qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4@include version.texi
   5
   6@documentlanguage en
   7@documentencoding UTF-8
   8
   9@settitle QEMU version @value{VERSION} User Documentation
  10@exampleindent 0
  11@paragraphindent 0
  12@c %**end of header
  13
  14@ifinfo
  15@direntry
  16* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  17@end direntry
  18@end ifinfo
  19
  20@iftex
  21@titlepage
  22@sp 7
  23@center @titlefont{QEMU version @value{VERSION}}
  24@sp 1
  25@center @titlefont{User Documentation}
  26@sp 3
  27@end titlepage
  28@end iftex
  29
  30@ifnottex
  31@node Top
  32@top
  33
  34@menu
  35* Introduction::
  36* QEMU PC System emulator::
  37* QEMU System emulator for non PC targets::
  38* QEMU Guest Agent::
  39* QEMU User space emulator::
  40* Implementation notes::
  41* Deprecated features::
  42* License::
  43* Index::
  44@end menu
  45@end ifnottex
  46
  47@contents
  48
  49@node Introduction
  50@chapter Introduction
  51
  52@menu
  53* intro_features:: Features
  54@end menu
  55
  56@node intro_features
  57@section Features
  58
  59QEMU is a FAST! processor emulator using dynamic translation to
  60achieve good emulation speed.
  61
  62@cindex operating modes
  63QEMU has two operating modes:
  64
  65@itemize
  66@cindex system emulation
  67@item Full system emulation. In this mode, QEMU emulates a full system (for
  68example a PC), including one or several processors and various
  69peripherals. It can be used to launch different Operating Systems
  70without rebooting the PC or to debug system code.
  71
  72@cindex user mode emulation
  73@item User mode emulation. In this mode, QEMU can launch
  74processes compiled for one CPU on another CPU. It can be used to
  75launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
  76to ease cross-compilation and cross-debugging.
  77
  78@end itemize
  79
  80QEMU has the following features:
  81
  82@itemize
  83@item QEMU can run without a host kernel driver and yet gives acceptable
  84performance.  It uses dynamic translation to native code for reasonable speed,
  85with support for self-modifying code and precise exceptions.
  86
  87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
  88Windows) and architectures.
  89
  90@item It performs accurate software emulation of the FPU.
  91@end itemize
  92
  93QEMU user mode emulation has the following features:
  94@itemize
  95@item Generic Linux system call converter, including most ioctls.
  96
  97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
  98
  99@item Accurate signal handling by remapping host signals to target signals.
 100@end itemize
 101
 102QEMU full system emulation has the following features:
 103@itemize
 104@item
 105QEMU uses a full software MMU for maximum portability.
 106
 107@item
 108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
 109execute most of the guest code natively, while
 110continuing to emulate the rest of the machine.
 111
 112@item
 113Various hardware devices can be emulated and in some cases, host
 114devices (e.g. serial and parallel ports, USB, drives) can be used
 115transparently by the guest Operating System. Host device passthrough
 116can be used for talking to external physical peripherals (e.g. a
 117webcam, modem or tape drive).
 118
 119@item
 120Symmetric multiprocessing (SMP) support.  Currently, an in-kernel
 121accelerator is required to use more than one host CPU for emulation.
 122
 123@end itemize
 124
 125
 126@node QEMU PC System emulator
 127@chapter QEMU PC System emulator
 128@cindex system emulation (PC)
 129
 130@menu
 131* pcsys_introduction:: Introduction
 132* pcsys_quickstart::   Quick Start
 133* sec_invocation::     Invocation
 134* pcsys_keys::         Keys in the graphical frontends
 135* mux_keys::           Keys in the character backend multiplexer
 136* pcsys_monitor::      QEMU Monitor
 137* disk_images::        Disk Images
 138* pcsys_network::      Network emulation
 139* pcsys_other_devs::   Other Devices
 140* direct_linux_boot::  Direct Linux Boot
 141* pcsys_usb::          USB emulation
 142* vnc_security::       VNC security
 143* gdb_usage::          GDB usage
 144* pcsys_os_specific::  Target OS specific information
 145@end menu
 146
 147@node pcsys_introduction
 148@section Introduction
 149
 150@c man begin DESCRIPTION
 151
 152The QEMU PC System emulator simulates the
 153following peripherals:
 154
 155@itemize @minus
 156@item
 157i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 158@item
 159Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 160extensions (hardware level, including all non standard modes).
 161@item
 162PS/2 mouse and keyboard
 163@item
 1642 PCI IDE interfaces with hard disk and CD-ROM support
 165@item
 166Floppy disk
 167@item
 168PCI and ISA network adapters
 169@item
 170Serial ports
 171@item
 172IPMI BMC, either and internal or external one
 173@item
 174Creative SoundBlaster 16 sound card
 175@item
 176ENSONIQ AudioPCI ES1370 sound card
 177@item
 178Intel 82801AA AC97 Audio compatible sound card
 179@item
 180Intel HD Audio Controller and HDA codec
 181@item
 182Adlib (OPL2) - Yamaha YM3812 compatible chip
 183@item
 184Gravis Ultrasound GF1 sound card
 185@item
 186CS4231A compatible sound card
 187@item
 188PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
 189@end itemize
 190
 191SMP is supported with up to 255 CPUs.
 192
 193QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
 194VGA BIOS.
 195
 196QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 197
 198QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 199by Tibor "TS" Schütz.
 200
 201Note that, by default, GUS shares IRQ(7) with parallel ports and so
 202QEMU must be told to not have parallel ports to have working GUS.
 203
 204@example
 205qemu-system-i386 dos.img -soundhw gus -parallel none
 206@end example
 207
 208Alternatively:
 209@example
 210qemu-system-i386 dos.img -device gus,irq=5
 211@end example
 212
 213Or some other unclaimed IRQ.
 214
 215CS4231A is the chip used in Windows Sound System and GUSMAX products
 216
 217@c man end
 218
 219@node pcsys_quickstart
 220@section Quick Start
 221@cindex quick start
 222
 223Download and uncompress the linux image (@file{linux.img}) and type:
 224
 225@example
 226qemu-system-i386 linux.img
 227@end example
 228
 229Linux should boot and give you a prompt.
 230
 231@node sec_invocation
 232@section Invocation
 233
 234@example
 235@c man begin SYNOPSIS
 236@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
 237@c man end
 238@end example
 239
 240@c man begin OPTIONS
 241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 242targets do not need a disk image.
 243
 244@include qemu-options.texi
 245
 246@c man end
 247
 248@node pcsys_keys
 249@section Keys in the graphical frontends
 250
 251@c man begin OPTIONS
 252
 253During the graphical emulation, you can use special key combinations to change
 254modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 255then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 256@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 257
 258@table @key
 259@item Ctrl-Alt-f
 260@kindex Ctrl-Alt-f
 261Toggle full screen
 262
 263@item Ctrl-Alt-+
 264@kindex Ctrl-Alt-+
 265Enlarge the screen
 266
 267@item Ctrl-Alt--
 268@kindex Ctrl-Alt--
 269Shrink the screen
 270
 271@item Ctrl-Alt-u
 272@kindex Ctrl-Alt-u
 273Restore the screen's un-scaled dimensions
 274
 275@item Ctrl-Alt-n
 276@kindex Ctrl-Alt-n
 277Switch to virtual console 'n'. Standard console mappings are:
 278@table @emph
 279@item 1
 280Target system display
 281@item 2
 282Monitor
 283@item 3
 284Serial port
 285@end table
 286
 287@item Ctrl-Alt
 288@kindex Ctrl-Alt
 289Toggle mouse and keyboard grab.
 290@end table
 291
 292@kindex Ctrl-Up
 293@kindex Ctrl-Down
 294@kindex Ctrl-PageUp
 295@kindex Ctrl-PageDown
 296In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 297@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 298
 299@c man end
 300
 301@node mux_keys
 302@section Keys in the character backend multiplexer
 303
 304@c man begin OPTIONS
 305
 306During emulation, if you are using a character backend multiplexer
 307(which is the default if you are using @option{-nographic}) then
 308several commands are available via an escape sequence. These
 309key sequences all start with an escape character, which is @key{Ctrl-a}
 310by default, but can be changed with @option{-echr}. The list below assumes
 311you're using the default.
 312
 313@table @key
 314@item Ctrl-a h
 315@kindex Ctrl-a h
 316Print this help
 317@item Ctrl-a x
 318@kindex Ctrl-a x
 319Exit emulator
 320@item Ctrl-a s
 321@kindex Ctrl-a s
 322Save disk data back to file (if -snapshot)
 323@item Ctrl-a t
 324@kindex Ctrl-a t
 325Toggle console timestamps
 326@item Ctrl-a b
 327@kindex Ctrl-a b
 328Send break (magic sysrq in Linux)
 329@item Ctrl-a c
 330@kindex Ctrl-a c
 331Rotate between the frontends connected to the multiplexer (usually
 332this switches between the monitor and the console)
 333@item Ctrl-a Ctrl-a
 334@kindex Ctrl-a Ctrl-a
 335Send the escape character to the frontend
 336@end table
 337@c man end
 338
 339@ignore
 340
 341@c man begin SEEALSO
 342The HTML documentation of QEMU for more precise information and Linux
 343user mode emulator invocation.
 344@c man end
 345
 346@c man begin AUTHOR
 347Fabrice Bellard
 348@c man end
 349
 350@end ignore
 351
 352@node pcsys_monitor
 353@section QEMU Monitor
 354@cindex QEMU monitor
 355
 356The QEMU monitor is used to give complex commands to the QEMU
 357emulator. You can use it to:
 358
 359@itemize @minus
 360
 361@item
 362Remove or insert removable media images
 363(such as CD-ROM or floppies).
 364
 365@item
 366Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 367from a disk file.
 368
 369@item Inspect the VM state without an external debugger.
 370
 371@end itemize
 372
 373@subsection Commands
 374
 375The following commands are available:
 376
 377@include qemu-monitor.texi
 378
 379@include qemu-monitor-info.texi
 380
 381@subsection Integer expressions
 382
 383The monitor understands integers expressions for every integer
 384argument. You can use register names to get the value of specifics
 385CPU registers by prefixing them with @emph{$}.
 386
 387@node disk_images
 388@section Disk Images
 389
 390QEMU supports many disk image formats, including growable disk images
 391(their size increase as non empty sectors are written), compressed and
 392encrypted disk images.
 393
 394@menu
 395* disk_images_quickstart::    Quick start for disk image creation
 396* disk_images_snapshot_mode:: Snapshot mode
 397* vm_snapshots::              VM snapshots
 398* qemu_img_invocation::       qemu-img Invocation
 399* qemu_nbd_invocation::       qemu-nbd Invocation
 400* disk_images_formats::       Disk image file formats
 401* host_drives::               Using host drives
 402* disk_images_fat_images::    Virtual FAT disk images
 403* disk_images_nbd::           NBD access
 404* disk_images_sheepdog::      Sheepdog disk images
 405* disk_images_iscsi::         iSCSI LUNs
 406* disk_images_gluster::       GlusterFS disk images
 407* disk_images_ssh::           Secure Shell (ssh) disk images
 408* disk_image_locking::        Disk image file locking
 409@end menu
 410
 411@node disk_images_quickstart
 412@subsection Quick start for disk image creation
 413
 414You can create a disk image with the command:
 415@example
 416qemu-img create myimage.img mysize
 417@end example
 418where @var{myimage.img} is the disk image filename and @var{mysize} is its
 419size in kilobytes. You can add an @code{M} suffix to give the size in
 420megabytes and a @code{G} suffix for gigabytes.
 421
 422See @ref{qemu_img_invocation} for more information.
 423
 424@node disk_images_snapshot_mode
 425@subsection Snapshot mode
 426
 427If you use the option @option{-snapshot}, all disk images are
 428considered as read only. When sectors in written, they are written in
 429a temporary file created in @file{/tmp}. You can however force the
 430write back to the raw disk images by using the @code{commit} monitor
 431command (or @key{C-a s} in the serial console).
 432
 433@node vm_snapshots
 434@subsection VM snapshots
 435
 436VM snapshots are snapshots of the complete virtual machine including
 437CPU state, RAM, device state and the content of all the writable
 438disks. In order to use VM snapshots, you must have at least one non
 439removable and writable block device using the @code{qcow2} disk image
 440format. Normally this device is the first virtual hard drive.
 441
 442Use the monitor command @code{savevm} to create a new VM snapshot or
 443replace an existing one. A human readable name can be assigned to each
 444snapshot in addition to its numerical ID.
 445
 446Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 447a VM snapshot. @code{info snapshots} lists the available snapshots
 448with their associated information:
 449
 450@example
 451(qemu) info snapshots
 452Snapshot devices: hda
 453Snapshot list (from hda):
 454ID        TAG                 VM SIZE                DATE       VM CLOCK
 4551         start                   41M 2006-08-06 12:38:02   00:00:14.954
 4562                                 40M 2006-08-06 12:43:29   00:00:18.633
 4573         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 458@end example
 459
 460A VM snapshot is made of a VM state info (its size is shown in
 461@code{info snapshots}) and a snapshot of every writable disk image.
 462The VM state info is stored in the first @code{qcow2} non removable
 463and writable block device. The disk image snapshots are stored in
 464every disk image. The size of a snapshot in a disk image is difficult
 465to evaluate and is not shown by @code{info snapshots} because the
 466associated disk sectors are shared among all the snapshots to save
 467disk space (otherwise each snapshot would need a full copy of all the
 468disk images).
 469
 470When using the (unrelated) @code{-snapshot} option
 471(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 472but they are deleted as soon as you exit QEMU.
 473
 474VM snapshots currently have the following known limitations:
 475@itemize
 476@item
 477They cannot cope with removable devices if they are removed or
 478inserted after a snapshot is done.
 479@item
 480A few device drivers still have incomplete snapshot support so their
 481state is not saved or restored properly (in particular USB).
 482@end itemize
 483
 484@node qemu_img_invocation
 485@subsection @code{qemu-img} Invocation
 486
 487@include qemu-img.texi
 488
 489@node qemu_nbd_invocation
 490@subsection @code{qemu-nbd} Invocation
 491
 492@include qemu-nbd.texi
 493
 494@include docs/qemu-block-drivers.texi
 495
 496@node pcsys_network
 497@section Network emulation
 498
 499QEMU can simulate several network cards (PCI or ISA cards on the PC
 500target) and can connect them to an arbitrary number of Virtual Local
 501Area Networks (VLANs). Host TAP devices can be connected to any QEMU
 502VLAN. VLAN can be connected between separate instances of QEMU to
 503simulate large networks. For simpler usage, a non privileged user mode
 504network stack can replace the TAP device to have a basic network
 505connection.
 506
 507@subsection VLANs
 508
 509QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
 510connection between several network devices. These devices can be for
 511example QEMU virtual Ethernet cards or virtual Host ethernet devices
 512(TAP devices).
 513
 514@subsection Using TAP network interfaces
 515
 516This is the standard way to connect QEMU to a real network. QEMU adds
 517a virtual network device on your host (called @code{tapN}), and you
 518can then configure it as if it was a real ethernet card.
 519
 520@subsubsection Linux host
 521
 522As an example, you can download the @file{linux-test-xxx.tar.gz}
 523archive and copy the script @file{qemu-ifup} in @file{/etc} and
 524configure properly @code{sudo} so that the command @code{ifconfig}
 525contained in @file{qemu-ifup} can be executed as root. You must verify
 526that your host kernel supports the TAP network interfaces: the
 527device @file{/dev/net/tun} must be present.
 528
 529See @ref{sec_invocation} to have examples of command lines using the
 530TAP network interfaces.
 531
 532@subsubsection Windows host
 533
 534There is a virtual ethernet driver for Windows 2000/XP systems, called
 535TAP-Win32. But it is not included in standard QEMU for Windows,
 536so you will need to get it separately. It is part of OpenVPN package,
 537so download OpenVPN from : @url{https://openvpn.net/}.
 538
 539@subsection Using the user mode network stack
 540
 541By using the option @option{-net user} (default configuration if no
 542@option{-net} option is specified), QEMU uses a completely user mode
 543network stack (you don't need root privilege to use the virtual
 544network). The virtual network configuration is the following:
 545
 546@example
 547
 548         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
 549                           |          (10.0.2.2)
 550                           |
 551                           ---->  DNS server (10.0.2.3)
 552                           |
 553                           ---->  SMB server (10.0.2.4)
 554@end example
 555
 556The QEMU VM behaves as if it was behind a firewall which blocks all
 557incoming connections. You can use a DHCP client to automatically
 558configure the network in the QEMU VM. The DHCP server assign addresses
 559to the hosts starting from 10.0.2.15.
 560
 561In order to check that the user mode network is working, you can ping
 562the address 10.0.2.2 and verify that you got an address in the range
 56310.0.2.x from the QEMU virtual DHCP server.
 564
 565Note that ICMP traffic in general does not work with user mode networking.
 566@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
 567however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
 568ping sockets to allow @code{ping} to the Internet. The host admin has to set
 569the ping_group_range in order to grant access to those sockets. To allow ping
 570for GID 100 (usually users group):
 571
 572@example
 573echo 100 100 > /proc/sys/net/ipv4/ping_group_range
 574@end example
 575
 576When using the built-in TFTP server, the router is also the TFTP
 577server.
 578
 579When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
 580connections can be redirected from the host to the guest. It allows for
 581example to redirect X11, telnet or SSH connections.
 582
 583@subsection Connecting VLANs between QEMU instances
 584
 585Using the @option{-net socket} option, it is possible to make VLANs
 586that span several QEMU instances. See @ref{sec_invocation} to have a
 587basic example.
 588
 589@node pcsys_other_devs
 590@section Other Devices
 591
 592@subsection Inter-VM Shared Memory device
 593
 594On Linux hosts, a shared memory device is available.  The basic syntax
 595is:
 596
 597@example
 598qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
 599@end example
 600
 601where @var{hostmem} names a host memory backend.  For a POSIX shared
 602memory backend, use something like
 603
 604@example
 605-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
 606@end example
 607
 608If desired, interrupts can be sent between guest VMs accessing the same shared
 609memory region.  Interrupt support requires using a shared memory server and
 610using a chardev socket to connect to it.  The code for the shared memory server
 611is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
 612memory server is:
 613
 614@example
 615# First start the ivshmem server once and for all
 616ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
 617
 618# Then start your qemu instances with matching arguments
 619qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
 620                 -chardev socket,path=@var{path},id=@var{id}
 621@end example
 622
 623When using the server, the guest will be assigned a VM ID (>=0) that allows guests
 624using the same server to communicate via interrupts.  Guests can read their
 625VM ID from a device register (see ivshmem-spec.txt).
 626
 627@subsubsection Migration with ivshmem
 628
 629With device property @option{master=on}, the guest will copy the shared
 630memory on migration to the destination host.  With @option{master=off},
 631the guest will not be able to migrate with the device attached.  In the
 632latter case, the device should be detached and then reattached after
 633migration using the PCI hotplug support.
 634
 635At most one of the devices sharing the same memory can be master.  The
 636master must complete migration before you plug back the other devices.
 637
 638@subsubsection ivshmem and hugepages
 639
 640Instead of specifying the <shm size> using POSIX shm, you may specify
 641a memory backend that has hugepage support:
 642
 643@example
 644qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
 645                 -device ivshmem-plain,memdev=mb1
 646@end example
 647
 648ivshmem-server also supports hugepages mount points with the
 649@option{-m} memory path argument.
 650
 651@node direct_linux_boot
 652@section Direct Linux Boot
 653
 654This section explains how to launch a Linux kernel inside QEMU without
 655having to make a full bootable image. It is very useful for fast Linux
 656kernel testing.
 657
 658The syntax is:
 659@example
 660qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
 661@end example
 662
 663Use @option{-kernel} to provide the Linux kernel image and
 664@option{-append} to give the kernel command line arguments. The
 665@option{-initrd} option can be used to provide an INITRD image.
 666
 667When using the direct Linux boot, a disk image for the first hard disk
 668@file{hda} is required because its boot sector is used to launch the
 669Linux kernel.
 670
 671If you do not need graphical output, you can disable it and redirect
 672the virtual serial port and the QEMU monitor to the console with the
 673@option{-nographic} option. The typical command line is:
 674@example
 675qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
 676                 -append "root=/dev/hda console=ttyS0" -nographic
 677@end example
 678
 679Use @key{Ctrl-a c} to switch between the serial console and the
 680monitor (@pxref{pcsys_keys}).
 681
 682@node pcsys_usb
 683@section USB emulation
 684
 685QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
 686plug virtual USB devices or real host USB devices (only works with certain
 687host operating systems). QEMU will automatically create and connect virtual
 688USB hubs as necessary to connect multiple USB devices.
 689
 690@menu
 691* usb_devices::
 692* host_usb_devices::
 693@end menu
 694@node usb_devices
 695@subsection Connecting USB devices
 696
 697USB devices can be connected with the @option{-device usb-...} command line
 698option or the @code{device_add} monitor command. Available devices are:
 699
 700@table @code
 701@item usb-mouse
 702Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
 703@item usb-tablet
 704Pointer device that uses absolute coordinates (like a touchscreen).
 705This means QEMU is able to report the mouse position without having
 706to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
 707@item usb-storage,drive=@var{drive_id}
 708Mass storage device backed by @var{drive_id} (@pxref{disk_images})
 709@item usb-uas
 710USB attached SCSI device, see
 711@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
 712for details
 713@item usb-bot
 714Bulk-only transport storage device, see
 715@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
 716for details here, too
 717@item usb-mtp,x-root=@var{dir}
 718Media transfer protocol device, using @var{dir} as root of the file tree
 719that is presented to the guest.
 720@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
 721Pass through the host device identified by @var{bus} and @var{addr}
 722@item usb-host,vendorid=@var{vendor},productid=@var{product}
 723Pass through the host device identified by @var{vendor} and @var{product} ID
 724@item usb-wacom-tablet
 725Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
 726above but it can be used with the tslib library because in addition to touch
 727coordinates it reports touch pressure.
 728@item usb-kbd
 729Standard USB keyboard.  Will override the PS/2 keyboard (if present).
 730@item usb-serial,chardev=@var{id}
 731Serial converter. This emulates an FTDI FT232BM chip connected to host character
 732device @var{id}.
 733@item usb-braille,chardev=@var{id}
 734Braille device.  This will use BrlAPI to display the braille output on a real
 735or fake device referenced by @var{id}.
 736@item usb-net[,netdev=@var{id}]
 737Network adapter that supports CDC ethernet and RNDIS protocols.  @var{id}
 738specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
 739For instance, user-mode networking can be used with
 740@example
 741qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
 742@end example
 743@item usb-ccid
 744Smartcard reader device
 745@item usb-audio
 746USB audio device
 747@item usb-bt-dongle
 748Bluetooth dongle for the transport layer of HCI. It is connected to HCI
 749scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
 750Note that the syntax for the @code{-device usb-bt-dongle} option is not as
 751useful yet as it was with the legacy @code{-usbdevice} option. So to
 752configure an USB bluetooth device, you might need to use
 753"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
 754bluetooth dongle whose type is specified in the same format as with
 755the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
 756no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
 757This USB device implements the USB Transport Layer of HCI.  Example
 758usage:
 759@example
 760@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
 761@end example
 762@end table
 763
 764@node host_usb_devices
 765@subsection Using host USB devices on a Linux host
 766
 767WARNING: this is an experimental feature. QEMU will slow down when
 768using it. USB devices requiring real time streaming (i.e. USB Video
 769Cameras) are not supported yet.
 770
 771@enumerate
 772@item If you use an early Linux 2.4 kernel, verify that no Linux driver
 773is actually using the USB device. A simple way to do that is simply to
 774disable the corresponding kernel module by renaming it from @file{mydriver.o}
 775to @file{mydriver.o.disabled}.
 776
 777@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
 778@example
 779ls /proc/bus/usb
 780001  devices  drivers
 781@end example
 782
 783@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
 784@example
 785chown -R myuid /proc/bus/usb
 786@end example
 787
 788@item Launch QEMU and do in the monitor:
 789@example
 790info usbhost
 791  Device 1.2, speed 480 Mb/s
 792    Class 00: USB device 1234:5678, USB DISK
 793@end example
 794You should see the list of the devices you can use (Never try to use
 795hubs, it won't work).
 796
 797@item Add the device in QEMU by using:
 798@example
 799device_add usb-host,vendorid=0x1234,productid=0x5678
 800@end example
 801
 802Normally the guest OS should report that a new USB device is plugged.
 803You can use the option @option{-device usb-host,...} to do the same.
 804
 805@item Now you can try to use the host USB device in QEMU.
 806
 807@end enumerate
 808
 809When relaunching QEMU, you may have to unplug and plug again the USB
 810device to make it work again (this is a bug).
 811
 812@node vnc_security
 813@section VNC security
 814
 815The VNC server capability provides access to the graphical console
 816of the guest VM across the network. This has a number of security
 817considerations depending on the deployment scenarios.
 818
 819@menu
 820* vnc_sec_none::
 821* vnc_sec_password::
 822* vnc_sec_certificate::
 823* vnc_sec_certificate_verify::
 824* vnc_sec_certificate_pw::
 825* vnc_sec_sasl::
 826* vnc_sec_certificate_sasl::
 827* vnc_generate_cert::
 828* vnc_setup_sasl::
 829@end menu
 830@node vnc_sec_none
 831@subsection Without passwords
 832
 833The simplest VNC server setup does not include any form of authentication.
 834For this setup it is recommended to restrict it to listen on a UNIX domain
 835socket only. For example
 836
 837@example
 838qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
 839@end example
 840
 841This ensures that only users on local box with read/write access to that
 842path can access the VNC server. To securely access the VNC server from a
 843remote machine, a combination of netcat+ssh can be used to provide a secure
 844tunnel.
 845
 846@node vnc_sec_password
 847@subsection With passwords
 848
 849The VNC protocol has limited support for password based authentication. Since
 850the protocol limits passwords to 8 characters it should not be considered
 851to provide high security. The password can be fairly easily brute-forced by
 852a client making repeat connections. For this reason, a VNC server using password
 853authentication should be restricted to only listen on the loopback interface
 854or UNIX domain sockets. Password authentication is not supported when operating
 855in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
 856authentication is requested with the @code{password} option, and then once QEMU
 857is running the password is set with the monitor. Until the monitor is used to
 858set the password all clients will be rejected.
 859
 860@example
 861qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
 862(qemu) change vnc password
 863Password: ********
 864(qemu)
 865@end example
 866
 867@node vnc_sec_certificate
 868@subsection With x509 certificates
 869
 870The QEMU VNC server also implements the VeNCrypt extension allowing use of
 871TLS for encryption of the session, and x509 certificates for authentication.
 872The use of x509 certificates is strongly recommended, because TLS on its
 873own is susceptible to man-in-the-middle attacks. Basic x509 certificate
 874support provides a secure session, but no authentication. This allows any
 875client to connect, and provides an encrypted session.
 876
 877@example
 878qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
 879@end example
 880
 881In the above example @code{/etc/pki/qemu} should contain at least three files,
 882@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
 883users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
 884NB the @code{server-key.pem} file should be protected with file mode 0600 to
 885only be readable by the user owning it.
 886
 887@node vnc_sec_certificate_verify
 888@subsection With x509 certificates and client verification
 889
 890Certificates can also provide a means to authenticate the client connecting.
 891The server will request that the client provide a certificate, which it will
 892then validate against the CA certificate. This is a good choice if deploying
 893in an environment with a private internal certificate authority.
 894
 895@example
 896qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
 897@end example
 898
 899
 900@node vnc_sec_certificate_pw
 901@subsection With x509 certificates, client verification and passwords
 902
 903Finally, the previous method can be combined with VNC password authentication
 904to provide two layers of authentication for clients.
 905
 906@example
 907qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
 908(qemu) change vnc password
 909Password: ********
 910(qemu)
 911@end example
 912
 913
 914@node vnc_sec_sasl
 915@subsection With SASL authentication
 916
 917The SASL authentication method is a VNC extension, that provides an
 918easily extendable, pluggable authentication method. This allows for
 919integration with a wide range of authentication mechanisms, such as
 920PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
 921The strength of the authentication depends on the exact mechanism
 922configured. If the chosen mechanism also provides a SSF layer, then
 923it will encrypt the datastream as well.
 924
 925Refer to the later docs on how to choose the exact SASL mechanism
 926used for authentication, but assuming use of one supporting SSF,
 927then QEMU can be launched with:
 928
 929@example
 930qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
 931@end example
 932
 933@node vnc_sec_certificate_sasl
 934@subsection With x509 certificates and SASL authentication
 935
 936If the desired SASL authentication mechanism does not supported
 937SSF layers, then it is strongly advised to run it in combination
 938with TLS and x509 certificates. This provides securely encrypted
 939data stream, avoiding risk of compromising of the security
 940credentials. This can be enabled, by combining the 'sasl' option
 941with the aforementioned TLS + x509 options:
 942
 943@example
 944qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
 945@end example
 946
 947
 948@node vnc_generate_cert
 949@subsection Generating certificates for VNC
 950
 951The GNU TLS packages provides a command called @code{certtool} which can
 952be used to generate certificates and keys in PEM format. At a minimum it
 953is necessary to setup a certificate authority, and issue certificates to
 954each server. If using certificates for authentication, then each client
 955will also need to be issued a certificate. The recommendation is for the
 956server to keep its certificates in either @code{/etc/pki/qemu} or for
 957unprivileged users in @code{$HOME/.pki/qemu}.
 958
 959@menu
 960* vnc_generate_ca::
 961* vnc_generate_server::
 962* vnc_generate_client::
 963@end menu
 964@node vnc_generate_ca
 965@subsubsection Setup the Certificate Authority
 966
 967This step only needs to be performed once per organization / organizational
 968unit. First the CA needs a private key. This key must be kept VERY secret
 969and secure. If this key is compromised the entire trust chain of the certificates
 970issued with it is lost.
 971
 972@example
 973# certtool --generate-privkey > ca-key.pem
 974@end example
 975
 976A CA needs to have a public certificate. For simplicity it can be a self-signed
 977certificate, or one issue by a commercial certificate issuing authority. To
 978generate a self-signed certificate requires one core piece of information, the
 979name of the organization.
 980
 981@example
 982# cat > ca.info <<EOF
 983cn = Name of your organization
 984ca
 985cert_signing_key
 986EOF
 987# certtool --generate-self-signed \
 988           --load-privkey ca-key.pem
 989           --template ca.info \
 990           --outfile ca-cert.pem
 991@end example
 992
 993The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
 994TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
 995
 996@node vnc_generate_server
 997@subsubsection Issuing server certificates
 998
 999Each server (or host) needs to be issued with a key and certificate. When connecting
1000the certificate is sent to the client which validates it against the CA certificate.
1001The core piece of information for a server certificate is the hostname. This should
1002be the fully qualified hostname that the client will connect with, since the client
1003will typically also verify the hostname in the certificate. On the host holding the
1004secure CA private key:
1005
1006@example
1007# cat > server.info <<EOF
1008organization = Name  of your organization
1009cn = server.foo.example.com
1010tls_www_server
1011encryption_key
1012signing_key
1013EOF
1014# certtool --generate-privkey > server-key.pem
1015# certtool --generate-certificate \
1016           --load-ca-certificate ca-cert.pem \
1017           --load-ca-privkey ca-key.pem \
1018           --load-privkey server-key.pem \
1019           --template server.info \
1020           --outfile server-cert.pem
1021@end example
1022
1023The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1024to the server for which they were generated. The @code{server-key.pem} is security
1025sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1026
1027@node vnc_generate_client
1028@subsubsection Issuing client certificates
1029
1030If the QEMU VNC server is to use the @code{x509verify} option to validate client
1031certificates as its authentication mechanism, each client also needs to be issued
1032a certificate. The client certificate contains enough metadata to uniquely identify
1033the client, typically organization, state, city, building, etc. On the host holding
1034the secure CA private key:
1035
1036@example
1037# cat > client.info <<EOF
1038country = GB
1039state = London
1040locality = London
1041organization = Name of your organization
1042cn = client.foo.example.com
1043tls_www_client
1044encryption_key
1045signing_key
1046EOF
1047# certtool --generate-privkey > client-key.pem
1048# certtool --generate-certificate \
1049           --load-ca-certificate ca-cert.pem \
1050           --load-ca-privkey ca-key.pem \
1051           --load-privkey client-key.pem \
1052           --template client.info \
1053           --outfile client-cert.pem
1054@end example
1055
1056The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1057copied to the client for which they were generated.
1058
1059
1060@node vnc_setup_sasl
1061
1062@subsection Configuring SASL mechanisms
1063
1064The following documentation assumes use of the Cyrus SASL implementation on a
1065Linux host, but the principals should apply to any other SASL impl. When SASL
1066is enabled, the mechanism configuration will be loaded from system default
1067SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1068unprivileged user, an environment variable SASL_CONF_PATH can be used
1069to make it search alternate locations for the service config.
1070
1071If the TLS option is enabled for VNC, then it will provide session encryption,
1072otherwise the SASL mechanism will have to provide encryption. In the latter
1073case the list of possible plugins that can be used is drastically reduced. In
1074fact only the GSSAPI SASL mechanism provides an acceptable level of security
1075by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1076mechanism, however, it has multiple serious flaws described in detail in
1077RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1078provides a simple username/password auth facility similar to DIGEST-MD5, but
1079does not support session encryption, so can only be used in combination with
1080TLS.
1081
1082When not using TLS the recommended configuration is
1083
1084@example
1085mech_list: gssapi
1086keytab: /etc/qemu/krb5.tab
1087@end example
1088
1089This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1090the server principal stored in /etc/qemu/krb5.tab. For this to work the
1091administrator of your KDC must generate a Kerberos principal for the server,
1092with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1093'somehost.example.com' with the fully qualified host name of the machine
1094running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1095
1096When using TLS, if username+password authentication is desired, then a
1097reasonable configuration is
1098
1099@example
1100mech_list: scram-sha-1
1101sasldb_path: /etc/qemu/passwd.db
1102@end example
1103
1104The saslpasswd2 program can be used to populate the passwd.db file with
1105accounts.
1106
1107Other SASL configurations will be left as an exercise for the reader. Note that
1108all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1109secure data channel.
1110
1111@node gdb_usage
1112@section GDB usage
1113
1114QEMU has a primitive support to work with gdb, so that you can do
1115'Ctrl-C' while the virtual machine is running and inspect its state.
1116
1117In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1118gdb connection:
1119@example
1120qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1121                    -append "root=/dev/hda"
1122Connected to host network interface: tun0
1123Waiting gdb connection on port 1234
1124@end example
1125
1126Then launch gdb on the 'vmlinux' executable:
1127@example
1128> gdb vmlinux
1129@end example
1130
1131In gdb, connect to QEMU:
1132@example
1133(gdb) target remote localhost:1234
1134@end example
1135
1136Then you can use gdb normally. For example, type 'c' to launch the kernel:
1137@example
1138(gdb) c
1139@end example
1140
1141Here are some useful tips in order to use gdb on system code:
1142
1143@enumerate
1144@item
1145Use @code{info reg} to display all the CPU registers.
1146@item
1147Use @code{x/10i $eip} to display the code at the PC position.
1148@item
1149Use @code{set architecture i8086} to dump 16 bit code. Then use
1150@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1151@end enumerate
1152
1153Advanced debugging options:
1154
1155The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1156@table @code
1157@item maintenance packet qqemu.sstepbits
1158
1159This will display the MASK bits used to control the single stepping IE:
1160@example
1161(gdb) maintenance packet qqemu.sstepbits
1162sending: "qqemu.sstepbits"
1163received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1164@end example
1165@item maintenance packet qqemu.sstep
1166
1167This will display the current value of the mask used when single stepping IE:
1168@example
1169(gdb) maintenance packet qqemu.sstep
1170sending: "qqemu.sstep"
1171received: "0x7"
1172@end example
1173@item maintenance packet Qqemu.sstep=HEX_VALUE
1174
1175This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1176@example
1177(gdb) maintenance packet Qqemu.sstep=0x5
1178sending: "qemu.sstep=0x5"
1179received: "OK"
1180@end example
1181@end table
1182
1183@node pcsys_os_specific
1184@section Target OS specific information
1185
1186@subsection Linux
1187
1188To have access to SVGA graphic modes under X11, use the @code{vesa} or
1189the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1190color depth in the guest and the host OS.
1191
1192When using a 2.6 guest Linux kernel, you should add the option
1193@code{clock=pit} on the kernel command line because the 2.6 Linux
1194kernels make very strict real time clock checks by default that QEMU
1195cannot simulate exactly.
1196
1197When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1198not activated because QEMU is slower with this patch. The QEMU
1199Accelerator Module is also much slower in this case. Earlier Fedora
1200Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1201patch by default. Newer kernels don't have it.
1202
1203@subsection Windows
1204
1205If you have a slow host, using Windows 95 is better as it gives the
1206best speed. Windows 2000 is also a good choice.
1207
1208@subsubsection SVGA graphic modes support
1209
1210QEMU emulates a Cirrus Logic GD5446 Video
1211card. All Windows versions starting from Windows 95 should recognize
1212and use this graphic card. For optimal performances, use 16 bit color
1213depth in the guest and the host OS.
1214
1215If you are using Windows XP as guest OS and if you want to use high
1216resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
12171280x1024x16), then you should use the VESA VBE virtual graphic card
1218(option @option{-std-vga}).
1219
1220@subsubsection CPU usage reduction
1221
1222Windows 9x does not correctly use the CPU HLT
1223instruction. The result is that it takes host CPU cycles even when
1224idle. You can install the utility from
1225@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1226to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1227
1228@subsubsection Windows 2000 disk full problem
1229
1230Windows 2000 has a bug which gives a disk full problem during its
1231installation. When installing it, use the @option{-win2k-hack} QEMU
1232option to enable a specific workaround. After Windows 2000 is
1233installed, you no longer need this option (this option slows down the
1234IDE transfers).
1235
1236@subsubsection Windows 2000 shutdown
1237
1238Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1239can. It comes from the fact that Windows 2000 does not automatically
1240use the APM driver provided by the BIOS.
1241
1242In order to correct that, do the following (thanks to Struan
1243Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1244Add/Troubleshoot a device => Add a new device & Next => No, select the
1245hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1246(again) a few times. Now the driver is installed and Windows 2000 now
1247correctly instructs QEMU to shutdown at the appropriate moment.
1248
1249@subsubsection Share a directory between Unix and Windows
1250
1251See @ref{sec_invocation} about the help of the option
1252@option{'-netdev user,smb=...'}.
1253
1254@subsubsection Windows XP security problem
1255
1256Some releases of Windows XP install correctly but give a security
1257error when booting:
1258@example
1259A problem is preventing Windows from accurately checking the
1260license for this computer. Error code: 0x800703e6.
1261@end example
1262
1263The workaround is to install a service pack for XP after a boot in safe
1264mode. Then reboot, and the problem should go away. Since there is no
1265network while in safe mode, its recommended to download the full
1266installation of SP1 or SP2 and transfer that via an ISO or using the
1267vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1268
1269@subsection MS-DOS and FreeDOS
1270
1271@subsubsection CPU usage reduction
1272
1273DOS does not correctly use the CPU HLT instruction. The result is that
1274it takes host CPU cycles even when idle. You can install the utility from
1275@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1276to solve this problem.
1277
1278@node QEMU System emulator for non PC targets
1279@chapter QEMU System emulator for non PC targets
1280
1281QEMU is a generic emulator and it emulates many non PC
1282machines. Most of the options are similar to the PC emulator. The
1283differences are mentioned in the following sections.
1284
1285@menu
1286* PowerPC System emulator::
1287* Sparc32 System emulator::
1288* Sparc64 System emulator::
1289* MIPS System emulator::
1290* ARM System emulator::
1291* ColdFire System emulator::
1292* Cris System emulator::
1293* Microblaze System emulator::
1294* SH4 System emulator::
1295* Xtensa System emulator::
1296@end menu
1297
1298@node PowerPC System emulator
1299@section PowerPC System emulator
1300@cindex system emulation (PowerPC)
1301
1302Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1303or PowerMac PowerPC system.
1304
1305QEMU emulates the following PowerMac peripherals:
1306
1307@itemize @minus
1308@item
1309UniNorth or Grackle PCI Bridge
1310@item
1311PCI VGA compatible card with VESA Bochs Extensions
1312@item
13132 PMAC IDE interfaces with hard disk and CD-ROM support
1314@item
1315NE2000 PCI adapters
1316@item
1317Non Volatile RAM
1318@item
1319VIA-CUDA with ADB keyboard and mouse.
1320@end itemize
1321
1322QEMU emulates the following PREP peripherals:
1323
1324@itemize @minus
1325@item
1326PCI Bridge
1327@item
1328PCI VGA compatible card with VESA Bochs Extensions
1329@item
13302 IDE interfaces with hard disk and CD-ROM support
1331@item
1332Floppy disk
1333@item
1334NE2000 network adapters
1335@item
1336Serial port
1337@item
1338PREP Non Volatile RAM
1339@item
1340PC compatible keyboard and mouse.
1341@end itemize
1342
1343QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1344@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1345
1346Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
1347for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1348v2) portable firmware implementation. The goal is to implement a 100%
1349IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1350
1351@c man begin OPTIONS
1352
1353The following options are specific to the PowerPC emulation:
1354
1355@table @option
1356
1357@item -g @var{W}x@var{H}[x@var{DEPTH}]
1358
1359Set the initial VGA graphic mode. The default is 800x600x32.
1360
1361@item -prom-env @var{string}
1362
1363Set OpenBIOS variables in NVRAM, for example:
1364
1365@example
1366qemu-system-ppc -prom-env 'auto-boot?=false' \
1367 -prom-env 'boot-device=hd:2,\yaboot' \
1368 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1369@end example
1370
1371These variables are not used by Open Hack'Ware.
1372
1373@end table
1374
1375@c man end
1376
1377
1378More information is available at
1379@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1380
1381@node Sparc32 System emulator
1382@section Sparc32 System emulator
1383@cindex system emulation (Sparc32)
1384
1385Use the executable @file{qemu-system-sparc} to simulate the following
1386Sun4m architecture machines:
1387@itemize @minus
1388@item
1389SPARCstation 4
1390@item
1391SPARCstation 5
1392@item
1393SPARCstation 10
1394@item
1395SPARCstation 20
1396@item
1397SPARCserver 600MP
1398@item
1399SPARCstation LX
1400@item
1401SPARCstation Voyager
1402@item
1403SPARCclassic
1404@item
1405SPARCbook
1406@end itemize
1407
1408The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1409but Linux limits the number of usable CPUs to 4.
1410
1411QEMU emulates the following sun4m peripherals:
1412
1413@itemize @minus
1414@item
1415IOMMU
1416@item
1417TCX or cgthree Frame buffer
1418@item
1419Lance (Am7990) Ethernet
1420@item
1421Non Volatile RAM M48T02/M48T08
1422@item
1423Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1424and power/reset logic
1425@item
1426ESP SCSI controller with hard disk and CD-ROM support
1427@item
1428Floppy drive (not on SS-600MP)
1429@item
1430CS4231 sound device (only on SS-5, not working yet)
1431@end itemize
1432
1433The number of peripherals is fixed in the architecture.  Maximum
1434memory size depends on the machine type, for SS-5 it is 256MB and for
1435others 2047MB.
1436
1437Since version 0.8.2, QEMU uses OpenBIOS
1438@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1439firmware implementation. The goal is to implement a 100% IEEE
14401275-1994 (referred to as Open Firmware) compliant firmware.
1441
1442A sample Linux 2.6 series kernel and ram disk image are available on
1443the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1444most kernel versions work. Please note that currently older Solaris kernels
1445don't work probably due to interface issues between OpenBIOS and
1446Solaris.
1447
1448@c man begin OPTIONS
1449
1450The following options are specific to the Sparc32 emulation:
1451
1452@table @option
1453
1454@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1455
1456Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1457option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1458of 1152x900x8 for people who wish to use OBP.
1459
1460@item -prom-env @var{string}
1461
1462Set OpenBIOS variables in NVRAM, for example:
1463
1464@example
1465qemu-system-sparc -prom-env 'auto-boot?=false' \
1466 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1467@end example
1468
1469@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1470
1471Set the emulated machine type. Default is SS-5.
1472
1473@end table
1474
1475@c man end
1476
1477@node Sparc64 System emulator
1478@section Sparc64 System emulator
1479@cindex system emulation (Sparc64)
1480
1481Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1482(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1483Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1484able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1485Sun4v emulator is still a work in progress.
1486
1487The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1488of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1489and is able to boot the disk.s10hw2 Solaris image.
1490@example
1491qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1492                    -nographic -m 256 \
1493                    -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1494@end example
1495
1496
1497QEMU emulates the following peripherals:
1498
1499@itemize @minus
1500@item
1501UltraSparc IIi APB PCI Bridge
1502@item
1503PCI VGA compatible card with VESA Bochs Extensions
1504@item
1505PS/2 mouse and keyboard
1506@item
1507Non Volatile RAM M48T59
1508@item
1509PC-compatible serial ports
1510@item
15112 PCI IDE interfaces with hard disk and CD-ROM support
1512@item
1513Floppy disk
1514@end itemize
1515
1516@c man begin OPTIONS
1517
1518The following options are specific to the Sparc64 emulation:
1519
1520@table @option
1521
1522@item -prom-env @var{string}
1523
1524Set OpenBIOS variables in NVRAM, for example:
1525
1526@example
1527qemu-system-sparc64 -prom-env 'auto-boot?=false'
1528@end example
1529
1530@item -M [sun4u|sun4v|niagara]
1531
1532Set the emulated machine type. The default is sun4u.
1533
1534@end table
1535
1536@c man end
1537
1538@node MIPS System emulator
1539@section MIPS System emulator
1540@cindex system emulation (MIPS)
1541
1542Four executables cover simulation of 32 and 64-bit MIPS systems in
1543both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1544@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1545Five different machine types are emulated:
1546
1547@itemize @minus
1548@item
1549A generic ISA PC-like machine "mips"
1550@item
1551The MIPS Malta prototype board "malta"
1552@item
1553An ACER Pica "pica61". This machine needs the 64-bit emulator.
1554@item
1555MIPS emulator pseudo board "mipssim"
1556@item
1557A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1558@end itemize
1559
1560The generic emulation is supported by Debian 'Etch' and is able to
1561install Debian into a virtual disk image. The following devices are
1562emulated:
1563
1564@itemize @minus
1565@item
1566A range of MIPS CPUs, default is the 24Kf
1567@item
1568PC style serial port
1569@item
1570PC style IDE disk
1571@item
1572NE2000 network card
1573@end itemize
1574
1575The Malta emulation supports the following devices:
1576
1577@itemize @minus
1578@item
1579Core board with MIPS 24Kf CPU and Galileo system controller
1580@item
1581PIIX4 PCI/USB/SMbus controller
1582@item
1583The Multi-I/O chip's serial device
1584@item
1585PCI network cards (PCnet32 and others)
1586@item
1587Malta FPGA serial device
1588@item
1589Cirrus (default) or any other PCI VGA graphics card
1590@end itemize
1591
1592The ACER Pica emulation supports:
1593
1594@itemize @minus
1595@item
1596MIPS R4000 CPU
1597@item
1598PC-style IRQ and DMA controllers
1599@item
1600PC Keyboard
1601@item
1602IDE controller
1603@end itemize
1604
1605The mipssim pseudo board emulation provides an environment similar
1606to what the proprietary MIPS emulator uses for running Linux.
1607It supports:
1608
1609@itemize @minus
1610@item
1611A range of MIPS CPUs, default is the 24Kf
1612@item
1613PC style serial port
1614@item
1615MIPSnet network emulation
1616@end itemize
1617
1618The MIPS Magnum R4000 emulation supports:
1619
1620@itemize @minus
1621@item
1622MIPS R4000 CPU
1623@item
1624PC-style IRQ controller
1625@item
1626PC Keyboard
1627@item
1628SCSI controller
1629@item
1630G364 framebuffer
1631@end itemize
1632
1633
1634@node ARM System emulator
1635@section ARM System emulator
1636@cindex system emulation (ARM)
1637
1638Use the executable @file{qemu-system-arm} to simulate a ARM
1639machine. The ARM Integrator/CP board is emulated with the following
1640devices:
1641
1642@itemize @minus
1643@item
1644ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1645@item
1646Two PL011 UARTs
1647@item
1648SMC 91c111 Ethernet adapter
1649@item
1650PL110 LCD controller
1651@item
1652PL050 KMI with PS/2 keyboard and mouse.
1653@item
1654PL181 MultiMedia Card Interface with SD card.
1655@end itemize
1656
1657The ARM Versatile baseboard is emulated with the following devices:
1658
1659@itemize @minus
1660@item
1661ARM926E, ARM1136 or Cortex-A8 CPU
1662@item
1663PL190 Vectored Interrupt Controller
1664@item
1665Four PL011 UARTs
1666@item
1667SMC 91c111 Ethernet adapter
1668@item
1669PL110 LCD controller
1670@item
1671PL050 KMI with PS/2 keyboard and mouse.
1672@item
1673PCI host bridge.  Note the emulated PCI bridge only provides access to
1674PCI memory space.  It does not provide access to PCI IO space.
1675This means some devices (eg. ne2k_pci NIC) are not usable, and others
1676(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1677mapped control registers.
1678@item
1679PCI OHCI USB controller.
1680@item
1681LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1682@item
1683PL181 MultiMedia Card Interface with SD card.
1684@end itemize
1685
1686Several variants of the ARM RealView baseboard are emulated,
1687including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1688bootloader, only certain Linux kernel configurations work out
1689of the box on these boards.
1690
1691Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1692enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1693should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1694disabled and expect 1024M RAM.
1695
1696The following devices are emulated:
1697
1698@itemize @minus
1699@item
1700ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1701@item
1702ARM AMBA Generic/Distributed Interrupt Controller
1703@item
1704Four PL011 UARTs
1705@item
1706SMC 91c111 or SMSC LAN9118 Ethernet adapter
1707@item
1708PL110 LCD controller
1709@item
1710PL050 KMI with PS/2 keyboard and mouse
1711@item
1712PCI host bridge
1713@item
1714PCI OHCI USB controller
1715@item
1716LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1717@item
1718PL181 MultiMedia Card Interface with SD card.
1719@end itemize
1720
1721The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1722and "Terrier") emulation includes the following peripherals:
1723
1724@itemize @minus
1725@item
1726Intel PXA270 System-on-chip (ARM V5TE core)
1727@item
1728NAND Flash memory
1729@item
1730IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1731@item
1732On-chip OHCI USB controller
1733@item
1734On-chip LCD controller
1735@item
1736On-chip Real Time Clock
1737@item
1738TI ADS7846 touchscreen controller on SSP bus
1739@item
1740Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1741@item
1742GPIO-connected keyboard controller and LEDs
1743@item
1744Secure Digital card connected to PXA MMC/SD host
1745@item
1746Three on-chip UARTs
1747@item
1748WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1749@end itemize
1750
1751The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1752following elements:
1753
1754@itemize @minus
1755@item
1756Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1757@item
1758ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1759@item
1760On-chip LCD controller
1761@item
1762On-chip Real Time Clock
1763@item
1764TI TSC2102i touchscreen controller / analog-digital converter / Audio
1765CODEC, connected through MicroWire and I@math{^2}S busses
1766@item
1767GPIO-connected matrix keypad
1768@item
1769Secure Digital card connected to OMAP MMC/SD host
1770@item
1771Three on-chip UARTs
1772@end itemize
1773
1774Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1775emulation supports the following elements:
1776
1777@itemize @minus
1778@item
1779Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1780@item
1781RAM and non-volatile OneNAND Flash memories
1782@item
1783Display connected to EPSON remote framebuffer chip and OMAP on-chip
1784display controller and a LS041y3 MIPI DBI-C controller
1785@item
1786TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1787driven through SPI bus
1788@item
1789National Semiconductor LM8323-controlled qwerty keyboard driven
1790through I@math{^2}C bus
1791@item
1792Secure Digital card connected to OMAP MMC/SD host
1793@item
1794Three OMAP on-chip UARTs and on-chip STI debugging console
1795@item
1796A Bluetooth(R) transceiver and HCI connected to an UART
1797@item
1798Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1799TUSB6010 chip - only USB host mode is supported
1800@item
1801TI TMP105 temperature sensor driven through I@math{^2}C bus
1802@item
1803TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1804@item
1805Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1806through CBUS
1807@end itemize
1808
1809The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1810devices:
1811
1812@itemize @minus
1813@item
1814Cortex-M3 CPU core.
1815@item
181664k Flash and 8k SRAM.
1817@item
1818Timers, UARTs, ADC and I@math{^2}C interface.
1819@item
1820OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1821@end itemize
1822
1823The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1824devices:
1825
1826@itemize @minus
1827@item
1828Cortex-M3 CPU core.
1829@item
1830256k Flash and 64k SRAM.
1831@item
1832Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1833@item
1834OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1835@end itemize
1836
1837The Freecom MusicPal internet radio emulation includes the following
1838elements:
1839
1840@itemize @minus
1841@item
1842Marvell MV88W8618 ARM core.
1843@item
184432 MB RAM, 256 KB SRAM, 8 MB flash.
1845@item
1846Up to 2 16550 UARTs
1847@item
1848MV88W8xx8 Ethernet controller
1849@item
1850MV88W8618 audio controller, WM8750 CODEC and mixer
1851@item
1852128×64 display with brightness control
1853@item
18542 buttons, 2 navigation wheels with button function
1855@end itemize
1856
1857The Siemens SX1 models v1 and v2 (default) basic emulation.
1858The emulation includes the following elements:
1859
1860@itemize @minus
1861@item
1862Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1863@item
1864ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1865V1
18661 Flash of 16MB and 1 Flash of 8MB
1867V2
18681 Flash of 32MB
1869@item
1870On-chip LCD controller
1871@item
1872On-chip Real Time Clock
1873@item
1874Secure Digital card connected to OMAP MMC/SD host
1875@item
1876Three on-chip UARTs
1877@end itemize
1878
1879A Linux 2.6 test image is available on the QEMU web site. More
1880information is available in the QEMU mailing-list archive.
1881
1882@c man begin OPTIONS
1883
1884The following options are specific to the ARM emulation:
1885
1886@table @option
1887
1888@item -semihosting
1889Enable semihosting syscall emulation.
1890
1891On ARM this implements the "Angel" interface.
1892
1893Note that this allows guest direct access to the host filesystem,
1894so should only be used with trusted guest OS.
1895
1896@end table
1897
1898@c man end
1899
1900@node ColdFire System emulator
1901@section ColdFire System emulator
1902@cindex system emulation (ColdFire)
1903@cindex system emulation (M68K)
1904
1905Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1906The emulator is able to boot a uClinux kernel.
1907
1908The M5208EVB emulation includes the following devices:
1909
1910@itemize @minus
1911@item
1912MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1913@item
1914Three Two on-chip UARTs.
1915@item
1916Fast Ethernet Controller (FEC)
1917@end itemize
1918
1919The AN5206 emulation includes the following devices:
1920
1921@itemize @minus
1922@item
1923MCF5206 ColdFire V2 Microprocessor.
1924@item
1925Two on-chip UARTs.
1926@end itemize
1927
1928@c man begin OPTIONS
1929
1930The following options are specific to the ColdFire emulation:
1931
1932@table @option
1933
1934@item -semihosting
1935Enable semihosting syscall emulation.
1936
1937On M68K this implements the "ColdFire GDB" interface used by libgloss.
1938
1939Note that this allows guest direct access to the host filesystem,
1940so should only be used with trusted guest OS.
1941
1942@end table
1943
1944@c man end
1945
1946@node Cris System emulator
1947@section Cris System emulator
1948@cindex system emulation (Cris)
1949
1950TODO
1951
1952@node Microblaze System emulator
1953@section Microblaze System emulator
1954@cindex system emulation (Microblaze)
1955
1956TODO
1957
1958@node SH4 System emulator
1959@section SH4 System emulator
1960@cindex system emulation (SH4)
1961
1962TODO
1963
1964@node Xtensa System emulator
1965@section Xtensa System emulator
1966@cindex system emulation (Xtensa)
1967
1968Two executables cover simulation of both Xtensa endian options,
1969@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
1970Two different machine types are emulated:
1971
1972@itemize @minus
1973@item
1974Xtensa emulator pseudo board "sim"
1975@item
1976Avnet LX60/LX110/LX200 board
1977@end itemize
1978
1979The sim pseudo board emulation provides an environment similar
1980to one provided by the proprietary Tensilica ISS.
1981It supports:
1982
1983@itemize @minus
1984@item
1985A range of Xtensa CPUs, default is the DC232B
1986@item
1987Console and filesystem access via semihosting calls
1988@end itemize
1989
1990The Avnet LX60/LX110/LX200 emulation supports:
1991
1992@itemize @minus
1993@item
1994A range of Xtensa CPUs, default is the DC232B
1995@item
199616550 UART
1997@item
1998OpenCores 10/100 Mbps Ethernet MAC
1999@end itemize
2000
2001@c man begin OPTIONS
2002
2003The following options are specific to the Xtensa emulation:
2004
2005@table @option
2006
2007@item -semihosting
2008Enable semihosting syscall emulation.
2009
2010Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2011Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2012
2013Note that this allows guest direct access to the host filesystem,
2014so should only be used with trusted guest OS.
2015
2016@end table
2017
2018@c man end
2019
2020@node QEMU Guest Agent
2021@chapter QEMU Guest Agent invocation
2022
2023@include qemu-ga.texi
2024
2025@node QEMU User space emulator
2026@chapter QEMU User space emulator
2027
2028@menu
2029* Supported Operating Systems ::
2030* Features::
2031* Linux User space emulator::
2032* BSD User space emulator ::
2033@end menu
2034
2035@node Supported Operating Systems
2036@section Supported Operating Systems
2037
2038The following OS are supported in user space emulation:
2039
2040@itemize @minus
2041@item
2042Linux (referred as qemu-linux-user)
2043@item
2044BSD (referred as qemu-bsd-user)
2045@end itemize
2046
2047@node Features
2048@section Features
2049
2050QEMU user space emulation has the following notable features:
2051
2052@table @strong
2053@item System call translation:
2054QEMU includes a generic system call translator.  This means that
2055the parameters of the system calls can be converted to fix
2056endianness and 32/64-bit mismatches between hosts and targets.
2057IOCTLs can be converted too.
2058
2059@item POSIX signal handling:
2060QEMU can redirect to the running program all signals coming from
2061the host (such as @code{SIGALRM}), as well as synthesize signals from
2062virtual CPU exceptions (for example @code{SIGFPE} when the program
2063executes a division by zero).
2064
2065QEMU relies on the host kernel to emulate most signal system
2066calls, for example to emulate the signal mask.  On Linux, QEMU
2067supports both normal and real-time signals.
2068
2069@item Threading:
2070On Linux, QEMU can emulate the @code{clone} syscall and create a real
2071host thread (with a separate virtual CPU) for each emulated thread.
2072Note that not all targets currently emulate atomic operations correctly.
2073x86 and ARM use a global lock in order to preserve their semantics.
2074@end table
2075
2076QEMU was conceived so that ultimately it can emulate itself. Although
2077it is not very useful, it is an important test to show the power of the
2078emulator.
2079
2080@node Linux User space emulator
2081@section Linux User space emulator
2082
2083@menu
2084* Quick Start::
2085* Wine launch::
2086* Command line options::
2087* Other binaries::
2088@end menu
2089
2090@node Quick Start
2091@subsection Quick Start
2092
2093In order to launch a Linux process, QEMU needs the process executable
2094itself and all the target (x86) dynamic libraries used by it.
2095
2096@itemize
2097
2098@item On x86, you can just try to launch any process by using the native
2099libraries:
2100
2101@example
2102qemu-i386 -L / /bin/ls
2103@end example
2104
2105@code{-L /} tells that the x86 dynamic linker must be searched with a
2106@file{/} prefix.
2107
2108@item Since QEMU is also a linux process, you can launch QEMU with
2109QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2110
2111@example
2112qemu-i386 -L / qemu-i386 -L / /bin/ls
2113@end example
2114
2115@item On non x86 CPUs, you need first to download at least an x86 glibc
2116(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2117@code{LD_LIBRARY_PATH} is not set:
2118
2119@example
2120unset LD_LIBRARY_PATH
2121@end example
2122
2123Then you can launch the precompiled @file{ls} x86 executable:
2124
2125@example
2126qemu-i386 tests/i386/ls
2127@end example
2128You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2129QEMU is automatically launched by the Linux kernel when you try to
2130launch x86 executables. It requires the @code{binfmt_misc} module in the
2131Linux kernel.
2132
2133@item The x86 version of QEMU is also included. You can try weird things such as:
2134@example
2135qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2136          /usr/local/qemu-i386/bin/ls-i386
2137@end example
2138
2139@end itemize
2140
2141@node Wine launch
2142@subsection Wine launch
2143
2144@itemize
2145
2146@item Ensure that you have a working QEMU with the x86 glibc
2147distribution (see previous section). In order to verify it, you must be
2148able to do:
2149
2150@example
2151qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2152@end example
2153
2154@item Download the binary x86 Wine install
2155(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2156
2157@item Configure Wine on your account. Look at the provided script
2158@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2159@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2160
2161@item Then you can try the example @file{putty.exe}:
2162
2163@example
2164qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2165          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2166@end example
2167
2168@end itemize
2169
2170@node Command line options
2171@subsection Command line options
2172
2173@example
2174@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2175@end example
2176
2177@table @option
2178@item -h
2179Print the help
2180@item -L path
2181Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2182@item -s size
2183Set the x86 stack size in bytes (default=524288)
2184@item -cpu model
2185Select CPU model (-cpu help for list and additional feature selection)
2186@item -E @var{var}=@var{value}
2187Set environment @var{var} to @var{value}.
2188@item -U @var{var}
2189Remove @var{var} from the environment.
2190@item -B offset
2191Offset guest address by the specified number of bytes.  This is useful when
2192the address region required by guest applications is reserved on the host.
2193This option is currently only supported on some hosts.
2194@item -R size
2195Pre-allocate a guest virtual address space of the given size (in bytes).
2196"G", "M", and "k" suffixes may be used when specifying the size.
2197@end table
2198
2199Debug options:
2200
2201@table @option
2202@item -d item1,...
2203Activate logging of the specified items (use '-d help' for a list of log items)
2204@item -p pagesize
2205Act as if the host page size was 'pagesize' bytes
2206@item -g port
2207Wait gdb connection to port
2208@item -singlestep
2209Run the emulation in single step mode.
2210@end table
2211
2212Environment variables:
2213
2214@table @env
2215@item QEMU_STRACE
2216Print system calls and arguments similar to the 'strace' program
2217(NOTE: the actual 'strace' program will not work because the user
2218space emulator hasn't implemented ptrace).  At the moment this is
2219incomplete.  All system calls that don't have a specific argument
2220format are printed with information for six arguments.  Many
2221flag-style arguments don't have decoders and will show up as numbers.
2222@end table
2223
2224@node Other binaries
2225@subsection Other binaries
2226
2227@cindex user mode (Alpha)
2228@command{qemu-alpha} TODO.
2229
2230@cindex user mode (ARM)
2231@command{qemu-armeb} TODO.
2232
2233@cindex user mode (ARM)
2234@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2235binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2236configurations), and arm-uclinux bFLT format binaries.
2237
2238@cindex user mode (ColdFire)
2239@cindex user mode (M68K)
2240@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2241(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2242coldfire uClinux bFLT format binaries.
2243
2244The binary format is detected automatically.
2245
2246@cindex user mode (Cris)
2247@command{qemu-cris} TODO.
2248
2249@cindex user mode (i386)
2250@command{qemu-i386} TODO.
2251@command{qemu-x86_64} TODO.
2252
2253@cindex user mode (Microblaze)
2254@command{qemu-microblaze} TODO.
2255
2256@cindex user mode (MIPS)
2257@command{qemu-mips} TODO.
2258@command{qemu-mipsel} TODO.
2259
2260@cindex user mode (NiosII)
2261@command{qemu-nios2} TODO.
2262
2263@cindex user mode (PowerPC)
2264@command{qemu-ppc64abi32} TODO.
2265@command{qemu-ppc64} TODO.
2266@command{qemu-ppc} TODO.
2267
2268@cindex user mode (SH4)
2269@command{qemu-sh4eb} TODO.
2270@command{qemu-sh4} TODO.
2271
2272@cindex user mode (SPARC)
2273@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2274
2275@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2276(Sparc64 CPU, 32 bit ABI).
2277
2278@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2279SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2280
2281@node BSD User space emulator
2282@section BSD User space emulator
2283
2284@menu
2285* BSD Status::
2286* BSD Quick Start::
2287* BSD Command line options::
2288@end menu
2289
2290@node BSD Status
2291@subsection BSD Status
2292
2293@itemize @minus
2294@item
2295target Sparc64 on Sparc64: Some trivial programs work.
2296@end itemize
2297
2298@node BSD Quick Start
2299@subsection Quick Start
2300
2301In order to launch a BSD process, QEMU needs the process executable
2302itself and all the target dynamic libraries used by it.
2303
2304@itemize
2305
2306@item On Sparc64, you can just try to launch any process by using the native
2307libraries:
2308
2309@example
2310qemu-sparc64 /bin/ls
2311@end example
2312
2313@end itemize
2314
2315@node BSD Command line options
2316@subsection Command line options
2317
2318@example
2319@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2320@end example
2321
2322@table @option
2323@item -h
2324Print the help
2325@item -L path
2326Set the library root path (default=/)
2327@item -s size
2328Set the stack size in bytes (default=524288)
2329@item -ignore-environment
2330Start with an empty environment. Without this option,
2331the initial environment is a copy of the caller's environment.
2332@item -E @var{var}=@var{value}
2333Set environment @var{var} to @var{value}.
2334@item -U @var{var}
2335Remove @var{var} from the environment.
2336@item -bsd type
2337Set the type of the emulated BSD Operating system. Valid values are
2338FreeBSD, NetBSD and OpenBSD (default).
2339@end table
2340
2341Debug options:
2342
2343@table @option
2344@item -d item1,...
2345Activate logging of the specified items (use '-d help' for a list of log items)
2346@item -p pagesize
2347Act as if the host page size was 'pagesize' bytes
2348@item -singlestep
2349Run the emulation in single step mode.
2350@end table
2351
2352
2353@include qemu-tech.texi
2354
2355@node Deprecated features
2356@appendix Deprecated features
2357
2358In general features are intended to be supported indefinitely once
2359introduced into QEMU. In the event that a feature needs to be removed,
2360it will be listed in this appendix. The feature will remain functional
2361for 2 releases prior to actual removal. Deprecated features may also
2362generate warnings on the console when QEMU starts up, or if activated
2363via a monitor command, however, this is not a mandatory requirement.
2364
2365Prior to the 2.10.0 release there was no official policy on how
2366long features would be deprecated prior to their removal, nor
2367any documented list of which features were deprecated. Thus
2368any features deprecated prior to 2.10.0 will be treated as if
2369they were first deprecated in the 2.10.0 release.
2370
2371What follows is a list of all features currently marked as
2372deprecated.
2373
2374@section System emulator command line arguments
2375
2376@subsection -drive boot=on|off (since 1.3.0)
2377
2378The ``boot=on|off'' option to the ``-drive'' argument is
2379ignored. Applications should use the ``bootindex=N'' parameter
2380to set an absolute ordering between devices instead.
2381
2382@subsection -tdf (since 1.3.0)
2383
2384The ``-tdf'' argument is ignored. The behaviour implemented
2385by this argument is now the default when using the KVM PIT,
2386but can be requested explicitly using
2387``-global kvm-pit.lost_tick_policy=slew''.
2388
2389@subsection -no-kvm-pit-reinjection (since 1.3.0)
2390
2391The ``-no-kvm-pit-reinjection'' argument is now a
2392synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2393
2394@subsection -no-kvm-irqchip (since 1.3.0)
2395
2396The ``-no-kvm-irqchip'' argument is now a synonym for
2397setting ``-machine kernel_irqchip=off''.
2398
2399@subsection -no-kvm-pit (since 1.3.0)
2400
2401The ``-no-kvm-pit'' argument is ignored. It is no longer
2402possible to disable the KVM PIT directly.
2403
2404@subsection -no-kvm (since 1.3.0)
2405
2406The ``-no-kvm'' argument is now a synonym for setting
2407``-machine accel=tcg''.
2408
2409@subsection -mon default=on (since 2.4.0)
2410
2411The ``default'' option to the ``-mon'' argument is
2412now ignored. When multiple monitors were enabled, it
2413indicated which monitor would receive log messages
2414from the various subsystems. This feature is no longer
2415required as messages are now only sent to the monitor
2416in response to explicitly monitor commands.
2417
2418@subsection -vnc tls (since 2.5.0)
2419
2420The ``-vnc tls'' argument is now a synonym for setting
2421``-object tls-creds-anon,id=tls0'' combined with
2422``-vnc tls-creds=tls0'
2423
2424@subsection -vnc x509 (since 2.5.0)
2425
2426The ``-vnc x509=/path/to/certs'' argument is now a
2427synonym for setting
2428``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2429combined with ``-vnc tls-creds=tls0'
2430
2431@subsection -vnc x509verify (since 2.5.0)
2432
2433The ``-vnc x509verify=/path/to/certs'' argument is now a
2434synonym for setting
2435``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2436combined with ``-vnc tls-creds=tls0'
2437
2438@subsection -tftp (since 2.6.0)
2439
2440The ``-tftp /some/dir'' argument is now a synonym for setting
2441the ``-netdev user,tftp=/some/dir' argument. The new syntax
2442allows different settings to be provided per NIC.
2443
2444@subsection -bootp (since 2.6.0)
2445
2446The ``-bootp /some/file'' argument is now a synonym for setting
2447the ``-netdev user,bootp=/some/file' argument. The new syntax
2448allows different settings to be provided per NIC.
2449
2450@subsection -redir (since 2.6.0)
2451
2452The ``-redir ARGS'' argument is now a synonym for setting
2453the ``-netdev user,hostfwd=ARGS'' argument instead. The new
2454syntax allows different settings to be provided per NIC.
2455
2456@subsection -smb (since 2.6.0)
2457
2458The ``-smb /some/dir'' argument is now a synonym for setting
2459the ``-netdev user,smb=/some/dir'' argument instead. The new
2460syntax allows different settings to be provided per NIC.
2461
2462@subsection -net channel (since 2.6.0)
2463
2464The ``--net channel,ARGS'' argument is now a synonym for setting
2465the ``-netdev user,guestfwd=ARGS'' argument instead.
2466
2467@subsection -net vlan (since 2.9.0)
2468
2469The ``-net vlan=NN'' argument is partially replaced with the
2470new ``-netdev'' argument. The remaining use cases will no
2471longer be directly supported in QEMU.
2472
2473@subsection -drive if=scsi (since 2.9.0)
2474
2475The ``-drive if=scsi'' argument is replaced by the the
2476``-device BUS-TYPE'' argument combined with ``-drive if=none''.
2477
2478@subsection -net dump (since 2.10.0)
2479
2480The ``--net dump'' argument is now replaced with the
2481``-object filter-dump'' argument which works in combination
2482with the modern ``-netdev`` backends instead.
2483
2484@subsection -hdachs (since 2.10.0)
2485
2486The ``-hdachs'' argument is now a synonym for setting
2487the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
2488on the ``ide-hd'' device using the ``-device'' argument.
2489The new syntax allows different settings to be provided
2490per disk.
2491
2492@subsection -usbdevice (since 2.10.0)
2493
2494The ``-usbdevice DEV'' argument is now a synonym for setting
2495the ``-device usb-DEV'' argument instead. The deprecated syntax
2496would automatically enable USB support on the machine type.
2497If using the new syntax, USB support must be explicitly
2498enabled via the ``-machine usb=on'' argument.
2499
2500@subsection -nodefconfig (since 2.11.0)
2501
2502The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2503
2504@section qemu-img command line arguments
2505
2506@subsection convert -s (since 2.0.0)
2507
2508The ``convert -s snapshot_id_or_name'' argument is obsoleted
2509by the ``convert -l snapshot_param'' argument instead.
2510
2511@section System emulator human monitor commands
2512
2513@subsection host_net_add (since 2.10.0)
2514
2515The ``host_net_add'' command is replaced by the ``netdev_add'' command.
2516
2517@subsection host_net_remove (since 2.10.0)
2518
2519The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
2520
2521@subsection usb_add (since 2.10.0)
2522
2523The ``usb_add'' command is replaced by the ``device_add'' command.
2524
2525@subsection usb_del (since 2.10.0)
2526
2527The ``usb_del'' command is replaced by the ``device_del'' command.
2528
2529@section System emulator devices
2530
2531@subsection ivshmem (since 2.6.0)
2532
2533The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2534or ``ivshmem-doorbell`` device types.
2535
2536@subsection spapr-pci-vfio-host-bridge (since 2.6.0)
2537
2538The ``spapr-pci-vfio-host-bridge'' device type is replaced by
2539the ``spapr-pci-host-bridge'' device type.
2540
2541@section System emulator machines
2542
2543@subsection Xilinx EP108 (since 2.11.0)
2544
2545The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2546The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2547
2548@node License
2549@appendix License
2550
2551QEMU is a trademark of Fabrice Bellard.
2552
2553QEMU is released under the
2554@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2555version 2. Parts of QEMU have specific licenses, see file
2556@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2557
2558@node Index
2559@appendix Index
2560@menu
2561* Concept Index::
2562* Function Index::
2563* Keystroke Index::
2564* Program Index::
2565* Data Type Index::
2566* Variable Index::
2567@end menu
2568
2569@node Concept Index
2570@section Concept Index
2571This is the main index. Should we combine all keywords in one index? TODO
2572@printindex cp
2573
2574@node Function Index
2575@section Function Index
2576This index could be used for command line options and monitor functions.
2577@printindex fn
2578
2579@node Keystroke Index
2580@section Keystroke Index
2581
2582This is a list of all keystrokes which have a special function
2583in system emulation.
2584
2585@printindex ky
2586
2587@node Program Index
2588@section Program Index
2589@printindex pg
2590
2591@node Data Type Index
2592@section Data Type Index
2593
2594This index could be used for qdev device names and options.
2595
2596@printindex tp
2597
2598@node Variable Index
2599@section Variable Index
2600@printindex vr
2601
2602@bye
2603