported.
 695@item Floppy
 696You can specify a floppy device even if no floppy is loaded. Floppy
 697removal is currently not detected accurately (if you change floppy
 698without doing floppy access while the floppy is not loaded, the guest
 699OS will think that the same floppy is loaded).
 700@item Hard disks
 701Hard disks can be used. Normally you must specify the whole disk
 702(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
 703see it as a partitioned disk. WARNING: unless you know what you do, it
 704is better to only make READ-ONLY accesses to the hard disk otherwise
 705you may corrupt your host data (use the @option{-snapshot} command
 706line option or modify the device permissions accordingly).
 707@end table
 708
 709@subsubsection Windows
 710
 711@table @code
 712@item CD
 713The preferred syntax is the drive letter (e.g. @file{d:}). The
 714alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
 715supported as an alias to the first CDROM drive.
 716
 717Currently there is no specific code to handle removable media, so it
 718is better to use the @code{change} or @code{eject} monitor commands to
 719change or eject media.
 720@item Hard disks
 721Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
 722where @var{N} is the drive number (0 is the first hard disk).
 723
 724WARNING: unless you know what you do, it is better to only make
 725READ-ONLY accesses to the hard disk otherwise you may corrupt your
 726host data (use the @option{-snapshot} command line so that the
 727modifications are written in a temporary file).
 728@end table
 729
 730
 731@subsubsection Mac OS X
 732
 733@file{/dev/cdrom} is an alias to the first CDROM.
 734
 735Currently there is no specific code to handle removable media, so it
 736is better to use the @code{change} or @code{eject} monitor commands to
 737change or eject media.
 738
 739@node disk_images_fat_images
 740@subsection Virtual FAT disk images
 741
 742QEMU can automatically create a virtual FAT disk image from a
 743directory tree. In order to use it, just type:
 744
 745@example
 746qemu-system-i386 linux.img -hdb fat:/my_directory
 747@end example
 748
 749Then you access access to all the files in the @file{/my_directory}
 750directory without having to copy them in a disk image or to export
 751them via SAMBA or NFS. The default access is @emph{read-only}.
 752
 753Floppies can be emulated with the @code{:floppy:} option:
 754
 755@example
 756qemu-system-i386 linux.img -fda fat:floppy:/my_directory
 757@end example
 758
 759A read/write support is available for testing (beta stage) with the
 760@code{:rw:} option:
 761
 762@example
 763qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
 764@end example
 765
 766What you should @emph{never} do:
 767@itemize
 768@item use non-ASCII filenames ;
 769@item use "-snapshot" together with ":rw:" ;
 770@item expect it to work when loadvm'ing ;
 771@item write to the FAT directory on the host system while accessing it with the guest system.
 772@end itemize
 773
 774@node disk_images_nbd
 775@subsection NBD access
 776
 777QEMU can access directly to block device exported using the Network Block Device
 778protocol.
 779
 780@example
 781qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
 782@end example
 783
 784If the NBD server is located on the same host, you can use an unix socket instead
 785of an inet socket:
 786
 787@example
 788qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
 789@end example
 790
 791In this case, the block device must be exported using qemu-nbd:
 792
 793@example
 794qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
 795@end example
 796
 797The use of qemu-nbd allows to share a disk between several guests:
 798@example
 799qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
 800@end example
 801
 802@noindent
 803and then you can use it with two guests:
 804@example
 805qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
 806qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
 807@end example
 808
 809If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
 810own embedded NBD server), you must specify an export name in the URI:
 811@example
 812qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
 813qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
 814@end example
 815
 816The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
 817also available.  Here are some example of the older syntax:
 818@example
 819qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
 820qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
 821qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
 822@end example
 823
 824@node disk_images_sheepdog
 825@subsection Sheepdog disk images
 826
 827Sheepdog is a distributed storage system for QEMU.  It provides highly
 828available block level storage volumes that can be attached to
 829QEMU-based virtual machines.
 830
 831You can create a Sheepdog disk image with the command:
 832@example
 833qemu-img create sheepdog:@var{image} @var{size}
 834@end example
 835where @var{image} is the Sheepdog image name and @var{size} is its
 836size.
 837
 838To import the existing @var{filename} to Sheepdog, you can use a
 839convert command.
 840@example
 841qemu-img convert @var{filename} sheepdog:@var{image}
 842@end example
 843
 844You can boot from the Sheepdog disk image with the command:
 845@example
 846qemu-system-i386 sheepdog:@var{image}
 847@end example
 848
 849You can also create a snapshot of the Sheepdog image like qcow2.
 850@example
 851qemu-img snapshot -c @var{tag} sheepdog:@var{image}
 852@end example
 853where @var{tag} is a tag name of the newly created snapshot.
 854
 855To boot from the Sheepdog snapshot, specify the tag name of the
 856snapshot.
 857@example
 858qemu-system-i386 sheepdog:@var{image}:@var{tag}
 859@end example
 860
 861You can create a cloned image from the existing snapshot.
 862@example
 863qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
 864@end example
 865where @var{base} is a image name of the source snapshot and @var{tag}
 866is its tag name.
 867
 868If the Sheepdog daemon doesn't run on the local host, you need to
 869specify one of the Sheepdog servers to connect to.
 870@example
 871qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
 872qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
 873@end example
 874
 875@node disk_images_iscsi
 876@subsection iSCSI LUNs
 877
 878iSCSI is a popular protocol used to access SCSI devices across a computer
 879network.
 880
 881There are two different ways iSCSI devices can be used by QEMU.
 882
 883The first method is to mount the iSCSI LUN on the host, and make it appear as
 884any other ordinary SCSI device on the host and then to access this device as a
 885/dev/sd device from QEMU. How to do this differs between host OSes.
 886
 887The second method involves using the iSCSI initiator that is built into
 888QEMU. This provides a mechanism that works the same way regardless of which
 889host OS you are running QEMU on. This section will describe this second method
 890of using iSCSI together with QEMU.
 891
 892In QEMU, iSCSI devices are described using special iSCSI URLs
 893
 894@example
 895URL syntax:
 896iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
 897@end example
 898
 899Username and password are optional and only used if your target is set up
 900using CHAP authentication for access control.
 901Alternatively the username and password can also be set via environment
 902variables to have these not show up in the process list
 903
 904@example
 905export LIBISCSI_CHAP_USERNAME=<username>
 906export LIBISCSI_CHAP_PASSWORD=<password>
 907iscsi://<host>/<target-iqn-name>/<lun>
 908@end example
 909
 910Various session related parameters can be set via special options, either
 911in a configuration file provided via '-readconfig' or directly on the
 912command line.
 913
 914If the initiator-name is not specified qemu will use a default name
 915of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
 916virtual machine.
 917
 918
 919@example
 920Setting a specific initiator name to use when logging in to the target
 921-iscsi initiator-name=iqn.qemu.test:my-initiator
 922@end example
 923
 924@example
 925Controlling which type of header digest to negotiate with the target
 926-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 927@end example
 928
 929These can also be set via a configuration file
 930@example
 931[iscsi]
 932  user = "CHAP username"
 933  password = "CHAP password"
 934  initiator-name = "iqn.qemu.test:my-initiator"
 935  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 936  header-digest = "CRC32C"
 937@end example
 938
 939
 940Setting the target name allows different options for different targets
 941@example
 942[iscsi "iqn.target.name"]
 943  user = "CHAP username"
 944  password = "CHAP password"
 945  initiator-name = "iqn.qemu.test:my-initiator"
 946  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 947  header-digest = "CRC32C"
 948@end example
 949
 950
 951Howto use a configuration file to set iSCSI configuration options:
 952@example
 953cat >iscsi.conf <<EOF
 954[iscsi]
 955  user = "me"
 956  password = "my password"
 957  initiator-name = "iqn.qemu.test:my-initiator"
 958  header-digest = "CRC32C"
 959EOF
 960
 961qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
 962    -readconfig iscsi.conf
 963@end example
 964
 965
 966Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
 967@example
 968This example shows how to set up an iSCSI target with one CDROM and one DISK
 969using the Linux STGT software target. This target is available on Red Hat based
 970systems as the package 'scsi-target-utils'.
 971
 972tgtd --iscsi portal=127.0.0.1:3260
 973tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
 974tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
 975    -b /IMAGES/disk.img --device-type=disk
 976tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
 977    -b /IMAGES/cd.iso --device-type=cd
 978tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
 979
 980qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
 981    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
 982    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
 983@end example
 984
 985@node disk_images_gluster
 986@subsection GlusterFS disk images
 987
 988GlusterFS is an user space distributed file system.
 989
 990You can boot from the GlusterFS disk image with the command:
 991@example
 992qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
 993@end example
 994
 995@var{gluster} is the protocol.
 996
 997@var{transport} specifies the transport type used to connect to gluster
 998management daemon (glusterd). Valid transport types are
 999tcp, unix and rdma. If a transport type isn't specified, then tcp
1000type is assumed.
1001
1002@var{server} specifies the server where the volume file specification for
1003the given volume resides. This can be either hostname, ipv4 address
1004or ipv6 address. ipv6 address needs to be within square brackets [ ].
1005If transport type is unix, then @var{server} field should not be specifed.
1006Instead @var{socket} field needs to be populated with the path to unix domain
1007socket.
1008
1009@var{port} is the port number on which glusterd is listening. This is optional
1010and if not specified, QEMU will send 0 which will make gluster to use the
1011default port. If the transport type is unix, then @var{port} should not be
1012specified.
1013
1014@var{volname} is the name of the gluster volume which contains the disk image.
1015
1016@var{image} is the path to the actual disk image that resides on gluster volume.
1017
1018You can create a GlusterFS disk image with the command:
1019@example
1020qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1021@end example
1022
1023Examples
1024@example
1025qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1026qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1027qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1028qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1029qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1030qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1031qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1032qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1033@end example
1034
1035@node pcsys_network
1036@section Network emulation
1037
1038QEMU can simulate several network cards (PCI or ISA cards on the PC
1039target) and can connect them to an arbitrary number of Virtual Local
1040Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1041VLAN. VLAN can be connected between separate instances of QEMU to
1042simulate large networks. For simpler usage, a non privileged user mode
1043network stack can replace the TAP device to have a basic network
1044connection.
1045
1046@subsection VLANs
1047
1048QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1049connection between several network devices. These devices can be for
1050example QEMU virtual Ethernet cards or virtual Host ethernet devices
1051(TAP devices).
1052
1053@subsection Using TAP network interfaces
1054
1055This is the standard way to connect QEMU to a real network. QEMU adds
1056a virtual network device on your host (called @code{tapN}), and you
1057can then configure it as if it was a real ethernet card.
1058
1059@subsubsection Linux host
1060
1061As an example, you can download the @file{linux-test-xxx.tar.gz}
1062archive and copy the script @file{qemu-ifup} in @file{/etc} and
1063configure properly @code{sudo} so that the command @code{ifconfig}
1064contained in @file{qemu-ifup} can be executed as root. You must verify
1065that your host kernel supports the TAP network interfaces: the
1066device @file{/dev/net/tun} must be present.
1067
1068See @ref{sec_invocation} to have examples of command lines using the
1069TAP network interfaces.
1070
1071@subsubsection Windows host
1072
1073There is a virtual ethernet driver for Windows 2000/XP systems, called
1074TAP-Win32. But it is not included in standard QEMU for Windows,
1075so you will need to get it separately. It is part of OpenVPN package,
1076so download OpenVPN from : @url{http://openvpn.net/}.
1077
1078@subsection Using the user mode network stack
1079
1080By using the option @option{-net user} (default configuration if no
1081@option{-net} option is specified), QEMU uses a completely user mode
1082network stack (you don't need root privilege to use the virtual
1083network). The virtual network configuration is the following:
1084
1085@example
1086
1087         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1088                           |          (10.0.2.2)
1089                           |
1090                           ---->  DNS server (10.0.2.3)
1091                           |
1092                           ---->  SMB server (10.0.2.4)
1093@end example
1094
1095The QEMU VM behaves as if it was behind a firewall which blocks all
1096incoming connections. You can use a DHCP client to automatically
1097configure the network in the QEMU VM. The DHCP server assign addresses
1098to the hosts starting from 10.0.2.15.
1099
1100In order to check that the user mode network is working, you can ping
1101the address 10.0.2.2 and verify that you got an address in the range
110210.0.2.x from the QEMU virtual DHCP server.
1103
1104Note that @code{ping} is not supported reliably to the internet as it
1105would require root privileges. It means you can only ping the local
1106router (10.0.2.2).
1107
1108When using the built-in TFTP server, the router is also the TFTP
1109server.
1110
1111When using the @option{-redir} option, TCP or UDP connections can be
1112redirected from the host to the guest. It allows for example to
1113redirect X11, telnet or SSH connections.
1114
1115@subsection Connecting VLANs between QEMU instances
1116
1117Using the @option{-net socket} option, it is possible to make VLANs
1118that span several QEMU instances. See @ref{sec_invocation} to have a
1119basic example.
1120
1121@node pcsys_other_devs
1122@section Other Devices
1123
1124@subsection Inter-VM Shared Memory device
1125
1126With KVM enabled on a Linux host, a shared memory device is available.  Guests
1127map a POSIX shared memory region into the guest as a PCI device that enables
1128zero-copy communication to the application level of the guests.  The basic
1129syntax is:
1130
1131@example
1132qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1133@end example
1134
1135If desired, interrupts can be sent between guest VMs accessing the same shared
1136memory region.  Interrupt support requires using a shared memory server and
1137using a chardev socket to connect to it.  The code for the shared memory server
1138is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
1139memory server is:
1140
1141@example
1142qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1143                 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1144qemu-system-i386 -chardev socket,path=<path>,id=<id>
1145@end example
1146
1147When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1148using the same server to communicate via interrupts.  Guests can read their
1149VM ID from a device register (see example code).  Since receiving the shared
1150memory region from the server is asynchronous, there is a (small) chance the
1151guest may boot before the shared memory is attached.  To allow an application
1152to ensure shared memory is attached, the VM ID register will return -1 (an
1153invalid VM ID) until the memory is attached.  Once the shared memory is
1154attached, the VM ID will return the guest's valid VM ID.  With these semantics,
1155the guest application can check to ensure the shared memory is attached to the
1156guest before proceeding.
1157
1158The @option{role} argument can be set to either master or peer and will affect
1159how the shared memory is migrated.  With @option{role=master}, the guest will
1160copy the shared memory on migration to the destination host.  With
1161@option{role=peer}, the guest will not be able to migrate with the device attached.
1162With the @option{peer} case, the device should be detached and then reattached
1163after migration using the PCI hotplug support.
1164
1165@node direct_linux_boot
1166@section Direct Linux Boot
1167
1168This section explains how to launch a Linux kernel inside QEMU without
1169having to make a full bootable image. It is very useful for fast Linux
1170kernel testing.
1171
1172The syntax is:
1173@example
1174qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1175@end example
1176
1177Use @option{-kernel} to provide the Linux kernel image and
1178@option{-append} to give the kernel command line arguments. The
1179@option{-initrd} option can be used to provide an INITRD image.
1180
1181When using the direct Linux boot, a disk image for the first hard disk
1182@file{hda} is required because its boot sector is used to launch the
1183Linux kernel.
1184
1185If you do not need graphical output, you can disable it and redirect
1186the virtual serial port and the QEMU monitor to the console with the
1187@option{-nographic} option. The typical command line is:
1188@example
1189qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1190                 -append "root=/dev/hda console=ttyS0" -nographic
1191@end example
1192
1193Use @key{Ctrl-a c} to switch between the serial console and the
1194monitor (@pxref{pcsys_keys}).
1195
1196@node pcsys_usb
1197@section USB emulation
1198
1199QEMU emulates a PCI UHCI USB controller. You can virtually plug
1200virtual USB devices or real host USB devices (experimental, works only
1201on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
1202as necessary to connect multiple USB devices.
1203
1204@menu
1205* usb_devices::
1206* host_usb_devices::
1207@end menu
1208@node usb_devices
1209@subsection Connecting USB devices
1210
1211USB devices can be connected with the @option{-usbdevice} commandline option
1212or the @code{usb_add} monitor command.  Available devices are:
1213
1214@table @code
1215@item mouse
1216Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1217@item tablet
1218Pointer device that uses absolute coordinates (like a touchscreen).
1219This means QEMU is able to report the mouse position without having
1220to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1221@item disk:@var{file}
1222Mass storage device based on @var{file} (@pxref{disk_images})
1223@item host:@var{bus.addr}
1224Pass through the host device identified by @var{bus.addr}
1225(Linux only)
1226@item host:@var{vendor_id:product_id}
1227Pass through the host device identified by @var{vendor_id:product_id}
1228(Linux only)
1229@item wacom-tablet
1230Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1231above but it can be used with the tslib library because in addition to touch
1232coordinates it reports touch pressure.
1233@item keyboard
1234Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1235@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1236Serial converter. This emulates an FTDI FT232BM chip connected to host character
1237device @var{dev}. The available character devices are the same as for the
1238@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1239used to override the default 0403:6001. For instance,
1240@example
1241usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1242@end example
1243will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1244serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1245@item braille
1246Braille device.  This will use BrlAPI to display the braille output on a real
1247or fake device.
1248@item net:@var{options}
1249Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1250specifies NIC options as with @code{-net nic,}@var{options} (see description).
1251For instance, user-mode networking can be used with
1252@example
1253qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1254@end example
1255Currently this cannot be used in machines that support PCI NICs.
1256@item bt[:@var{hci-type}]
1257Bluetooth dongle whose type is specified in the same format as with
1258the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1259no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1260This USB device implements the USB Transport Layer of HCI.  Example
1261usage:
1262@example
1263qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1264@end example
1265@end table
1266
1267@node host_usb_devices
1268@subsection Using host USB devices on a Linux host
1269
1270WARNING: this is an experimental feature. QEMU will slow down when
1271using it. USB devices requiring real time streaming (i.e. USB Video
1272Cameras) are not supported yet.
1273
1274@enumerate
1275@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1276is actually using the USB device. A simple way to do that is simply to
1277disable the corresponding kernel module by renaming it from @file{mydriver.o}
1278to @file{mydriver.o.disabled}.
1279
1280@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1281@example
1282ls /proc/bus/usb
1283001  devices  drivers
1284@end example
1285
1286@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1287@example
1288chown -R myuid /proc/bus/usb
1289@end example
1290
1291@item Launch QEMU and do in the monitor:
1292@example
1293info usbhost
1294  Device 1.2, speed 480 Mb/s
1295    Class 00: USB device 1234:5678, USB DISK
1296@end example
1297You should see the list of the devices you can use (Never try to use
1298hubs, it won't work).
1299
1300@item Add the device in QEMU by using:
1301@example
1302usb_add host:1234:5678
1303@end example
1304
1305Normally the guest OS should report that a new USB device is
1306plugged. You can use the option @option{-usbdevice} to do the same.
1307
1308@item Now you can try to use the host USB device in QEMU.
1309
1310@end enumerate
1311
1312When relaunching QEMU, you may have to unplug and plug again the USB
1313device to make it work again (this is a bug).
1314
1315@node vnc_security
1316@section VNC security
1317
1318The VNC server capability provides access to the graphical console
1319of the guest VM across the network. This has a number of security
1320considerations depending on the deployment scenarios.
1321
1322@menu
1323* vnc_sec_none::
1324* vnc_sec_password::
1325* vnc_sec_certificate::
1326* vnc_sec_certificate_verify::
1327* vnc_sec_certificate_pw::
1328* vnc_sec_sasl::
1329* vnc_sec_certificate_sasl::
1330* vnc_generate_cert::
1331* vnc_setup_sasl::
1332@end menu
1333@node vnc_sec_none
1334@subsection Without passwords
1335
1336The simplest VNC server setup does not include any form of authentication.
1337For this setup it is recommended to restrict it to listen on a UNIX domain
1338socket only. For example
1339
1340@example
1341qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1342@end example
1343
1344This ensures that only users on local box with read/write access to that
1345path can access the VNC server. To securely access the VNC server from a
1346remote machine, a combination of netcat+ssh can be used to provide a secure
1347tunnel.
1348
1349@node vnc_sec_password
1350@subsection With passwords
1351
1352The VNC protocol has limited support for password based authentication. Since
1353the protocol limits passwords to 8 characters it should not be considered
1354to provide high security. The password can be fairly easily brute-forced by
1355a client making repeat connections. For this reason, a VNC server using password
1356authentication should be restricted to only listen on the loopback interface
1357or UNIX domain sockets. Password authentication is not supported when operating
1358in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1359authentication is requested with the @code{password} option, and then once QEMU
1360is running the password is set with the monitor. Until the monitor is used to
1361set the password all clients will be rejected.
1362
1363@example
1364qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1365(qemu) change vnc password
1366Password: ********
1367(qemu)
1368@end example
1369
1370@node vnc_sec_certificate
1371@subsection With x509 certificates
1372
1373The QEMU VNC server also implements the VeNCrypt extension allowing use of
1374TLS for encryption of the session, and x509 certificates for authentication.
1375The use of x509 certificates is strongly recommended, because TLS on its
1376own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1377support provides a secure session, but no authentication. This allows any
1378client to connect, and provides an encrypted session.
1379
1380@example
1381qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1382@end example
1383
1384In the above example @code{/etc/pki/qemu} should contain at least three files,
1385@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1386users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1387NB the @code{server-key.pem} file should be protected with file mode 0600 to
1388only be readable by the user owning it.
1389
1390@node vnc_sec_certificate_verify
1391@subsection With x509 certificates and client verification
1392
1393Certificates can also provide a means to authenticate the client connecting.
1394The server will request that the client provide a certificate, which it will
1395then validate against the CA certificate. This is a good choice if deploying
1396in an environment with a private internal certificate authority.
1397
1398@example
1399qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1400@end example
1401
1402
1403@node vnc_sec_certificate_pw
1404@subsection With x509 certificates, client verification and passwords
1405
1406Finally, the previous method can be combined with VNC password authentication
1407to provide two layers of authentication for clients.
1408
1409@example
1410qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1411(qemu) change vnc password
1412Password: ********
1413(qemu)
1414@end example
1415
1416
1417@node vnc_sec_sasl
1418@subsection With SASL authentication
1419
1420The SASL authentication method is a VNC extension, that provides an
1421easily extendable, pluggable authentication method. This allows for
1422integration with a wide range of authentication mechanisms, such as
1423PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1424The strength of the authentication depends on the exact mechanism
1425configured. If the chosen mechanism also provides a SSF layer, then
1426it will encrypt the datastream as well.
1427
1428Refer to the later docs on how to choose the exact SASL mechanism
1429used for authentication, but assuming use of one supporting SSF,
1430then QEMU can be launched with:
1431
1432@example
1433qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1434@end example
1435
1436@node vnc_sec_certificate_sasl
1437@subsection With x509 certificates and SASL authentication
1438
1439If the desired SASL authentication mechanism does not supported
1440SSF layers, then it is strongly advised to run it in combination
1441with TLS and x509 certificates. This provides securely encrypted
1442data stream, avoiding risk of compromising of the security
1443credentials. This can be enabled, by combining the 'sasl' option
1444with the aforementioned TLS + x509 options:
1445
1446@example
1447qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1448@end example
1449
1450
1451@node vnc_generate_cert
1452@subsection Generating certificates for VNC
1453
1454The GNU TLS packages provides a command called @code{certtool} which can
1455be used to generate certificates and keys in PEM format. At a minimum it
1456is necessary to setup a certificate authority, and issue certificates to
1457each server. If using certificates for authentication, then each client
1458will also need to be issued a certificate. The recommendation is for the
1459server to keep its certificates in either @code{/etc/pki/qemu} or for
1460unprivileged users in @code{$HOME/.pki/qemu}.
1461
1462@menu
1463* vnc_generate_ca::
1464* vnc_generate_server::
1465* vnc_generate_client::
1466@end menu
1467@node vnc_generate_ca
1468@subsubsection Setup the Certificate Authority
1469
1470This step only needs to be performed once per organization / organizational
1471unit. First the CA needs a private key. This key must be kept VERY secret
1472and secure. If this key is compromised the entire trust chain of the certificates
1473issued with it is lost.
1474
1475@example
1476# certtool --generate-privkey > ca-key.pem
1477@end example
1478
1479A CA needs to have a public certificate. For simplicity it can be a self-signed
1480certificate, or one issue by a commercial certificate issuing authority. To
1481generate a self-signed certificate requires one core piece of information, the
1482name of the organization.
1483
1484@example
1485# cat > ca.info <<EOF
1486cn = Name of your organization
1487ca
1488cert_signing_key
1489EOF
1490# certtool --generate-self-signed \
1491           --load-privkey ca-key.pem
1492           --template ca.info \
1493           --outfile ca-cert.pem
1494@end example
1495
1496The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1497TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1498
1499@node vnc_generate_server
1500@subsubsection Issuing server certificates
1501
1502Each server (or host) needs to be issued with a key and certificate. When connecting
1503the certificate is sent to the client which validates it against the CA certificate.
1504The core piece of information for a server certificate is the hostname. This should
1505be the fully qualified hostname that the client will connect with, since the client
1506will typically also verify the hostname in the certificate. On the host holding the
1507secure CA private key:
1508
1509@example
1510# cat > server.info <<EOF
1511organization = Name  of your organization
1512cn = server.foo.example.com
1513tls_www_server
1514encryption_key
1515signing_key
1516EOF
1517# certtool --generate-privkey > server-key.pem
1518# certtool --generate-certificate \
1519           --load-ca-certificate ca-cert.pem \
1520           --load-ca-privkey ca-key.pem \
1521           --load-privkey server server-key.pem \
1522           --template server.info \
1523           --outfile server-cert.pem
1524@end example
1525
1526The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1527to the server for which they were generated. The @code{server-key.pem} is security
1528sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1529
1530@node vnc_generate_client
1531@subsubsection Issuing client certificates
1532
1533If the QEMU VNC server is to use the @code{x509verify} option to validate client
1534certificates as its authentication mechanism, each client also needs to be issued
1535a certificate. The client certificate contains enough metadata to uniquely identify
1536the client, typically organization, state, city, building, etc. On the host holding
1537the secure CA private key:
1538
1539@example
1540# cat > client.info <<EOF
1541country = GB
1542state = London
1543locality = London
1544organiazation = Name of your organization
1545cn = client.foo.example.com
1546tls_www_client
1547encryption_key
1548signing_key
1549EOF
1550# certtool --generate-privkey > client-key.pem
1551# certtool --generate-certificate \
1552           --load-ca-certificate ca-cert.pem \
1553           --load-ca-privkey ca-key.pem \
1554           --load-privkey client-key.pem \
1555           --template client.info \
1556           --outfile client-cert.pem
1557@end example
1558
1559The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1560copied to the client for which they were generated.
1561
1562
1563@node vnc_setup_sasl
1564
1565@subsection Configuring SASL mechanisms
1566
1567The following documentation assumes use of the Cyrus SASL implementation on a
1568Linux host, but the principals should apply to any other SASL impl. When SASL
1569is enabled, the mechanism configuration will be loaded from system default
1570SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1571unprivileged user, an environment variable SASL_CONF_PATH can be used
1572to make it search alternate locations for the service config.
1573
1574The default configuration might contain
1575
1576@example
1577mech_list: digest-md5
1578sasldb_path: /etc/qemu/passwd.db
1579@end example
1580
1581This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1582Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1583in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1584command. While this mechanism is easy to configure and use, it is not
1585considered secure by modern standards, so only suitable for developers /
1586ad-hoc testing.
1587
1588A more serious deployment might use Kerberos, which is done with the 'gssapi'
1589mechanism
1590
1591@example
1592mech_list: gssapi
1593keytab: /etc/qemu/krb5.tab
1594@end example
1595
1596For this to work the administrator of your KDC must generate a Kerberos
1597principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1598replacing 'somehost.example.com' with the fully qualified host name of the
1599machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1600
1601Other configurations will be left as an exercise for the reader. It should
1602be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1603encryption. For all other mechanisms, VNC should always be configured to
1604use TLS and x509 certificates to protect security credentials from snooping.
1605
1606@node gdb_usage
1607@section GDB usage
1608
1609QEMU has a primitive support to work with gdb, so that you can do
1610'Ctrl-C' while the virtual machine is running and inspect its state.
1611
1612In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1613gdb connection:
1614@example
1615qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1616                    -append "root=/dev/hda"
1617Connected to host network interface: tun0
1618Waiting gdb connection on port 1234
1619@end example
1620
1621Then launch gdb on the 'vmlinux' executable:
1622@example
1623> gdb vmlinux
1624@end example
1625
1626In gdb, connect to QEMU:
1627@example
1628(gdb) target remote localhost:1234
1629@end example
1630
1631Then you can use gdb normally. For example, type 'c' to launch the kernel:
1632@example
1633(gdb) c
1634@end example
1635
1636Here are some useful tips in order to use gdb on system code:
1637
1638@enumerate
1639@item
1640Use @code{info reg} to display all the CPU registers.
1641@item
1642Use @code{x/10i $eip} to display the code at the PC position.
1643@item
1644Use @code{set architecture i8086} to dump 16 bit code. Then use
1645@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1646@end enumerate
1647
1648Advanced debugging options:
1649
1650The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1651@table @code
1652@item maintenance packet qqemu.sstepbits
1653
1654This will display the MASK bits used to control the single stepping IE:
1655@example
1656(gdb) maintenance packet qqemu.sstepbits
1657sending: "qqemu.sstepbits"
1658received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1659@end example
1660@item maintenance packet qqemu.sstep
1661
1662This will display the current value of the mask used when single stepping IE:
1663@example
1664(gdb) maintenance packet qqemu.sstep
1665sending: "qqemu.sstep"
1666received: "0x7"
1667@end example
1668@item maintenance packet Qqemu.sstep=HEX_VALUE
1669
1670This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1671@example
1672(gdb) maintenance packet Qqemu.sstep=0x5
1673sending: "qemu.sstep=0x5"
1674received: "OK"
1675@end example
1676@end table
1677
1678@node pcsys_os_specific
1679@section Target OS specific information
1680
1681@subsection Linux
1682
1683To have access to SVGA graphic modes under X11, use the @code{vesa} or
1684the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1685color depth in the guest and the host OS.
1686
1687When using a 2.6 guest Linux kernel, you should add the option
1688@code{clock=pit} on the kernel command line because the 2.6 Linux
1689kernels make very strict real time clock checks by default that QEMU
1690cannot simulate exactly.
1691
1692When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1693not activated because QEMU is slower with this patch. The QEMU
1694Accelerator Module is also much slower in this case. Earlier Fedora
1695Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1696patch by default. Newer kernels don't have it.
1697
1698@subsection Windows
1699
1700If you have a slow host, using Windows 95 is better as it gives the
1701best speed. Windows 2000 is also a good choice.
1702
1703@subsubsection SVGA graphic modes support
1704
1705QEMU emulates a Cirrus Logic GD5446 Video
1706card. All Windows versions starting from Windows 95 should recognize
1707and use this graphic card. For optimal performances, use 16 bit color
1708depth in the guest and the host OS.
1709
1710If you are using Windows XP as guest OS and if you want to use high
1711resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
17121280x1024x16), then you should use the VESA VBE virtual graphic card
1713(option @option{-std-vga}).
1714
1715@subsubsection CPU usage reduction
1716
1717Windows 9x does not correctly use the CPU HLT
1718instruction. The result is that it takes host CPU cycles even when
1719idle. You can install the utility from
1720@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1721problem. Note that no such tool is needed for NT, 2000 or XP.
1722
1723@subsubsection Windows 2000 disk full problem
1724
1725Windows 2000 has a bug which gives a disk full problem during its
1726installation. When installing it, use the @option{-win2k-hack} QEMU
1727option to enable a specific workaround. After Windows 2000 is
1728installed, you no longer need this option (this option slows down the
1729IDE transfers).
1730
1731@subsubsection Windows 2000 shutdown
1732
1733Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1734can. It comes from the fact that Windows 2000 does not automatically
1735use the APM driver provided by the BIOS.
1736
1737In order to correct that, do the following (thanks to Struan
1738Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1739Add/Troubleshoot a device => Add a new device & Next => No, select the
1740hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1741(again) a few times. Now the driver is installed and Windows 2000 now
1742correctly instructs QEMU to shutdown at the appropriate moment.
1743
1744@subsubsection Share a directory between Unix and Windows
1745
1746See @ref{sec_invocation} about the help of the option @option{-smb}.
1747
1748@subsubsection Windows XP security problem
1749
1750Some releases of Windows XP install correctly but give a security
1751error when booting:
1752@example
1753A problem is preventing Windows from accurately checking the
1754license for this computer. Error code: 0x800703e6.
1755@end example
1756
1757The workaround is to install a service pack for XP after a boot in safe
1758mode. Then reboot, and the problem should go away. Since there is no
1759network while in safe mode, its recommended to download the full
1760installation of SP1 or SP2 and transfer that via an ISO or using the
1761vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1762
1763@subsection MS-DOS and FreeDOS
1764
1765@subsubsection CPU usage reduction
1766
1767DOS does not correctly use the CPU HLT instruction. The result is that
1768it takes host CPU cycles even when idle. You can install the utility
1769from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1770problem.
1771
1772@node QEMU System emulator for non PC targets
1773@chapter QEMU System emulator for non PC targets
1774
1775QEMU is a generic emulator and it emulates many non PC
1776machines. Most of the options are similar to the PC emulator. The
1777differences are mentioned in the following sections.
1778
1779@menu
1780* PowerPC System emulator::
1781* Sparc32 System emulator::
1782* Sparc64 System emulator::
1783* MIPS System emulator::
1784* ARM System emulator::
1785* ColdFire System emulator::
1786* Cris System emulator::
1787* Microblaze System emulator::
1788* SH4 System emulator::
1789* Xtensa System emulator::
1790@end menu
1791
1792@node PowerPC System emulator
1793@section PowerPC System emulator
1794@cindex system emulation (PowerPC)
1795
1796Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1797or PowerMac PowerPC system.
1798
1799QEMU emulates the following PowerMac peripherals:
1800
1801@itemize @minus
1802@item
1803UniNorth or Grackle PCI Bridge
1804@item
1805PCI VGA compatible card with VESA Bochs Extensions
1806@item
18072 PMAC IDE interfaces with hard disk and CD-ROM support
1808@item
1809NE2000 PCI adapters
1810@item
1811Non Volatile RAM
1812@item
1813VIA-CUDA with ADB keyboard and mouse.
1814@end itemize
1815
1816QEMU emulates the following PREP peripherals:
1817
1818@itemize @minus
1819@item
1820PCI Bridge
1821@item
1822PCI VGA compatible card with VESA Bochs Extensions
1823@item
18242 IDE interfaces with hard disk and CD-ROM support
1825@item
1826Floppy disk
1827@item
1828NE2000 network adapters
1829@item
1830Serial port
1831@item
1832PREP Non Volatile RAM
1833@item
1834PC compatible keyboard and mouse.
1835@end itemize
1836
1837QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1838@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1839
1840Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1841for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1842v2) portable firmware implementation. The goal is to implement a 100%
1843IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1844
1845@c man begin OPTIONS
1846
1847The following options are specific to the PowerPC emulation:
1848
1849@table @option
1850
1851@item -g @var{W}x@var{H}[x@var{DEPTH}]
1852
1853Set the initial VGA graphic mode. The default is 800x600x15.
1854
1855@item -prom-env @var{string}
1856
1857Set OpenBIOS variables in NVRAM, for example:
1858
1859@example
1860qemu-system-ppc -prom-env 'auto-boot?=false' \
1861 -prom-env 'boot-device=hd:2,\yaboot' \
1862 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1863@end example
1864
1865These variables are not used by Open Hack'Ware.
1866
1867@end table
1868
1869@c man end
1870
1871
1872More information is available at
1873@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1874
1875@node Sparc32 System emulator
1876@section Sparc32 System emulator
1877@cindex system emulation (Sparc32)
1878
1879Use the executable @file{qemu-system-sparc} to simulate the following
1880Sun4m architecture machines:
1881@itemize @minus
1882@item
1883SPARCstation 4
1884@item
1885SPARCstation 5
1886@item
1887SPARCstation 10
1888@item
1889SPARCstation 20
1890@item
1891SPARCserver 600MP
1892@item
1893SPARCstation LX
1894@item
1895SPARCstation Voyager
1896@item
1897SPARCclassic
1898@item
1899SPARCbook
1900@end itemize
1901
1902The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1903but Linux limits the number of usable CPUs to 4.
1904
1905It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1906SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1907emulators are not usable yet.
1908
1909QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1910
1911@itemize @minus
1912@item
1913IOMMU or IO-UNITs
1914@item
1915TCX Frame buffer
1916@item
1917Lance (Am7990) Ethernet
1918@item
1919Non Volatile RAM M48T02/M48T08
1920@item
1921Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1922and power/reset logic
1923@item
1924ESP SCSI controller with hard disk and CD-ROM support
1925@item
1926Floppy drive (not on SS-600MP)
1927@item
1928CS4231 sound device (only on SS-5, not working yet)
1929@end itemize
1930
1931The number of peripherals is fixed in the architecture.  Maximum
1932memory size depends on the machine type, for SS-5 it is 256MB and for
1933others 2047MB.
1934
1935Since version 0.8.2, QEMU uses OpenBIOS
1936@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1937firmware implementation. The goal is to implement a 100% IEEE
19381275-1994 (referred to as Open Firmware) compliant firmware.
1939
1940A sample Linux 2.6 series kernel and ram disk image are available on
1941the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1942some kernel versions work. Please note that currently Solaris kernels
1943don't work probably due to interface issues between OpenBIOS and
1944Solaris.
1945
1946@c man begin OPTIONS
1947
1948The following options are specific to the Sparc32 emulation:
1949
1950@table @option
1951
1952@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1953
1954Set the initial TCX graphic mode. The default is 1024x768x8, currently
1955the only other possible mode is 1024x768x24.
1956
1957@item -prom-env @var{string}
1958
1959Set OpenBIOS variables in NVRAM, for example:
1960
1961@example
1962qemu-system-sparc -prom-env 'auto-boot?=false' \
1963 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1964@end example
1965
1966@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1967
1968Set the emulated machine type. Default is SS-5.
1969
1970@end table
1971
1972@c man end
1973
1974@node Sparc64 System emulator
1975@section Sparc64 System emulator
1976@cindex system emulation (Sparc64)
1977
1978Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1979(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1980Niagara (T1) machine. The emulator is not usable for anything yet, but
1981it can launch some kernels.
1982
1983QEMU emulates the following peripherals:
1984
1985@itemize @minus
1986@item
1987UltraSparc IIi APB PCI Bridge
1988@item
1989PCI VGA compatible card with VESA Bochs Extensions
1990@item
1991PS/2 mouse and keyboard
1992@item
1993Non Volatile RAM M48T59
1994@item
1995PC-compatible serial ports
1996@item
19972 PCI IDE interfaces with hard disk and CD-ROM support
1998@item
1999Floppy disk
2000@end itemize
2001
2002@c man begin OPTIONS
2003
2004The following options are specific to the Sparc64 emulation:
2005
2006@table @option
2007
2008@item -prom-env @var{string}
2009
2010Set OpenBIOS variables in NVRAM, for example:
2011
2012@example
2013qemu-system-sparc64 -prom-env 'auto-boot?=false'
2014@end example
2015
2016@item -M [sun4u|sun4v|Niagara]
2017
2018Set the emulated machine type. The default is sun4u.
2019
2020@end table
2021
2022@c man end
2023
2024@node MIPS System emulator
2025@section MIPS System emulator
2026@cindex system emulation (MIPS)
2027
2028Four executables cover simulation of 32 and 64-bit MIPS systems in
2029both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2030@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2031Five different machine types are emulated:
2032
2033@itemize @minus
2034@item
2035A generic ISA PC-like machine "mips"
2036@item
2037The MIPS Malta prototype board "malta"
2038@item
2039An ACER Pica "pica61". This machine needs the 64-bit emulator.
2040@item
2041MIPS emulator pseudo board "mipssim"
2042@item
2043A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2044@end itemize
2045
2046The generic emulation is supported by Debian 'Etch' and is able to
2047install Debian into a virtual disk image. The following devices are
2048emulated:
2049
2050@itemize @minus
2051@item
2052A range of MIPS CPUs, default is the 24Kf
2053@item
2054PC style serial port
2055@item
2056PC style IDE disk
2057@item
2058NE2000 network card
2059@end itemize
2060
2061The Malta emulation supports the following devices:
2062
2063@itemize @minus
2064@item
2065Core board with MIPS 24Kf CPU and Galileo system controller
2066@item
2067PIIX4 PCI/USB/SMbus controller
2068@item
2069The Multi-I/O chip's serial device
2070@item
2071PCI network cards (PCnet32 and others)
2072@item
2073Malta FPGA serial device
2074@item
2075Cirrus (default) or any other PCI VGA graphics card
2076@end itemize
2077
2078The ACER Pica emulation supports:
2079
2080@itemize @minus
2081@item
2082MIPS R4000 CPU
2083@item
2084PC-style IRQ and DMA controllers
2085@item
2086PC Keyboard
2087@item
2088IDE controller
2089@end itemize
2090
2091The mipssim pseudo board emulation provides an environment similar
2092to what the proprietary MIPS emulator uses for running Linux.
2093It supports:
2094
2095@itemize @minus
2096@item
2097A range of MIPS CPUs, default is the 24Kf
2098@item
2099PC style serial port
2100@item
2101MIPSnet network emulation
2102@end itemize
2103
2104The MIPS Magnum R4000 emulation supports:
2105
2106@itemize @minus
2107@item
2108MIPS R4000 CPU
2109@item
2110PC-style IRQ controller
2111@item
2112PC Keyboard
2113@item
2114SCSI controller
2115@item
2116G364 framebuffer
2117@end itemize
2118
2119
2120@node ARM System emulator
2121@section ARM System emulator
2122@cindex system emulation (ARM)
2123
2124Use the executable @file{qemu-system-arm} to simulate a ARM
2125machine. The ARM Integrator/CP board is emulated with the following
2126devices:
2127
2128@itemize @minus
2129@item
2130ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2131@item
2132Two PL011 UARTs
2133@item
2134SMC 91c111 Ethernet adapter
2135@item
2136PL110 LCD controller
2137@item
2138PL050 KMI with PS/2 keyboard and mouse.
2139@item
2140PL181 MultiMedia Card Interface with SD card.
2141@end itemize
2142
2143The ARM Versatile baseboard is emulated with the following devices:
2144
2145@itemize @minus
2146@item
2147ARM926E, ARM1136 or Cortex-A8 CPU
2148@item
2149PL190 Vectored Interrupt Controller
2150@item
2151Four PL011 UARTs
2152@item
2153SMC 91c111 Ethernet adapter
2154@item
2155PL110 LCD controller
2156@item
2157PL050 KMI with PS/2 keyboard and mouse.
2158@item
2159PCI host bridge.  Note the emulated PCI bridge only provides access to
2160PCI memory space.  It does not provide access to PCI IO space.
2161This means some devices (eg. ne2k_pci NIC) are not usable, and others
2162(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2163mapped control registers.
2164@item
2165PCI OHCI USB controller.
2166@item
2167LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2168@item
2169PL181 MultiMedia Card Interface with SD card.
2170@end itemize
2171
2172Several variants of the ARM RealView baseboard are emulated,
2173including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2174bootloader, only certain Linux kernel configurations work out
2175of the box on these boards.
2176
2177Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2178enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2179should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2180disabled and expect 1024M RAM.
2181
2182The following devices are emulated:
2183
2184@itemize @minus
2185@item
2186ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2187@item
2188ARM AMBA Generic/Distributed Interrupt Controller
2189@item
2190Four PL011 UARTs
2191@item
2192SMC 91c111 or SMSC LAN9118 Ethernet adapter
2193@item
2194PL110 LCD controller
2195@item
2196PL050 KMI with PS/2 keyboard and mouse
2197@item
2198PCI host bridge
2199@item
2200PCI OHCI USB controller
2201@item
2202LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2203@item
2204PL181 MultiMedia Card Interface with SD card.
2205@end itemize
2206
2207The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2208and "Terrier") emulation includes the following peripherals:
2209
2210@itemize @minus
2211@item
2212Intel PXA270 System-on-chip (ARM V5TE core)
2213@item
2214NAND Flash memory
2215@item
2216IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2217@item
2218On-chip OHCI USB controller
2219@item
2220On-chip LCD controller
2221@item
2222On-chip Real Time Clock
2223@item
2224TI ADS7846 touchscreen controller on SSP bus
2225@item
2226Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2227@item
2228GPIO-connected keyboard controller and LEDs
2229@item
2230Secure Digital card connected to PXA MMC/SD host
2231@item
2232Three on-chip UARTs
2233@item
2234WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2235@end itemize
2236
2237The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2238following elements:
2239
2240@itemize @minus
2241@item
2242Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2243@item
2244ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2245@item
2246On-chip LCD controller
2247@item
2248On-chip Real Time Clock
2249@item
2250TI TSC2102i touchscreen controller / analog-digital converter / Audio
2251CODEC, connected through MicroWire and I@math{^2}S busses
2252@item
2253GPIO-connected matrix keypad
2254@item
2255Secure Digital card connected to OMAP MMC/SD host
2256@item
2257Three on-chip UARTs
2258@end itemize
2259
2260Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2261emulation supports the following elements:
2262
2263@itemize @minus
2264@item
2265Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2266@item
2267RAM and non-volatile OneNAND Flash memories
2268@item
2269Display connected to EPSON remote framebuffer chip and OMAP on-chip
2270display controller and a LS041y3 MIPI DBI-C controller
2271@item
2272TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2273driven through SPI bus
2274@item
2275National Semiconductor LM8323-controlled qwerty keyboard driven
2276through I@math{^2}C bus
2277@item
2278Secure Digital card connected to OMAP MMC/SD host
2279@item
2280Three OMAP on-chip UARTs and on-chip STI debugging console
2281@item
2282A Bluetooth(R) transceiver and HCI connected to an UART
2283@item
2284Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2285TUSB6010 chip - only USB host mode is supported
2286@item
2287TI TMP105 temperature sensor driven through I@math{^2}C bus
2288@item
2289TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2290@item
2291Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2292through CBUS
2293@end itemize
2294
2295The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2296devices:
2297
2298@itemize @minus
2299@item
2300Cortex-M3 CPU core.
2301@item
230264k Flash and 8k SRAM.
2303@item
2304Timers, UARTs, ADC and I@math{^2}C interface.
2305@item
2306OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2307@end itemize
2308
2309The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2310devices:
2311
2312@itemize @minus
2313@item
2314Cortex-M3 CPU core.
2315@item
2316256k Flash and 64k SRAM.
2317@item
2318Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2319@item
2320OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2321@end itemize
2322
2323The Freecom MusicPal internet radio emulation includes the following
2324elements:
2325
2326@itemize @minus
2327@item
2328Marvell MV88W8618 ARM core.
2329@item
233032 MB RAM, 256 KB SRAM, 8 MB flash.
2331@item
2332Up to 2 16550 UARTs
2333@item
2334MV88W8xx8 Ethernet controller
2335@item
2336MV88W8618 audio controller, WM8750 CODEC and mixer
2337@item
2338128×64 display with brightness control
2339@item
23402 buttons, 2 navigation wheels with button function
2341@end itemize
2342
2343The Siemens SX1 models v1 and v2 (default) basic emulation.
2344The emulation includes the following elements:
2345
2346@itemize @minus
2347@item
2348Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2349@item
2350ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2351V1
23521 Flash of 16MB and 1 Flash of 8MB
2353V2
23541 Flash of 32MB
2355@item
2356On-chip LCD controller
2357@item
2358On-chip Real Time Clock
2359@item
2360Secure Digital card connected to OMAP MMC/SD host
2361@item
2362Three on-chip UARTs
2363@end itemize
2364
2365A Linux 2.6 test image is available on the QEMU web site. More
2366information is available in the QEMU mailing-list archive.
2367
2368@c man begin OPTIONS
2369
2370The following options are specific to the ARM emulation:
2371
2372@table @option
2373
2374@item -semihosting
2375Enable semihosting syscall emulation.
2376
2377On ARM this implements the "Angel" interface.
2378
2379Note that this allows guest direct access to the host filesystem,
2380so should only be used with trusted guest OS.
2381
2382@end table
2383
2384@node ColdFire System emulator
2385@section ColdFire System emulator
2386@cindex system emulation (ColdFire)
2387@cindex system emulation (M68K)
2388
2389Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2390The emulator is able to boot a uClinux kernel.
2391
2392The M5208EVB emulation includes the following devices:
2393
2394@itemize @minus
2395@item
2396MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2397@item
2398Three Two on-chip UARTs.
2399@item
2400Fast Ethernet Controller (FEC)
2401@end itemize
2402
2403The AN5206 emulation includes the following devices:
2404
2405@itemize @minus
2406@item
2407MCF5206 ColdFire V2 Microprocessor.
2408@item
2409Two on-chip UARTs.
2410@end itemize
2411
2412@c man begin OPTIONS
2413
2414The following options are specific to the ColdFire emulation:
2415
2416@table @option
2417
2418@item -semihosting
2419Enable semihosting syscall emulation.
2420
2421On M68K this implements the "ColdFire GDB" interface used by libgloss.
2422
2423Note that this allows guest direct access to the host filesystem,
2424so should only be used with trusted guest OS.
2425
2426@end table
2427
2428@node Cris System emulator
2429@section Cris System emulator
2430@cindex system emulation (Cris)
2431
2432TODO
2433
2434@node Microblaze System emulator
2435@section Microblaze System emulator
2436@cindex system emulation (Microblaze)
2437
2438TODO
2439
2440@node SH4 System emulator
2441@section SH4 System emulator
2442@cindex system emulation (SH4)
2443
2444TODO
2445
2446@node Xtensa System emulator
2447@section Xtensa System emulator
2448@cindex system emulation (Xtensa)
2449
2450Two executables cover simulation of both Xtensa endian options,
2451@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2452Two different machine types are emulated:
2453
2454@itemize @minus
2455@item
2456Xtensa emulator pseudo board "sim"
2457@item
2458Avnet LX60/LX110/LX200 board
2459@end itemize
2460
2461The sim pseudo board emulation provides an environment similar
2462to one provided by the proprietary Tensilica ISS.
2463It supports:
2464
2465@itemize @minus
2466@item
2467A range of Xtensa CPUs, default is the DC232B
2468@item
2469Console and filesystem access via semihosting calls
2470@end itemize
2471
2472The Avnet LX60/LX110/LX200 emulation supports:
2473
2474@itemize @minus
2475@item
2476A range of Xtensa CPUs, default is the DC232B
2477@item
247816550 UART
2479@item
2480OpenCores 10/100 Mbps Ethernet MAC
2481@end itemize
2482
2483@c man begin OPTIONS
2484
2485The following options are specific to the Xtensa emulation:
2486
2487@table @option
2488
2489@item -semihosting
2490Enable semihosting syscall emulation.
2491
2492Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2493Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2494
2495Note that this allows guest direct access to the host filesystem,
2496so should only be used with trusted guest OS.
2497
2498@end table
2499@node QEMU User space emulator
2500@chapter QEMU User space emulator
2501
2502@menu
2503* Supported Operating Systems ::
2504* Linux User space emulator::
2505* BSD User space emulator ::
2506@end menu
2507
2508@node Supported Operating Systems
2509@section Supported Operating Systems
2510
2511The following OS are supported in user space emulation:
2512
2513@itemize @minus
2514@item
2515Linux (referred as qemu-linux-user)
2516@item
2517BSD (referred as qemu-bsd-user)
2518@end itemize
2519
2520@node Linux User space emulator
2521@section Linux User space emulator
2522
2523@menu
2524* Quick Start::
2525* Wine launch::
2526* Command line options::
2527* Other binaries::
2528@end menu
2529
2530@node Quick Start
2531@subsection Quick Start
2532
2533In order to launch a Linux process, QEMU needs the process executable
2534itself and all the target (x86) dynamic libraries used by it.
2535
2536@itemize
2537
2538@item On x86, you can just try to launch any process by using the native
2539libraries:
2540
2541@example
2542qemu-i386 -L / /bin/ls
2543@end example
2544
2545@code{-L /} tells that the x86 dynamic linker must be searched with a
2546@file{/} prefix.
2547
2548@item Since QEMU is also a linux process, you can launch QEMU with
2549QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2550
2551@example
2552qemu-i386 -L / qemu-i386 -L / /bin/ls
2553@end example
2554
2555@item On non x86 CPUs, you need first to download at least an x86 glibc
2556(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2557@code{LD_LIBRARY_PATH} is not set:
2558
2559@example
2560unset LD_LIBRARY_PATH
2561@end example
2562
2563Then you can launch the precompiled @file{ls} x86 executable:
2564
2565@example
2566qemu-i386 tests/i386/ls
2567@end example
2568You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2569QEMU is automatically launched by the Linux kernel when you try to
2570launch x86 executables. It requires the @code{binfmt_misc} module in the
2571Linux kernel.
2572
2573@item The x86 version of QEMU is also included. You can try weird things such as:
2574@example
2575qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2576          /usr/local/qemu-i386/bin/ls-i386
2577@end example
2578
2579@end itemize
2580
2581@node Wine launch
2582@subsection Wine launch
2583
2584@itemize
2585
2586@item Ensure that you have a working QEMU with the x86 glibc
2587distribution (see previous section). In order to verify it, you must be
2588able to do:
2589
2590@example
2591qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2592@end example
2593
2594@item Download the binary x86 Wine install
2595(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2596
2597@item Configure Wine on your account. Look at the provided script
2598@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2599@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2600
2601@item Then you can try the example @file{putty.exe}:
2602
2603@example
2604qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2605          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2606@end example
2607
2608@end itemize
2609
2610@node Command line options
2611@subsection Command line options
2612
2613@example
2614usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2615@end example
2616
2617@table @option
2618@item -h
2619Print the help
2620@item -L path
2621Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2622@item -s size
2623Set the x86 stack size in bytes (default=524288)
2624@item -cpu model
2625Select CPU model (-cpu help for list and additional feature selection)
2626@item -ignore-environment
2627Start with an empty environment. Without this option,
2628the initial environment is a copy of the caller's environment.
2629@item -E @var{var}=@var{value}
2630Set environment @var{var} to @var{value}.
2631@item -U @var{var}
2632Remove @var{var} from the environment.
2633@item -B offset
2634Offset guest address by the specified number of bytes.  This is useful when
2635the address region required by guest applications is reserved on the host.
2636This option is currently only supported on some hosts.
2637@item -R size
2638Pre-allocate a guest virtual address space of the given size (in bytes).
2639"G", "M", and "k" suffixes may be used when specifying the size.
2640@end table
2641
2642Debug options:
2643
2644@table @option
2645@item -d
2646Activate log (logfile=/tmp/qemu.log)
2647@item -p pagesize
2648Act as if the host page size was 'pagesize' bytes
2649@item -g port
2650Wait gdb connection to port
2651@item -singlestep
2652Run the emulation in single step mode.
2653@end table
2654
2655Environment variables:
2656
2657@table @env
2658@item QEMU_STRACE
2659Print system calls and arguments similar to the 'strace' program
2660(NOTE: the actual 'strace' program will not work because the user
2661space emulator hasn't implemented ptrace).  At the moment this is
2662incomplete.  All system calls that don't have a specific argument
2663format are printed with information for six arguments.  Many
2664flag-style arguments don't have decoders and will show up as numbers.
2665@end table
2666
2667@node Other binaries
2668@subsection Other binaries
2669
2670@cindex user mode (Alpha)
2671@command{qemu-alpha} TODO.
2672
2673@cindex user mode (ARM)
2674@command{qemu-armeb} TODO.
2675
2676@cindex user mode (ARM)
2677@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2678binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2679configurations), and arm-uclinux bFLT format binaries.
2680
2681@cindex user mode (ColdFire)
2682@cindex user mode (M68K)
2683@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2684(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2685coldfire uClinux bFLT format binaries.
2686
2687The binary format is detected automatically.
2688
2689@cindex user mode (Cris)
2690@command{qemu-cris} TODO.
2691
2692@cindex user mode (i386)
2693@command{qemu-i386} TODO.
2694@command{qemu-x86_64} TODO.
2695
2696@cindex user mode (Microblaze)
2697@command{qemu-microblaze} TODO.
2698
2699@cindex user mode (MIPS)
2700@command{qemu-mips} TODO.
2701@command{qemu-mipsel} TODO.
2702
2703@cindex user mode (PowerPC)
2704@command{qemu-ppc64abi32} TODO.
2705@command{qemu-ppc64} TODO.
2706@command{qemu-ppc} TODO.
2707
2708@cindex user mode (SH4)
2709@command{qemu-sh4eb} TODO.
2710@command{qemu-sh4} TODO.
2711
2712@cindex user mode (SPARC)
2713@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2714
2715@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2716(Sparc64 CPU, 32 bit ABI).
2717
2718@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2719SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2720
2721@node BSD User space emulator
2722@section BSD User space emulator
2723
2724@menu
2725* BSD Status::
2726* BSD Quick Start::
2727* BSD Command line options::
2728@end menu
2729
2730@node BSD Status
2731@subsection BSD Status
2732
2733@itemize @minus
2734@item
2735target Sparc64 on Sparc64: Some trivial programs work.
2736@end itemize
2737
2738@node BSD Quick Start
2739@subsection Quick Start
2740
2741In order to launch a BSD process, QEMU needs the process executable
2742itself and all the target dynamic libraries used by it.
2743
2744@itemize
2745
2746@item On Sparc64, you can just try to launch any process by using the native
2747libraries:
2748
2749@example
2750qemu-sparc64 /bin/ls
2751@end example
2752
2753@end itemize
2754
2755@node BSD Command line options
2756@subsection Command line options
2757
2758@example
2759usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2760@end example
2761
2762@table @option
2763@item -h
2764Print the help
2765@item -L path
2766Set the library root path (default=/)
2767@item -s size
2768Set the stack size in bytes (default=524288)
2769@item -ignore-environment
2770Start with an empty environment. Without this option,
2771the initial environment is a copy of the caller's environment.
2772@item -E @var{var}=@var{value}
2773Set environment @var{var} to @var{value}.
2774@item -U @var{var}
2775Remove @var{var} from the environment.
2776@item -bsd type
2777Set the type of the emulated BSD Operating system. Valid values are
2778FreeBSD, NetBSD and OpenBSD (default).
2779@end table
2780
2781Debug options:
2782
2783@table @option
2784@item -d
2785Activate log (logfile=/tmp/qemu.log)
2786@item -p pagesize
2787Act as if the host page size was 'pagesize' bytes
2788@item -singlestep
2789Run the emulation in single step mode.
2790@end table
2791
2792@node compilation
2793@chapter Compilation from the sources
2794
2795@menu
2796* Linux/Unix::
2797* Windows::
2798* Cross compilation for Windows with Linux::
2799* Mac OS X::
2800* Make targets::
2801@end menu
2802
2803@node Linux/Unix
2804@section Linux/Unix
2805
2806@subsection Compilation
2807
2808First you must decompress the sources:
2809@example
2810cd /tmp
2811tar zxvf qemu-x.y.z.tar.gz
2812cd qemu-x.y.z
2813@end example
2814
2815Then you configure QEMU and build it (usually no options are needed):
2816@example
2817./configure
2818make
2819@end example
2820
2821Then type as root user:
2822@example
2823make install
2824@end example
2825to install QEMU in @file{/usr/local}.
2826
2827@node Windows
2828@section Windows
2829
2830@itemize
2831@item Install the current versions of MSYS and MinGW from
2832@url{http://www.mingw.org/}. You can find detailed installation
2833instructions in the download section and the FAQ.
2834
2835@item Download
2836the MinGW development library of SDL 1.2.x
2837(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2838@url{http://www.libsdl.org}. Unpack it in a temporary place and
2839edit the @file{sdl-config} script so that it gives the
2840correct SDL directory when invoked.
2841
2842@item Install the MinGW version of zlib and make sure
2843@file{zlib.h} and @file{libz.dll.a} are in
2844MinGW's default header and linker search paths.
2845
2846@item Extract the current version of QEMU.
2847
2848@item Start the MSYS shell (file @file{msys.bat}).
2849
2850@item Change to the QEMU directory. Launch @file{./configure} and
2851@file{make}.  If you have problems using SDL, verify that
2852@file{sdl-config} can be launched from the MSYS command line.
2853
2854@item You can install QEMU in @file{Program Files/QEMU} by typing
2855@file{make install}. Don't forget to copy @file{SDL.dll} in
2856@file{Program Files/QEMU}.
2857
2858@end itemize
2859
2860@node Cross compilation for Windows with Linux
2861@section Cross compilation for Windows with Linux
2862
2863@itemize
2864@item
2865Install the MinGW cross compilation tools available at
2866@url{http://www.mingw.org/}.
2867
2868@item Download
2869the MinGW development library of SDL 1.2.x
2870(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2871@url{http://www.libsdl.org}. Unpack it in a temporary place and
2872edit the @file{sdl-config} script so that it gives the
2873correct SDL directory when invoked.  Set up the @code{PATH} environment
2874variable so that @file{sdl-config} can be launched by
2875the QEMU configuration script.
2876
2877@item Install the MinGW version of zlib and make sure
2878@file{zlib.h} and @file{libz.dll.a} are in
2879MinGW's default header and linker search paths.
2880
2881@item
2882Configure QEMU for Windows cross compilation:
2883@example
2884PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2885@end example
2886The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2887MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2888We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2889use --cross-prefix to specify the name of the cross compiler.
2890You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2891
2892Under Fedora Linux, you can run:
2893@example
2894yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2895@end example
2896to get a suitable cross compilation environment.
2897
2898@item You can install QEMU in the installation directory by typing
2899@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2900installation directory.
2901
2902@end itemize
2903
2904Wine can be used to launch the resulting qemu-system-i386.exe
2905and all other qemu-system-@var{target}.exe compiled for Win32.
2906
2907@node Mac OS X
2908@section Mac OS X
2909
2910The Mac OS X patches are not fully merged in QEMU, so you should look
2911at the QEMU mailing list archive to have all the necessary
2912information.
2913
2914@node Make targets
2915@section Make targets
2916
2917@table @code
2918
2919@item make
2920@item make all
2921Make everything which is typically needed.
2922
2923@item install
2924TODO
2925
2926@item install-doc
2927TODO
2928
2929@item make clean
2930Remove most files which were built during make.
2931
2932@item make distclean
2933Remove everything which was built during make.
2934
2935@item make dvi
2936@item make html
2937@item make info
2938@item make pdf
2939Create documentation in dvi, html, info or pdf format.
2940
2941@item make cscope
2942TODO
2943
2944@item make defconfig
2945(Re-)create some build configuration files.
2946User made changes will be overwritten.
2947
2948@item tar
2949@item tarbin
2950TODO
2951
2952@end table
2953
2954@node License
2955@appendix License
2956
2957QEMU is a trademark of Fabrice Bellard.
2958
2959QEMU is released under the GNU General Public License (TODO: add link).
2960Parts of QEMU have specific licenses, see file LICENSE.
2961
2962TODO (refer to file LICENSE, include it, include the GPL?)
2963
2964@node Index
2965@appendix Index
2966@menu
2967* Concept Index::
2968* Function Index::
2969* Keystroke Index::
2970* Program Index::
2971* Data Type Index::
2972* Variable Index::
2973@end menu
2974
2975@node Concept Index
2976@section Concept Index
2977This is the main index. Should we combine all keywords in one index? TODO
2978@printindex cp
2979
2980@node Function Index
2981@section Function Index
2982This index could be used for command line options and monitor functions.
2983@printindex fn
2984
2985@node Keystroke Index
2986@section Keystroke Index
2987
2988This is a list of all keystrokes which have a special function
2989in system emulation.
2990
2991@printindex ky
2992
2993@node Program Index
2994@section Program Index
2995@printindex pg
2996
2997@node Data Type Index
2998@section Data Type Index
2999
3000This index could be used for qdev device names and options.
3001
3002@printindex tp
3003
3004@node Variable Index
3005@section Variable Index
3006@printindex vr
3007
3008@bye
3009