qemu/cputlb.c
<<
>>
Prefs
   1/*
   2 *  Common CPU TLB handling
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "config.h"
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "exec/memory.h"
  24#include "exec/address-spaces.h"
  25#include "exec/cpu_ldst.h"
  26
  27#include "exec/cputlb.h"
  28
  29#include "exec/memory-internal.h"
  30#include "exec/ram_addr.h"
  31#include "tcg/tcg.h"
  32
  33//#define DEBUG_TLB
  34//#define DEBUG_TLB_CHECK
  35
  36/* statistics */
  37int tlb_flush_count;
  38
  39/* NOTE:
  40 * If flush_global is true (the usual case), flush all tlb entries.
  41 * If flush_global is false, flush (at least) all tlb entries not
  42 * marked global.
  43 *
  44 * Since QEMU doesn't currently implement a global/not-global flag
  45 * for tlb entries, at the moment tlb_flush() will also flush all
  46 * tlb entries in the flush_global == false case. This is OK because
  47 * CPU architectures generally permit an implementation to drop
  48 * entries from the TLB at any time, so flushing more entries than
  49 * required is only an efficiency issue, not a correctness issue.
  50 */
  51void tlb_flush(CPUState *cpu, int flush_global)
  52{
  53    CPUArchState *env = cpu->env_ptr;
  54
  55#if defined(DEBUG_TLB)
  56    printf("tlb_flush:\n");
  57#endif
  58    /* must reset current TB so that interrupts cannot modify the
  59       links while we are modifying them */
  60    cpu->current_tb = NULL;
  61
  62    memset(env->tlb_table, -1, sizeof(env->tlb_table));
  63    memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
  64    memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
  65
  66    env->vtlb_index = 0;
  67    env->tlb_flush_addr = -1;
  68    env->tlb_flush_mask = 0;
  69    tlb_flush_count++;
  70}
  71
  72static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
  73{
  74    if (addr == (tlb_entry->addr_read &
  75                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  76        addr == (tlb_entry->addr_write &
  77                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  78        addr == (tlb_entry->addr_code &
  79                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
  80        memset(tlb_entry, -1, sizeof(*tlb_entry));
  81    }
  82}
  83
  84void tlb_flush_page(CPUState *cpu, target_ulong addr)
  85{
  86    CPUArchState *env = cpu->env_ptr;
  87    int i;
  88    int mmu_idx;
  89
  90#if defined(DEBUG_TLB)
  91    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
  92#endif
  93    /* Check if we need to flush due to large pages.  */
  94    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
  95#if defined(DEBUG_TLB)
  96        printf("tlb_flush_page: forced full flush ("
  97               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
  98               env->tlb_flush_addr, env->tlb_flush_mask);
  99#endif
 100        tlb_flush(cpu, 1);
 101        return;
 102    }
 103    /* must reset current TB so that interrupts cannot modify the
 104       links while we are modifying them */
 105    cpu->current_tb = NULL;
 106
 107    addr &= TARGET_PAGE_MASK;
 108    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 109    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 110        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 111    }
 112
 113    /* check whether there are entries that need to be flushed in the vtlb */
 114    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 115        int k;
 116        for (k = 0; k < CPU_VTLB_SIZE; k++) {
 117            tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
 118        }
 119    }
 120
 121    tb_flush_jmp_cache(cpu, addr);
 122}
 123
 124/* update the TLBs so that writes to code in the virtual page 'addr'
 125   can be detected */
 126void tlb_protect_code(ram_addr_t ram_addr)
 127{
 128    cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
 129                                    DIRTY_MEMORY_CODE);
 130}
 131
 132/* update the TLB so that writes in physical page 'phys_addr' are no longer
 133   tested for self modifying code */
 134void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
 135                             target_ulong vaddr)
 136{
 137    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 138}
 139
 140static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
 141{
 142    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
 143}
 144
 145void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
 146                           uintptr_t length)
 147{
 148    uintptr_t addr;
 149
 150    if (tlb_is_dirty_ram(tlb_entry)) {
 151        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 152        if ((addr - start) < length) {
 153            tlb_entry->addr_write |= TLB_NOTDIRTY;
 154        }
 155    }
 156}
 157
 158static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 159{
 160    ram_addr_t ram_addr;
 161
 162    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
 163        fprintf(stderr, "Bad ram pointer %p\n", ptr);
 164        abort();
 165    }
 166    return ram_addr;
 167}
 168
 169void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
 170{
 171    CPUState *cpu;
 172    CPUArchState *env;
 173
 174    CPU_FOREACH(cpu) {
 175        int mmu_idx;
 176
 177        env = cpu->env_ptr;
 178        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 179            unsigned int i;
 180
 181            for (i = 0; i < CPU_TLB_SIZE; i++) {
 182                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 183                                      start1, length);
 184            }
 185
 186            for (i = 0; i < CPU_VTLB_SIZE; i++) {
 187                tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
 188                                      start1, length);
 189            }
 190        }
 191    }
 192}
 193
 194static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 195{
 196    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 197        tlb_entry->addr_write = vaddr;
 198    }
 199}
 200
 201/* update the TLB corresponding to virtual page vaddr
 202   so that it is no longer dirty */
 203void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
 204{
 205    int i;
 206    int mmu_idx;
 207
 208    vaddr &= TARGET_PAGE_MASK;
 209    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 210    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 211        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 212    }
 213
 214    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 215        int k;
 216        for (k = 0; k < CPU_VTLB_SIZE; k++) {
 217            tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
 218        }
 219    }
 220}
 221
 222/* Our TLB does not support large pages, so remember the area covered by
 223   large pages and trigger a full TLB flush if these are invalidated.  */
 224static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
 225                               target_ulong size)
 226{
 227    target_ulong mask = ~(size - 1);
 228
 229    if (env->tlb_flush_addr == (target_ulong)-1) {
 230        env->tlb_flush_addr = vaddr & mask;
 231        env->tlb_flush_mask = mask;
 232        return;
 233    }
 234    /* Extend the existing region to include the new page.
 235       This is a compromise between unnecessary flushes and the cost
 236       of maintaining a full variable size TLB.  */
 237    mask &= env->tlb_flush_mask;
 238    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 239        mask <<= 1;
 240    }
 241    env->tlb_flush_addr &= mask;
 242    env->tlb_flush_mask = mask;
 243}
 244
 245/* Add a new TLB entry. At most one entry for a given virtual address
 246 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 247 * supplied size is only used by tlb_flush_page.
 248 *
 249 * Called from TCG-generated code, which is under an RCU read-side
 250 * critical section.
 251 */
 252void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 253                  hwaddr paddr, int prot,
 254                  int mmu_idx, target_ulong size)
 255{
 256    CPUArchState *env = cpu->env_ptr;
 257    MemoryRegionSection *section;
 258    unsigned int index;
 259    target_ulong address;
 260    target_ulong code_address;
 261    uintptr_t addend;
 262    CPUTLBEntry *te;
 263    hwaddr iotlb, xlat, sz;
 264    unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
 265
 266    assert(size >= TARGET_PAGE_SIZE);
 267    if (size != TARGET_PAGE_SIZE) {
 268        tlb_add_large_page(env, vaddr, size);
 269    }
 270
 271    sz = size;
 272    section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
 273    assert(sz >= TARGET_PAGE_SIZE);
 274
 275#if defined(DEBUG_TLB)
 276    qemu_log_mask(CPU_LOG_MMU,
 277           "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 278           " prot=%x idx=%d\n",
 279           vaddr, paddr, prot, mmu_idx);
 280#endif
 281
 282    address = vaddr;
 283    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
 284        /* IO memory case */
 285        address |= TLB_MMIO;
 286        addend = 0;
 287    } else {
 288        /* TLB_MMIO for rom/romd handled below */
 289        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 290    }
 291
 292    code_address = address;
 293    iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
 294                                            prot, &address);
 295
 296    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 297    te = &env->tlb_table[mmu_idx][index];
 298
 299    /* do not discard the translation in te, evict it into a victim tlb */
 300    env->tlb_v_table[mmu_idx][vidx] = *te;
 301    env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
 302
 303    /* refill the tlb */
 304    env->iotlb[mmu_idx][index] = iotlb - vaddr;
 305    te->addend = addend - vaddr;
 306    if (prot & PAGE_READ) {
 307        te->addr_read = address;
 308    } else {
 309        te->addr_read = -1;
 310    }
 311
 312    if (prot & PAGE_EXEC) {
 313        te->addr_code = code_address;
 314    } else {
 315        te->addr_code = -1;
 316    }
 317    if (prot & PAGE_WRITE) {
 318        if ((memory_region_is_ram(section->mr) && section->readonly)
 319            || memory_region_is_romd(section->mr)) {
 320            /* Write access calls the I/O callback.  */
 321            te->addr_write = address | TLB_MMIO;
 322        } else if (memory_region_is_ram(section->mr)
 323                   && cpu_physical_memory_is_clean(section->mr->ram_addr
 324                                                   + xlat)) {
 325            te->addr_write = address | TLB_NOTDIRTY;
 326        } else {
 327            te->addr_write = address;
 328        }
 329    } else {
 330        te->addr_write = -1;
 331    }
 332}
 333
 334/* NOTE: this function can trigger an exception */
 335/* NOTE2: the returned address is not exactly the physical address: it
 336 * is actually a ram_addr_t (in system mode; the user mode emulation
 337 * version of this function returns a guest virtual address).
 338 */
 339tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 340{
 341    int mmu_idx, page_index, pd;
 342    void *p;
 343    MemoryRegion *mr;
 344    CPUState *cpu = ENV_GET_CPU(env1);
 345
 346    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 347    mmu_idx = cpu_mmu_index(env1);
 348    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
 349                 (addr & TARGET_PAGE_MASK))) {
 350        cpu_ldub_code(env1, addr);
 351    }
 352    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
 353    mr = iotlb_to_region(cpu, pd);
 354    if (memory_region_is_unassigned(mr)) {
 355        CPUClass *cc = CPU_GET_CLASS(cpu);
 356
 357        if (cc->do_unassigned_access) {
 358            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
 359        } else {
 360            cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
 361                      TARGET_FMT_lx "\n", addr);
 362        }
 363    }
 364    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
 365    return qemu_ram_addr_from_host_nofail(p);
 366}
 367
 368#define MMUSUFFIX _mmu
 369
 370#define SHIFT 0
 371#include "softmmu_template.h"
 372
 373#define SHIFT 1
 374#include "softmmu_template.h"
 375
 376#define SHIFT 2
 377#include "softmmu_template.h"
 378
 379#define SHIFT 3
 380#include "softmmu_template.h"
 381#undef MMUSUFFIX
 382
 383#define MMUSUFFIX _cmmu
 384#undef GETPC_ADJ
 385#define GETPC_ADJ 0
 386#undef GETRA
 387#define GETRA() ((uintptr_t)0)
 388#define SOFTMMU_CODE_ACCESS
 389
 390#define SHIFT 0
 391#include "softmmu_template.h"
 392
 393#define SHIFT 1
 394#include "softmmu_template.h"
 395
 396#define SHIFT 2
 397#include "softmmu_template.h"
 398
 399#define SHIFT 3
 400#include "softmmu_template.h"
 401