qemu/qapi-schema.json
<<
>>
Prefs
   1# -*- Mode: Python -*-
   2##
   3# = Introduction
   4#
   5# This document describes all commands currently supported by QMP.
   6#
   7# Most of the time their usage is exactly the same as in the user Monitor, this
   8# means that any other document which also describe commands (the manpage,
   9# QEMU's manual, etc) can and should be consulted.
  10#
  11# QMP has two types of commands: regular and query commands. Regular commands
  12# usually change the Virtual Machine's state someway, while query commands just
  13# return information. The sections below are divided accordingly.
  14#
  15# It's important to observe that all communication examples are formatted in
  16# a reader-friendly way, so that they're easier to understand. However, in real
  17# protocol usage, they're emitted as a single line.
  18#
  19# Also, the following notation is used to denote data flow:
  20#
  21# Example:
  22#
  23# | -> data issued by the Client
  24# | <- Server data response
  25#
  26# Please, refer to the QMP specification (docs/interop/qmp-spec.txt) for
  27# detailed information on the Server command and response formats.
  28#
  29# = Stability Considerations
  30#
  31# The current QMP command set (described in this file) may be useful for a
  32# number of use cases, however it's limited and several commands have bad
  33# defined semantics, specially with regard to command completion.
  34#
  35# These problems are going to be solved incrementally in the next QEMU releases
  36# and we're going to establish a deprecation policy for badly defined commands.
  37#
  38# If you're planning to adopt QMP, please observe the following:
  39#
  40#     1. The deprecation policy will take effect and be documented soon, please
  41#        check the documentation of each used command as soon as a new release of
  42#        QEMU is available
  43#
  44#     2. DO NOT rely on anything which is not explicit documented
  45#
  46#     3. Errors, in special, are not documented. Applications should NOT check
  47#        for specific errors classes or data (it's strongly recommended to only
  48#        check for the "error" key)
  49#
  50##
  51
  52{ 'pragma': { 'doc-required': true } }
  53
  54# Whitelists to permit QAPI rule violations; think twice before you
  55# add to them!
  56{ 'pragma': {
  57    # Commands allowed to return a non-dictionary:
  58    'returns-whitelist': [
  59        'human-monitor-command',
  60        'qom-get',
  61        'query-migrate-cache-size',
  62        'query-tpm-models',
  63        'query-tpm-types',
  64        'ringbuf-read' ],
  65    'name-case-whitelist': [
  66        'ACPISlotType',         # DIMM, visible through query-acpi-ospm-status
  67        'CpuInfoMIPS',          # PC, visible through query-cpu
  68        'CpuInfoTricore',       # PC, visible through query-cpu
  69        'QapiErrorClass',       # all members, visible through errors
  70        'UuidInfo',             # UUID, visible through query-uuid
  71        'X86CPURegister32',     # all members, visible indirectly through qom-get
  72        'q_obj_CpuInfo-base'    # CPU, visible through query-cpu
  73    ] } }
  74
  75# Documentation generated with qapi2texi.py is in source order, with
  76# included sub-schemas inserted at the first include directive
  77# (subsequent include directives have no effect).  To get a sane and
  78# stable order, it's best to include each sub-schema just once, or
  79# include it first in qapi-schema.json.
  80
  81{ 'include': 'qapi/common.json' }
  82{ 'include': 'qapi/sockets.json' }
  83{ 'include': 'qapi/run-state.json' }
  84{ 'include': 'qapi/crypto.json' }
  85{ 'include': 'qapi/block.json' }
  86{ 'include': 'qapi/char.json' }
  87{ 'include': 'qapi/net.json' }
  88{ 'include': 'qapi/rocker.json' }
  89{ 'include': 'qapi/tpm.json' }
  90{ 'include': 'qapi/ui.json' }
  91{ 'include': 'qapi/migration.json' }
  92{ 'include': 'qapi/transaction.json' }
  93{ 'include': 'qapi/trace.json' }
  94{ 'include': 'qapi/introspect.json' }
  95
  96##
  97# = Miscellanea
  98##
  99
 100##
 101# @qmp_capabilities:
 102#
 103# Enable QMP capabilities.
 104#
 105# Arguments: None.
 106#
 107# Example:
 108#
 109# -> { "execute": "qmp_capabilities" }
 110# <- { "return": {} }
 111#
 112# Notes: This command is valid exactly when first connecting: it must be
 113# issued before any other command will be accepted, and will fail once the
 114# monitor is accepting other commands. (see qemu docs/interop/qmp-spec.txt)
 115#
 116# Since: 0.13
 117#
 118##
 119{ 'command': 'qmp_capabilities' }
 120
 121##
 122# @VersionTriple:
 123#
 124# A three-part version number.
 125#
 126# @major:  The major version number.
 127#
 128# @minor:  The minor version number.
 129#
 130# @micro:  The micro version number.
 131#
 132# Since: 2.4
 133##
 134{ 'struct': 'VersionTriple',
 135  'data': {'major': 'int', 'minor': 'int', 'micro': 'int'} }
 136
 137
 138##
 139# @VersionInfo:
 140#
 141# A description of QEMU's version.
 142#
 143# @qemu:        The version of QEMU.  By current convention, a micro
 144#               version of 50 signifies a development branch.  A micro version
 145#               greater than or equal to 90 signifies a release candidate for
 146#               the next minor version.  A micro version of less than 50
 147#               signifies a stable release.
 148#
 149# @package:     QEMU will always set this field to an empty string.  Downstream
 150#               versions of QEMU should set this to a non-empty string.  The
 151#               exact format depends on the downstream however it highly
 152#               recommended that a unique name is used.
 153#
 154# Since: 0.14.0
 155##
 156{ 'struct': 'VersionInfo',
 157  'data': {'qemu': 'VersionTriple', 'package': 'str'} }
 158
 159##
 160# @query-version:
 161#
 162# Returns the current version of QEMU.
 163#
 164# Returns:  A @VersionInfo object describing the current version of QEMU.
 165#
 166# Since: 0.14.0
 167#
 168# Example:
 169#
 170# -> { "execute": "query-version" }
 171# <- {
 172#       "return":{
 173#          "qemu":{
 174#             "major":0,
 175#             "minor":11,
 176#             "micro":5
 177#          },
 178#          "package":""
 179#       }
 180#    }
 181#
 182##
 183{ 'command': 'query-version', 'returns': 'VersionInfo' }
 184
 185##
 186# @CommandInfo:
 187#
 188# Information about a QMP command
 189#
 190# @name: The command name
 191#
 192# Since: 0.14.0
 193##
 194{ 'struct': 'CommandInfo', 'data': {'name': 'str'} }
 195
 196##
 197# @query-commands:
 198#
 199# Return a list of supported QMP commands by this server
 200#
 201# Returns: A list of @CommandInfo for all supported commands
 202#
 203# Since: 0.14.0
 204#
 205# Example:
 206#
 207# -> { "execute": "query-commands" }
 208# <- {
 209#      "return":[
 210#         {
 211#            "name":"query-balloon"
 212#         },
 213#         {
 214#            "name":"system_powerdown"
 215#         }
 216#      ]
 217#    }
 218#
 219# Note: This example has been shortened as the real response is too long.
 220#
 221##
 222{ 'command': 'query-commands', 'returns': ['CommandInfo'] }
 223
 224##
 225# @LostTickPolicy:
 226#
 227# Policy for handling lost ticks in timer devices.
 228#
 229# @discard: throw away the missed tick(s) and continue with future injection
 230#           normally.  Guest time may be delayed, unless the OS has explicit
 231#           handling of lost ticks
 232#
 233# @delay: continue to deliver ticks at the normal rate.  Guest time will be
 234#         delayed due to the late tick
 235#
 236# @merge: merge the missed tick(s) into one tick and inject.  Guest time
 237#         may be delayed, depending on how the OS reacts to the merging
 238#         of ticks
 239#
 240# @slew: deliver ticks at a higher rate to catch up with the missed tick. The
 241#        guest time should not be delayed once catchup is complete.
 242#
 243# Since: 2.0
 244##
 245{ 'enum': 'LostTickPolicy',
 246  'data': ['discard', 'delay', 'merge', 'slew' ] }
 247
 248##
 249# @add_client:
 250#
 251# Allow client connections for VNC, Spice and socket based
 252# character devices to be passed in to QEMU via SCM_RIGHTS.
 253#
 254# @protocol: protocol name. Valid names are "vnc", "spice" or the
 255#            name of a character device (eg. from -chardev id=XXXX)
 256#
 257# @fdname: file descriptor name previously passed via 'getfd' command
 258#
 259# @skipauth: whether to skip authentication. Only applies
 260#            to "vnc" and "spice" protocols
 261#
 262# @tls: whether to perform TLS. Only applies to the "spice"
 263#       protocol
 264#
 265# Returns: nothing on success.
 266#
 267# Since: 0.14.0
 268#
 269# Example:
 270#
 271# -> { "execute": "add_client", "arguments": { "protocol": "vnc",
 272#                                              "fdname": "myclient" } }
 273# <- { "return": {} }
 274#
 275##
 276{ 'command': 'add_client',
 277  'data': { 'protocol': 'str', 'fdname': 'str', '*skipauth': 'bool',
 278            '*tls': 'bool' } }
 279
 280##
 281# @NameInfo:
 282#
 283# Guest name information.
 284#
 285# @name: The name of the guest
 286#
 287# Since: 0.14.0
 288##
 289{ 'struct': 'NameInfo', 'data': {'*name': 'str'} }
 290
 291##
 292# @query-name:
 293#
 294# Return the name information of a guest.
 295#
 296# Returns: @NameInfo of the guest
 297#
 298# Since: 0.14.0
 299#
 300# Example:
 301#
 302# -> { "execute": "query-name" }
 303# <- { "return": { "name": "qemu-name" } }
 304#
 305##
 306{ 'command': 'query-name', 'returns': 'NameInfo' }
 307
 308##
 309# @KvmInfo:
 310#
 311# Information about support for KVM acceleration
 312#
 313# @enabled: true if KVM acceleration is active
 314#
 315# @present: true if KVM acceleration is built into this executable
 316#
 317# Since: 0.14.0
 318##
 319{ 'struct': 'KvmInfo', 'data': {'enabled': 'bool', 'present': 'bool'} }
 320
 321##
 322# @query-kvm:
 323#
 324# Returns information about KVM acceleration
 325#
 326# Returns: @KvmInfo
 327#
 328# Since: 0.14.0
 329#
 330# Example:
 331#
 332# -> { "execute": "query-kvm" }
 333# <- { "return": { "enabled": true, "present": true } }
 334#
 335##
 336{ 'command': 'query-kvm', 'returns': 'KvmInfo' }
 337
 338##
 339# @UuidInfo:
 340#
 341# Guest UUID information (Universally Unique Identifier).
 342#
 343# @UUID: the UUID of the guest
 344#
 345# Since: 0.14.0
 346#
 347# Notes: If no UUID was specified for the guest, a null UUID is returned.
 348##
 349{ 'struct': 'UuidInfo', 'data': {'UUID': 'str'} }
 350
 351##
 352# @query-uuid:
 353#
 354# Query the guest UUID information.
 355#
 356# Returns: The @UuidInfo for the guest
 357#
 358# Since: 0.14.0
 359#
 360# Example:
 361#
 362# -> { "execute": "query-uuid" }
 363# <- { "return": { "UUID": "550e8400-e29b-41d4-a716-446655440000" } }
 364#
 365##
 366{ 'command': 'query-uuid', 'returns': 'UuidInfo' }
 367
 368##
 369# @EventInfo:
 370#
 371# Information about a QMP event
 372#
 373# @name: The event name
 374#
 375# Since: 1.2.0
 376##
 377{ 'struct': 'EventInfo', 'data': {'name': 'str'} }
 378
 379##
 380# @query-events:
 381#
 382# Return a list of supported QMP events by this server
 383#
 384# Returns: A list of @EventInfo for all supported events
 385#
 386# Since: 1.2.0
 387#
 388# Example:
 389#
 390# -> { "execute": "query-events" }
 391# <- {
 392#      "return": [
 393#          {
 394#             "name":"SHUTDOWN"
 395#          },
 396#          {
 397#             "name":"RESET"
 398#          }
 399#       ]
 400#    }
 401#
 402# Note: This example has been shortened as the real response is too long.
 403#
 404##
 405{ 'command': 'query-events', 'returns': ['EventInfo'] }
 406
 407##
 408# @CpuInfoArch:
 409#
 410# An enumeration of cpu types that enable additional information during
 411# @query-cpus.
 412#
 413# Since: 2.6
 414##
 415{ 'enum': 'CpuInfoArch',
 416  'data': ['x86', 'sparc', 'ppc', 'mips', 'tricore', 'other' ] }
 417
 418##
 419# @CpuInfo:
 420#
 421# Information about a virtual CPU
 422#
 423# @CPU: the index of the virtual CPU
 424#
 425# @current: this only exists for backwards compatibility and should be ignored
 426#
 427# @halted: true if the virtual CPU is in the halt state.  Halt usually refers
 428#          to a processor specific low power mode.
 429#
 430# @qom_path: path to the CPU object in the QOM tree (since 2.4)
 431#
 432# @thread_id: ID of the underlying host thread
 433#
 434# @props: properties describing to which node/socket/core/thread
 435#         virtual CPU belongs to, provided if supported by board (since 2.10)
 436#
 437# @arch: architecture of the cpu, which determines which additional fields
 438#        will be listed (since 2.6)
 439#
 440# Since: 0.14.0
 441#
 442# Notes: @halted is a transient state that changes frequently.  By the time the
 443#        data is sent to the client, the guest may no longer be halted.
 444##
 445{ 'union': 'CpuInfo',
 446  'base': {'CPU': 'int', 'current': 'bool', 'halted': 'bool',
 447           'qom_path': 'str', 'thread_id': 'int',
 448           '*props': 'CpuInstanceProperties', 'arch': 'CpuInfoArch' },
 449  'discriminator': 'arch',
 450  'data': { 'x86': 'CpuInfoX86',
 451            'sparc': 'CpuInfoSPARC',
 452            'ppc': 'CpuInfoPPC',
 453            'mips': 'CpuInfoMIPS',
 454            'tricore': 'CpuInfoTricore',
 455            'other': 'CpuInfoOther' } }
 456
 457##
 458# @CpuInfoX86:
 459#
 460# Additional information about a virtual i386 or x86_64 CPU
 461#
 462# @pc: the 64-bit instruction pointer
 463#
 464# Since: 2.6
 465##
 466{ 'struct': 'CpuInfoX86', 'data': { 'pc': 'int' } }
 467
 468##
 469# @CpuInfoSPARC:
 470#
 471# Additional information about a virtual SPARC CPU
 472#
 473# @pc: the PC component of the instruction pointer
 474#
 475# @npc: the NPC component of the instruction pointer
 476#
 477# Since: 2.6
 478##
 479{ 'struct': 'CpuInfoSPARC', 'data': { 'pc': 'int', 'npc': 'int' } }
 480
 481##
 482# @CpuInfoPPC:
 483#
 484# Additional information about a virtual PPC CPU
 485#
 486# @nip: the instruction pointer
 487#
 488# Since: 2.6
 489##
 490{ 'struct': 'CpuInfoPPC', 'data': { 'nip': 'int' } }
 491
 492##
 493# @CpuInfoMIPS:
 494#
 495# Additional information about a virtual MIPS CPU
 496#
 497# @PC: the instruction pointer
 498#
 499# Since: 2.6
 500##
 501{ 'struct': 'CpuInfoMIPS', 'data': { 'PC': 'int' } }
 502
 503##
 504# @CpuInfoTricore:
 505#
 506# Additional information about a virtual Tricore CPU
 507#
 508# @PC: the instruction pointer
 509#
 510# Since: 2.6
 511##
 512{ 'struct': 'CpuInfoTricore', 'data': { 'PC': 'int' } }
 513
 514##
 515# @CpuInfoOther:
 516#
 517# No additional information is available about the virtual CPU
 518#
 519# Since: 2.6
 520#
 521##
 522{ 'struct': 'CpuInfoOther', 'data': { } }
 523
 524##
 525# @query-cpus:
 526#
 527# Returns a list of information about each virtual CPU.
 528#
 529# Returns: a list of @CpuInfo for each virtual CPU
 530#
 531# Since: 0.14.0
 532#
 533# Example:
 534#
 535# -> { "execute": "query-cpus" }
 536# <- { "return": [
 537#          {
 538#             "CPU":0,
 539#             "current":true,
 540#             "halted":false,
 541#             "qom_path":"/machine/unattached/device[0]",
 542#             "arch":"x86",
 543#             "pc":3227107138,
 544#             "thread_id":3134
 545#          },
 546#          {
 547#             "CPU":1,
 548#             "current":false,
 549#             "halted":true,
 550#             "qom_path":"/machine/unattached/device[2]",
 551#             "arch":"x86",
 552#             "pc":7108165,
 553#             "thread_id":3135
 554#          }
 555#       ]
 556#    }
 557#
 558##
 559{ 'command': 'query-cpus', 'returns': ['CpuInfo'] }
 560
 561##
 562# @IOThreadInfo:
 563#
 564# Information about an iothread
 565#
 566# @id: the identifier of the iothread
 567#
 568# @thread-id: ID of the underlying host thread
 569#
 570# @poll-max-ns: maximum polling time in ns, 0 means polling is disabled
 571#               (since 2.9)
 572#
 573# @poll-grow: how many ns will be added to polling time, 0 means that it's not
 574#             configured (since 2.9)
 575#
 576# @poll-shrink: how many ns will be removed from polling time, 0 means that
 577#               it's not configured (since 2.9)
 578#
 579# Since: 2.0
 580##
 581{ 'struct': 'IOThreadInfo',
 582  'data': {'id': 'str',
 583           'thread-id': 'int',
 584           'poll-max-ns': 'int',
 585           'poll-grow': 'int',
 586           'poll-shrink': 'int' } }
 587
 588##
 589# @query-iothreads:
 590#
 591# Returns a list of information about each iothread.
 592#
 593# Note: this list excludes the QEMU main loop thread, which is not declared
 594# using the -object iothread command-line option.  It is always the main thread
 595# of the process.
 596#
 597# Returns: a list of @IOThreadInfo for each iothread
 598#
 599# Since: 2.0
 600#
 601# Example:
 602#
 603# -> { "execute": "query-iothreads" }
 604# <- { "return": [
 605#          {
 606#             "id":"iothread0",
 607#             "thread-id":3134
 608#          },
 609#          {
 610#             "id":"iothread1",
 611#             "thread-id":3135
 612#          }
 613#       ]
 614#    }
 615#
 616##
 617{ 'command': 'query-iothreads', 'returns': ['IOThreadInfo'] }
 618
 619##
 620# @BalloonInfo:
 621#
 622# Information about the guest balloon device.
 623#
 624# @actual: the number of bytes the balloon currently contains
 625#
 626# Since: 0.14.0
 627#
 628##
 629{ 'struct': 'BalloonInfo', 'data': {'actual': 'int' } }
 630
 631##
 632# @query-balloon:
 633#
 634# Return information about the balloon device.
 635#
 636# Returns: @BalloonInfo on success
 637#
 638#          If the balloon driver is enabled but not functional because the KVM
 639#          kernel module cannot support it, KvmMissingCap
 640#
 641#          If no balloon device is present, DeviceNotActive
 642#
 643# Since: 0.14.0
 644#
 645# Example:
 646#
 647# -> { "execute": "query-balloon" }
 648# <- { "return": {
 649#          "actual": 1073741824,
 650#       }
 651#    }
 652#
 653##
 654{ 'command': 'query-balloon', 'returns': 'BalloonInfo' }
 655
 656##
 657# @BALLOON_CHANGE:
 658#
 659# Emitted when the guest changes the actual BALLOON level. This value is
 660# equivalent to the @actual field return by the 'query-balloon' command
 661#
 662# @actual: actual level of the guest memory balloon in bytes
 663#
 664# Note: this event is rate-limited.
 665#
 666# Since: 1.2
 667#
 668# Example:
 669#
 670# <- { "event": "BALLOON_CHANGE",
 671#      "data": { "actual": 944766976 },
 672#      "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
 673#
 674##
 675{ 'event': 'BALLOON_CHANGE',
 676  'data': { 'actual': 'int' } }
 677
 678##
 679# @PciMemoryRange:
 680#
 681# A PCI device memory region
 682#
 683# @base: the starting address (guest physical)
 684#
 685# @limit: the ending address (guest physical)
 686#
 687# Since: 0.14.0
 688##
 689{ 'struct': 'PciMemoryRange', 'data': {'base': 'int', 'limit': 'int'} }
 690
 691##
 692# @PciMemoryRegion:
 693#
 694# Information about a PCI device I/O region.
 695#
 696# @bar: the index of the Base Address Register for this region
 697#
 698# @type: 'io' if the region is a PIO region
 699#        'memory' if the region is a MMIO region
 700#
 701# @size: memory size
 702#
 703# @prefetch: if @type is 'memory', true if the memory is prefetchable
 704#
 705# @mem_type_64: if @type is 'memory', true if the BAR is 64-bit
 706#
 707# Since: 0.14.0
 708##
 709{ 'struct': 'PciMemoryRegion',
 710  'data': {'bar': 'int', 'type': 'str', 'address': 'int', 'size': 'int',
 711           '*prefetch': 'bool', '*mem_type_64': 'bool' } }
 712
 713##
 714# @PciBusInfo:
 715#
 716# Information about a bus of a PCI Bridge device
 717#
 718# @number: primary bus interface number.  This should be the number of the
 719#          bus the device resides on.
 720#
 721# @secondary: secondary bus interface number.  This is the number of the
 722#             main bus for the bridge
 723#
 724# @subordinate: This is the highest number bus that resides below the
 725#               bridge.
 726#
 727# @io_range: The PIO range for all devices on this bridge
 728#
 729# @memory_range: The MMIO range for all devices on this bridge
 730#
 731# @prefetchable_range: The range of prefetchable MMIO for all devices on
 732#                      this bridge
 733#
 734# Since: 2.4
 735##
 736{ 'struct': 'PciBusInfo',
 737  'data': {'number': 'int', 'secondary': 'int', 'subordinate': 'int',
 738           'io_range': 'PciMemoryRange',
 739           'memory_range': 'PciMemoryRange',
 740           'prefetchable_range': 'PciMemoryRange' } }
 741
 742##
 743# @PciBridgeInfo:
 744#
 745# Information about a PCI Bridge device
 746#
 747# @bus: information about the bus the device resides on
 748#
 749# @devices: a list of @PciDeviceInfo for each device on this bridge
 750#
 751# Since: 0.14.0
 752##
 753{ 'struct': 'PciBridgeInfo',
 754  'data': {'bus': 'PciBusInfo', '*devices': ['PciDeviceInfo']} }
 755
 756##
 757# @PciDeviceClass:
 758#
 759# Information about the Class of a PCI device
 760#
 761# @desc: a string description of the device's class
 762#
 763# @class: the class code of the device
 764#
 765# Since: 2.4
 766##
 767{ 'struct': 'PciDeviceClass',
 768  'data': {'*desc': 'str', 'class': 'int'} }
 769
 770##
 771# @PciDeviceId:
 772#
 773# Information about the Id of a PCI device
 774#
 775# @device: the PCI device id
 776#
 777# @vendor: the PCI vendor id
 778#
 779# Since: 2.4
 780##
 781{ 'struct': 'PciDeviceId',
 782  'data': {'device': 'int', 'vendor': 'int'} }
 783
 784##
 785# @PciDeviceInfo:
 786#
 787# Information about a PCI device
 788#
 789# @bus: the bus number of the device
 790#
 791# @slot: the slot the device is located in
 792#
 793# @function: the function of the slot used by the device
 794#
 795# @class_info: the class of the device
 796#
 797# @id: the PCI device id
 798#
 799# @irq: if an IRQ is assigned to the device, the IRQ number
 800#
 801# @qdev_id: the device name of the PCI device
 802#
 803# @pci_bridge: if the device is a PCI bridge, the bridge information
 804#
 805# @regions: a list of the PCI I/O regions associated with the device
 806#
 807# Notes: the contents of @class_info.desc are not stable and should only be
 808#        treated as informational.
 809#
 810# Since: 0.14.0
 811##
 812{ 'struct': 'PciDeviceInfo',
 813  'data': {'bus': 'int', 'slot': 'int', 'function': 'int',
 814           'class_info': 'PciDeviceClass', 'id': 'PciDeviceId',
 815           '*irq': 'int', 'qdev_id': 'str', '*pci_bridge': 'PciBridgeInfo',
 816           'regions': ['PciMemoryRegion']} }
 817
 818##
 819# @PciInfo:
 820#
 821# Information about a PCI bus
 822#
 823# @bus: the bus index
 824#
 825# @devices: a list of devices on this bus
 826#
 827# Since: 0.14.0
 828##
 829{ 'struct': 'PciInfo', 'data': {'bus': 'int', 'devices': ['PciDeviceInfo']} }
 830
 831##
 832# @query-pci:
 833#
 834# Return information about the PCI bus topology of the guest.
 835#
 836# Returns: a list of @PciInfo for each PCI bus. Each bus is
 837# represented by a json-object, which has a key with a json-array of
 838# all PCI devices attached to it. Each device is represented by a
 839# json-object.
 840#
 841# Since: 0.14.0
 842#
 843# Example:
 844#
 845# -> { "execute": "query-pci" }
 846# <- { "return": [
 847#          {
 848#             "bus": 0,
 849#             "devices": [
 850#                {
 851#                   "bus": 0,
 852#                   "qdev_id": "",
 853#                   "slot": 0,
 854#                   "class_info": {
 855#                      "class": 1536,
 856#                      "desc": "Host bridge"
 857#                   },
 858#                   "id": {
 859#                      "device": 32902,
 860#                      "vendor": 4663
 861#                   },
 862#                   "function": 0,
 863#                   "regions": [
 864#                   ]
 865#                },
 866#                {
 867#                   "bus": 0,
 868#                   "qdev_id": "",
 869#                   "slot": 1,
 870#                   "class_info": {
 871#                      "class": 1537,
 872#                      "desc": "ISA bridge"
 873#                   },
 874#                   "id": {
 875#                      "device": 32902,
 876#                      "vendor": 28672
 877#                   },
 878#                   "function": 0,
 879#                   "regions": [
 880#                   ]
 881#                },
 882#                {
 883#                   "bus": 0,
 884#                   "qdev_id": "",
 885#                   "slot": 1,
 886#                   "class_info": {
 887#                      "class": 257,
 888#                      "desc": "IDE controller"
 889#                   },
 890#                   "id": {
 891#                      "device": 32902,
 892#                      "vendor": 28688
 893#                   },
 894#                   "function": 1,
 895#                   "regions": [
 896#                      {
 897#                         "bar": 4,
 898#                         "size": 16,
 899#                         "address": 49152,
 900#                         "type": "io"
 901#                      }
 902#                   ]
 903#                },
 904#                {
 905#                   "bus": 0,
 906#                   "qdev_id": "",
 907#                   "slot": 2,
 908#                   "class_info": {
 909#                      "class": 768,
 910#                      "desc": "VGA controller"
 911#                   },
 912#                   "id": {
 913#                      "device": 4115,
 914#                      "vendor": 184
 915#                   },
 916#                   "function": 0,
 917#                   "regions": [
 918#                      {
 919#                         "prefetch": true,
 920#                         "mem_type_64": false,
 921#                         "bar": 0,
 922#                         "size": 33554432,
 923#                         "address": 4026531840,
 924#                         "type": "memory"
 925#                      },
 926#                      {
 927#                         "prefetch": false,
 928#                         "mem_type_64": false,
 929#                         "bar": 1,
 930#                         "size": 4096,
 931#                         "address": 4060086272,
 932#                         "type": "memory"
 933#                      },
 934#                      {
 935#                         "prefetch": false,
 936#                         "mem_type_64": false,
 937#                         "bar": 6,
 938#                         "size": 65536,
 939#                         "address": -1,
 940#                         "type": "memory"
 941#                      }
 942#                   ]
 943#                },
 944#                {
 945#                   "bus": 0,
 946#                   "qdev_id": "",
 947#                   "irq": 11,
 948#                   "slot": 4,
 949#                   "class_info": {
 950#                      "class": 1280,
 951#                      "desc": "RAM controller"
 952#                   },
 953#                   "id": {
 954#                      "device": 6900,
 955#                      "vendor": 4098
 956#                   },
 957#                   "function": 0,
 958#                   "regions": [
 959#                      {
 960#                         "bar": 0,
 961#                         "size": 32,
 962#                         "address": 49280,
 963#                         "type": "io"
 964#                      }
 965#                   ]
 966#                }
 967#             ]
 968#          }
 969#       ]
 970#    }
 971#
 972# Note: This example has been shortened as the real response is too long.
 973#
 974##
 975{ 'command': 'query-pci', 'returns': ['PciInfo'] }
 976
 977##
 978# @quit:
 979#
 980# This command will cause the QEMU process to exit gracefully.  While every
 981# attempt is made to send the QMP response before terminating, this is not
 982# guaranteed.  When using this interface, a premature EOF would not be
 983# unexpected.
 984#
 985# Since: 0.14.0
 986#
 987# Example:
 988#
 989# -> { "execute": "quit" }
 990# <- { "return": {} }
 991##
 992{ 'command': 'quit' }
 993
 994##
 995# @stop:
 996#
 997# Stop all guest VCPU execution.
 998#
 999# Since:  0.14.0
1000#
1001# Notes:  This function will succeed even if the guest is already in the stopped
1002#         state.  In "inmigrate" state, it will ensure that the guest
1003#         remains paused once migration finishes, as if the -S option was
1004#         passed on the command line.
1005#
1006# Example:
1007#
1008# -> { "execute": "stop" }
1009# <- { "return": {} }
1010#
1011##
1012{ 'command': 'stop' }
1013
1014##
1015# @system_reset:
1016#
1017# Performs a hard reset of a guest.
1018#
1019# Since: 0.14.0
1020#
1021# Example:
1022#
1023# -> { "execute": "system_reset" }
1024# <- { "return": {} }
1025#
1026##
1027{ 'command': 'system_reset' }
1028
1029##
1030# @system_powerdown:
1031#
1032# Requests that a guest perform a powerdown operation.
1033#
1034# Since: 0.14.0
1035#
1036# Notes: A guest may or may not respond to this command.  This command
1037#        returning does not indicate that a guest has accepted the request or
1038#        that it has shut down.  Many guests will respond to this command by
1039#        prompting the user in some way.
1040# Example:
1041#
1042# -> { "execute": "system_powerdown" }
1043# <- { "return": {} }
1044#
1045##
1046{ 'command': 'system_powerdown' }
1047
1048##
1049# @cpu:
1050#
1051# This command is a nop that is only provided for the purposes of compatibility.
1052#
1053# Since: 0.14.0
1054#
1055# Notes: Do not use this command.
1056##
1057{ 'command': 'cpu', 'data': {'index': 'int'} }
1058
1059##
1060# @cpu-add:
1061#
1062# Adds CPU with specified ID
1063#
1064# @id: ID of CPU to be created, valid values [0..max_cpus)
1065#
1066# Returns: Nothing on success
1067#
1068# Since: 1.5
1069#
1070# Example:
1071#
1072# -> { "execute": "cpu-add", "arguments": { "id": 2 } }
1073# <- { "return": {} }
1074#
1075##
1076{ 'command': 'cpu-add', 'data': {'id': 'int'} }
1077
1078##
1079# @memsave:
1080#
1081# Save a portion of guest memory to a file.
1082#
1083# @val: the virtual address of the guest to start from
1084#
1085# @size: the size of memory region to save
1086#
1087# @filename: the file to save the memory to as binary data
1088#
1089# @cpu-index: the index of the virtual CPU to use for translating the
1090#                       virtual address (defaults to CPU 0)
1091#
1092# Returns: Nothing on success
1093#
1094# Since: 0.14.0
1095#
1096# Notes: Errors were not reliably returned until 1.1
1097#
1098# Example:
1099#
1100# -> { "execute": "memsave",
1101#      "arguments": { "val": 10,
1102#                     "size": 100,
1103#                     "filename": "/tmp/virtual-mem-dump" } }
1104# <- { "return": {} }
1105#
1106##
1107{ 'command': 'memsave',
1108  'data': {'val': 'int', 'size': 'int', 'filename': 'str', '*cpu-index': 'int'} }
1109
1110##
1111# @pmemsave:
1112#
1113# Save a portion of guest physical memory to a file.
1114#
1115# @val: the physical address of the guest to start from
1116#
1117# @size: the size of memory region to save
1118#
1119# @filename: the file to save the memory to as binary data
1120#
1121# Returns: Nothing on success
1122#
1123# Since: 0.14.0
1124#
1125# Notes: Errors were not reliably returned until 1.1
1126#
1127# Example:
1128#
1129# -> { "execute": "pmemsave",
1130#      "arguments": { "val": 10,
1131#                     "size": 100,
1132#                     "filename": "/tmp/physical-mem-dump" } }
1133# <- { "return": {} }
1134#
1135##
1136{ 'command': 'pmemsave',
1137  'data': {'val': 'int', 'size': 'int', 'filename': 'str'} }
1138
1139##
1140# @cont:
1141#
1142# Resume guest VCPU execution.
1143#
1144# Since:  0.14.0
1145#
1146# Returns:  If successful, nothing
1147#
1148# Notes:  This command will succeed if the guest is currently running.  It
1149#         will also succeed if the guest is in the "inmigrate" state; in
1150#         this case, the effect of the command is to make sure the guest
1151#         starts once migration finishes, removing the effect of the -S
1152#         command line option if it was passed.
1153#
1154# Example:
1155#
1156# -> { "execute": "cont" }
1157# <- { "return": {} }
1158#
1159##
1160{ 'command': 'cont' }
1161
1162##
1163# @system_wakeup:
1164#
1165# Wakeup guest from suspend.  Does nothing in case the guest isn't suspended.
1166#
1167# Since:  1.1
1168#
1169# Returns:  nothing.
1170#
1171# Example:
1172#
1173# -> { "execute": "system_wakeup" }
1174# <- { "return": {} }
1175#
1176##
1177{ 'command': 'system_wakeup' }
1178
1179##
1180# @inject-nmi:
1181#
1182# Injects a Non-Maskable Interrupt into the default CPU (x86/s390) or all CPUs (ppc64).
1183# The command fails when the guest doesn't support injecting.
1184#
1185# Returns:  If successful, nothing
1186#
1187# Since:  0.14.0
1188#
1189# Note: prior to 2.1, this command was only supported for x86 and s390 VMs
1190#
1191# Example:
1192#
1193# -> { "execute": "inject-nmi" }
1194# <- { "return": {} }
1195#
1196##
1197{ 'command': 'inject-nmi' }
1198
1199##
1200# @balloon:
1201#
1202# Request the balloon driver to change its balloon size.
1203#
1204# @value: the target size of the balloon in bytes
1205#
1206# Returns: Nothing on success
1207#          If the balloon driver is enabled but not functional because the KVM
1208#            kernel module cannot support it, KvmMissingCap
1209#          If no balloon device is present, DeviceNotActive
1210#
1211# Notes: This command just issues a request to the guest.  When it returns,
1212#        the balloon size may not have changed.  A guest can change the balloon
1213#        size independent of this command.
1214#
1215# Since: 0.14.0
1216#
1217# Example:
1218#
1219# -> { "execute": "balloon", "arguments": { "value": 536870912 } }
1220# <- { "return": {} }
1221#
1222##
1223{ 'command': 'balloon', 'data': {'value': 'int'} }
1224
1225##
1226# @human-monitor-command:
1227#
1228# Execute a command on the human monitor and return the output.
1229#
1230# @command-line: the command to execute in the human monitor
1231#
1232# @cpu-index: The CPU to use for commands that require an implicit CPU
1233#
1234# Returns: the output of the command as a string
1235#
1236# Since: 0.14.0
1237#
1238# Notes: This command only exists as a stop-gap.  Its use is highly
1239#        discouraged.  The semantics of this command are not
1240#        guaranteed: this means that command names, arguments and
1241#        responses can change or be removed at ANY time.  Applications
1242#        that rely on long term stability guarantees should NOT
1243#        use this command.
1244#
1245#        Known limitations:
1246#
1247#        * This command is stateless, this means that commands that depend
1248#          on state information (such as getfd) might not work
1249#
1250#        * Commands that prompt the user for data don't currently work
1251#
1252# Example:
1253#
1254# -> { "execute": "human-monitor-command",
1255#      "arguments": { "command-line": "info kvm" } }
1256# <- { "return": "kvm support: enabled\r\n" }
1257#
1258##
1259{ 'command': 'human-monitor-command',
1260  'data': {'command-line': 'str', '*cpu-index': 'int'},
1261  'returns': 'str' }
1262
1263##
1264# @ObjectPropertyInfo:
1265#
1266# @name: the name of the property
1267#
1268# @type: the type of the property.  This will typically come in one of four
1269#        forms:
1270#
1271#        1) A primitive type such as 'u8', 'u16', 'bool', 'str', or 'double'.
1272#           These types are mapped to the appropriate JSON type.
1273#
1274#        2) A child type in the form 'child<subtype>' where subtype is a qdev
1275#           device type name.  Child properties create the composition tree.
1276#
1277#        3) A link type in the form 'link<subtype>' where subtype is a qdev
1278#           device type name.  Link properties form the device model graph.
1279#
1280# Since: 1.2
1281##
1282{ 'struct': 'ObjectPropertyInfo',
1283  'data': { 'name': 'str', 'type': 'str' } }
1284
1285##
1286# @qom-list:
1287#
1288# This command will list any properties of a object given a path in the object
1289# model.
1290#
1291# @path: the path within the object model.  See @qom-get for a description of
1292#        this parameter.
1293#
1294# Returns: a list of @ObjectPropertyInfo that describe the properties of the
1295#          object.
1296#
1297# Since: 1.2
1298##
1299{ 'command': 'qom-list',
1300  'data': { 'path': 'str' },
1301  'returns': [ 'ObjectPropertyInfo' ] }
1302
1303##
1304# @qom-get:
1305#
1306# This command will get a property from a object model path and return the
1307# value.
1308#
1309# @path: The path within the object model.  There are two forms of supported
1310#        paths--absolute and partial paths.
1311#
1312#        Absolute paths are derived from the root object and can follow child<>
1313#        or link<> properties.  Since they can follow link<> properties, they
1314#        can be arbitrarily long.  Absolute paths look like absolute filenames
1315#        and are prefixed  with a leading slash.
1316#
1317#        Partial paths look like relative filenames.  They do not begin
1318#        with a prefix.  The matching rules for partial paths are subtle but
1319#        designed to make specifying objects easy.  At each level of the
1320#        composition tree, the partial path is matched as an absolute path.
1321#        The first match is not returned.  At least two matches are searched
1322#        for.  A successful result is only returned if only one match is
1323#        found.  If more than one match is found, a flag is return to
1324#        indicate that the match was ambiguous.
1325#
1326# @property: The property name to read
1327#
1328# Returns: The property value.  The type depends on the property
1329#          type. child<> and link<> properties are returned as #str
1330#          pathnames.  All integer property types (u8, u16, etc) are
1331#          returned as #int.
1332#
1333# Since: 1.2
1334##
1335{ 'command': 'qom-get',
1336  'data': { 'path': 'str', 'property': 'str' },
1337  'returns': 'any' }
1338
1339##
1340# @qom-set:
1341#
1342# This command will set a property from a object model path.
1343#
1344# @path: see @qom-get for a description of this parameter
1345#
1346# @property: the property name to set
1347#
1348# @value: a value who's type is appropriate for the property type.  See @qom-get
1349#         for a description of type mapping.
1350#
1351# Since: 1.2
1352##
1353{ 'command': 'qom-set',
1354  'data': { 'path': 'str', 'property': 'str', 'value': 'any' } }
1355
1356##
1357# @change:
1358#
1359# This command is multiple commands multiplexed together.
1360#
1361# @device: This is normally the name of a block device but it may also be 'vnc'.
1362#          when it's 'vnc', then sub command depends on @target
1363#
1364# @target: If @device is a block device, then this is the new filename.
1365#          If @device is 'vnc', then if the value 'password' selects the vnc
1366#          change password command.   Otherwise, this specifies a new server URI
1367#          address to listen to for VNC connections.
1368#
1369# @arg:    If @device is a block device, then this is an optional format to open
1370#          the device with.
1371#          If @device is 'vnc' and @target is 'password', this is the new VNC
1372#          password to set.  See change-vnc-password for additional notes.
1373#
1374# Returns: Nothing on success.
1375#          If @device is not a valid block device, DeviceNotFound
1376#
1377# Notes:  This interface is deprecated, and it is strongly recommended that you
1378#         avoid using it.  For changing block devices, use
1379#         blockdev-change-medium; for changing VNC parameters, use
1380#         change-vnc-password.
1381#
1382# Since: 0.14.0
1383#
1384# Example:
1385#
1386# 1. Change a removable medium
1387#
1388# -> { "execute": "change",
1389#      "arguments": { "device": "ide1-cd0",
1390#                     "target": "/srv/images/Fedora-12-x86_64-DVD.iso" } }
1391# <- { "return": {} }
1392#
1393# 2. Change VNC password
1394#
1395# -> { "execute": "change",
1396#      "arguments": { "device": "vnc", "target": "password",
1397#                     "arg": "foobar1" } }
1398# <- { "return": {} }
1399#
1400##
1401{ 'command': 'change',
1402  'data': {'device': 'str', 'target': 'str', '*arg': 'str'} }
1403
1404##
1405# @ObjectTypeInfo:
1406#
1407# This structure describes a search result from @qom-list-types
1408#
1409# @name: the type name found in the search
1410#
1411# @abstract: the type is abstract and can't be directly instantiated.
1412#            Omitted if false. (since 2.10)
1413#
1414# @parent: Name of parent type, if any (since 2.10)
1415#
1416# Since: 1.1
1417##
1418{ 'struct': 'ObjectTypeInfo',
1419  'data': { 'name': 'str', '*abstract': 'bool', '*parent': 'str' } }
1420
1421##
1422# @qom-list-types:
1423#
1424# This command will return a list of types given search parameters
1425#
1426# @implements: if specified, only return types that implement this type name
1427#
1428# @abstract: if true, include abstract types in the results
1429#
1430# Returns: a list of @ObjectTypeInfo or an empty list if no results are found
1431#
1432# Since: 1.1
1433##
1434{ 'command': 'qom-list-types',
1435  'data': { '*implements': 'str', '*abstract': 'bool' },
1436  'returns': [ 'ObjectTypeInfo' ] }
1437
1438##
1439# @DevicePropertyInfo:
1440#
1441# Information about device properties.
1442#
1443# @name: the name of the property
1444# @type: the typename of the property
1445# @description: if specified, the description of the property.
1446#               (since 2.2)
1447#
1448# Since: 1.2
1449##
1450{ 'struct': 'DevicePropertyInfo',
1451  'data': { 'name': 'str', 'type': 'str', '*description': 'str' } }
1452
1453##
1454# @device-list-properties:
1455#
1456# List properties associated with a device.
1457#
1458# @typename: the type name of a device
1459#
1460# Returns: a list of DevicePropertyInfo describing a devices properties
1461#
1462# Since: 1.2
1463##
1464{ 'command': 'device-list-properties',
1465  'data': { 'typename': 'str'},
1466  'returns': [ 'DevicePropertyInfo' ] }
1467
1468##
1469# @xen-set-global-dirty-log:
1470#
1471# Enable or disable the global dirty log mode.
1472#
1473# @enable: true to enable, false to disable.
1474#
1475# Returns: nothing
1476#
1477# Since: 1.3
1478#
1479# Example:
1480#
1481# -> { "execute": "xen-set-global-dirty-log",
1482#      "arguments": { "enable": true } }
1483# <- { "return": {} }
1484#
1485##
1486{ 'command': 'xen-set-global-dirty-log', 'data': { 'enable': 'bool' } }
1487
1488##
1489# @device_add:
1490#
1491# @driver: the name of the new device's driver
1492#
1493# @bus: the device's parent bus (device tree path)
1494#
1495# @id: the device's ID, must be unique
1496#
1497# Additional arguments depend on the type.
1498#
1499# Add a device.
1500#
1501# Notes:
1502# 1. For detailed information about this command, please refer to the
1503#    'docs/qdev-device-use.txt' file.
1504#
1505# 2. It's possible to list device properties by running QEMU with the
1506#    "-device DEVICE,help" command-line argument, where DEVICE is the
1507#    device's name
1508#
1509# Example:
1510#
1511# -> { "execute": "device_add",
1512#      "arguments": { "driver": "e1000", "id": "net1",
1513#                     "bus": "pci.0",
1514#                     "mac": "52:54:00:12:34:56" } }
1515# <- { "return": {} }
1516#
1517# TODO: This command effectively bypasses QAPI completely due to its
1518# "additional arguments" business.  It shouldn't have been added to
1519# the schema in this form.  It should be qapified properly, or
1520# replaced by a properly qapified command.
1521#
1522# Since: 0.13
1523##
1524{ 'command': 'device_add',
1525  'data': {'driver': 'str', '*bus': 'str', '*id': 'str'},
1526  'gen': false } # so we can get the additional arguments
1527
1528##
1529# @device_del:
1530#
1531# Remove a device from a guest
1532#
1533# @id: the device's ID or QOM path
1534#
1535# Returns: Nothing on success
1536#          If @id is not a valid device, DeviceNotFound
1537#
1538# Notes: When this command completes, the device may not be removed from the
1539#        guest.  Hot removal is an operation that requires guest cooperation.
1540#        This command merely requests that the guest begin the hot removal
1541#        process.  Completion of the device removal process is signaled with a
1542#        DEVICE_DELETED event. Guest reset will automatically complete removal
1543#        for all devices.
1544#
1545# Since: 0.14.0
1546#
1547# Example:
1548#
1549# -> { "execute": "device_del",
1550#      "arguments": { "id": "net1" } }
1551# <- { "return": {} }
1552#
1553# -> { "execute": "device_del",
1554#      "arguments": { "id": "/machine/peripheral-anon/device[0]" } }
1555# <- { "return": {} }
1556#
1557##
1558{ 'command': 'device_del', 'data': {'id': 'str'} }
1559
1560##
1561# @DEVICE_DELETED:
1562#
1563# Emitted whenever the device removal completion is acknowledged by the guest.
1564# At this point, it's safe to reuse the specified device ID. Device removal can
1565# be initiated by the guest or by HMP/QMP commands.
1566#
1567# @device: device name
1568#
1569# @path: device path
1570#
1571# Since: 1.5
1572#
1573# Example:
1574#
1575# <- { "event": "DEVICE_DELETED",
1576#      "data": { "device": "virtio-net-pci-0",
1577#                "path": "/machine/peripheral/virtio-net-pci-0" },
1578#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
1579#
1580##
1581{ 'event': 'DEVICE_DELETED',
1582  'data': { '*device': 'str', 'path': 'str' } }
1583
1584##
1585# @DumpGuestMemoryFormat:
1586#
1587# An enumeration of guest-memory-dump's format.
1588#
1589# @elf: elf format
1590#
1591# @kdump-zlib: kdump-compressed format with zlib-compressed
1592#
1593# @kdump-lzo: kdump-compressed format with lzo-compressed
1594#
1595# @kdump-snappy: kdump-compressed format with snappy-compressed
1596#
1597# Since: 2.0
1598##
1599{ 'enum': 'DumpGuestMemoryFormat',
1600  'data': [ 'elf', 'kdump-zlib', 'kdump-lzo', 'kdump-snappy' ] }
1601
1602##
1603# @dump-guest-memory:
1604#
1605# Dump guest's memory to vmcore. It is a synchronous operation that can take
1606# very long depending on the amount of guest memory.
1607#
1608# @paging: if true, do paging to get guest's memory mapping. This allows
1609#          using gdb to process the core file.
1610#
1611#          IMPORTANT: this option can make QEMU allocate several gigabytes
1612#                     of RAM. This can happen for a large guest, or a
1613#                     malicious guest pretending to be large.
1614#
1615#          Also, paging=true has the following limitations:
1616#
1617#             1. The guest may be in a catastrophic state or can have corrupted
1618#                memory, which cannot be trusted
1619#             2. The guest can be in real-mode even if paging is enabled. For
1620#                example, the guest uses ACPI to sleep, and ACPI sleep state
1621#                goes in real-mode
1622#             3. Currently only supported on i386 and x86_64.
1623#
1624# @protocol: the filename or file descriptor of the vmcore. The supported
1625#            protocols are:
1626#
1627#            1. file: the protocol starts with "file:", and the following
1628#               string is the file's path.
1629#            2. fd: the protocol starts with "fd:", and the following string
1630#               is the fd's name.
1631#
1632# @detach: if true, QMP will return immediately rather than
1633#          waiting for the dump to finish. The user can track progress
1634#          using "query-dump". (since 2.6).
1635#
1636# @begin: if specified, the starting physical address.
1637#
1638# @length: if specified, the memory size, in bytes. If you don't
1639#          want to dump all guest's memory, please specify the start @begin
1640#          and @length
1641#
1642# @format: if specified, the format of guest memory dump. But non-elf
1643#          format is conflict with paging and filter, ie. @paging, @begin and
1644#          @length is not allowed to be specified with non-elf @format at the
1645#          same time (since 2.0)
1646#
1647# Note: All boolean arguments default to false
1648#
1649# Returns: nothing on success
1650#
1651# Since: 1.2
1652#
1653# Example:
1654#
1655# -> { "execute": "dump-guest-memory",
1656#      "arguments": { "protocol": "fd:dump" } }
1657# <- { "return": {} }
1658#
1659##
1660{ 'command': 'dump-guest-memory',
1661  'data': { 'paging': 'bool', 'protocol': 'str', '*detach': 'bool',
1662            '*begin': 'int', '*length': 'int',
1663            '*format': 'DumpGuestMemoryFormat'} }
1664
1665##
1666# @DumpStatus:
1667#
1668# Describe the status of a long-running background guest memory dump.
1669#
1670# @none: no dump-guest-memory has started yet.
1671#
1672# @active: there is one dump running in background.
1673#
1674# @completed: the last dump has finished successfully.
1675#
1676# @failed: the last dump has failed.
1677#
1678# Since: 2.6
1679##
1680{ 'enum': 'DumpStatus',
1681  'data': [ 'none', 'active', 'completed', 'failed' ] }
1682
1683##
1684# @DumpQueryResult:
1685#
1686# The result format for 'query-dump'.
1687#
1688# @status: enum of @DumpStatus, which shows current dump status
1689#
1690# @completed: bytes written in latest dump (uncompressed)
1691#
1692# @total: total bytes to be written in latest dump (uncompressed)
1693#
1694# Since: 2.6
1695##
1696{ 'struct': 'DumpQueryResult',
1697  'data': { 'status': 'DumpStatus',
1698            'completed': 'int',
1699            'total': 'int' } }
1700
1701##
1702# @query-dump:
1703#
1704# Query latest dump status.
1705#
1706# Returns: A @DumpStatus object showing the dump status.
1707#
1708# Since: 2.6
1709#
1710# Example:
1711#
1712# -> { "execute": "query-dump" }
1713# <- { "return": { "status": "active", "completed": 1024000,
1714#                  "total": 2048000 } }
1715#
1716##
1717{ 'command': 'query-dump', 'returns': 'DumpQueryResult' }
1718
1719##
1720# @DUMP_COMPLETED:
1721#
1722# Emitted when background dump has completed
1723#
1724# @result: DumpQueryResult type described in qapi-schema.json.
1725#
1726# @error: human-readable error string that provides
1727#         hint on why dump failed. Only presents on failure. The
1728#         user should not try to interpret the error string.
1729#
1730# Since: 2.6
1731#
1732# Example:
1733#
1734# { "event": "DUMP_COMPLETED",
1735#   "data": {"result": {"total": 1090650112, "status": "completed",
1736#                       "completed": 1090650112} } }
1737#
1738##
1739{ 'event': 'DUMP_COMPLETED' ,
1740  'data': { 'result': 'DumpQueryResult', '*error': 'str' } }
1741
1742##
1743# @DumpGuestMemoryCapability:
1744#
1745# A list of the available formats for dump-guest-memory
1746#
1747# Since: 2.0
1748##
1749{ 'struct': 'DumpGuestMemoryCapability',
1750  'data': {
1751      'formats': ['DumpGuestMemoryFormat'] } }
1752
1753##
1754# @query-dump-guest-memory-capability:
1755#
1756# Returns the available formats for dump-guest-memory
1757#
1758# Returns:  A @DumpGuestMemoryCapability object listing available formats for
1759#           dump-guest-memory
1760#
1761# Since: 2.0
1762#
1763# Example:
1764#
1765# -> { "execute": "query-dump-guest-memory-capability" }
1766# <- { "return": { "formats":
1767#                  ["elf", "kdump-zlib", "kdump-lzo", "kdump-snappy"] }
1768#
1769##
1770{ 'command': 'query-dump-guest-memory-capability',
1771  'returns': 'DumpGuestMemoryCapability' }
1772
1773##
1774# @dump-skeys:
1775#
1776# Dump guest's storage keys
1777#
1778# @filename: the path to the file to dump to
1779#
1780# This command is only supported on s390 architecture.
1781#
1782# Since: 2.5
1783#
1784# Example:
1785#
1786# -> { "execute": "dump-skeys",
1787#      "arguments": { "filename": "/tmp/skeys" } }
1788# <- { "return": {} }
1789#
1790##
1791{ 'command': 'dump-skeys',
1792  'data': { 'filename': 'str' } }
1793
1794##
1795# @object-add:
1796#
1797# Create a QOM object.
1798#
1799# @qom-type: the class name for the object to be created
1800#
1801# @id: the name of the new object
1802#
1803# @props: a dictionary of properties to be passed to the backend
1804#
1805# Returns: Nothing on success
1806#          Error if @qom-type is not a valid class name
1807#
1808# Since: 2.0
1809#
1810# Example:
1811#
1812# -> { "execute": "object-add",
1813#      "arguments": { "qom-type": "rng-random", "id": "rng1",
1814#                     "props": { "filename": "/dev/hwrng" } } }
1815# <- { "return": {} }
1816#
1817##
1818{ 'command': 'object-add',
1819  'data': {'qom-type': 'str', 'id': 'str', '*props': 'any'} }
1820
1821##
1822# @object-del:
1823#
1824# Remove a QOM object.
1825#
1826# @id: the name of the QOM object to remove
1827#
1828# Returns: Nothing on success
1829#          Error if @id is not a valid id for a QOM object
1830#
1831# Since: 2.0
1832#
1833# Example:
1834#
1835# -> { "execute": "object-del", "arguments": { "id": "rng1" } }
1836# <- { "return": {} }
1837#
1838##
1839{ 'command': 'object-del', 'data': {'id': 'str'} }
1840
1841##
1842# @getfd:
1843#
1844# Receive a file descriptor via SCM rights and assign it a name
1845#
1846# @fdname: file descriptor name
1847#
1848# Returns: Nothing on success
1849#
1850# Since: 0.14.0
1851#
1852# Notes: If @fdname already exists, the file descriptor assigned to
1853#        it will be closed and replaced by the received file
1854#        descriptor.
1855#
1856#        The 'closefd' command can be used to explicitly close the
1857#        file descriptor when it is no longer needed.
1858#
1859# Example:
1860#
1861# -> { "execute": "getfd", "arguments": { "fdname": "fd1" } }
1862# <- { "return": {} }
1863#
1864##
1865{ 'command': 'getfd', 'data': {'fdname': 'str'} }
1866
1867##
1868# @closefd:
1869#
1870# Close a file descriptor previously passed via SCM rights
1871#
1872# @fdname: file descriptor name
1873#
1874# Returns: Nothing on success
1875#
1876# Since: 0.14.0
1877#
1878# Example:
1879#
1880# -> { "execute": "closefd", "arguments": { "fdname": "fd1" } }
1881# <- { "return": {} }
1882#
1883##
1884{ 'command': 'closefd', 'data': {'fdname': 'str'} }
1885
1886##
1887# @MachineInfo:
1888#
1889# Information describing a machine.
1890#
1891# @name: the name of the machine
1892#
1893# @alias: an alias for the machine name
1894#
1895# @is-default: whether the machine is default
1896#
1897# @cpu-max: maximum number of CPUs supported by the machine type
1898#           (since 1.5.0)
1899#
1900# @hotpluggable-cpus: cpu hotplug via -device is supported (since 2.7.0)
1901#
1902# Since: 1.2.0
1903##
1904{ 'struct': 'MachineInfo',
1905  'data': { 'name': 'str', '*alias': 'str',
1906            '*is-default': 'bool', 'cpu-max': 'int',
1907            'hotpluggable-cpus': 'bool'} }
1908
1909##
1910# @query-machines:
1911#
1912# Return a list of supported machines
1913#
1914# Returns: a list of MachineInfo
1915#
1916# Since: 1.2.0
1917##
1918{ 'command': 'query-machines', 'returns': ['MachineInfo'] }
1919
1920##
1921# @CpuDefinitionInfo:
1922#
1923# Virtual CPU definition.
1924#
1925# @name: the name of the CPU definition
1926#
1927# @migration-safe: whether a CPU definition can be safely used for
1928#                  migration in combination with a QEMU compatibility machine
1929#                  when migrating between different QMU versions and between
1930#                  hosts with different sets of (hardware or software)
1931#                  capabilities. If not provided, information is not available
1932#                  and callers should not assume the CPU definition to be
1933#                  migration-safe. (since 2.8)
1934#
1935# @static: whether a CPU definition is static and will not change depending on
1936#          QEMU version, machine type, machine options and accelerator options.
1937#          A static model is always migration-safe. (since 2.8)
1938#
1939# @unavailable-features: List of properties that prevent
1940#                        the CPU model from running in the current
1941#                        host. (since 2.8)
1942# @typename: Type name that can be used as argument to @device-list-properties,
1943#            to introspect properties configurable using -cpu or -global.
1944#            (since 2.9)
1945#
1946# @unavailable-features is a list of QOM property names that
1947# represent CPU model attributes that prevent the CPU from running.
1948# If the QOM property is read-only, that means there's no known
1949# way to make the CPU model run in the current host. Implementations
1950# that choose not to provide specific information return the
1951# property name "type".
1952# If the property is read-write, it means that it MAY be possible
1953# to run the CPU model in the current host if that property is
1954# changed. Management software can use it as hints to suggest or
1955# choose an alternative for the user, or just to generate meaningful
1956# error messages explaining why the CPU model can't be used.
1957# If @unavailable-features is an empty list, the CPU model is
1958# runnable using the current host and machine-type.
1959# If @unavailable-features is not present, runnability
1960# information for the CPU is not available.
1961#
1962# Since: 1.2.0
1963##
1964{ 'struct': 'CpuDefinitionInfo',
1965  'data': { 'name': 'str', '*migration-safe': 'bool', 'static': 'bool',
1966            '*unavailable-features': [ 'str' ], 'typename': 'str' } }
1967
1968##
1969# @MemoryInfo:
1970#
1971# Actual memory information in bytes.
1972#
1973# @base-memory: size of "base" memory specified with command line
1974#               option -m.
1975#
1976# @plugged-memory: size of memory that can be hot-unplugged. This field
1977#                  is omitted if target doesn't support memory hotplug
1978#                  (i.e. CONFIG_MEM_HOTPLUG not defined on build time).
1979#
1980# Since: 2.11.0
1981##
1982{ 'struct': 'MemoryInfo',
1983  'data'  : { 'base-memory': 'size', '*plugged-memory': 'size' } }
1984
1985##
1986# @query-memory-size-summary:
1987#
1988# Return the amount of initially allocated and present hotpluggable (if
1989# enabled) memory in bytes.
1990#
1991# Example:
1992#
1993# -> { "execute": "query-memory-size-summary" }
1994# <- { "return": { "base-memory": 4294967296, "plugged-memory": 0 } }
1995#
1996# Since: 2.11.0
1997##
1998{ 'command': 'query-memory-size-summary', 'returns': 'MemoryInfo' }
1999
2000##
2001# @query-cpu-definitions:
2002#
2003# Return a list of supported virtual CPU definitions
2004#
2005# Returns: a list of CpuDefInfo
2006#
2007# Since: 1.2.0
2008##
2009{ 'command': 'query-cpu-definitions', 'returns': ['CpuDefinitionInfo'] }
2010
2011##
2012# @CpuModelInfo:
2013#
2014# Virtual CPU model.
2015#
2016# A CPU model consists of the name of a CPU definition, to which
2017# delta changes are applied (e.g. features added/removed). Most magic values
2018# that an architecture might require should be hidden behind the name.
2019# However, if required, architectures can expose relevant properties.
2020#
2021# @name: the name of the CPU definition the model is based on
2022# @props: a dictionary of QOM properties to be applied
2023#
2024# Since: 2.8.0
2025##
2026{ 'struct': 'CpuModelInfo',
2027  'data': { 'name': 'str',
2028            '*props': 'any' } }
2029
2030##
2031# @CpuModelExpansionType:
2032#
2033# An enumeration of CPU model expansion types.
2034#
2035# @static: Expand to a static CPU model, a combination of a static base
2036#          model name and property delta changes. As the static base model will
2037#          never change, the expanded CPU model will be the same, independant of
2038#          independent of QEMU version, machine type, machine options, and
2039#          accelerator options. Therefore, the resulting model can be used by
2040#          tooling without having to specify a compatibility machine - e.g. when
2041#          displaying the "host" model. static CPU models are migration-safe.
2042#
2043# @full: Expand all properties. The produced model is not guaranteed to be
2044#        migration-safe, but allows tooling to get an insight and work with
2045#        model details.
2046#
2047# Note: When a non-migration-safe CPU model is expanded in static mode, some
2048# features enabled by the CPU model may be omitted, because they can't be
2049# implemented by a static CPU model definition (e.g. cache info passthrough and
2050# PMU passthrough in x86). If you need an accurate representation of the
2051# features enabled by a non-migration-safe CPU model, use @full. If you need a
2052# static representation that will keep ABI compatibility even when changing QEMU
2053# version or machine-type, use @static (but keep in mind that some features may
2054# be omitted).
2055#
2056# Since: 2.8.0
2057##
2058{ 'enum': 'CpuModelExpansionType',
2059  'data': [ 'static', 'full' ] }
2060
2061
2062##
2063# @CpuModelExpansionInfo:
2064#
2065# The result of a cpu model expansion.
2066#
2067# @model: the expanded CpuModelInfo.
2068#
2069# Since: 2.8.0
2070##
2071{ 'struct': 'CpuModelExpansionInfo',
2072  'data': { 'model': 'CpuModelInfo' } }
2073
2074
2075##
2076# @query-cpu-model-expansion:
2077#
2078# Expands a given CPU model (or a combination of CPU model + additional options)
2079# to different granularities, allowing tooling to get an understanding what a
2080# specific CPU model looks like in QEMU under a certain configuration.
2081#
2082# This interface can be used to query the "host" CPU model.
2083#
2084# The data returned by this command may be affected by:
2085#
2086# * QEMU version: CPU models may look different depending on the QEMU version.
2087#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2088# * machine-type: CPU model  may look different depending on the machine-type.
2089#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2090# * machine options (including accelerator): in some architectures, CPU models
2091#   may look different depending on machine and accelerator options. (Except for
2092#   CPU models reported as "static" in query-cpu-definitions.)
2093# * "-cpu" arguments and global properties: arguments to the -cpu option and
2094#   global properties may affect expansion of CPU models. Using
2095#   query-cpu-model-expansion while using these is not advised.
2096#
2097# Some architectures may not support all expansion types. s390x supports
2098# "full" and "static".
2099#
2100# Returns: a CpuModelExpansionInfo. Returns an error if expanding CPU models is
2101#          not supported, if the model cannot be expanded, if the model contains
2102#          an unknown CPU definition name, unknown properties or properties
2103#          with a wrong type. Also returns an error if an expansion type is
2104#          not supported.
2105#
2106# Since: 2.8.0
2107##
2108{ 'command': 'query-cpu-model-expansion',
2109  'data': { 'type': 'CpuModelExpansionType',
2110            'model': 'CpuModelInfo' },
2111  'returns': 'CpuModelExpansionInfo' }
2112
2113##
2114# @CpuModelCompareResult:
2115#
2116# An enumeration of CPU model comparation results. The result is usually
2117# calculated using e.g. CPU features or CPU generations.
2118#
2119# @incompatible: If model A is incompatible to model B, model A is not
2120#                guaranteed to run where model B runs and the other way around.
2121#
2122# @identical: If model A is identical to model B, model A is guaranteed to run
2123#             where model B runs and the other way around.
2124#
2125# @superset: If model A is a superset of model B, model B is guaranteed to run
2126#            where model A runs. There are no guarantees about the other way.
2127#
2128# @subset: If model A is a subset of model B, model A is guaranteed to run
2129#          where model B runs. There are no guarantees about the other way.
2130#
2131# Since: 2.8.0
2132##
2133{ 'enum': 'CpuModelCompareResult',
2134  'data': [ 'incompatible', 'identical', 'superset', 'subset' ] }
2135
2136##
2137# @CpuModelCompareInfo:
2138#
2139# The result of a CPU model comparison.
2140#
2141# @result: The result of the compare operation.
2142# @responsible-properties: List of properties that led to the comparison result
2143#                          not being identical.
2144#
2145# @responsible-properties is a list of QOM property names that led to
2146# both CPUs not being detected as identical. For identical models, this
2147# list is empty.
2148# If a QOM property is read-only, that means there's no known way to make the
2149# CPU models identical. If the special property name "type" is included, the
2150# models are by definition not identical and cannot be made identical.
2151#
2152# Since: 2.8.0
2153##
2154{ 'struct': 'CpuModelCompareInfo',
2155  'data': {'result': 'CpuModelCompareResult',
2156           'responsible-properties': ['str']
2157          }
2158}
2159
2160##
2161# @query-cpu-model-comparison:
2162#
2163# Compares two CPU models, returning how they compare in a specific
2164# configuration. The results indicates how both models compare regarding
2165# runnability. This result can be used by tooling to make decisions if a
2166# certain CPU model will run in a certain configuration or if a compatible
2167# CPU model has to be created by baselining.
2168#
2169# Usually, a CPU model is compared against the maximum possible CPU model
2170# of a certain configuration (e.g. the "host" model for KVM). If that CPU
2171# model is identical or a subset, it will run in that configuration.
2172#
2173# The result returned by this command may be affected by:
2174#
2175# * QEMU version: CPU models may look different depending on the QEMU version.
2176#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2177# * machine-type: CPU model may look different depending on the machine-type.
2178#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2179# * machine options (including accelerator): in some architectures, CPU models
2180#   may look different depending on machine and accelerator options. (Except for
2181#   CPU models reported as "static" in query-cpu-definitions.)
2182# * "-cpu" arguments and global properties: arguments to the -cpu option and
2183#   global properties may affect expansion of CPU models. Using
2184#   query-cpu-model-expansion while using these is not advised.
2185#
2186# Some architectures may not support comparing CPU models. s390x supports
2187# comparing CPU models.
2188#
2189# Returns: a CpuModelBaselineInfo. Returns an error if comparing CPU models is
2190#          not supported, if a model cannot be used, if a model contains
2191#          an unknown cpu definition name, unknown properties or properties
2192#          with wrong types.
2193#
2194# Since: 2.8.0
2195##
2196{ 'command': 'query-cpu-model-comparison',
2197  'data': { 'modela': 'CpuModelInfo', 'modelb': 'CpuModelInfo' },
2198  'returns': 'CpuModelCompareInfo' }
2199
2200##
2201# @CpuModelBaselineInfo:
2202#
2203# The result of a CPU model baseline.
2204#
2205# @model: the baselined CpuModelInfo.
2206#
2207# Since: 2.8.0
2208##
2209{ 'struct': 'CpuModelBaselineInfo',
2210  'data': { 'model': 'CpuModelInfo' } }
2211
2212##
2213# @query-cpu-model-baseline:
2214#
2215# Baseline two CPU models, creating a compatible third model. The created
2216# model will always be a static, migration-safe CPU model (see "static"
2217# CPU model expansion for details).
2218#
2219# This interface can be used by tooling to create a compatible CPU model out
2220# two CPU models. The created CPU model will be identical to or a subset of
2221# both CPU models when comparing them. Therefore, the created CPU model is
2222# guaranteed to run where the given CPU models run.
2223#
2224# The result returned by this command may be affected by:
2225#
2226# * QEMU version: CPU models may look different depending on the QEMU version.
2227#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2228# * machine-type: CPU model may look different depending on the machine-type.
2229#   (Except for CPU models reported as "static" in query-cpu-definitions.)
2230# * machine options (including accelerator): in some architectures, CPU models
2231#   may look different depending on machine and accelerator options. (Except for
2232#   CPU models reported as "static" in query-cpu-definitions.)
2233# * "-cpu" arguments and global properties: arguments to the -cpu option and
2234#   global properties may affect expansion of CPU models. Using
2235#   query-cpu-model-expansion while using these is not advised.
2236#
2237# Some architectures may not support baselining CPU models. s390x supports
2238# baselining CPU models.
2239#
2240# Returns: a CpuModelBaselineInfo. Returns an error if baselining CPU models is
2241#          not supported, if a model cannot be used, if a model contains
2242#          an unknown cpu definition name, unknown properties or properties
2243#          with wrong types.
2244#
2245# Since: 2.8.0
2246##
2247{ 'command': 'query-cpu-model-baseline',
2248  'data': { 'modela': 'CpuModelInfo',
2249            'modelb': 'CpuModelInfo' },
2250  'returns': 'CpuModelBaselineInfo' }
2251
2252##
2253# @AddfdInfo:
2254#
2255# Information about a file descriptor that was added to an fd set.
2256#
2257# @fdset-id: The ID of the fd set that @fd was added to.
2258#
2259# @fd: The file descriptor that was received via SCM rights and
2260#      added to the fd set.
2261#
2262# Since: 1.2.0
2263##
2264{ 'struct': 'AddfdInfo', 'data': {'fdset-id': 'int', 'fd': 'int'} }
2265
2266##
2267# @add-fd:
2268#
2269# Add a file descriptor, that was passed via SCM rights, to an fd set.
2270#
2271# @fdset-id: The ID of the fd set to add the file descriptor to.
2272#
2273# @opaque: A free-form string that can be used to describe the fd.
2274#
2275# Returns: @AddfdInfo on success
2276#
2277#          If file descriptor was not received, FdNotSupplied
2278#
2279#          If @fdset-id is a negative value, InvalidParameterValue
2280#
2281# Notes: The list of fd sets is shared by all monitor connections.
2282#
2283#        If @fdset-id is not specified, a new fd set will be created.
2284#
2285# Since: 1.2.0
2286#
2287# Example:
2288#
2289# -> { "execute": "add-fd", "arguments": { "fdset-id": 1 } }
2290# <- { "return": { "fdset-id": 1, "fd": 3 } }
2291#
2292##
2293{ 'command': 'add-fd', 'data': {'*fdset-id': 'int', '*opaque': 'str'},
2294  'returns': 'AddfdInfo' }
2295
2296##
2297# @remove-fd:
2298#
2299# Remove a file descriptor from an fd set.
2300#
2301# @fdset-id: The ID of the fd set that the file descriptor belongs to.
2302#
2303# @fd: The file descriptor that is to be removed.
2304#
2305# Returns: Nothing on success
2306#          If @fdset-id or @fd is not found, FdNotFound
2307#
2308# Since: 1.2.0
2309#
2310# Notes: The list of fd sets is shared by all monitor connections.
2311#
2312#        If @fd is not specified, all file descriptors in @fdset-id
2313#        will be removed.
2314#
2315# Example:
2316#
2317# -> { "execute": "remove-fd", "arguments": { "fdset-id": 1, "fd": 3 } }
2318# <- { "return": {} }
2319#
2320##
2321{ 'command': 'remove-fd', 'data': {'fdset-id': 'int', '*fd': 'int'} }
2322
2323##
2324# @FdsetFdInfo:
2325#
2326# Information about a file descriptor that belongs to an fd set.
2327#
2328# @fd: The file descriptor value.
2329#
2330# @opaque: A free-form string that can be used to describe the fd.
2331#
2332# Since: 1.2.0
2333##
2334{ 'struct': 'FdsetFdInfo',
2335  'data': {'fd': 'int', '*opaque': 'str'} }
2336
2337##
2338# @FdsetInfo:
2339#
2340# Information about an fd set.
2341#
2342# @fdset-id: The ID of the fd set.
2343#
2344# @fds: A list of file descriptors that belong to this fd set.
2345#
2346# Since: 1.2.0
2347##
2348{ 'struct': 'FdsetInfo',
2349  'data': {'fdset-id': 'int', 'fds': ['FdsetFdInfo']} }
2350
2351##
2352# @query-fdsets:
2353#
2354# Return information describing all fd sets.
2355#
2356# Returns: A list of @FdsetInfo
2357#
2358# Since: 1.2.0
2359#
2360# Note: The list of fd sets is shared by all monitor connections.
2361#
2362# Example:
2363#
2364# -> { "execute": "query-fdsets" }
2365# <- { "return": [
2366#        {
2367#          "fds": [
2368#            {
2369#              "fd": 30,
2370#              "opaque": "rdonly:/path/to/file"
2371#            },
2372#            {
2373#              "fd": 24,
2374#              "opaque": "rdwr:/path/to/file"
2375#            }
2376#          ],
2377#          "fdset-id": 1
2378#        },
2379#        {
2380#          "fds": [
2381#            {
2382#              "fd": 28
2383#            },
2384#            {
2385#              "fd": 29
2386#            }
2387#          ],
2388#          "fdset-id": 0
2389#        }
2390#      ]
2391#    }
2392#
2393##
2394{ 'command': 'query-fdsets', 'returns': ['FdsetInfo'] }
2395
2396##
2397# @TargetInfo:
2398#
2399# Information describing the QEMU target.
2400#
2401# @arch: the target architecture (eg "x86_64", "i386", etc)
2402#
2403# Since: 1.2.0
2404##
2405{ 'struct': 'TargetInfo',
2406  'data': { 'arch': 'str' } }
2407
2408##
2409# @query-target:
2410#
2411# Return information about the target for this QEMU
2412#
2413# Returns: TargetInfo
2414#
2415# Since: 1.2.0
2416##
2417{ 'command': 'query-target', 'returns': 'TargetInfo' }
2418
2419##
2420# @AcpiTableOptions:
2421#
2422# Specify an ACPI table on the command line to load.
2423#
2424# At most one of @file and @data can be specified. The list of files specified
2425# by any one of them is loaded and concatenated in order. If both are omitted,
2426# @data is implied.
2427#
2428# Other fields / optargs can be used to override fields of the generic ACPI
2429# table header; refer to the ACPI specification 5.0, section 5.2.6 System
2430# Description Table Header. If a header field is not overridden, then the
2431# corresponding value from the concatenated blob is used (in case of @file), or
2432# it is filled in with a hard-coded value (in case of @data).
2433#
2434# String fields are copied into the matching ACPI member from lowest address
2435# upwards, and silently truncated / NUL-padded to length.
2436#
2437# @sig: table signature / identifier (4 bytes)
2438#
2439# @rev: table revision number (dependent on signature, 1 byte)
2440#
2441# @oem_id: OEM identifier (6 bytes)
2442#
2443# @oem_table_id: OEM table identifier (8 bytes)
2444#
2445# @oem_rev: OEM-supplied revision number (4 bytes)
2446#
2447# @asl_compiler_id: identifier of the utility that created the table
2448#                   (4 bytes)
2449#
2450# @asl_compiler_rev: revision number of the utility that created the
2451#                    table (4 bytes)
2452#
2453# @file: colon (:) separated list of pathnames to load and
2454#        concatenate as table data. The resultant binary blob is expected to
2455#        have an ACPI table header. At least one file is required. This field
2456#        excludes @data.
2457#
2458# @data: colon (:) separated list of pathnames to load and
2459#        concatenate as table data. The resultant binary blob must not have an
2460#        ACPI table header. At least one file is required. This field excludes
2461#        @file.
2462#
2463# Since: 1.5
2464##
2465{ 'struct': 'AcpiTableOptions',
2466  'data': {
2467    '*sig':               'str',
2468    '*rev':               'uint8',
2469    '*oem_id':            'str',
2470    '*oem_table_id':      'str',
2471    '*oem_rev':           'uint32',
2472    '*asl_compiler_id':   'str',
2473    '*asl_compiler_rev':  'uint32',
2474    '*file':              'str',
2475    '*data':              'str' }}
2476
2477##
2478# @CommandLineParameterType:
2479#
2480# Possible types for an option parameter.
2481#
2482# @string: accepts a character string
2483#
2484# @boolean: accepts "on" or "off"
2485#
2486# @number: accepts a number
2487#
2488# @size: accepts a number followed by an optional suffix (K)ilo,
2489#        (M)ega, (G)iga, (T)era
2490#
2491# Since: 1.5
2492##
2493{ 'enum': 'CommandLineParameterType',
2494  'data': ['string', 'boolean', 'number', 'size'] }
2495
2496##
2497# @CommandLineParameterInfo:
2498#
2499# Details about a single parameter of a command line option.
2500#
2501# @name: parameter name
2502#
2503# @type: parameter @CommandLineParameterType
2504#
2505# @help: human readable text string, not suitable for parsing.
2506#
2507# @default: default value string (since 2.1)
2508#
2509# Since: 1.5
2510##
2511{ 'struct': 'CommandLineParameterInfo',
2512  'data': { 'name': 'str',
2513            'type': 'CommandLineParameterType',
2514            '*help': 'str',
2515            '*default': 'str' } }
2516
2517##
2518# @CommandLineOptionInfo:
2519#
2520# Details about a command line option, including its list of parameter details
2521#
2522# @option: option name
2523#
2524# @parameters: an array of @CommandLineParameterInfo
2525#
2526# Since: 1.5
2527##
2528{ 'struct': 'CommandLineOptionInfo',
2529  'data': { 'option': 'str', 'parameters': ['CommandLineParameterInfo'] } }
2530
2531##
2532# @query-command-line-options:
2533#
2534# Query command line option schema.
2535#
2536# @option: option name
2537#
2538# Returns: list of @CommandLineOptionInfo for all options (or for the given
2539#          @option).  Returns an error if the given @option doesn't exist.
2540#
2541# Since: 1.5
2542#
2543# Example:
2544#
2545# -> { "execute": "query-command-line-options",
2546#      "arguments": { "option": "option-rom" } }
2547# <- { "return": [
2548#         {
2549#             "parameters": [
2550#                 {
2551#                     "name": "romfile",
2552#                     "type": "string"
2553#                 },
2554#                 {
2555#                     "name": "bootindex",
2556#                     "type": "number"
2557#                 }
2558#             ],
2559#             "option": "option-rom"
2560#         }
2561#      ]
2562#    }
2563#
2564##
2565{'command': 'query-command-line-options', 'data': { '*option': 'str' },
2566 'returns': ['CommandLineOptionInfo'] }
2567
2568##
2569# @X86CPURegister32:
2570#
2571# A X86 32-bit register
2572#
2573# Since: 1.5
2574##
2575{ 'enum': 'X86CPURegister32',
2576  'data': [ 'EAX', 'EBX', 'ECX', 'EDX', 'ESP', 'EBP', 'ESI', 'EDI' ] }
2577
2578##
2579# @X86CPUFeatureWordInfo:
2580#
2581# Information about a X86 CPU feature word
2582#
2583# @cpuid-input-eax: Input EAX value for CPUID instruction for that feature word
2584#
2585# @cpuid-input-ecx: Input ECX value for CPUID instruction for that
2586#                   feature word
2587#
2588# @cpuid-register: Output register containing the feature bits
2589#
2590# @features: value of output register, containing the feature bits
2591#
2592# Since: 1.5
2593##
2594{ 'struct': 'X86CPUFeatureWordInfo',
2595  'data': { 'cpuid-input-eax': 'int',
2596            '*cpuid-input-ecx': 'int',
2597            'cpuid-register': 'X86CPURegister32',
2598            'features': 'int' } }
2599
2600##
2601# @DummyForceArrays:
2602#
2603# Not used by QMP; hack to let us use X86CPUFeatureWordInfoList internally
2604#
2605# Since: 2.5
2606##
2607{ 'struct': 'DummyForceArrays',
2608  'data': { 'unused': ['X86CPUFeatureWordInfo'] } }
2609
2610
2611##
2612# @NumaOptionsType:
2613#
2614# @node: NUMA nodes configuration
2615#
2616# @dist: NUMA distance configuration (since 2.10)
2617#
2618# @cpu: property based CPU(s) to node mapping (Since: 2.10)
2619#
2620# Since: 2.1
2621##
2622{ 'enum': 'NumaOptionsType',
2623  'data': [ 'node', 'dist', 'cpu' ] }
2624
2625##
2626# @NumaOptions:
2627#
2628# A discriminated record of NUMA options. (for OptsVisitor)
2629#
2630# Since: 2.1
2631##
2632{ 'union': 'NumaOptions',
2633  'base': { 'type': 'NumaOptionsType' },
2634  'discriminator': 'type',
2635  'data': {
2636    'node': 'NumaNodeOptions',
2637    'dist': 'NumaDistOptions',
2638    'cpu': 'NumaCpuOptions' }}
2639
2640##
2641# @NumaNodeOptions:
2642#
2643# Create a guest NUMA node. (for OptsVisitor)
2644#
2645# @nodeid: NUMA node ID (increase by 1 from 0 if omitted)
2646#
2647# @cpus: VCPUs belonging to this node (assign VCPUS round-robin
2648#         if omitted)
2649#
2650# @mem: memory size of this node; mutually exclusive with @memdev.
2651#       Equally divide total memory among nodes if both @mem and @memdev are
2652#       omitted.
2653#
2654# @memdev: memory backend object.  If specified for one node,
2655#          it must be specified for all nodes.
2656#
2657# Since: 2.1
2658##
2659{ 'struct': 'NumaNodeOptions',
2660  'data': {
2661   '*nodeid': 'uint16',
2662   '*cpus':   ['uint16'],
2663   '*mem':    'size',
2664   '*memdev': 'str' }}
2665
2666##
2667# @NumaDistOptions:
2668#
2669# Set the distance between 2 NUMA nodes.
2670#
2671# @src: source NUMA node.
2672#
2673# @dst: destination NUMA node.
2674#
2675# @val: NUMA distance from source node to destination node.
2676#       When a node is unreachable from another node, set the distance
2677#       between them to 255.
2678#
2679# Since: 2.10
2680##
2681{ 'struct': 'NumaDistOptions',
2682  'data': {
2683   'src': 'uint16',
2684   'dst': 'uint16',
2685   'val': 'uint8' }}
2686
2687##
2688# @NumaCpuOptions:
2689#
2690# Option "-numa cpu" overrides default cpu to node mapping.
2691# It accepts the same set of cpu properties as returned by
2692# query-hotpluggable-cpus[].props, where node-id could be used to
2693# override default node mapping.
2694#
2695# Since: 2.10
2696##
2697{ 'struct': 'NumaCpuOptions',
2698   'base': 'CpuInstanceProperties',
2699   'data' : {} }
2700
2701##
2702# @HostMemPolicy:
2703#
2704# Host memory policy types
2705#
2706# @default: restore default policy, remove any nondefault policy
2707#
2708# @preferred: set the preferred host nodes for allocation
2709#
2710# @bind: a strict policy that restricts memory allocation to the
2711#        host nodes specified
2712#
2713# @interleave: memory allocations are interleaved across the set
2714#              of host nodes specified
2715#
2716# Since: 2.1
2717##
2718{ 'enum': 'HostMemPolicy',
2719  'data': [ 'default', 'preferred', 'bind', 'interleave' ] }
2720
2721##
2722# @Memdev:
2723#
2724# Information about memory backend
2725#
2726# @id: backend's ID if backend has 'id' property (since 2.9)
2727#
2728# @size: memory backend size
2729#
2730# @merge: enables or disables memory merge support
2731#
2732# @dump: includes memory backend's memory in a core dump or not
2733#
2734# @prealloc: enables or disables memory preallocation
2735#
2736# @host-nodes: host nodes for its memory policy
2737#
2738# @policy: memory policy of memory backend
2739#
2740# Since: 2.1
2741##
2742{ 'struct': 'Memdev',
2743  'data': {
2744    '*id':        'str',
2745    'size':       'size',
2746    'merge':      'bool',
2747    'dump':       'bool',
2748    'prealloc':   'bool',
2749    'host-nodes': ['uint16'],
2750    'policy':     'HostMemPolicy' }}
2751
2752##
2753# @query-memdev:
2754#
2755# Returns information for all memory backends.
2756#
2757# Returns: a list of @Memdev.
2758#
2759# Since: 2.1
2760#
2761# Example:
2762#
2763# -> { "execute": "query-memdev" }
2764# <- { "return": [
2765#        {
2766#          "id": "mem1",
2767#          "size": 536870912,
2768#          "merge": false,
2769#          "dump": true,
2770#          "prealloc": false,
2771#          "host-nodes": [0, 1],
2772#          "policy": "bind"
2773#        },
2774#        {
2775#          "size": 536870912,
2776#          "merge": false,
2777#          "dump": true,
2778#          "prealloc": true,
2779#          "host-nodes": [2, 3],
2780#          "policy": "preferred"
2781#        }
2782#      ]
2783#    }
2784#
2785##
2786{ 'command': 'query-memdev', 'returns': ['Memdev'] }
2787
2788##
2789# @PCDIMMDeviceInfo:
2790#
2791# PCDIMMDevice state information
2792#
2793# @id: device's ID
2794#
2795# @addr: physical address, where device is mapped
2796#
2797# @size: size of memory that the device provides
2798#
2799# @slot: slot number at which device is plugged in
2800#
2801# @node: NUMA node number where device is plugged in
2802#
2803# @memdev: memory backend linked with device
2804#
2805# @hotplugged: true if device was hotplugged
2806#
2807# @hotpluggable: true if device if could be added/removed while machine is running
2808#
2809# Since: 2.1
2810##
2811{ 'struct': 'PCDIMMDeviceInfo',
2812  'data': { '*id': 'str',
2813            'addr': 'int',
2814            'size': 'int',
2815            'slot': 'int',
2816            'node': 'int',
2817            'memdev': 'str',
2818            'hotplugged': 'bool',
2819            'hotpluggable': 'bool'
2820          }
2821}
2822
2823##
2824# @MemoryDeviceInfo:
2825#
2826# Union containing information about a memory device
2827#
2828# Since: 2.1
2829##
2830{ 'union': 'MemoryDeviceInfo', 'data': {'dimm': 'PCDIMMDeviceInfo'} }
2831
2832##
2833# @query-memory-devices:
2834#
2835# Lists available memory devices and their state
2836#
2837# Since: 2.1
2838#
2839# Example:
2840#
2841# -> { "execute": "query-memory-devices" }
2842# <- { "return": [ { "data":
2843#                       { "addr": 5368709120,
2844#                         "hotpluggable": true,
2845#                         "hotplugged": true,
2846#                         "id": "d1",
2847#                         "memdev": "/objects/memX",
2848#                         "node": 0,
2849#                         "size": 1073741824,
2850#                         "slot": 0},
2851#                    "type": "dimm"
2852#                  } ] }
2853#
2854##
2855{ 'command': 'query-memory-devices', 'returns': ['MemoryDeviceInfo'] }
2856
2857##
2858# @MEM_UNPLUG_ERROR:
2859#
2860# Emitted when memory hot unplug error occurs.
2861#
2862# @device: device name
2863#
2864# @msg: Informative message
2865#
2866# Since: 2.4
2867#
2868# Example:
2869#
2870# <- { "event": "MEM_UNPLUG_ERROR"
2871#      "data": { "device": "dimm1",
2872#                "msg": "acpi: device unplug for unsupported device"
2873#      },
2874#      "timestamp": { "seconds": 1265044230, "microseconds": 450486 } }
2875#
2876##
2877{ 'event': 'MEM_UNPLUG_ERROR',
2878  'data': { 'device': 'str', 'msg': 'str' } }
2879
2880##
2881# @ACPISlotType:
2882#
2883# @DIMM: memory slot
2884# @CPU: logical CPU slot (since 2.7)
2885##
2886{ 'enum': 'ACPISlotType', 'data': [ 'DIMM', 'CPU' ] }
2887
2888##
2889# @ACPIOSTInfo:
2890#
2891# OSPM Status Indication for a device
2892# For description of possible values of @source and @status fields
2893# see "_OST (OSPM Status Indication)" chapter of ACPI5.0 spec.
2894#
2895# @device: device ID associated with slot
2896#
2897# @slot: slot ID, unique per slot of a given @slot-type
2898#
2899# @slot-type: type of the slot
2900#
2901# @source: an integer containing the source event
2902#
2903# @status: an integer containing the status code
2904#
2905# Since: 2.1
2906##
2907{ 'struct': 'ACPIOSTInfo',
2908  'data'  : { '*device': 'str',
2909              'slot': 'str',
2910              'slot-type': 'ACPISlotType',
2911              'source': 'int',
2912              'status': 'int' } }
2913
2914##
2915# @query-acpi-ospm-status:
2916#
2917# Return a list of ACPIOSTInfo for devices that support status
2918# reporting via ACPI _OST method.
2919#
2920# Since: 2.1
2921#
2922# Example:
2923#
2924# -> { "execute": "query-acpi-ospm-status" }
2925# <- { "return": [ { "device": "d1", "slot": "0", "slot-type": "DIMM", "source": 1, "status": 0},
2926#                  { "slot": "1", "slot-type": "DIMM", "source": 0, "status": 0},
2927#                  { "slot": "2", "slot-type": "DIMM", "source": 0, "status": 0},
2928#                  { "slot": "3", "slot-type": "DIMM", "source": 0, "status": 0}
2929#    ]}
2930#
2931##
2932{ 'command': 'query-acpi-ospm-status', 'returns': ['ACPIOSTInfo'] }
2933
2934##
2935# @ACPI_DEVICE_OST:
2936#
2937# Emitted when guest executes ACPI _OST method.
2938#
2939# @info: ACPIOSTInfo type as described in qapi-schema.json
2940#
2941# Since: 2.1
2942#
2943# Example:
2944#
2945# <- { "event": "ACPI_DEVICE_OST",
2946#      "data": { "device": "d1", "slot": "0",
2947#                "slot-type": "DIMM", "source": 1, "status": 0 } }
2948#
2949##
2950{ 'event': 'ACPI_DEVICE_OST',
2951     'data': { 'info': 'ACPIOSTInfo' } }
2952
2953##
2954# @rtc-reset-reinjection:
2955#
2956# This command will reset the RTC interrupt reinjection backlog.
2957# Can be used if another mechanism to synchronize guest time
2958# is in effect, for example QEMU guest agent's guest-set-time
2959# command.
2960#
2961# Since: 2.1
2962#
2963# Example:
2964#
2965# -> { "execute": "rtc-reset-reinjection" }
2966# <- { "return": {} }
2967#
2968##
2969{ 'command': 'rtc-reset-reinjection' }
2970
2971##
2972# @RTC_CHANGE:
2973#
2974# Emitted when the guest changes the RTC time.
2975#
2976# @offset: offset between base RTC clock (as specified by -rtc base), and
2977#          new RTC clock value
2978#
2979# Note: This event is rate-limited.
2980#
2981# Since: 0.13.0
2982#
2983# Example:
2984#
2985# <-   { "event": "RTC_CHANGE",
2986#        "data": { "offset": 78 },
2987#        "timestamp": { "seconds": 1267020223, "microseconds": 435656 } }
2988#
2989##
2990{ 'event': 'RTC_CHANGE',
2991  'data': { 'offset': 'int' } }
2992
2993##
2994# @ReplayMode:
2995#
2996# Mode of the replay subsystem.
2997#
2998# @none: normal execution mode. Replay or record are not enabled.
2999#
3000# @record: record mode. All non-deterministic data is written into the
3001#          replay log.
3002#
3003# @play: replay mode. Non-deterministic data required for system execution
3004#        is read from the log.
3005#
3006# Since: 2.5
3007##
3008{ 'enum': 'ReplayMode',
3009  'data': [ 'none', 'record', 'play' ] }
3010
3011##
3012# @xen-load-devices-state:
3013#
3014# Load the state of all devices from file. The RAM and the block devices
3015# of the VM are not loaded by this command.
3016#
3017# @filename: the file to load the state of the devices from as binary
3018# data. See xen-save-devices-state.txt for a description of the binary
3019# format.
3020#
3021# Since: 2.7
3022#
3023# Example:
3024#
3025# -> { "execute": "xen-load-devices-state",
3026#      "arguments": { "filename": "/tmp/resume" } }
3027# <- { "return": {} }
3028#
3029##
3030{ 'command': 'xen-load-devices-state', 'data': {'filename': 'str'} }
3031
3032##
3033# @GICCapability:
3034#
3035# The struct describes capability for a specific GIC (Generic
3036# Interrupt Controller) version. These bits are not only decided by
3037# QEMU/KVM software version, but also decided by the hardware that
3038# the program is running upon.
3039#
3040# @version:  version of GIC to be described. Currently, only 2 and 3
3041#            are supported.
3042#
3043# @emulated: whether current QEMU/hardware supports emulated GIC
3044#            device in user space.
3045#
3046# @kernel:   whether current QEMU/hardware supports hardware
3047#            accelerated GIC device in kernel.
3048#
3049# Since: 2.6
3050##
3051{ 'struct': 'GICCapability',
3052  'data': { 'version': 'int',
3053            'emulated': 'bool',
3054            'kernel': 'bool' } }
3055
3056##
3057# @query-gic-capabilities:
3058#
3059# This command is ARM-only. It will return a list of GICCapability
3060# objects that describe its capability bits.
3061#
3062# Returns: a list of GICCapability objects.
3063#
3064# Since: 2.6
3065#
3066# Example:
3067#
3068# -> { "execute": "query-gic-capabilities" }
3069# <- { "return": [{ "version": 2, "emulated": true, "kernel": false },
3070#                 { "version": 3, "emulated": false, "kernel": true } ] }
3071#
3072##
3073{ 'command': 'query-gic-capabilities', 'returns': ['GICCapability'] }
3074
3075##
3076# @CpuInstanceProperties:
3077#
3078# List of properties to be used for hotplugging a CPU instance,
3079# it should be passed by management with device_add command when
3080# a CPU is being hotplugged.
3081#
3082# @node-id: NUMA node ID the CPU belongs to
3083# @socket-id: socket number within node/board the CPU belongs to
3084# @core-id: core number within socket the CPU belongs to
3085# @thread-id: thread number within core the CPU belongs to
3086#
3087# Note: currently there are 4 properties that could be present
3088# but management should be prepared to pass through other
3089# properties with device_add command to allow for future
3090# interface extension. This also requires the filed names to be kept in
3091# sync with the properties passed to -device/device_add.
3092#
3093# Since: 2.7
3094##
3095{ 'struct': 'CpuInstanceProperties',
3096  'data': { '*node-id': 'int',
3097            '*socket-id': 'int',
3098            '*core-id': 'int',
3099            '*thread-id': 'int'
3100  }
3101}
3102
3103##
3104# @HotpluggableCPU:
3105#
3106# @type: CPU object type for usage with device_add command
3107# @props: list of properties to be used for hotplugging CPU
3108# @vcpus-count: number of logical VCPU threads @HotpluggableCPU provides
3109# @qom-path: link to existing CPU object if CPU is present or
3110#            omitted if CPU is not present.
3111#
3112# Since: 2.7
3113##
3114{ 'struct': 'HotpluggableCPU',
3115  'data': { 'type': 'str',
3116            'vcpus-count': 'int',
3117            'props': 'CpuInstanceProperties',
3118            '*qom-path': 'str'
3119          }
3120}
3121
3122##
3123# @query-hotpluggable-cpus:
3124#
3125# Returns: a list of HotpluggableCPU objects.
3126#
3127# Since: 2.7
3128#
3129# Example:
3130#
3131# For pseries machine type started with -smp 2,cores=2,maxcpus=4 -cpu POWER8:
3132#
3133# -> { "execute": "query-hotpluggable-cpus" }
3134# <- {"return": [
3135#      { "props": { "core": 8 }, "type": "POWER8-spapr-cpu-core",
3136#        "vcpus-count": 1 },
3137#      { "props": { "core": 0 }, "type": "POWER8-spapr-cpu-core",
3138#        "vcpus-count": 1, "qom-path": "/machine/unattached/device[0]"}
3139#    ]}'
3140#
3141# For pc machine type started with -smp 1,maxcpus=2:
3142#
3143# -> { "execute": "query-hotpluggable-cpus" }
3144# <- {"return": [
3145#      {
3146#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3147#         "props": {"core-id": 0, "socket-id": 1, "thread-id": 0}
3148#      },
3149#      {
3150#         "qom-path": "/machine/unattached/device[0]",
3151#         "type": "qemu64-x86_64-cpu", "vcpus-count": 1,
3152#         "props": {"core-id": 0, "socket-id": 0, "thread-id": 0}
3153#      }
3154#    ]}
3155#
3156# For s390x-virtio-ccw machine type started with -smp 1,maxcpus=2 -cpu qemu
3157# (Since: 2.11):
3158#
3159# -> { "execute": "query-hotpluggable-cpus" }
3160# <- {"return": [
3161#      {
3162#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3163#         "props": { "core-id": 1 }
3164#      },
3165#      {
3166#         "qom-path": "/machine/unattached/device[0]",
3167#         "type": "qemu-s390x-cpu", "vcpus-count": 1,
3168#         "props": { "core-id": 0 }
3169#      }
3170#    ]}
3171#
3172##
3173{ 'command': 'query-hotpluggable-cpus', 'returns': ['HotpluggableCPU'] }
3174
3175##
3176# @GuidInfo:
3177#
3178# GUID information.
3179#
3180# @guid: the globally unique identifier
3181#
3182# Since: 2.9
3183##
3184{ 'struct': 'GuidInfo', 'data': {'guid': 'str'} }
3185
3186##
3187# @query-vm-generation-id:
3188#
3189# Show Virtual Machine Generation ID
3190#
3191# Since 2.9
3192##
3193{ 'command': 'query-vm-generation-id', 'returns': 'GuidInfo' }
3194
3195##
3196# @watchdog-set-action:
3197#
3198# Set watchdog action
3199#
3200# Since: 2.11
3201##
3202{ 'command': 'watchdog-set-action', 'data' : {'action': 'WatchdogAction'} }
3203