qemu/migration-rdma.c
<<
>>
Prefs
   1/*
   2 * RDMA protocol and interfaces
   3 *
   4 * Copyright IBM, Corp. 2010-2013
   5 *
   6 * Authors:
   7 *  Michael R. Hines <mrhines@us.ibm.com>
   8 *  Jiuxing Liu <jl@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or
  11 * later.  See the COPYING file in the top-level directory.
  12 *
  13 */
  14#include "qemu-common.h"
  15#include "migration/migration.h"
  16#include "migration/qemu-file.h"
  17#include "exec/cpu-common.h"
  18#include "qemu/main-loop.h"
  19#include "qemu/sockets.h"
  20#include "qemu/bitmap.h"
  21#include "block/coroutine.h"
  22#include <stdio.h>
  23#include <sys/types.h>
  24#include <sys/socket.h>
  25#include <netdb.h>
  26#include <arpa/inet.h>
  27#include <string.h>
  28#include <rdma/rdma_cma.h>
  29
  30//#define DEBUG_RDMA
  31//#define DEBUG_RDMA_VERBOSE
  32//#define DEBUG_RDMA_REALLY_VERBOSE
  33
  34#ifdef DEBUG_RDMA
  35#define DPRINTF(fmt, ...) \
  36    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
  37#else
  38#define DPRINTF(fmt, ...) \
  39    do { } while (0)
  40#endif
  41
  42#ifdef DEBUG_RDMA_VERBOSE
  43#define DDPRINTF(fmt, ...) \
  44    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
  45#else
  46#define DDPRINTF(fmt, ...) \
  47    do { } while (0)
  48#endif
  49
  50#ifdef DEBUG_RDMA_REALLY_VERBOSE
  51#define DDDPRINTF(fmt, ...) \
  52    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
  53#else
  54#define DDDPRINTF(fmt, ...) \
  55    do { } while (0)
  56#endif
  57
  58/*
  59 * Print and error on both the Monitor and the Log file.
  60 */
  61#define ERROR(errp, fmt, ...) \
  62    do { \
  63        fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
  64        if (errp && (*(errp) == NULL)) { \
  65            error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
  66        } \
  67    } while (0)
  68
  69#define RDMA_RESOLVE_TIMEOUT_MS 10000
  70
  71/* Do not merge data if larger than this. */
  72#define RDMA_MERGE_MAX (2 * 1024 * 1024)
  73#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
  74
  75#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
  76
  77/*
  78 * This is only for non-live state being migrated.
  79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
  80 * messages for that state, which requires a different
  81 * delivery design than main memory.
  82 */
  83#define RDMA_SEND_INCREMENT 32768
  84
  85/*
  86 * Maximum size infiniband SEND message
  87 */
  88#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
  89#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
  90
  91#define RDMA_CONTROL_VERSION_CURRENT 1
  92/*
  93 * Capabilities for negotiation.
  94 */
  95#define RDMA_CAPABILITY_PIN_ALL 0x01
  96
  97/*
  98 * Add the other flags above to this list of known capabilities
  99 * as they are introduced.
 100 */
 101static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
 102
 103#define CHECK_ERROR_STATE() \
 104    do { \
 105        if (rdma->error_state) { \
 106            if (!rdma->error_reported) { \
 107                fprintf(stderr, "RDMA is in an error state waiting migration" \
 108                                " to abort!\n"); \
 109                rdma->error_reported = 1; \
 110            } \
 111            return rdma->error_state; \
 112        } \
 113    } while (0);
 114
 115/*
 116 * A work request ID is 64-bits and we split up these bits
 117 * into 3 parts:
 118 *
 119 * bits 0-15 : type of control message, 2^16
 120 * bits 16-29: ram block index, 2^14
 121 * bits 30-63: ram block chunk number, 2^34
 122 *
 123 * The last two bit ranges are only used for RDMA writes,
 124 * in order to track their completion and potentially
 125 * also track unregistration status of the message.
 126 */
 127#define RDMA_WRID_TYPE_SHIFT  0UL
 128#define RDMA_WRID_BLOCK_SHIFT 16UL
 129#define RDMA_WRID_CHUNK_SHIFT 30UL
 130
 131#define RDMA_WRID_TYPE_MASK \
 132    ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
 133
 134#define RDMA_WRID_BLOCK_MASK \
 135    (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
 136
 137#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
 138
 139/*
 140 * RDMA migration protocol:
 141 * 1. RDMA Writes (data messages, i.e. RAM)
 142 * 2. IB Send/Recv (control channel messages)
 143 */
 144enum {
 145    RDMA_WRID_NONE = 0,
 146    RDMA_WRID_RDMA_WRITE = 1,
 147    RDMA_WRID_SEND_CONTROL = 2000,
 148    RDMA_WRID_RECV_CONTROL = 4000,
 149};
 150
 151const char *wrid_desc[] = {
 152    [RDMA_WRID_NONE] = "NONE",
 153    [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
 154    [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
 155    [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
 156};
 157
 158/*
 159 * Work request IDs for IB SEND messages only (not RDMA writes).
 160 * This is used by the migration protocol to transmit
 161 * control messages (such as device state and registration commands)
 162 *
 163 * We could use more WRs, but we have enough for now.
 164 */
 165enum {
 166    RDMA_WRID_READY = 0,
 167    RDMA_WRID_DATA,
 168    RDMA_WRID_CONTROL,
 169    RDMA_WRID_MAX,
 170};
 171
 172/*
 173 * SEND/RECV IB Control Messages.
 174 */
 175enum {
 176    RDMA_CONTROL_NONE = 0,
 177    RDMA_CONTROL_ERROR,
 178    RDMA_CONTROL_READY,               /* ready to receive */
 179    RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
 180    RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
 181    RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
 182    RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
 183    RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
 184    RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
 185    RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
 186    RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
 187    RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
 188};
 189
 190const char *control_desc[] = {
 191    [RDMA_CONTROL_NONE] = "NONE",
 192    [RDMA_CONTROL_ERROR] = "ERROR",
 193    [RDMA_CONTROL_READY] = "READY",
 194    [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
 195    [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
 196    [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
 197    [RDMA_CONTROL_COMPRESS] = "COMPRESS",
 198    [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
 199    [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
 200    [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
 201    [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
 202    [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
 203};
 204
 205/*
 206 * Memory and MR structures used to represent an IB Send/Recv work request.
 207 * This is *not* used for RDMA writes, only IB Send/Recv.
 208 */
 209typedef struct {
 210    uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
 211    struct   ibv_mr *control_mr;               /* registration metadata */
 212    size_t   control_len;                      /* length of the message */
 213    uint8_t *control_curr;                     /* start of unconsumed bytes */
 214} RDMAWorkRequestData;
 215
 216/*
 217 * Negotiate RDMA capabilities during connection-setup time.
 218 */
 219typedef struct {
 220    uint32_t version;
 221    uint32_t flags;
 222} RDMACapabilities;
 223
 224static void caps_to_network(RDMACapabilities *cap)
 225{
 226    cap->version = htonl(cap->version);
 227    cap->flags = htonl(cap->flags);
 228}
 229
 230static void network_to_caps(RDMACapabilities *cap)
 231{
 232    cap->version = ntohl(cap->version);
 233    cap->flags = ntohl(cap->flags);
 234}
 235
 236/*
 237 * Representation of a RAMBlock from an RDMA perspective.
 238 * This is not transmitted, only local.
 239 * This and subsequent structures cannot be linked lists
 240 * because we're using a single IB message to transmit
 241 * the information. It's small anyway, so a list is overkill.
 242 */
 243typedef struct RDMALocalBlock {
 244    uint8_t  *local_host_addr; /* local virtual address */
 245    uint64_t remote_host_addr; /* remote virtual address */
 246    uint64_t offset;
 247    uint64_t length;
 248    struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
 249    struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
 250    uint32_t *remote_keys;     /* rkeys for chunk-level registration */
 251    uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
 252    int      index;            /* which block are we */
 253    bool     is_ram_block;
 254    int      nb_chunks;
 255    unsigned long *transit_bitmap;
 256    unsigned long *unregister_bitmap;
 257} RDMALocalBlock;
 258
 259/*
 260 * Also represents a RAMblock, but only on the dest.
 261 * This gets transmitted by the dest during connection-time
 262 * to the source VM and then is used to populate the
 263 * corresponding RDMALocalBlock with
 264 * the information needed to perform the actual RDMA.
 265 */
 266typedef struct QEMU_PACKED RDMARemoteBlock {
 267    uint64_t remote_host_addr;
 268    uint64_t offset;
 269    uint64_t length;
 270    uint32_t remote_rkey;
 271    uint32_t padding;
 272} RDMARemoteBlock;
 273
 274static uint64_t htonll(uint64_t v)
 275{
 276    union { uint32_t lv[2]; uint64_t llv; } u;
 277    u.lv[0] = htonl(v >> 32);
 278    u.lv[1] = htonl(v & 0xFFFFFFFFULL);
 279    return u.llv;
 280}
 281
 282static uint64_t ntohll(uint64_t v) {
 283    union { uint32_t lv[2]; uint64_t llv; } u;
 284    u.llv = v;
 285    return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
 286}
 287
 288static void remote_block_to_network(RDMARemoteBlock *rb)
 289{
 290    rb->remote_host_addr = htonll(rb->remote_host_addr);
 291    rb->offset = htonll(rb->offset);
 292    rb->length = htonll(rb->length);
 293    rb->remote_rkey = htonl(rb->remote_rkey);
 294}
 295
 296static void network_to_remote_block(RDMARemoteBlock *rb)
 297{
 298    rb->remote_host_addr = ntohll(rb->remote_host_addr);
 299    rb->offset = ntohll(rb->offset);
 300    rb->length = ntohll(rb->length);
 301    rb->remote_rkey = ntohl(rb->remote_rkey);
 302}
 303
 304/*
 305 * Virtual address of the above structures used for transmitting
 306 * the RAMBlock descriptions at connection-time.
 307 * This structure is *not* transmitted.
 308 */
 309typedef struct RDMALocalBlocks {
 310    int nb_blocks;
 311    bool     init;             /* main memory init complete */
 312    RDMALocalBlock *block;
 313} RDMALocalBlocks;
 314
 315/*
 316 * Main data structure for RDMA state.
 317 * While there is only one copy of this structure being allocated right now,
 318 * this is the place where one would start if you wanted to consider
 319 * having more than one RDMA connection open at the same time.
 320 */
 321typedef struct RDMAContext {
 322    char *host;
 323    int port;
 324
 325    RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
 326
 327    /*
 328     * This is used by *_exchange_send() to figure out whether or not
 329     * the initial "READY" message has already been received or not.
 330     * This is because other functions may potentially poll() and detect
 331     * the READY message before send() does, in which case we need to
 332     * know if it completed.
 333     */
 334    int control_ready_expected;
 335
 336    /* number of outstanding writes */
 337    int nb_sent;
 338
 339    /* store info about current buffer so that we can
 340       merge it with future sends */
 341    uint64_t current_addr;
 342    uint64_t current_length;
 343    /* index of ram block the current buffer belongs to */
 344    int current_index;
 345    /* index of the chunk in the current ram block */
 346    int current_chunk;
 347
 348    bool pin_all;
 349
 350    /*
 351     * infiniband-specific variables for opening the device
 352     * and maintaining connection state and so forth.
 353     *
 354     * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
 355     * cm_id->verbs, cm_id->channel, and cm_id->qp.
 356     */
 357    struct rdma_cm_id *cm_id;               /* connection manager ID */
 358    struct rdma_cm_id *listen_id;
 359
 360    struct ibv_context          *verbs;
 361    struct rdma_event_channel   *channel;
 362    struct ibv_qp *qp;                      /* queue pair */
 363    struct ibv_comp_channel *comp_channel;  /* completion channel */
 364    struct ibv_pd *pd;                      /* protection domain */
 365    struct ibv_cq *cq;                      /* completion queue */
 366
 367    /*
 368     * If a previous write failed (perhaps because of a failed
 369     * memory registration, then do not attempt any future work
 370     * and remember the error state.
 371     */
 372    int error_state;
 373    int error_reported;
 374
 375    /*
 376     * Description of ram blocks used throughout the code.
 377     */
 378    RDMALocalBlocks local_ram_blocks;
 379    RDMARemoteBlock *block;
 380
 381    /*
 382     * Migration on *destination* started.
 383     * Then use coroutine yield function.
 384     * Source runs in a thread, so we don't care.
 385     */
 386    int migration_started_on_destination;
 387
 388    int total_registrations;
 389    int total_writes;
 390
 391    int unregister_current, unregister_next;
 392    uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
 393
 394    GHashTable *blockmap;
 395} RDMAContext;
 396
 397/*
 398 * Interface to the rest of the migration call stack.
 399 */
 400typedef struct QEMUFileRDMA {
 401    RDMAContext *rdma;
 402    size_t len;
 403    void *file;
 404} QEMUFileRDMA;
 405
 406/*
 407 * Main structure for IB Send/Recv control messages.
 408 * This gets prepended at the beginning of every Send/Recv.
 409 */
 410typedef struct QEMU_PACKED {
 411    uint32_t len;     /* Total length of data portion */
 412    uint32_t type;    /* which control command to perform */
 413    uint32_t repeat;  /* number of commands in data portion of same type */
 414    uint32_t padding;
 415} RDMAControlHeader;
 416
 417static void control_to_network(RDMAControlHeader *control)
 418{
 419    control->type = htonl(control->type);
 420    control->len = htonl(control->len);
 421    control->repeat = htonl(control->repeat);
 422}
 423
 424static void network_to_control(RDMAControlHeader *control)
 425{
 426    control->type = ntohl(control->type);
 427    control->len = ntohl(control->len);
 428    control->repeat = ntohl(control->repeat);
 429}
 430
 431/*
 432 * Register a single Chunk.
 433 * Information sent by the source VM to inform the dest
 434 * to register an single chunk of memory before we can perform
 435 * the actual RDMA operation.
 436 */
 437typedef struct QEMU_PACKED {
 438    union QEMU_PACKED {
 439        uint64_t current_addr;  /* offset into the ramblock of the chunk */
 440        uint64_t chunk;         /* chunk to lookup if unregistering */
 441    } key;
 442    uint32_t current_index; /* which ramblock the chunk belongs to */
 443    uint32_t padding;
 444    uint64_t chunks;            /* how many sequential chunks to register */
 445} RDMARegister;
 446
 447static void register_to_network(RDMARegister *reg)
 448{
 449    reg->key.current_addr = htonll(reg->key.current_addr);
 450    reg->current_index = htonl(reg->current_index);
 451    reg->chunks = htonll(reg->chunks);
 452}
 453
 454static void network_to_register(RDMARegister *reg)
 455{
 456    reg->key.current_addr = ntohll(reg->key.current_addr);
 457    reg->current_index = ntohl(reg->current_index);
 458    reg->chunks = ntohll(reg->chunks);
 459}
 460
 461typedef struct QEMU_PACKED {
 462    uint32_t value;     /* if zero, we will madvise() */
 463    uint32_t block_idx; /* which ram block index */
 464    uint64_t offset;    /* where in the remote ramblock this chunk */
 465    uint64_t length;    /* length of the chunk */
 466} RDMACompress;
 467
 468static void compress_to_network(RDMACompress *comp)
 469{
 470    comp->value = htonl(comp->value);
 471    comp->block_idx = htonl(comp->block_idx);
 472    comp->offset = htonll(comp->offset);
 473    comp->length = htonll(comp->length);
 474}
 475
 476static void network_to_compress(RDMACompress *comp)
 477{
 478    comp->value = ntohl(comp->value);
 479    comp->block_idx = ntohl(comp->block_idx);
 480    comp->offset = ntohll(comp->offset);
 481    comp->length = ntohll(comp->length);
 482}
 483
 484/*
 485 * The result of the dest's memory registration produces an "rkey"
 486 * which the source VM must reference in order to perform
 487 * the RDMA operation.
 488 */
 489typedef struct QEMU_PACKED {
 490    uint32_t rkey;
 491    uint32_t padding;
 492    uint64_t host_addr;
 493} RDMARegisterResult;
 494
 495static void result_to_network(RDMARegisterResult *result)
 496{
 497    result->rkey = htonl(result->rkey);
 498    result->host_addr = htonll(result->host_addr);
 499};
 500
 501static void network_to_result(RDMARegisterResult *result)
 502{
 503    result->rkey = ntohl(result->rkey);
 504    result->host_addr = ntohll(result->host_addr);
 505};
 506
 507const char *print_wrid(int wrid);
 508static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
 509                                   uint8_t *data, RDMAControlHeader *resp,
 510                                   int *resp_idx,
 511                                   int (*callback)(RDMAContext *rdma));
 512
 513static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
 514{
 515    return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
 516}
 517
 518static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
 519                                       uint64_t i)
 520{
 521    return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
 522                                    + (i << RDMA_REG_CHUNK_SHIFT));
 523}
 524
 525static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
 526{
 527    uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
 528                                         (1UL << RDMA_REG_CHUNK_SHIFT);
 529
 530    if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
 531        result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
 532    }
 533
 534    return result;
 535}
 536
 537static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
 538                         ram_addr_t block_offset, uint64_t length)
 539{
 540    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 541    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
 542        (void *) block_offset);
 543    RDMALocalBlock *old = local->block;
 544
 545    assert(block == NULL);
 546
 547    local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
 548
 549    if (local->nb_blocks) {
 550        int x;
 551
 552        for (x = 0; x < local->nb_blocks; x++) {
 553            g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
 554            g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
 555                                                &local->block[x]);
 556        }
 557        memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
 558        g_free(old);
 559    }
 560
 561    block = &local->block[local->nb_blocks];
 562
 563    block->local_host_addr = host_addr;
 564    block->offset = block_offset;
 565    block->length = length;
 566    block->index = local->nb_blocks;
 567    block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
 568    block->transit_bitmap = bitmap_new(block->nb_chunks);
 569    bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
 570    block->unregister_bitmap = bitmap_new(block->nb_chunks);
 571    bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
 572    block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
 573
 574    block->is_ram_block = local->init ? false : true;
 575
 576    g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
 577
 578    DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
 579           " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
 580            local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
 581            block->length, (uint64_t) (block->local_host_addr + block->length),
 582                BITS_TO_LONGS(block->nb_chunks) *
 583                    sizeof(unsigned long) * 8, block->nb_chunks);
 584
 585    local->nb_blocks++;
 586
 587    return 0;
 588}
 589
 590/*
 591 * Memory regions need to be registered with the device and queue pairs setup
 592 * in advanced before the migration starts. This tells us where the RAM blocks
 593 * are so that we can register them individually.
 594 */
 595static void qemu_rdma_init_one_block(void *host_addr,
 596    ram_addr_t block_offset, ram_addr_t length, void *opaque)
 597{
 598    __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
 599}
 600
 601/*
 602 * Identify the RAMBlocks and their quantity. They will be references to
 603 * identify chunk boundaries inside each RAMBlock and also be referenced
 604 * during dynamic page registration.
 605 */
 606static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
 607{
 608    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 609
 610    assert(rdma->blockmap == NULL);
 611    rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
 612    memset(local, 0, sizeof *local);
 613    qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
 614    DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
 615    rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
 616                        rdma->local_ram_blocks.nb_blocks);
 617    local->init = true;
 618    return 0;
 619}
 620
 621static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
 622{
 623    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 624    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
 625        (void *) block_offset);
 626    RDMALocalBlock *old = local->block;
 627    int x;
 628
 629    assert(block);
 630
 631    if (block->pmr) {
 632        int j;
 633
 634        for (j = 0; j < block->nb_chunks; j++) {
 635            if (!block->pmr[j]) {
 636                continue;
 637            }
 638            ibv_dereg_mr(block->pmr[j]);
 639            rdma->total_registrations--;
 640        }
 641        g_free(block->pmr);
 642        block->pmr = NULL;
 643    }
 644
 645    if (block->mr) {
 646        ibv_dereg_mr(block->mr);
 647        rdma->total_registrations--;
 648        block->mr = NULL;
 649    }
 650
 651    g_free(block->transit_bitmap);
 652    block->transit_bitmap = NULL;
 653
 654    g_free(block->unregister_bitmap);
 655    block->unregister_bitmap = NULL;
 656
 657    g_free(block->remote_keys);
 658    block->remote_keys = NULL;
 659
 660    for (x = 0; x < local->nb_blocks; x++) {
 661        g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
 662    }
 663
 664    if (local->nb_blocks > 1) {
 665
 666        local->block = g_malloc0(sizeof(RDMALocalBlock) *
 667                                    (local->nb_blocks - 1));
 668
 669        if (block->index) {
 670            memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
 671        }
 672
 673        if (block->index < (local->nb_blocks - 1)) {
 674            memcpy(local->block + block->index, old + (block->index + 1),
 675                sizeof(RDMALocalBlock) *
 676                    (local->nb_blocks - (block->index + 1)));
 677        }
 678    } else {
 679        assert(block == local->block);
 680        local->block = NULL;
 681    }
 682
 683    DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
 684           " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
 685            local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
 686            block->length, (uint64_t) (block->local_host_addr + block->length),
 687                BITS_TO_LONGS(block->nb_chunks) *
 688                    sizeof(unsigned long) * 8, block->nb_chunks);
 689
 690    g_free(old);
 691
 692    local->nb_blocks--;
 693
 694    if (local->nb_blocks) {
 695        for (x = 0; x < local->nb_blocks; x++) {
 696            g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
 697                                                &local->block[x]);
 698        }
 699    }
 700
 701    return 0;
 702}
 703
 704/*
 705 * Put in the log file which RDMA device was opened and the details
 706 * associated with that device.
 707 */
 708static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
 709{
 710    struct ibv_port_attr port;
 711
 712    if (ibv_query_port(verbs, 1, &port)) {
 713        fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n");
 714        return;
 715    }
 716
 717    printf("%s RDMA Device opened: kernel name %s "
 718           "uverbs device name %s, "
 719           "infiniband_verbs class device path %s, "
 720           "infiniband class device path %s, "
 721           "transport: (%d) %s\n",
 722                who,
 723                verbs->device->name,
 724                verbs->device->dev_name,
 725                verbs->device->dev_path,
 726                verbs->device->ibdev_path,
 727                port.link_layer,
 728                (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
 729                 ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 
 730                    ? "Ethernet" : "Unknown"));
 731}
 732
 733/*
 734 * Put in the log file the RDMA gid addressing information,
 735 * useful for folks who have trouble understanding the
 736 * RDMA device hierarchy in the kernel.
 737 */
 738static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
 739{
 740    char sgid[33];
 741    char dgid[33];
 742    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
 743    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
 744    DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
 745}
 746
 747/*
 748 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
 749 * We will try the next addrinfo struct, and fail if there are
 750 * no other valid addresses to bind against.
 751 *
 752 * If user is listening on '[::]', then we will not have a opened a device
 753 * yet and have no way of verifying if the device is RoCE or not.
 754 *
 755 * In this case, the source VM will throw an error for ALL types of
 756 * connections (both IPv4 and IPv6) if the destination machine does not have
 757 * a regular infiniband network available for use.
 758 *
 759 * The only way to gaurantee that an error is thrown for broken kernels is
 760 * for the management software to choose a *specific* interface at bind time
 761 * and validate what time of hardware it is.
 762 *
 763 * Unfortunately, this puts the user in a fix:
 764 * 
 765 *  If the source VM connects with an IPv4 address without knowing that the
 766 *  destination has bound to '[::]' the migration will unconditionally fail
 767 *  unless the management software is explicitly listening on the the IPv4
 768 *  address while using a RoCE-based device.
 769 *
 770 *  If the source VM connects with an IPv6 address, then we're OK because we can
 771 *  throw an error on the source (and similarly on the destination).
 772 * 
 773 *  But in mixed environments, this will be broken for a while until it is fixed
 774 *  inside linux.
 775 *
 776 * We do provide a *tiny* bit of help in this function: We can list all of the
 777 * devices in the system and check to see if all the devices are RoCE or
 778 * Infiniband. 
 779 *
 780 * If we detect that we have a *pure* RoCE environment, then we can safely
 781 * thrown an error even if the management sofware has specified '[::]' as the
 782 * bind address.
 783 *
 784 * However, if there is are multiple hetergeneous devices, then we cannot make
 785 * this assumption and the user just has to be sure they know what they are
 786 * doing.
 787 *
 788 * Patches are being reviewed on linux-rdma.
 789 */
 790static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
 791{
 792    struct ibv_port_attr port_attr;
 793
 794    /* This bug only exists in linux, to our knowledge. */
 795#ifdef CONFIG_LINUX
 796
 797    /* 
 798     * Verbs are only NULL if management has bound to '[::]'.
 799     * 
 800     * Let's iterate through all the devices and see if there any pure IB
 801     * devices (non-ethernet).
 802     * 
 803     * If not, then we can safely proceed with the migration.
 804     * Otherwise, there are no gaurantees until the bug is fixed in linux.
 805     */
 806    if (!verbs) {
 807            int num_devices, x;
 808        struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
 809        bool roce_found = false;
 810        bool ib_found = false;
 811
 812        for (x = 0; x < num_devices; x++) {
 813            verbs = ibv_open_device(dev_list[x]);
 814
 815            if (ibv_query_port(verbs, 1, &port_attr)) {
 816                ibv_close_device(verbs);
 817                ERROR(errp, "Could not query initial IB port");
 818                return -EINVAL;
 819            }
 820
 821            if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
 822                ib_found = true;
 823            } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 824                roce_found = true;
 825            }
 826
 827            ibv_close_device(verbs);
 828
 829        }
 830
 831        if (roce_found) {
 832            if (ib_found) {
 833                fprintf(stderr, "WARN: migrations may fail:"
 834                                " IPv6 over RoCE / iWARP in linux"
 835                                " is broken. But since you appear to have a"
 836                                " mixed RoCE / IB environment, be sure to only"
 837                                " migrate over the IB fabric until the kernel "
 838                                " fixes the bug.\n");
 839            } else {
 840                ERROR(errp, "You only have RoCE / iWARP devices in your systems"
 841                            " and your management software has specified '[::]'"
 842                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
 843                return -ENONET;
 844            }
 845        }
 846
 847        return 0;
 848    }
 849
 850    /*
 851     * If we have a verbs context, that means that some other than '[::]' was
 852     * used by the management software for binding. In which case we can actually 
 853     * warn the user about a potential broken kernel;
 854     */
 855
 856    /* IB ports start with 1, not 0 */
 857    if (ibv_query_port(verbs, 1, &port_attr)) {
 858        ERROR(errp, "Could not query initial IB port");
 859        return -EINVAL;
 860    }
 861
 862    if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 863        ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
 864                    "(but patches on linux-rdma in progress)");
 865        return -ENONET;
 866    }
 867
 868#endif
 869
 870    return 0;
 871}
 872
 873/*
 874 * Figure out which RDMA device corresponds to the requested IP hostname
 875 * Also create the initial connection manager identifiers for opening
 876 * the connection.
 877 */
 878static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
 879{
 880    int ret;
 881    struct rdma_addrinfo *res;
 882    char port_str[16];
 883    struct rdma_cm_event *cm_event;
 884    char ip[40] = "unknown";
 885    struct rdma_addrinfo *e;
 886
 887    if (rdma->host == NULL || !strcmp(rdma->host, "")) {
 888        ERROR(errp, "RDMA hostname has not been set");
 889        return -EINVAL;
 890    }
 891
 892    /* create CM channel */
 893    rdma->channel = rdma_create_event_channel();
 894    if (!rdma->channel) {
 895        ERROR(errp, "could not create CM channel");
 896        return -EINVAL;
 897    }
 898
 899    /* create CM id */
 900    ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
 901    if (ret) {
 902        ERROR(errp, "could not create channel id");
 903        goto err_resolve_create_id;
 904    }
 905
 906    snprintf(port_str, 16, "%d", rdma->port);
 907    port_str[15] = '\0';
 908
 909    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
 910    if (ret < 0) {
 911        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
 912        goto err_resolve_get_addr;
 913    }
 914
 915    for (e = res; e != NULL; e = e->ai_next) {
 916        inet_ntop(e->ai_family,
 917            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
 918        DPRINTF("Trying %s => %s\n", rdma->host, ip);
 919
 920        ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
 921                RDMA_RESOLVE_TIMEOUT_MS);
 922        if (!ret) {
 923            if (e->ai_family == AF_INET6) {
 924                ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
 925                if (ret) {
 926                    continue;
 927                }
 928            }
 929            goto route;
 930        }
 931    }
 932
 933    ERROR(errp, "could not resolve address %s", rdma->host);
 934    goto err_resolve_get_addr;
 935
 936route:
 937    qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
 938
 939    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 940    if (ret) {
 941        ERROR(errp, "could not perform event_addr_resolved");
 942        goto err_resolve_get_addr;
 943    }
 944
 945    if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
 946        ERROR(errp, "result not equal to event_addr_resolved %s",
 947                rdma_event_str(cm_event->event));
 948        perror("rdma_resolve_addr");
 949        ret = -EINVAL;
 950        goto err_resolve_get_addr;
 951    }
 952    rdma_ack_cm_event(cm_event);
 953
 954    /* resolve route */
 955    ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
 956    if (ret) {
 957        ERROR(errp, "could not resolve rdma route");
 958        goto err_resolve_get_addr;
 959    }
 960
 961    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 962    if (ret) {
 963        ERROR(errp, "could not perform event_route_resolved");
 964        goto err_resolve_get_addr;
 965    }
 966    if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
 967        ERROR(errp, "result not equal to event_route_resolved: %s",
 968                        rdma_event_str(cm_event->event));
 969        rdma_ack_cm_event(cm_event);
 970        ret = -EINVAL;
 971        goto err_resolve_get_addr;
 972    }
 973    rdma_ack_cm_event(cm_event);
 974    rdma->verbs = rdma->cm_id->verbs;
 975    qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
 976    qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
 977    return 0;
 978
 979err_resolve_get_addr:
 980    rdma_destroy_id(rdma->cm_id);
 981    rdma->cm_id = NULL;
 982err_resolve_create_id:
 983    rdma_destroy_event_channel(rdma->channel);
 984    rdma->channel = NULL;
 985    return ret;
 986}
 987
 988/*
 989 * Create protection domain and completion queues
 990 */
 991static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
 992{
 993    /* allocate pd */
 994    rdma->pd = ibv_alloc_pd(rdma->verbs);
 995    if (!rdma->pd) {
 996        fprintf(stderr, "failed to allocate protection domain\n");
 997        return -1;
 998    }
 999
1000    /* create completion channel */
1001    rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1002    if (!rdma->comp_channel) {
1003        fprintf(stderr, "failed to allocate completion channel\n");
1004        goto err_alloc_pd_cq;
1005    }
1006
1007    /*
1008     * Completion queue can be filled by both read and write work requests,
1009     * so must reflect the sum of both possible queue sizes.
1010     */
1011    rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1012            NULL, rdma->comp_channel, 0);
1013    if (!rdma->cq) {
1014        fprintf(stderr, "failed to allocate completion queue\n");
1015        goto err_alloc_pd_cq;
1016    }
1017
1018    return 0;
1019
1020err_alloc_pd_cq:
1021    if (rdma->pd) {
1022        ibv_dealloc_pd(rdma->pd);
1023    }
1024    if (rdma->comp_channel) {
1025        ibv_destroy_comp_channel(rdma->comp_channel);
1026    }
1027    rdma->pd = NULL;
1028    rdma->comp_channel = NULL;
1029    return -1;
1030
1031}
1032
1033/*
1034 * Create queue pairs.
1035 */
1036static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1037{
1038    struct ibv_qp_init_attr attr = { 0 };
1039    int ret;
1040
1041    attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1042    attr.cap.max_recv_wr = 3;
1043    attr.cap.max_send_sge = 1;
1044    attr.cap.max_recv_sge = 1;
1045    attr.send_cq = rdma->cq;
1046    attr.recv_cq = rdma->cq;
1047    attr.qp_type = IBV_QPT_RC;
1048
1049    ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1050    if (ret) {
1051        return -1;
1052    }
1053
1054    rdma->qp = rdma->cm_id->qp;
1055    return 0;
1056}
1057
1058static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1059{
1060    int i;
1061    RDMALocalBlocks *local = &rdma->local_ram_blocks;
1062
1063    for (i = 0; i < local->nb_blocks; i++) {
1064        local->block[i].mr =
1065            ibv_reg_mr(rdma->pd,
1066                    local->block[i].local_host_addr,
1067                    local->block[i].length,
1068                    IBV_ACCESS_LOCAL_WRITE |
1069                    IBV_ACCESS_REMOTE_WRITE
1070                    );
1071        if (!local->block[i].mr) {
1072            perror("Failed to register local dest ram block!\n");
1073            break;
1074        }
1075        rdma->total_registrations++;
1076    }
1077
1078    if (i >= local->nb_blocks) {
1079        return 0;
1080    }
1081
1082    for (i--; i >= 0; i--) {
1083        ibv_dereg_mr(local->block[i].mr);
1084        rdma->total_registrations--;
1085    }
1086
1087    return -1;
1088
1089}
1090
1091/*
1092 * Find the ram block that corresponds to the page requested to be
1093 * transmitted by QEMU.
1094 *
1095 * Once the block is found, also identify which 'chunk' within that
1096 * block that the page belongs to.
1097 *
1098 * This search cannot fail or the migration will fail.
1099 */
1100static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1101                                      uint64_t block_offset,
1102                                      uint64_t offset,
1103                                      uint64_t length,
1104                                      uint64_t *block_index,
1105                                      uint64_t *chunk_index)
1106{
1107    uint64_t current_addr = block_offset + offset;
1108    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1109                                                (void *) block_offset);
1110    assert(block);
1111    assert(current_addr >= block->offset);
1112    assert((current_addr + length) <= (block->offset + block->length));
1113
1114    *block_index = block->index;
1115    *chunk_index = ram_chunk_index(block->local_host_addr,
1116                block->local_host_addr + (current_addr - block->offset));
1117
1118    return 0;
1119}
1120
1121/*
1122 * Register a chunk with IB. If the chunk was already registered
1123 * previously, then skip.
1124 *
1125 * Also return the keys associated with the registration needed
1126 * to perform the actual RDMA operation.
1127 */
1128static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1129        RDMALocalBlock *block, uint8_t *host_addr,
1130        uint32_t *lkey, uint32_t *rkey, int chunk,
1131        uint8_t *chunk_start, uint8_t *chunk_end)
1132{
1133    if (block->mr) {
1134        if (lkey) {
1135            *lkey = block->mr->lkey;
1136        }
1137        if (rkey) {
1138            *rkey = block->mr->rkey;
1139        }
1140        return 0;
1141    }
1142
1143    /* allocate memory to store chunk MRs */
1144    if (!block->pmr) {
1145        block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1146        if (!block->pmr) {
1147            return -1;
1148        }
1149    }
1150
1151    /*
1152     * If 'rkey', then we're the destination, so grant access to the source.
1153     *
1154     * If 'lkey', then we're the source VM, so grant access only to ourselves.
1155     */
1156    if (!block->pmr[chunk]) {
1157        uint64_t len = chunk_end - chunk_start;
1158
1159        DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1160                 len, chunk_start);
1161
1162        block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1163                chunk_start, len,
1164                (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1165                        IBV_ACCESS_REMOTE_WRITE) : 0));
1166
1167        if (!block->pmr[chunk]) {
1168            perror("Failed to register chunk!");
1169            fprintf(stderr, "Chunk details: block: %d chunk index %d"
1170                            " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1171                            " local %" PRIu64 " registrations: %d\n",
1172                            block->index, chunk, (uint64_t) chunk_start,
1173                            (uint64_t) chunk_end, (uint64_t) host_addr,
1174                            (uint64_t) block->local_host_addr,
1175                            rdma->total_registrations);
1176            return -1;
1177        }
1178        rdma->total_registrations++;
1179    }
1180
1181    if (lkey) {
1182        *lkey = block->pmr[chunk]->lkey;
1183    }
1184    if (rkey) {
1185        *rkey = block->pmr[chunk]->rkey;
1186    }
1187    return 0;
1188}
1189
1190/*
1191 * Register (at connection time) the memory used for control
1192 * channel messages.
1193 */
1194static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1195{
1196    rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1197            rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1198            IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1199    if (rdma->wr_data[idx].control_mr) {
1200        rdma->total_registrations++;
1201        return 0;
1202    }
1203    fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1204    return -1;
1205}
1206
1207const char *print_wrid(int wrid)
1208{
1209    if (wrid >= RDMA_WRID_RECV_CONTROL) {
1210        return wrid_desc[RDMA_WRID_RECV_CONTROL];
1211    }
1212    return wrid_desc[wrid];
1213}
1214
1215/*
1216 * RDMA requires memory registration (mlock/pinning), but this is not good for
1217 * overcommitment.
1218 *
1219 * In preparation for the future where LRU information or workload-specific
1220 * writable writable working set memory access behavior is available to QEMU
1221 * it would be nice to have in place the ability to UN-register/UN-pin
1222 * particular memory regions from the RDMA hardware when it is determine that
1223 * those regions of memory will likely not be accessed again in the near future.
1224 *
1225 * While we do not yet have such information right now, the following
1226 * compile-time option allows us to perform a non-optimized version of this
1227 * behavior.
1228 *
1229 * By uncommenting this option, you will cause *all* RDMA transfers to be
1230 * unregistered immediately after the transfer completes on both sides of the
1231 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1232 *
1233 * This will have a terrible impact on migration performance, so until future
1234 * workload information or LRU information is available, do not attempt to use
1235 * this feature except for basic testing.
1236 */
1237//#define RDMA_UNREGISTRATION_EXAMPLE
1238
1239/*
1240 * Perform a non-optimized memory unregistration after every transfer
1241 * for demonsration purposes, only if pin-all is not requested.
1242 *
1243 * Potential optimizations:
1244 * 1. Start a new thread to run this function continuously
1245        - for bit clearing
1246        - and for receipt of unregister messages
1247 * 2. Use an LRU.
1248 * 3. Use workload hints.
1249 */
1250static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1251{
1252    while (rdma->unregistrations[rdma->unregister_current]) {
1253        int ret;
1254        uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1255        uint64_t chunk =
1256            (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1257        uint64_t index =
1258            (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1259        RDMALocalBlock *block =
1260            &(rdma->local_ram_blocks.block[index]);
1261        RDMARegister reg = { .current_index = index };
1262        RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1263                                 };
1264        RDMAControlHeader head = { .len = sizeof(RDMARegister),
1265                                   .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1266                                   .repeat = 1,
1267                                 };
1268
1269        DDPRINTF("Processing unregister for chunk: %" PRIu64
1270                 " at position %d\n", chunk, rdma->unregister_current);
1271
1272        rdma->unregistrations[rdma->unregister_current] = 0;
1273        rdma->unregister_current++;
1274
1275        if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1276            rdma->unregister_current = 0;
1277        }
1278
1279
1280        /*
1281         * Unregistration is speculative (because migration is single-threaded
1282         * and we cannot break the protocol's inifinband message ordering).
1283         * Thus, if the memory is currently being used for transmission,
1284         * then abort the attempt to unregister and try again
1285         * later the next time a completion is received for this memory.
1286         */
1287        clear_bit(chunk, block->unregister_bitmap);
1288
1289        if (test_bit(chunk, block->transit_bitmap)) {
1290            DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1291            continue;
1292        }
1293
1294        DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1295
1296        ret = ibv_dereg_mr(block->pmr[chunk]);
1297        block->pmr[chunk] = NULL;
1298        block->remote_keys[chunk] = 0;
1299
1300        if (ret != 0) {
1301            perror("unregistration chunk failed");
1302            return -ret;
1303        }
1304        rdma->total_registrations--;
1305
1306        reg.key.chunk = chunk;
1307        register_to_network(&reg);
1308        ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1309                                &resp, NULL, NULL);
1310        if (ret < 0) {
1311            return ret;
1312        }
1313
1314        DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1315    }
1316
1317    return 0;
1318}
1319
1320static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1321                                         uint64_t chunk)
1322{
1323    uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1324
1325    result |= (index << RDMA_WRID_BLOCK_SHIFT);
1326    result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1327
1328    return result;
1329}
1330
1331/*
1332 * Set bit for unregistration in the next iteration.
1333 * We cannot transmit right here, but will unpin later.
1334 */
1335static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1336                                        uint64_t chunk, uint64_t wr_id)
1337{
1338    if (rdma->unregistrations[rdma->unregister_next] != 0) {
1339        fprintf(stderr, "rdma migration: queue is full!\n");
1340    } else {
1341        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1342
1343        if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1344            DDPRINTF("Appending unregister chunk %" PRIu64
1345                    " at position %d\n", chunk, rdma->unregister_next);
1346
1347            rdma->unregistrations[rdma->unregister_next++] =
1348                    qemu_rdma_make_wrid(wr_id, index, chunk);
1349
1350            if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1351                rdma->unregister_next = 0;
1352            }
1353        } else {
1354            DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1355                    chunk);
1356        }
1357    }
1358}
1359
1360/*
1361 * Consult the connection manager to see a work request
1362 * (of any kind) has completed.
1363 * Return the work request ID that completed.
1364 */
1365static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1366                               uint32_t *byte_len)
1367{
1368    int ret;
1369    struct ibv_wc wc;
1370    uint64_t wr_id;
1371
1372    ret = ibv_poll_cq(rdma->cq, 1, &wc);
1373
1374    if (!ret) {
1375        *wr_id_out = RDMA_WRID_NONE;
1376        return 0;
1377    }
1378
1379    if (ret < 0) {
1380        fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1381        return ret;
1382    }
1383
1384    wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1385
1386    if (wc.status != IBV_WC_SUCCESS) {
1387        fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1388                        wc.status, ibv_wc_status_str(wc.status));
1389        fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1390
1391        return -1;
1392    }
1393
1394    if (rdma->control_ready_expected &&
1395        (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1396        DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1397                  " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1398                  wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1399        rdma->control_ready_expected = 0;
1400    }
1401
1402    if (wr_id == RDMA_WRID_RDMA_WRITE) {
1403        uint64_t chunk =
1404            (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1405        uint64_t index =
1406            (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1407        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1408
1409        DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1410                 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1411                 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1412                 block->local_host_addr, (void *)block->remote_host_addr);
1413
1414        clear_bit(chunk, block->transit_bitmap);
1415
1416        if (rdma->nb_sent > 0) {
1417            rdma->nb_sent--;
1418        }
1419
1420        if (!rdma->pin_all) {
1421            /*
1422             * FYI: If one wanted to signal a specific chunk to be unregistered
1423             * using LRU or workload-specific information, this is the function
1424             * you would call to do so. That chunk would then get asynchronously
1425             * unregistered later.
1426             */
1427#ifdef RDMA_UNREGISTRATION_EXAMPLE
1428            qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1429#endif
1430        }
1431    } else {
1432        DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1433            print_wrid(wr_id), wr_id, rdma->nb_sent);
1434    }
1435
1436    *wr_id_out = wc.wr_id;
1437    if (byte_len) {
1438        *byte_len = wc.byte_len;
1439    }
1440
1441    return  0;
1442}
1443
1444/*
1445 * Block until the next work request has completed.
1446 *
1447 * First poll to see if a work request has already completed,
1448 * otherwise block.
1449 *
1450 * If we encounter completed work requests for IDs other than
1451 * the one we're interested in, then that's generally an error.
1452 *
1453 * The only exception is actual RDMA Write completions. These
1454 * completions only need to be recorded, but do not actually
1455 * need further processing.
1456 */
1457static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1458                                    uint32_t *byte_len)
1459{
1460    int num_cq_events = 0, ret = 0;
1461    struct ibv_cq *cq;
1462    void *cq_ctx;
1463    uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1464
1465    if (ibv_req_notify_cq(rdma->cq, 0)) {
1466        return -1;
1467    }
1468    /* poll cq first */
1469    while (wr_id != wrid_requested) {
1470        ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1471        if (ret < 0) {
1472            return ret;
1473        }
1474
1475        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1476
1477        if (wr_id == RDMA_WRID_NONE) {
1478            break;
1479        }
1480        if (wr_id != wrid_requested) {
1481            DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1482                print_wrid(wrid_requested),
1483                wrid_requested, print_wrid(wr_id), wr_id);
1484        }
1485    }
1486
1487    if (wr_id == wrid_requested) {
1488        return 0;
1489    }
1490
1491    while (1) {
1492        /*
1493         * Coroutine doesn't start until process_incoming_migration()
1494         * so don't yield unless we know we're running inside of a coroutine.
1495         */
1496        if (rdma->migration_started_on_destination) {
1497            yield_until_fd_readable(rdma->comp_channel->fd);
1498        }
1499
1500        if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1501            perror("ibv_get_cq_event");
1502            goto err_block_for_wrid;
1503        }
1504
1505        num_cq_events++;
1506
1507        if (ibv_req_notify_cq(cq, 0)) {
1508            goto err_block_for_wrid;
1509        }
1510
1511        while (wr_id != wrid_requested) {
1512            ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1513            if (ret < 0) {
1514                goto err_block_for_wrid;
1515            }
1516
1517            wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1518
1519            if (wr_id == RDMA_WRID_NONE) {
1520                break;
1521            }
1522            if (wr_id != wrid_requested) {
1523                DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1524                    print_wrid(wrid_requested), wrid_requested,
1525                    print_wrid(wr_id), wr_id);
1526            }
1527        }
1528
1529        if (wr_id == wrid_requested) {
1530            goto success_block_for_wrid;
1531        }
1532    }
1533
1534success_block_for_wrid:
1535    if (num_cq_events) {
1536        ibv_ack_cq_events(cq, num_cq_events);
1537    }
1538    return 0;
1539
1540err_block_for_wrid:
1541    if (num_cq_events) {
1542        ibv_ack_cq_events(cq, num_cq_events);
1543    }
1544    return ret;
1545}
1546
1547/*
1548 * Post a SEND message work request for the control channel
1549 * containing some data and block until the post completes.
1550 */
1551static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1552                                       RDMAControlHeader *head)
1553{
1554    int ret = 0;
1555    RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1556    struct ibv_send_wr *bad_wr;
1557    struct ibv_sge sge = {
1558                           .addr = (uint64_t)(wr->control),
1559                           .length = head->len + sizeof(RDMAControlHeader),
1560                           .lkey = wr->control_mr->lkey,
1561                         };
1562    struct ibv_send_wr send_wr = {
1563                                   .wr_id = RDMA_WRID_SEND_CONTROL,
1564                                   .opcode = IBV_WR_SEND,
1565                                   .send_flags = IBV_SEND_SIGNALED,
1566                                   .sg_list = &sge,
1567                                   .num_sge = 1,
1568                                };
1569
1570    DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1571
1572    /*
1573     * We don't actually need to do a memcpy() in here if we used
1574     * the "sge" properly, but since we're only sending control messages
1575     * (not RAM in a performance-critical path), then its OK for now.
1576     *
1577     * The copy makes the RDMAControlHeader simpler to manipulate
1578     * for the time being.
1579     */
1580    assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1581    memcpy(wr->control, head, sizeof(RDMAControlHeader));
1582    control_to_network((void *) wr->control);
1583
1584    if (buf) {
1585        memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1586    }
1587
1588
1589    if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1590        return -1;
1591    }
1592
1593    if (ret < 0) {
1594        fprintf(stderr, "Failed to use post IB SEND for control!\n");
1595        return ret;
1596    }
1597
1598    ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1599    if (ret < 0) {
1600        fprintf(stderr, "rdma migration: send polling control error!\n");
1601    }
1602
1603    return ret;
1604}
1605
1606/*
1607 * Post a RECV work request in anticipation of some future receipt
1608 * of data on the control channel.
1609 */
1610static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1611{
1612    struct ibv_recv_wr *bad_wr;
1613    struct ibv_sge sge = {
1614                            .addr = (uint64_t)(rdma->wr_data[idx].control),
1615                            .length = RDMA_CONTROL_MAX_BUFFER,
1616                            .lkey = rdma->wr_data[idx].control_mr->lkey,
1617                         };
1618
1619    struct ibv_recv_wr recv_wr = {
1620                                    .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1621                                    .sg_list = &sge,
1622                                    .num_sge = 1,
1623                                 };
1624
1625
1626    if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1627        return -1;
1628    }
1629
1630    return 0;
1631}
1632
1633/*
1634 * Block and wait for a RECV control channel message to arrive.
1635 */
1636static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1637                RDMAControlHeader *head, int expecting, int idx)
1638{
1639    uint32_t byte_len;
1640    int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1641                                       &byte_len);
1642
1643    if (ret < 0) {
1644        fprintf(stderr, "rdma migration: recv polling control error!\n");
1645        return ret;
1646    }
1647
1648    network_to_control((void *) rdma->wr_data[idx].control);
1649    memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1650
1651    DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1652
1653    if (expecting == RDMA_CONTROL_NONE) {
1654        DDDPRINTF("Surprise: got %s (%d)\n",
1655                  control_desc[head->type], head->type);
1656    } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1657        fprintf(stderr, "Was expecting a %s (%d) control message"
1658                ", but got: %s (%d), length: %d\n",
1659                control_desc[expecting], expecting,
1660                control_desc[head->type], head->type, head->len);
1661        return -EIO;
1662    }
1663    if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1664        fprintf(stderr, "too long length: %d\n", head->len);
1665        return -EINVAL;
1666    }
1667    if (sizeof(*head) + head->len != byte_len) {
1668        fprintf(stderr, "Malformed length: %d byte_len %d\n",
1669                head->len, byte_len);
1670        return -EINVAL;
1671    }
1672
1673    return 0;
1674}
1675
1676/*
1677 * When a RECV work request has completed, the work request's
1678 * buffer is pointed at the header.
1679 *
1680 * This will advance the pointer to the data portion
1681 * of the control message of the work request's buffer that
1682 * was populated after the work request finished.
1683 */
1684static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1685                                  RDMAControlHeader *head)
1686{
1687    rdma->wr_data[idx].control_len = head->len;
1688    rdma->wr_data[idx].control_curr =
1689        rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1690}
1691
1692/*
1693 * This is an 'atomic' high-level operation to deliver a single, unified
1694 * control-channel message.
1695 *
1696 * Additionally, if the user is expecting some kind of reply to this message,
1697 * they can request a 'resp' response message be filled in by posting an
1698 * additional work request on behalf of the user and waiting for an additional
1699 * completion.
1700 *
1701 * The extra (optional) response is used during registration to us from having
1702 * to perform an *additional* exchange of message just to provide a response by
1703 * instead piggy-backing on the acknowledgement.
1704 */
1705static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1706                                   uint8_t *data, RDMAControlHeader *resp,
1707                                   int *resp_idx,
1708                                   int (*callback)(RDMAContext *rdma))
1709{
1710    int ret = 0;
1711
1712    /*
1713     * Wait until the dest is ready before attempting to deliver the message
1714     * by waiting for a READY message.
1715     */
1716    if (rdma->control_ready_expected) {
1717        RDMAControlHeader resp;
1718        ret = qemu_rdma_exchange_get_response(rdma,
1719                                    &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1720        if (ret < 0) {
1721            return ret;
1722        }
1723    }
1724
1725    /*
1726     * If the user is expecting a response, post a WR in anticipation of it.
1727     */
1728    if (resp) {
1729        ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1730        if (ret) {
1731            fprintf(stderr, "rdma migration: error posting"
1732                    " extra control recv for anticipated result!");
1733            return ret;
1734        }
1735    }
1736
1737    /*
1738     * Post a WR to replace the one we just consumed for the READY message.
1739     */
1740    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1741    if (ret) {
1742        fprintf(stderr, "rdma migration: error posting first control recv!");
1743        return ret;
1744    }
1745
1746    /*
1747     * Deliver the control message that was requested.
1748     */
1749    ret = qemu_rdma_post_send_control(rdma, data, head);
1750
1751    if (ret < 0) {
1752        fprintf(stderr, "Failed to send control buffer!\n");
1753        return ret;
1754    }
1755
1756    /*
1757     * If we're expecting a response, block and wait for it.
1758     */
1759    if (resp) {
1760        if (callback) {
1761            DDPRINTF("Issuing callback before receiving response...\n");
1762            ret = callback(rdma);
1763            if (ret < 0) {
1764                return ret;
1765            }
1766        }
1767
1768        DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1769        ret = qemu_rdma_exchange_get_response(rdma, resp,
1770                                              resp->type, RDMA_WRID_DATA);
1771
1772        if (ret < 0) {
1773            return ret;
1774        }
1775
1776        qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1777        if (resp_idx) {
1778            *resp_idx = RDMA_WRID_DATA;
1779        }
1780        DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1781    }
1782
1783    rdma->control_ready_expected = 1;
1784
1785    return 0;
1786}
1787
1788/*
1789 * This is an 'atomic' high-level operation to receive a single, unified
1790 * control-channel message.
1791 */
1792static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1793                                int expecting)
1794{
1795    RDMAControlHeader ready = {
1796                                .len = 0,
1797                                .type = RDMA_CONTROL_READY,
1798                                .repeat = 1,
1799                              };
1800    int ret;
1801
1802    /*
1803     * Inform the source that we're ready to receive a message.
1804     */
1805    ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1806
1807    if (ret < 0) {
1808        fprintf(stderr, "Failed to send control buffer!\n");
1809        return ret;
1810    }
1811
1812    /*
1813     * Block and wait for the message.
1814     */
1815    ret = qemu_rdma_exchange_get_response(rdma, head,
1816                                          expecting, RDMA_WRID_READY);
1817
1818    if (ret < 0) {
1819        return ret;
1820    }
1821
1822    qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1823
1824    /*
1825     * Post a new RECV work request to replace the one we just consumed.
1826     */
1827    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1828    if (ret) {
1829        fprintf(stderr, "rdma migration: error posting second control recv!");
1830        return ret;
1831    }
1832
1833    return 0;
1834}
1835
1836/*
1837 * Write an actual chunk of memory using RDMA.
1838 *
1839 * If we're using dynamic registration on the dest-side, we have to
1840 * send a registration command first.
1841 */
1842static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1843                               int current_index, uint64_t current_addr,
1844                               uint64_t length)
1845{
1846    struct ibv_sge sge;
1847    struct ibv_send_wr send_wr = { 0 };
1848    struct ibv_send_wr *bad_wr;
1849    int reg_result_idx, ret, count = 0;
1850    uint64_t chunk, chunks;
1851    uint8_t *chunk_start, *chunk_end;
1852    RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1853    RDMARegister reg;
1854    RDMARegisterResult *reg_result;
1855    RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1856    RDMAControlHeader head = { .len = sizeof(RDMARegister),
1857                               .type = RDMA_CONTROL_REGISTER_REQUEST,
1858                               .repeat = 1,
1859                             };
1860
1861retry:
1862    sge.addr = (uint64_t)(block->local_host_addr +
1863                            (current_addr - block->offset));
1864    sge.length = length;
1865
1866    chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1867    chunk_start = ram_chunk_start(block, chunk);
1868
1869    if (block->is_ram_block) {
1870        chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1871
1872        if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1873            chunks--;
1874        }
1875    } else {
1876        chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1877
1878        if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1879            chunks--;
1880        }
1881    }
1882
1883    DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1884        chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1885
1886    chunk_end = ram_chunk_end(block, chunk + chunks);
1887
1888    if (!rdma->pin_all) {
1889#ifdef RDMA_UNREGISTRATION_EXAMPLE
1890        qemu_rdma_unregister_waiting(rdma);
1891#endif
1892    }
1893
1894    while (test_bit(chunk, block->transit_bitmap)) {
1895        (void)count;
1896        DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1897                " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1898                count++, current_index, chunk,
1899                sge.addr, length, rdma->nb_sent, block->nb_chunks);
1900
1901        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1902
1903        if (ret < 0) {
1904            fprintf(stderr, "Failed to Wait for previous write to complete "
1905                    "block %d chunk %" PRIu64
1906                    " current %" PRIu64 " len %" PRIu64 " %d\n",
1907                    current_index, chunk, sge.addr, length, rdma->nb_sent);
1908            return ret;
1909        }
1910    }
1911
1912    if (!rdma->pin_all || !block->is_ram_block) {
1913        if (!block->remote_keys[chunk]) {
1914            /*
1915             * This chunk has not yet been registered, so first check to see
1916             * if the entire chunk is zero. If so, tell the other size to
1917             * memset() + madvise() the entire chunk without RDMA.
1918             */
1919
1920            if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1921                   && buffer_find_nonzero_offset((void *)sge.addr,
1922                                                    length) == length) {
1923                RDMACompress comp = {
1924                                        .offset = current_addr,
1925                                        .value = 0,
1926                                        .block_idx = current_index,
1927                                        .length = length,
1928                                    };
1929
1930                head.len = sizeof(comp);
1931                head.type = RDMA_CONTROL_COMPRESS;
1932
1933                DDPRINTF("Entire chunk is zero, sending compress: %"
1934                    PRIu64 " for %d "
1935                    "bytes, index: %d, offset: %" PRId64 "...\n",
1936                    chunk, sge.length, current_index, current_addr);
1937
1938                compress_to_network(&comp);
1939                ret = qemu_rdma_exchange_send(rdma, &head,
1940                                (uint8_t *) &comp, NULL, NULL, NULL);
1941
1942                if (ret < 0) {
1943                    return -EIO;
1944                }
1945
1946                acct_update_position(f, sge.length, true);
1947
1948                return 1;
1949            }
1950
1951            /*
1952             * Otherwise, tell other side to register.
1953             */
1954            reg.current_index = current_index;
1955            if (block->is_ram_block) {
1956                reg.key.current_addr = current_addr;
1957            } else {
1958                reg.key.chunk = chunk;
1959            }
1960            reg.chunks = chunks;
1961
1962            DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1963                    "bytes, index: %d, offset: %" PRId64 "...\n",
1964                    chunk, sge.length, current_index, current_addr);
1965
1966            register_to_network(&reg);
1967            ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1968                                    &resp, &reg_result_idx, NULL);
1969            if (ret < 0) {
1970                return ret;
1971            }
1972
1973            /* try to overlap this single registration with the one we sent. */
1974            if (qemu_rdma_register_and_get_keys(rdma, block,
1975                                                (uint8_t *) sge.addr,
1976                                                &sge.lkey, NULL, chunk,
1977                                                chunk_start, chunk_end)) {
1978                fprintf(stderr, "cannot get lkey!\n");
1979                return -EINVAL;
1980            }
1981
1982            reg_result = (RDMARegisterResult *)
1983                    rdma->wr_data[reg_result_idx].control_curr;
1984
1985            network_to_result(reg_result);
1986
1987            DDPRINTF("Received registration result:"
1988                    " my key: %x their key %x, chunk %" PRIu64 "\n",
1989                    block->remote_keys[chunk], reg_result->rkey, chunk);
1990
1991            block->remote_keys[chunk] = reg_result->rkey;
1992            block->remote_host_addr = reg_result->host_addr;
1993        } else {
1994            /* already registered before */
1995            if (qemu_rdma_register_and_get_keys(rdma, block,
1996                                                (uint8_t *)sge.addr,
1997                                                &sge.lkey, NULL, chunk,
1998                                                chunk_start, chunk_end)) {
1999                fprintf(stderr, "cannot get lkey!\n");
2000                return -EINVAL;
2001            }
2002        }
2003
2004        send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2005    } else {
2006        send_wr.wr.rdma.rkey = block->remote_rkey;
2007
2008        if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
2009                                                     &sge.lkey, NULL, chunk,
2010                                                     chunk_start, chunk_end)) {
2011            fprintf(stderr, "cannot get lkey!\n");
2012            return -EINVAL;
2013        }
2014    }
2015
2016    /*
2017     * Encode the ram block index and chunk within this wrid.
2018     * We will use this information at the time of completion
2019     * to figure out which bitmap to check against and then which
2020     * chunk in the bitmap to look for.
2021     */
2022    send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2023                                        current_index, chunk);
2024
2025    send_wr.opcode = IBV_WR_RDMA_WRITE;
2026    send_wr.send_flags = IBV_SEND_SIGNALED;
2027    send_wr.sg_list = &sge;
2028    send_wr.num_sge = 1;
2029    send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2030                                (current_addr - block->offset);
2031
2032    DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
2033              " remote: %lx, bytes %" PRIu32 "\n",
2034              chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2035              sge.length);
2036
2037    /*
2038     * ibv_post_send() does not return negative error numbers,
2039     * per the specification they are positive - no idea why.
2040     */
2041    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2042
2043    if (ret == ENOMEM) {
2044        DDPRINTF("send queue is full. wait a little....\n");
2045        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2046        if (ret < 0) {
2047            fprintf(stderr, "rdma migration: failed to make "
2048                            "room in full send queue! %d\n", ret);
2049            return ret;
2050        }
2051
2052        goto retry;
2053
2054    } else if (ret > 0) {
2055        perror("rdma migration: post rdma write failed");
2056        return -ret;
2057    }
2058
2059    set_bit(chunk, block->transit_bitmap);
2060    acct_update_position(f, sge.length, false);
2061    rdma->total_writes++;
2062
2063    return 0;
2064}
2065
2066/*
2067 * Push out any unwritten RDMA operations.
2068 *
2069 * We support sending out multiple chunks at the same time.
2070 * Not all of them need to get signaled in the completion queue.
2071 */
2072static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2073{
2074    int ret;
2075
2076    if (!rdma->current_length) {
2077        return 0;
2078    }
2079
2080    ret = qemu_rdma_write_one(f, rdma,
2081            rdma->current_index, rdma->current_addr, rdma->current_length);
2082
2083    if (ret < 0) {
2084        return ret;
2085    }
2086
2087    if (ret == 0) {
2088        rdma->nb_sent++;
2089        DDDPRINTF("sent total: %d\n", rdma->nb_sent);
2090    }
2091
2092    rdma->current_length = 0;
2093    rdma->current_addr = 0;
2094
2095    return 0;
2096}
2097
2098static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2099                    uint64_t offset, uint64_t len)
2100{
2101    RDMALocalBlock *block;
2102    uint8_t *host_addr;
2103    uint8_t *chunk_end;
2104
2105    if (rdma->current_index < 0) {
2106        return 0;
2107    }
2108
2109    if (rdma->current_chunk < 0) {
2110        return 0;
2111    }
2112
2113    block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2114    host_addr = block->local_host_addr + (offset - block->offset);
2115    chunk_end = ram_chunk_end(block, rdma->current_chunk);
2116
2117    if (rdma->current_length == 0) {
2118        return 0;
2119    }
2120
2121    /*
2122     * Only merge into chunk sequentially.
2123     */
2124    if (offset != (rdma->current_addr + rdma->current_length)) {
2125        return 0;
2126    }
2127
2128    if (offset < block->offset) {
2129        return 0;
2130    }
2131
2132    if ((offset + len) > (block->offset + block->length)) {
2133        return 0;
2134    }
2135
2136    if ((host_addr + len) > chunk_end) {
2137        return 0;
2138    }
2139
2140    return 1;
2141}
2142
2143/*
2144 * We're not actually writing here, but doing three things:
2145 *
2146 * 1. Identify the chunk the buffer belongs to.
2147 * 2. If the chunk is full or the buffer doesn't belong to the current
2148 *    chunk, then start a new chunk and flush() the old chunk.
2149 * 3. To keep the hardware busy, we also group chunks into batches
2150 *    and only require that a batch gets acknowledged in the completion
2151 *    qeueue instead of each individual chunk.
2152 */
2153static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2154                           uint64_t block_offset, uint64_t offset,
2155                           uint64_t len)
2156{
2157    uint64_t current_addr = block_offset + offset;
2158    uint64_t index = rdma->current_index;
2159    uint64_t chunk = rdma->current_chunk;
2160    int ret;
2161
2162    /* If we cannot merge it, we flush the current buffer first. */
2163    if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2164        ret = qemu_rdma_write_flush(f, rdma);
2165        if (ret) {
2166            return ret;
2167        }
2168        rdma->current_length = 0;
2169        rdma->current_addr = current_addr;
2170
2171        ret = qemu_rdma_search_ram_block(rdma, block_offset,
2172                                         offset, len, &index, &chunk);
2173        if (ret) {
2174            fprintf(stderr, "ram block search failed\n");
2175            return ret;
2176        }
2177        rdma->current_index = index;
2178        rdma->current_chunk = chunk;
2179    }
2180
2181    /* merge it */
2182    rdma->current_length += len;
2183
2184    /* flush it if buffer is too large */
2185    if (rdma->current_length >= RDMA_MERGE_MAX) {
2186        return qemu_rdma_write_flush(f, rdma);
2187    }
2188
2189    return 0;
2190}
2191
2192static void qemu_rdma_cleanup(RDMAContext *rdma)
2193{
2194    struct rdma_cm_event *cm_event;
2195    int ret, idx;
2196
2197    if (rdma->cm_id) {
2198        if (rdma->error_state) {
2199            RDMAControlHeader head = { .len = 0,
2200                                       .type = RDMA_CONTROL_ERROR,
2201                                       .repeat = 1,
2202                                     };
2203            fprintf(stderr, "Early error. Sending error.\n");
2204            qemu_rdma_post_send_control(rdma, NULL, &head);
2205        }
2206
2207        ret = rdma_disconnect(rdma->cm_id);
2208        if (!ret) {
2209            DDPRINTF("waiting for disconnect\n");
2210            ret = rdma_get_cm_event(rdma->channel, &cm_event);
2211            if (!ret) {
2212                rdma_ack_cm_event(cm_event);
2213            }
2214        }
2215        DDPRINTF("Disconnected.\n");
2216        rdma->cm_id = NULL;
2217    }
2218
2219    g_free(rdma->block);
2220    rdma->block = NULL;
2221
2222    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2223        if (rdma->wr_data[idx].control_mr) {
2224            rdma->total_registrations--;
2225            ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2226        }
2227        rdma->wr_data[idx].control_mr = NULL;
2228    }
2229
2230    if (rdma->local_ram_blocks.block) {
2231        while (rdma->local_ram_blocks.nb_blocks) {
2232            __qemu_rdma_delete_block(rdma,
2233                    rdma->local_ram_blocks.block->offset);
2234        }
2235    }
2236
2237    if (rdma->qp) {
2238        ibv_destroy_qp(rdma->qp);
2239        rdma->qp = NULL;
2240    }
2241    if (rdma->cq) {
2242        ibv_destroy_cq(rdma->cq);
2243        rdma->cq = NULL;
2244    }
2245    if (rdma->comp_channel) {
2246        ibv_destroy_comp_channel(rdma->comp_channel);
2247        rdma->comp_channel = NULL;
2248    }
2249    if (rdma->pd) {
2250        ibv_dealloc_pd(rdma->pd);
2251        rdma->pd = NULL;
2252    }
2253    if (rdma->listen_id) {
2254        rdma_destroy_id(rdma->listen_id);
2255        rdma->listen_id = NULL;
2256    }
2257    if (rdma->cm_id) {
2258        rdma_destroy_id(rdma->cm_id);
2259        rdma->cm_id = NULL;
2260    }
2261    if (rdma->channel) {
2262        rdma_destroy_event_channel(rdma->channel);
2263        rdma->channel = NULL;
2264    }
2265    g_free(rdma->host);
2266    rdma->host = NULL;
2267}
2268
2269
2270static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2271{
2272    int ret, idx;
2273    Error *local_err = NULL, **temp = &local_err;
2274
2275    /*
2276     * Will be validated against destination's actual capabilities
2277     * after the connect() completes.
2278     */
2279    rdma->pin_all = pin_all;
2280
2281    ret = qemu_rdma_resolve_host(rdma, temp);
2282    if (ret) {
2283        goto err_rdma_source_init;
2284    }
2285
2286    ret = qemu_rdma_alloc_pd_cq(rdma);
2287    if (ret) {
2288        ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2289                    " limits may be too low. Please check $ ulimit -a # and "
2290                    "search for 'ulimit -l' in the output");
2291        goto err_rdma_source_init;
2292    }
2293
2294    ret = qemu_rdma_alloc_qp(rdma);
2295    if (ret) {
2296        ERROR(temp, "rdma migration: error allocating qp!");
2297        goto err_rdma_source_init;
2298    }
2299
2300    ret = qemu_rdma_init_ram_blocks(rdma);
2301    if (ret) {
2302        ERROR(temp, "rdma migration: error initializing ram blocks!");
2303        goto err_rdma_source_init;
2304    }
2305
2306    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2307        ret = qemu_rdma_reg_control(rdma, idx);
2308        if (ret) {
2309            ERROR(temp, "rdma migration: error registering %d control!",
2310                                                            idx);
2311            goto err_rdma_source_init;
2312        }
2313    }
2314
2315    return 0;
2316
2317err_rdma_source_init:
2318    error_propagate(errp, local_err);
2319    qemu_rdma_cleanup(rdma);
2320    return -1;
2321}
2322
2323static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2324{
2325    RDMACapabilities cap = {
2326                                .version = RDMA_CONTROL_VERSION_CURRENT,
2327                                .flags = 0,
2328                           };
2329    struct rdma_conn_param conn_param = { .initiator_depth = 2,
2330                                          .retry_count = 5,
2331                                          .private_data = &cap,
2332                                          .private_data_len = sizeof(cap),
2333                                        };
2334    struct rdma_cm_event *cm_event;
2335    int ret;
2336
2337    /*
2338     * Only negotiate the capability with destination if the user
2339     * on the source first requested the capability.
2340     */
2341    if (rdma->pin_all) {
2342        DPRINTF("Server pin-all memory requested.\n");
2343        cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2344    }
2345
2346    caps_to_network(&cap);
2347
2348    ret = rdma_connect(rdma->cm_id, &conn_param);
2349    if (ret) {
2350        perror("rdma_connect");
2351        ERROR(errp, "connecting to destination!");
2352        rdma_destroy_id(rdma->cm_id);
2353        rdma->cm_id = NULL;
2354        goto err_rdma_source_connect;
2355    }
2356
2357    ret = rdma_get_cm_event(rdma->channel, &cm_event);
2358    if (ret) {
2359        perror("rdma_get_cm_event after rdma_connect");
2360        ERROR(errp, "connecting to destination!");
2361        rdma_ack_cm_event(cm_event);
2362        rdma_destroy_id(rdma->cm_id);
2363        rdma->cm_id = NULL;
2364        goto err_rdma_source_connect;
2365    }
2366
2367    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2368        perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2369        ERROR(errp, "connecting to destination!");
2370        rdma_ack_cm_event(cm_event);
2371        rdma_destroy_id(rdma->cm_id);
2372        rdma->cm_id = NULL;
2373        goto err_rdma_source_connect;
2374    }
2375
2376    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2377    network_to_caps(&cap);
2378
2379    /*
2380     * Verify that the *requested* capabilities are supported by the destination
2381     * and disable them otherwise.
2382     */
2383    if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2384        ERROR(errp, "Server cannot support pinning all memory. "
2385                        "Will register memory dynamically.");
2386        rdma->pin_all = false;
2387    }
2388
2389    DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2390
2391    rdma_ack_cm_event(cm_event);
2392
2393    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2394    if (ret) {
2395        ERROR(errp, "posting second control recv!");
2396        goto err_rdma_source_connect;
2397    }
2398
2399    rdma->control_ready_expected = 1;
2400    rdma->nb_sent = 0;
2401    return 0;
2402
2403err_rdma_source_connect:
2404    qemu_rdma_cleanup(rdma);
2405    return -1;
2406}
2407
2408static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2409{
2410    int ret = -EINVAL, idx;
2411    struct rdma_cm_id *listen_id;
2412    char ip[40] = "unknown";
2413    struct rdma_addrinfo *res;
2414    char port_str[16];
2415
2416    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2417        rdma->wr_data[idx].control_len = 0;
2418        rdma->wr_data[idx].control_curr = NULL;
2419    }
2420
2421    if (rdma->host == NULL) {
2422        ERROR(errp, "RDMA host is not set!");
2423        rdma->error_state = -EINVAL;
2424        return -1;
2425    }
2426    /* create CM channel */
2427    rdma->channel = rdma_create_event_channel();
2428    if (!rdma->channel) {
2429        ERROR(errp, "could not create rdma event channel");
2430        rdma->error_state = -EINVAL;
2431        return -1;
2432    }
2433
2434    /* create CM id */
2435    ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2436    if (ret) {
2437        ERROR(errp, "could not create cm_id!");
2438        goto err_dest_init_create_listen_id;
2439    }
2440
2441    snprintf(port_str, 16, "%d", rdma->port);
2442    port_str[15] = '\0';
2443
2444    if (rdma->host && strcmp("", rdma->host)) {
2445        struct rdma_addrinfo *e;
2446
2447        ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2448        if (ret < 0) {
2449            ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2450            goto err_dest_init_bind_addr;
2451        }
2452
2453        for (e = res; e != NULL; e = e->ai_next) {
2454            inet_ntop(e->ai_family,
2455                &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2456            DPRINTF("Trying %s => %s\n", rdma->host, ip);
2457            ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2458            if (!ret) {
2459                if (e->ai_family == AF_INET6) {
2460                    ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2461                    if (ret) {
2462                        continue;
2463                    }
2464                }
2465                    
2466                goto listen;
2467            }
2468        }
2469
2470        ERROR(errp, "Error: could not rdma_bind_addr!");
2471        goto err_dest_init_bind_addr;
2472    } else {
2473        ERROR(errp, "migration host and port not specified!");
2474        ret = -EINVAL;
2475        goto err_dest_init_bind_addr;
2476    }
2477listen:
2478
2479    rdma->listen_id = listen_id;
2480    qemu_rdma_dump_gid("dest_init", listen_id);
2481    return 0;
2482
2483err_dest_init_bind_addr:
2484    rdma_destroy_id(listen_id);
2485err_dest_init_create_listen_id:
2486    rdma_destroy_event_channel(rdma->channel);
2487    rdma->channel = NULL;
2488    rdma->error_state = ret;
2489    return ret;
2490
2491}
2492
2493static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2494{
2495    RDMAContext *rdma = NULL;
2496    InetSocketAddress *addr;
2497
2498    if (host_port) {
2499        rdma = g_malloc0(sizeof(RDMAContext));
2500        memset(rdma, 0, sizeof(RDMAContext));
2501        rdma->current_index = -1;
2502        rdma->current_chunk = -1;
2503
2504        addr = inet_parse(host_port, NULL);
2505        if (addr != NULL) {
2506            rdma->port = atoi(addr->port);
2507            rdma->host = g_strdup(addr->host);
2508        } else {
2509            ERROR(errp, "bad RDMA migration address '%s'", host_port);
2510            g_free(rdma);
2511            return NULL;
2512        }
2513    }
2514
2515    return rdma;
2516}
2517
2518/*
2519 * QEMUFile interface to the control channel.
2520 * SEND messages for control only.
2521 * pc.ram is handled with regular RDMA messages.
2522 */
2523static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2524                                int64_t pos, int size)
2525{
2526    QEMUFileRDMA *r = opaque;
2527    QEMUFile *f = r->file;
2528    RDMAContext *rdma = r->rdma;
2529    size_t remaining = size;
2530    uint8_t * data = (void *) buf;
2531    int ret;
2532
2533    CHECK_ERROR_STATE();
2534
2535    /*
2536     * Push out any writes that
2537     * we're queued up for pc.ram.
2538     */
2539    ret = qemu_rdma_write_flush(f, rdma);
2540    if (ret < 0) {
2541        rdma->error_state = ret;
2542        return ret;
2543    }
2544
2545    while (remaining) {
2546        RDMAControlHeader head;
2547
2548        r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2549        remaining -= r->len;
2550
2551        head.len = r->len;
2552        head.type = RDMA_CONTROL_QEMU_FILE;
2553
2554        ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2555
2556        if (ret < 0) {
2557            rdma->error_state = ret;
2558            return ret;
2559        }
2560
2561        data += r->len;
2562    }
2563
2564    return size;
2565}
2566
2567static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2568                             int size, int idx)
2569{
2570    size_t len = 0;
2571
2572    if (rdma->wr_data[idx].control_len) {
2573        DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2574                    rdma->wr_data[idx].control_len, size);
2575
2576        len = MIN(size, rdma->wr_data[idx].control_len);
2577        memcpy(buf, rdma->wr_data[idx].control_curr, len);
2578        rdma->wr_data[idx].control_curr += len;
2579        rdma->wr_data[idx].control_len -= len;
2580    }
2581
2582    return len;
2583}
2584
2585/*
2586 * QEMUFile interface to the control channel.
2587 * RDMA links don't use bytestreams, so we have to
2588 * return bytes to QEMUFile opportunistically.
2589 */
2590static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2591                                int64_t pos, int size)
2592{
2593    QEMUFileRDMA *r = opaque;
2594    RDMAContext *rdma = r->rdma;
2595    RDMAControlHeader head;
2596    int ret = 0;
2597
2598    CHECK_ERROR_STATE();
2599
2600    /*
2601     * First, we hold on to the last SEND message we
2602     * were given and dish out the bytes until we run
2603     * out of bytes.
2604     */
2605    r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2606    if (r->len) {
2607        return r->len;
2608    }
2609
2610    /*
2611     * Once we run out, we block and wait for another
2612     * SEND message to arrive.
2613     */
2614    ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2615
2616    if (ret < 0) {
2617        rdma->error_state = ret;
2618        return ret;
2619    }
2620
2621    /*
2622     * SEND was received with new bytes, now try again.
2623     */
2624    return qemu_rdma_fill(r->rdma, buf, size, 0);
2625}
2626
2627/*
2628 * Block until all the outstanding chunks have been delivered by the hardware.
2629 */
2630static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2631{
2632    int ret;
2633
2634    if (qemu_rdma_write_flush(f, rdma) < 0) {
2635        return -EIO;
2636    }
2637
2638    while (rdma->nb_sent) {
2639        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2640        if (ret < 0) {
2641            fprintf(stderr, "rdma migration: complete polling error!\n");
2642            return -EIO;
2643        }
2644    }
2645
2646    qemu_rdma_unregister_waiting(rdma);
2647
2648    return 0;
2649}
2650
2651static int qemu_rdma_close(void *opaque)
2652{
2653    DPRINTF("Shutting down connection.\n");
2654    QEMUFileRDMA *r = opaque;
2655    if (r->rdma) {
2656        qemu_rdma_cleanup(r->rdma);
2657        g_free(r->rdma);
2658    }
2659    g_free(r);
2660    return 0;
2661}
2662
2663/*
2664 * Parameters:
2665 *    @offset == 0 :
2666 *        This means that 'block_offset' is a full virtual address that does not
2667 *        belong to a RAMBlock of the virtual machine and instead
2668 *        represents a private malloc'd memory area that the caller wishes to
2669 *        transfer.
2670 *
2671 *    @offset != 0 :
2672 *        Offset is an offset to be added to block_offset and used
2673 *        to also lookup the corresponding RAMBlock.
2674 *
2675 *    @size > 0 :
2676 *        Initiate an transfer this size.
2677 *
2678 *    @size == 0 :
2679 *        A 'hint' or 'advice' that means that we wish to speculatively
2680 *        and asynchronously unregister this memory. In this case, there is no
2681 *        guarantee that the unregister will actually happen, for example,
2682 *        if the memory is being actively transmitted. Additionally, the memory
2683 *        may be re-registered at any future time if a write within the same
2684 *        chunk was requested again, even if you attempted to unregister it
2685 *        here.
2686 *
2687 *    @size < 0 : TODO, not yet supported
2688 *        Unregister the memory NOW. This means that the caller does not
2689 *        expect there to be any future RDMA transfers and we just want to clean
2690 *        things up. This is used in case the upper layer owns the memory and
2691 *        cannot wait for qemu_fclose() to occur.
2692 *
2693 *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2694 *                  sent. Usually, this will not be more than a few bytes of
2695 *                  the protocol because most transfers are sent asynchronously.
2696 */
2697static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2698                                  ram_addr_t block_offset, ram_addr_t offset,
2699                                  size_t size, int *bytes_sent)
2700{
2701    QEMUFileRDMA *rfile = opaque;
2702    RDMAContext *rdma = rfile->rdma;
2703    int ret;
2704
2705    CHECK_ERROR_STATE();
2706
2707    qemu_fflush(f);
2708
2709    if (size > 0) {
2710        /*
2711         * Add this page to the current 'chunk'. If the chunk
2712         * is full, or the page doen't belong to the current chunk,
2713         * an actual RDMA write will occur and a new chunk will be formed.
2714         */
2715        ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2716        if (ret < 0) {
2717            fprintf(stderr, "rdma migration: write error! %d\n", ret);
2718            goto err;
2719        }
2720
2721        /*
2722         * We always return 1 bytes because the RDMA
2723         * protocol is completely asynchronous. We do not yet know
2724         * whether an  identified chunk is zero or not because we're
2725         * waiting for other pages to potentially be merged with
2726         * the current chunk. So, we have to call qemu_update_position()
2727         * later on when the actual write occurs.
2728         */
2729        if (bytes_sent) {
2730            *bytes_sent = 1;
2731        }
2732    } else {
2733        uint64_t index, chunk;
2734
2735        /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2736        if (size < 0) {
2737            ret = qemu_rdma_drain_cq(f, rdma);
2738            if (ret < 0) {
2739                fprintf(stderr, "rdma: failed to synchronously drain"
2740                                " completion queue before unregistration.\n");
2741                goto err;
2742            }
2743        }
2744        */
2745
2746        ret = qemu_rdma_search_ram_block(rdma, block_offset,
2747                                         offset, size, &index, &chunk);
2748
2749        if (ret) {
2750            fprintf(stderr, "ram block search failed\n");
2751            goto err;
2752        }
2753
2754        qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2755
2756        /*
2757         * TODO: Synchronous, guaranteed unregistration (should not occur during
2758         * fast-path). Otherwise, unregisters will process on the next call to
2759         * qemu_rdma_drain_cq()
2760        if (size < 0) {
2761            qemu_rdma_unregister_waiting(rdma);
2762        }
2763        */
2764    }
2765
2766    /*
2767     * Drain the Completion Queue if possible, but do not block,
2768     * just poll.
2769     *
2770     * If nothing to poll, the end of the iteration will do this
2771     * again to make sure we don't overflow the request queue.
2772     */
2773    while (1) {
2774        uint64_t wr_id, wr_id_in;
2775        int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2776        if (ret < 0) {
2777            fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2778            goto err;
2779        }
2780
2781        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2782
2783        if (wr_id == RDMA_WRID_NONE) {
2784            break;
2785        }
2786    }
2787
2788    return RAM_SAVE_CONTROL_DELAYED;
2789err:
2790    rdma->error_state = ret;
2791    return ret;
2792}
2793
2794static int qemu_rdma_accept(RDMAContext *rdma)
2795{
2796    RDMACapabilities cap;
2797    struct rdma_conn_param conn_param = {
2798                                            .responder_resources = 2,
2799                                            .private_data = &cap,
2800                                            .private_data_len = sizeof(cap),
2801                                         };
2802    struct rdma_cm_event *cm_event;
2803    struct ibv_context *verbs;
2804    int ret = -EINVAL;
2805    int idx;
2806
2807    ret = rdma_get_cm_event(rdma->channel, &cm_event);
2808    if (ret) {
2809        goto err_rdma_dest_wait;
2810    }
2811
2812    if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2813        rdma_ack_cm_event(cm_event);
2814        goto err_rdma_dest_wait;
2815    }
2816
2817    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2818
2819    network_to_caps(&cap);
2820
2821    if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2822            fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2823                            cap.version);
2824            rdma_ack_cm_event(cm_event);
2825            goto err_rdma_dest_wait;
2826    }
2827
2828    /*
2829     * Respond with only the capabilities this version of QEMU knows about.
2830     */
2831    cap.flags &= known_capabilities;
2832
2833    /*
2834     * Enable the ones that we do know about.
2835     * Add other checks here as new ones are introduced.
2836     */
2837    if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2838        rdma->pin_all = true;
2839    }
2840
2841    rdma->cm_id = cm_event->id;
2842    verbs = cm_event->id->verbs;
2843
2844    rdma_ack_cm_event(cm_event);
2845
2846    DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2847
2848    caps_to_network(&cap);
2849
2850    DPRINTF("verbs context after listen: %p\n", verbs);
2851
2852    if (!rdma->verbs) {
2853        rdma->verbs = verbs;
2854    } else if (rdma->verbs != verbs) {
2855            fprintf(stderr, "ibv context not matching %p, %p!\n",
2856                    rdma->verbs, verbs);
2857            goto err_rdma_dest_wait;
2858    }
2859
2860    qemu_rdma_dump_id("dest_init", verbs);
2861
2862    ret = qemu_rdma_alloc_pd_cq(rdma);
2863    if (ret) {
2864        fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2865        goto err_rdma_dest_wait;
2866    }
2867
2868    ret = qemu_rdma_alloc_qp(rdma);
2869    if (ret) {
2870        fprintf(stderr, "rdma migration: error allocating qp!\n");
2871        goto err_rdma_dest_wait;
2872    }
2873
2874    ret = qemu_rdma_init_ram_blocks(rdma);
2875    if (ret) {
2876        fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2877        goto err_rdma_dest_wait;
2878    }
2879
2880    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2881        ret = qemu_rdma_reg_control(rdma, idx);
2882        if (ret) {
2883            fprintf(stderr, "rdma: error registering %d control!\n", idx);
2884            goto err_rdma_dest_wait;
2885        }
2886    }
2887
2888    qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2889
2890    ret = rdma_accept(rdma->cm_id, &conn_param);
2891    if (ret) {
2892        fprintf(stderr, "rdma_accept returns %d!\n", ret);
2893        goto err_rdma_dest_wait;
2894    }
2895
2896    ret = rdma_get_cm_event(rdma->channel, &cm_event);
2897    if (ret) {
2898        fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2899        goto err_rdma_dest_wait;
2900    }
2901
2902    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2903        fprintf(stderr, "rdma_accept not event established!\n");
2904        rdma_ack_cm_event(cm_event);
2905        goto err_rdma_dest_wait;
2906    }
2907
2908    rdma_ack_cm_event(cm_event);
2909
2910    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2911    if (ret) {
2912        fprintf(stderr, "rdma migration: error posting second control recv!\n");
2913        goto err_rdma_dest_wait;
2914    }
2915
2916    qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2917
2918    return 0;
2919
2920err_rdma_dest_wait:
2921    rdma->error_state = ret;
2922    qemu_rdma_cleanup(rdma);
2923    return ret;
2924}
2925
2926/*
2927 * During each iteration of the migration, we listen for instructions
2928 * by the source VM to perform dynamic page registrations before they
2929 * can perform RDMA operations.
2930 *
2931 * We respond with the 'rkey'.
2932 *
2933 * Keep doing this until the source tells us to stop.
2934 */
2935static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2936                                         uint64_t flags)
2937{
2938    RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2939                               .type = RDMA_CONTROL_REGISTER_RESULT,
2940                               .repeat = 0,
2941                             };
2942    RDMAControlHeader unreg_resp = { .len = 0,
2943                               .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2944                               .repeat = 0,
2945                             };
2946    RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2947                                 .repeat = 1 };
2948    QEMUFileRDMA *rfile = opaque;
2949    RDMAContext *rdma = rfile->rdma;
2950    RDMALocalBlocks *local = &rdma->local_ram_blocks;
2951    RDMAControlHeader head;
2952    RDMARegister *reg, *registers;
2953    RDMACompress *comp;
2954    RDMARegisterResult *reg_result;
2955    static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2956    RDMALocalBlock *block;
2957    void *host_addr;
2958    int ret = 0;
2959    int idx = 0;
2960    int count = 0;
2961    int i = 0;
2962
2963    CHECK_ERROR_STATE();
2964
2965    do {
2966        DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2967
2968        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2969
2970        if (ret < 0) {
2971            break;
2972        }
2973
2974        if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2975            fprintf(stderr, "rdma: Too many requests in this message (%d)."
2976                            "Bailing.\n", head.repeat);
2977            ret = -EIO;
2978            break;
2979        }
2980
2981        switch (head.type) {
2982        case RDMA_CONTROL_COMPRESS:
2983            comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2984            network_to_compress(comp);
2985
2986            DDPRINTF("Zapping zero chunk: %" PRId64
2987                    " bytes, index %d, offset %" PRId64 "\n",
2988                    comp->length, comp->block_idx, comp->offset);
2989            block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2990
2991            host_addr = block->local_host_addr +
2992                            (comp->offset - block->offset);
2993
2994            ram_handle_compressed(host_addr, comp->value, comp->length);
2995            break;
2996
2997        case RDMA_CONTROL_REGISTER_FINISHED:
2998            DDDPRINTF("Current registrations complete.\n");
2999            goto out;
3000
3001        case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3002            DPRINTF("Initial setup info requested.\n");
3003
3004            if (rdma->pin_all) {
3005                ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3006                if (ret) {
3007                    fprintf(stderr, "rdma migration: error dest "
3008                                    "registering ram blocks!\n");
3009                    goto out;
3010                }
3011            }
3012
3013            /*
3014             * Dest uses this to prepare to transmit the RAMBlock descriptions
3015             * to the source VM after connection setup.
3016             * Both sides use the "remote" structure to communicate and update
3017             * their "local" descriptions with what was sent.
3018             */
3019            for (i = 0; i < local->nb_blocks; i++) {
3020                rdma->block[i].remote_host_addr =
3021                    (uint64_t)(local->block[i].local_host_addr);
3022
3023                if (rdma->pin_all) {
3024                    rdma->block[i].remote_rkey = local->block[i].mr->rkey;
3025                }
3026
3027                rdma->block[i].offset = local->block[i].offset;
3028                rdma->block[i].length = local->block[i].length;
3029
3030                remote_block_to_network(&rdma->block[i]);
3031            }
3032
3033            blocks.len = rdma->local_ram_blocks.nb_blocks
3034                                                * sizeof(RDMARemoteBlock);
3035
3036
3037            ret = qemu_rdma_post_send_control(rdma,
3038                                        (uint8_t *) rdma->block, &blocks);
3039
3040            if (ret < 0) {
3041                fprintf(stderr, "rdma migration: error sending remote info!\n");
3042                goto out;
3043            }
3044
3045            break;
3046        case RDMA_CONTROL_REGISTER_REQUEST:
3047            DDPRINTF("There are %d registration requests\n", head.repeat);
3048
3049            reg_resp.repeat = head.repeat;
3050            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3051
3052            for (count = 0; count < head.repeat; count++) {
3053                uint64_t chunk;
3054                uint8_t *chunk_start, *chunk_end;
3055
3056                reg = &registers[count];
3057                network_to_register(reg);
3058
3059                reg_result = &results[count];
3060
3061                DDPRINTF("Registration request (%d): index %d, current_addr %"
3062                         PRIu64 " chunks: %" PRIu64 "\n", count,
3063                         reg->current_index, reg->key.current_addr, reg->chunks);
3064
3065                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3066                if (block->is_ram_block) {
3067                    host_addr = (block->local_host_addr +
3068                                (reg->key.current_addr - block->offset));
3069                    chunk = ram_chunk_index(block->local_host_addr,
3070                                            (uint8_t *) host_addr);
3071                } else {
3072                    chunk = reg->key.chunk;
3073                    host_addr = block->local_host_addr +
3074                        (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3075                }
3076                chunk_start = ram_chunk_start(block, chunk);
3077                chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3078                if (qemu_rdma_register_and_get_keys(rdma, block,
3079                            (uint8_t *)host_addr, NULL, &reg_result->rkey,
3080                            chunk, chunk_start, chunk_end)) {
3081                    fprintf(stderr, "cannot get rkey!\n");
3082                    ret = -EINVAL;
3083                    goto out;
3084                }
3085
3086                reg_result->host_addr = (uint64_t) block->local_host_addr;
3087
3088                DDPRINTF("Registered rkey for this request: %x\n",
3089                                reg_result->rkey);
3090
3091                result_to_network(reg_result);
3092            }
3093
3094            ret = qemu_rdma_post_send_control(rdma,
3095                            (uint8_t *) results, &reg_resp);
3096
3097            if (ret < 0) {
3098                fprintf(stderr, "Failed to send control buffer!\n");
3099                goto out;
3100            }
3101            break;
3102        case RDMA_CONTROL_UNREGISTER_REQUEST:
3103            DDPRINTF("There are %d unregistration requests\n", head.repeat);
3104            unreg_resp.repeat = head.repeat;
3105            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3106
3107            for (count = 0; count < head.repeat; count++) {
3108                reg = &registers[count];
3109                network_to_register(reg);
3110
3111                DDPRINTF("Unregistration request (%d): "
3112                         " index %d, chunk %" PRIu64 "\n",
3113                         count, reg->current_index, reg->key.chunk);
3114
3115                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3116
3117                ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3118                block->pmr[reg->key.chunk] = NULL;
3119
3120                if (ret != 0) {
3121                    perror("rdma unregistration chunk failed");
3122                    ret = -ret;
3123                    goto out;
3124                }
3125
3126                rdma->total_registrations--;
3127
3128                DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
3129                            reg->key.chunk);
3130            }
3131
3132            ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3133
3134            if (ret < 0) {
3135                fprintf(stderr, "Failed to send control buffer!\n");
3136                goto out;
3137            }
3138            break;
3139        case RDMA_CONTROL_REGISTER_RESULT:
3140            fprintf(stderr, "Invalid RESULT message at dest.\n");
3141            ret = -EIO;
3142            goto out;
3143        default:
3144            fprintf(stderr, "Unknown control message %s\n",
3145                                control_desc[head.type]);
3146            ret = -EIO;
3147            goto out;
3148        }
3149    } while (1);
3150out:
3151    if (ret < 0) {
3152        rdma->error_state = ret;
3153    }
3154    return ret;
3155}
3156
3157static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3158                                        uint64_t flags)
3159{
3160    QEMUFileRDMA *rfile = opaque;
3161    RDMAContext *rdma = rfile->rdma;
3162
3163    CHECK_ERROR_STATE();
3164
3165    DDDPRINTF("start section: %" PRIu64 "\n", flags);
3166    qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3167    qemu_fflush(f);
3168
3169    return 0;
3170}
3171
3172/*
3173 * Inform dest that dynamic registrations are done for now.
3174 * First, flush writes, if any.
3175 */
3176static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3177                                       uint64_t flags)
3178{
3179    Error *local_err = NULL, **errp = &local_err;
3180    QEMUFileRDMA *rfile = opaque;
3181    RDMAContext *rdma = rfile->rdma;
3182    RDMAControlHeader head = { .len = 0, .repeat = 1 };
3183    int ret = 0;
3184
3185    CHECK_ERROR_STATE();
3186
3187    qemu_fflush(f);
3188    ret = qemu_rdma_drain_cq(f, rdma);
3189
3190    if (ret < 0) {
3191        goto err;
3192    }
3193
3194    if (flags == RAM_CONTROL_SETUP) {
3195        RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3196        RDMALocalBlocks *local = &rdma->local_ram_blocks;
3197        int reg_result_idx, i, j, nb_remote_blocks;
3198
3199        head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3200        DPRINTF("Sending registration setup for ram blocks...\n");
3201
3202        /*
3203         * Make sure that we parallelize the pinning on both sides.
3204         * For very large guests, doing this serially takes a really
3205         * long time, so we have to 'interleave' the pinning locally
3206         * with the control messages by performing the pinning on this
3207         * side before we receive the control response from the other
3208         * side that the pinning has completed.
3209         */
3210        ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3211                    &reg_result_idx, rdma->pin_all ?
3212                    qemu_rdma_reg_whole_ram_blocks : NULL);
3213        if (ret < 0) {
3214            ERROR(errp, "receiving remote info!");
3215            return ret;
3216        }
3217
3218        nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3219
3220        /*
3221         * The protocol uses two different sets of rkeys (mutually exclusive):
3222         * 1. One key to represent the virtual address of the entire ram block.
3223         *    (dynamic chunk registration disabled - pin everything with one rkey.)
3224         * 2. One to represent individual chunks within a ram block.
3225         *    (dynamic chunk registration enabled - pin individual chunks.)
3226         *
3227         * Once the capability is successfully negotiated, the destination transmits
3228         * the keys to use (or sends them later) including the virtual addresses
3229         * and then propagates the remote ram block descriptions to his local copy.
3230         */
3231
3232        if (local->nb_blocks != nb_remote_blocks) {
3233            ERROR(errp, "ram blocks mismatch #1! "
3234                        "Your QEMU command line parameters are probably "
3235                        "not identical on both the source and destination.");
3236            return -EINVAL;
3237        }
3238
3239        qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3240        memcpy(rdma->block,
3241            rdma->wr_data[reg_result_idx].control_curr, resp.len);
3242        for (i = 0; i < nb_remote_blocks; i++) {
3243            network_to_remote_block(&rdma->block[i]);
3244
3245            /* search local ram blocks */
3246            for (j = 0; j < local->nb_blocks; j++) {
3247                if (rdma->block[i].offset != local->block[j].offset) {
3248                    continue;
3249                }
3250
3251                if (rdma->block[i].length != local->block[j].length) {
3252                    ERROR(errp, "ram blocks mismatch #2! "
3253                        "Your QEMU command line parameters are probably "
3254                        "not identical on both the source and destination.");
3255                    return -EINVAL;
3256                }
3257                local->block[j].remote_host_addr =
3258                        rdma->block[i].remote_host_addr;
3259                local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3260                break;
3261            }
3262
3263            if (j >= local->nb_blocks) {
3264                ERROR(errp, "ram blocks mismatch #3! "
3265                        "Your QEMU command line parameters are probably "
3266                        "not identical on both the source and destination.");
3267                return -EINVAL;
3268            }
3269        }
3270    }
3271
3272    DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3273
3274    head.type = RDMA_CONTROL_REGISTER_FINISHED;
3275    ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3276
3277    if (ret < 0) {
3278        goto err;
3279    }
3280
3281    return 0;
3282err:
3283    rdma->error_state = ret;
3284    return ret;
3285}
3286
3287static int qemu_rdma_get_fd(void *opaque)
3288{
3289    QEMUFileRDMA *rfile = opaque;
3290    RDMAContext *rdma = rfile->rdma;
3291
3292    return rdma->comp_channel->fd;
3293}
3294
3295const QEMUFileOps rdma_read_ops = {
3296    .get_buffer    = qemu_rdma_get_buffer,
3297    .get_fd        = qemu_rdma_get_fd,
3298    .close         = qemu_rdma_close,
3299    .hook_ram_load = qemu_rdma_registration_handle,
3300};
3301
3302const QEMUFileOps rdma_write_ops = {
3303    .put_buffer         = qemu_rdma_put_buffer,
3304    .close              = qemu_rdma_close,
3305    .before_ram_iterate = qemu_rdma_registration_start,
3306    .after_ram_iterate  = qemu_rdma_registration_stop,
3307    .save_page          = qemu_rdma_save_page,
3308};
3309
3310static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3311{
3312    QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3313
3314    if (qemu_file_mode_is_not_valid(mode)) {
3315        return NULL;
3316    }
3317
3318    r->rdma = rdma;
3319
3320    if (mode[0] == 'w') {
3321        r->file = qemu_fopen_ops(r, &rdma_write_ops);
3322    } else {
3323        r->file = qemu_fopen_ops(r, &rdma_read_ops);
3324    }
3325
3326    return r->file;
3327}
3328
3329static void rdma_accept_incoming_migration(void *opaque)
3330{
3331    RDMAContext *rdma = opaque;
3332    int ret;
3333    QEMUFile *f;
3334    Error *local_err = NULL, **errp = &local_err;
3335
3336    DPRINTF("Accepting rdma connection...\n");
3337    ret = qemu_rdma_accept(rdma);
3338
3339    if (ret) {
3340        ERROR(errp, "RDMA Migration initialization failed!");
3341        return;
3342    }
3343
3344    DPRINTF("Accepted migration\n");
3345
3346    f = qemu_fopen_rdma(rdma, "rb");
3347    if (f == NULL) {
3348        ERROR(errp, "could not qemu_fopen_rdma!");
3349        qemu_rdma_cleanup(rdma);
3350        return;
3351    }
3352
3353    rdma->migration_started_on_destination = 1;
3354    process_incoming_migration(f);
3355}
3356
3357void rdma_start_incoming_migration(const char *host_port, Error **errp)
3358{
3359    int ret;
3360    RDMAContext *rdma;
3361    Error *local_err = NULL;
3362
3363    DPRINTF("Starting RDMA-based incoming migration\n");
3364    rdma = qemu_rdma_data_init(host_port, &local_err);
3365
3366    if (rdma == NULL) {
3367        goto err;
3368    }
3369
3370    ret = qemu_rdma_dest_init(rdma, &local_err);
3371
3372    if (ret) {
3373        goto err;
3374    }
3375
3376    DPRINTF("qemu_rdma_dest_init success\n");
3377
3378    ret = rdma_listen(rdma->listen_id, 5);
3379
3380    if (ret) {
3381        ERROR(errp, "listening on socket!");
3382        goto err;
3383    }
3384
3385    DPRINTF("rdma_listen success\n");
3386
3387    qemu_set_fd_handler2(rdma->channel->fd, NULL,
3388                         rdma_accept_incoming_migration, NULL,
3389                            (void *)(intptr_t) rdma);
3390    return;
3391err:
3392    error_propagate(errp, local_err);
3393    g_free(rdma);
3394}
3395
3396void rdma_start_outgoing_migration(void *opaque,
3397                            const char *host_port, Error **errp)
3398{
3399    MigrationState *s = opaque;
3400    Error *local_err = NULL, **temp = &local_err;
3401    RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3402    int ret = 0;
3403
3404    if (rdma == NULL) {
3405        ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3406        goto err;
3407    }
3408
3409    ret = qemu_rdma_source_init(rdma, &local_err,
3410        s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3411
3412    if (ret) {
3413        goto err;
3414    }
3415
3416    DPRINTF("qemu_rdma_source_init success\n");
3417    ret = qemu_rdma_connect(rdma, &local_err);
3418
3419    if (ret) {
3420        goto err;
3421    }
3422
3423    DPRINTF("qemu_rdma_source_connect success\n");
3424
3425    s->file = qemu_fopen_rdma(rdma, "wb");
3426    migrate_fd_connect(s);
3427    return;
3428err:
3429    error_propagate(errp, local_err);
3430    g_free(rdma);
3431    migrate_fd_error(s);
3432}
3433