1\input texinfo @c -*- texinfo -*- 2@c %**start of header 3@setfilename qemu-doc.info 4 5@documentlanguage en 6@documentencoding UTF-8 7 8@settitle QEMU Emulator User Documentation 9@exampleindent 0 10@paragraphindent 0 11@c %**end of header 12 13@ifinfo 14@direntry 15* QEMU: (qemu-doc). The QEMU Emulator User Documentation. 16@end direntry 17@end ifinfo 18 19@iftex 20@titlepage 21@sp 7 22@center @titlefont{QEMU Emulator} 23@sp 1 24@center @titlefont{User Documentation} 25@sp 3 26@end titlepage 27@end iftex 28 29@ifnottex 30@node Top 31@top 32 33@menu 34* Introduction:: 35* Installation:: 36* QEMU PC System emulator:: 37* QEMU System emulator for non PC targets:: 38* QEMU User space emulator:: 39* compilation:: Compilation from the sources 40* License:: 41* Index:: 42@end menu 43@end ifnottex 44 45@contents 46 47@node Introduction 48@chapter Introduction 49 50@menu 51* intro_features:: Features 52@end menu 53 54@node intro_features 55@section Features 56 57QEMU is a FAST! processor emulator using dynamic translation to 58achieve good emulation speed. 59 60QEMU has two operating modes: 61 62@itemize 63@cindex operating modes 64 65@item 66@cindex system emulation 67Full system emulation. In this mode, QEMU emulates a full system (for 68example a PC), including one or several processors and various 69peripherals. It can be used to launch different Operating Systems 70without rebooting the PC or to debug system code. 71 72@item 73@cindex user mode emulation 74User mode emulation. In this mode, QEMU can launch 75processes compiled for one CPU on another CPU. It can be used to 76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or 77to ease cross-compilation and cross-debugging. 78 79@end itemize 80 81QEMU can run without a host kernel driver and yet gives acceptable 82performance. 83 84For system emulation, the following hardware targets are supported: 85@itemize 86@cindex emulated target systems 87@cindex supported target systems 88@item PC (x86 or x86_64 processor) 89@item ISA PC (old style PC without PCI bus) 90@item PREP (PowerPC processor) 91@item G3 Beige PowerMac (PowerPC processor) 92@item Mac99 PowerMac (PowerPC processor, in progress) 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor) 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress) 95@item Malta board (32-bit and 64-bit MIPS processors) 96@item MIPS Magnum (64-bit MIPS processor) 97@item ARM Integrator/CP (ARM) 98@item ARM Versatile baseboard (ARM) 99@item ARM RealView Emulation/Platform baseboard (ARM) 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor) 101@item Luminary Micro LM3S811EVB (ARM Cortex-M3) 102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3) 103@item Freescale MCF5208EVB (ColdFire V2). 104@item Arnewsh MCF5206 evaluation board (ColdFire V2). 105@item Palm Tungsten|E PDA (OMAP310 processor) 106@item N800 and N810 tablets (OMAP2420 processor) 107@item MusicPal (MV88W8618 ARM processor) 108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270). 109@item Siemens SX1 smartphone (OMAP310 processor) 110@item AXIS-Devboard88 (CRISv32 ETRAX-FS). 111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze). 112@item Avnet LX60/LX110/LX200 boards (Xtensa) 113@end itemize 114 115@cindex supported user mode targets 116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit), 117ARM, MIPS (32 bit only), Sparc (32 and 64 bit), 118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported. 119 120@node Installation 121@chapter Installation 122 123If you want to compile QEMU yourself, see @ref{compilation}. 124 125@menu 126* install_linux:: Linux 127* install_windows:: Windows 128* install_mac:: Macintosh 129@end menu 130 131@node install_linux 132@section Linux 133@cindex installation (Linux) 134 135If a precompiled package is available for your distribution - you just 136have to install it. Otherwise, see @ref{compilation}. 137 138@node install_windows 139@section Windows 140@cindex installation (Windows) 141 142Download the experimental binary installer at 143@url{http://www.free.oszoo.org/@/download.html}. 144TODO (no longer available) 145 146@node install_mac 147@section Mac OS X 148 149Download the experimental binary installer at 150@url{http://www.free.oszoo.org/@/download.html}. 151TODO (no longer available) 152 153@node QEMU PC System emulator 154@chapter QEMU PC System emulator 155@cindex system emulation (PC) 156 157@menu 158* pcsys_introduction:: Introduction 159* pcsys_quickstart:: Quick Start 160* sec_invocation:: Invocation 161* pcsys_keys:: Keys 162* pcsys_monitor:: QEMU Monitor 163* disk_images:: Disk Images 164* pcsys_network:: Network emulation 165* pcsys_other_devs:: Other Devices 166* direct_linux_boot:: Direct Linux Boot 167* pcsys_usb:: USB emulation 168* vnc_security:: VNC security 169* gdb_usage:: GDB usage 170* pcsys_os_specific:: Target OS specific information 171@end menu 172 173@node pcsys_introduction 174@section Introduction 175 176@c man begin DESCRIPTION 177 178The QEMU PC System emulator simulates the 179following peripherals: 180 181@itemize @minus 182@item 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge 184@item 185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA 186extensions (hardware level, including all non standard modes). 187@item 188PS/2 mouse and keyboard 189@item 1902 PCI IDE interfaces with hard disk and CD-ROM support 191@item 192Floppy disk 193@item 194PCI and ISA network adapters 195@item 196Serial ports 197@item 198Creative SoundBlaster 16 sound card 199@item 200ENSONIQ AudioPCI ES1370 sound card 201@item 202Intel 82801AA AC97 Audio compatible sound card 203@item 204Intel HD Audio Controller and HDA codec 205@item 206Adlib (OPL2) - Yamaha YM3812 compatible chip 207@item 208Gravis Ultrasound GF1 sound card 209@item 210CS4231A compatible sound card 211@item 212PCI UHCI USB controller and a virtual USB hub. 213@end itemize 214 215SMP is supported with up to 255 CPUs. 216 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL 218VGA BIOS. 219 220QEMU uses YM3812 emulation by Tatsuyuki Satoh. 221 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/}) 223by Tibor "TS" Schütz. 224 225Note that, by default, GUS shares IRQ(7) with parallel ports and so 226QEMU must be told to not have parallel ports to have working GUS. 227 228@example 229qemu-system-i386 dos.img -soundhw gus -parallel none 230@end example 231 232Alternatively: 233@example 234qemu-system-i386 dos.img -device gus,irq=5 235@end example 236 237Or some other unclaimed IRQ. 238 239CS4231A is the chip used in Windows Sound System and GUSMAX products 240 241@c man end 242 243@node pcsys_quickstart 244@section Quick Start 245@cindex quick start 246 247Download and uncompress the linux image (@file{linux.img}) and type: 248 249@example 250qemu-system-i386 linux.img 251@end example 252 253Linux should boot and give you a prompt. 254 255@node sec_invocation 256@section Invocation 257 258@example 259@c man begin SYNOPSIS 260usage: qemu-system-i386 [options] [@var{disk_image}] 261@c man end 262@end example 263 264@c man begin OPTIONS 265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some 266targets do not need a disk image. 267 268@include qemu-options.texi 269 270@c man end 271 272@node pcsys_keys 273@section Keys 274 275@c man begin OPTIONS 276 277During the graphical emulation, you can use special key combinations to change 278modes. The default key mappings are shown below, but if you use @code{-alt-grab} 279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use 280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt): 281 282@table @key 283@item Ctrl-Alt-f 284@kindex Ctrl-Alt-f 285Toggle full screen 286 287@item Ctrl-Alt-+ 288@kindex Ctrl-Alt-+ 289Enlarge the screen 290 291@item Ctrl-Alt-- 292@kindex Ctrl-Alt-- 293Shrink the screen 294 295@item Ctrl-Alt-u 296@kindex Ctrl-Alt-u 297Restore the screen's un-scaled dimensions 298 299@item Ctrl-Alt-n 300@kindex Ctrl-Alt-n 301Switch to virtual console 'n'. Standard console mappings are: 302@table @emph 303@item 1 304Target system display 305@item 2 306Monitor 307@item 3 308Serial port 309@end table 310 311@item Ctrl-Alt 312@kindex Ctrl-Alt 313Toggle mouse and keyboard grab. 314@end table 315 316@kindex Ctrl-Up 317@kindex Ctrl-Down 318@kindex Ctrl-PageUp 319@kindex Ctrl-PageDown 320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down}, 321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log. 322 323@kindex Ctrl-a h 324During emulation, if you are using the @option{-nographic} option, use 325@key{Ctrl-a h} to get terminal commands: 326 327@table @key 328@item Ctrl-a h 329@kindex Ctrl-a h 330@item Ctrl-a ? 331@kindex Ctrl-a ? 332Print this help 333@item Ctrl-a x 334@kindex Ctrl-a x 335Exit emulator 336@item Ctrl-a s 337@kindex Ctrl-a s 338Save disk data back to file (if -snapshot) 339@item Ctrl-a t 340@kindex Ctrl-a t 341Toggle console timestamps 342@item Ctrl-a b 343@kindex Ctrl-a b 344Send break (magic sysrq in Linux) 345@item Ctrl-a c 346@kindex Ctrl-a c 347Switch between console and monitor 348@item Ctrl-a Ctrl-a 349@kindex Ctrl-a a 350Send Ctrl-a 351@end table 352@c man end 353 354@ignore 355 356@c man begin SEEALSO 357The HTML documentation of QEMU for more precise information and Linux 358user mode emulator invocation. 359@c man end 360 361@c man begin AUTHOR 362Fabrice Bellard 363@c man end 364 365@end ignore 366 367@node pcsys_monitor 368@section QEMU Monitor 369@cindex QEMU monitor 370 371The QEMU monitor is used to give complex commands to the QEMU 372emulator. You can use it to: 373 374@itemize @minus 375 376@item 377Remove or insert removable media images 378(such as CD-ROM or floppies). 379 380@item 381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state 382from a disk file. 383 384@item Inspect the VM state without an external debugger. 385 386@end itemize 387 388@subsection Commands 389 390The following commands are available: 391 392@include qemu-monitor.texi 393 394@subsection Integer expressions 395 396The monitor understands integers expressions for every integer 397argument. You can use register names to get the value of specifics 398CPU registers by prefixing them with @emph{$}. 399 400@node disk_images 401@section Disk Images 402 403Since version 0.6.1, QEMU supports many disk image formats, including 404growable disk images (their size increase as non empty sectors are 405written), compressed and encrypted disk images. Version 0.8.3 added 406the new qcow2 disk image format which is essential to support VM 407snapshots. 408 409@menu 410* disk_images_quickstart:: Quick start for disk image creation 411* disk_images_snapshot_mode:: Snapshot mode 412* vm_snapshots:: VM snapshots 413* qemu_img_invocation:: qemu-img Invocation 414* qemu_nbd_invocation:: qemu-nbd Invocation 415* disk_images_formats:: Disk image file formats 416* host_drives:: Using host drives 417* disk_images_fat_images:: Virtual FAT disk images 418* disk_images_nbd:: NBD access 419* disk_images_sheepdog:: Sheepdog disk images 420* disk_images_iscsi:: iSCSI LUNs 421* disk_images_gluster:: GlusterFS disk images 422* disk_images_ssh:: Secure Shell (ssh) disk images 423@end menu 424 425@node disk_images_quickstart 426@subsection Quick start for disk image creation 427 428You can create a disk image with the command: 429@example 430qemu-img create myimage.img mysize 431@end example 432where @var{myimage.img} is the disk image filename and @var{mysize} is its 433size in kilobytes. You can add an @code{M} suffix to give the size in 434megabytes and a @code{G} suffix for gigabytes. 435 436See @ref{qemu_img_invocation} for more information. 437 438@node disk_images_snapshot_mode 439@subsection Snapshot mode 440 441If you use the option @option{-snapshot}, all disk images are 442considered as read only. When sectors in written, they are written in 443a temporary file created in @file{/tmp}. You can however force the 444write back to the raw disk images by using the @code{commit} monitor 445command (or @key{C-a s} in the serial console). 446 447@node vm_snapshots 448@subsection VM snapshots 449 450VM snapshots are snapshots of the complete virtual machine including 451CPU state, RAM, device state and the content of all the writable 452disks. In order to use VM snapshots, you must have at least one non 453removable and writable block device using the @code{qcow2} disk image 454format. Normally this device is the first virtual hard drive. 455 456Use the monitor command @code{savevm} to create a new VM snapshot or 457replace an existing one. A human readable name can be assigned to each 458snapshot in addition to its numerical ID. 459 460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove 461a VM snapshot. @code{info snapshots} lists the available snapshots 462with their associated information: 463 464@example 465(qemu) info snapshots 466Snapshot devices: hda 467Snapshot list (from hda): 468ID TAG VM SIZE DATE VM CLOCK 4691 start 41M 2006-08-06 12:38:02 00:00:14.954 4702 40M 2006-08-06 12:43:29 00:00:18.633 4713 msys 40M 2006-08-06 12:44:04 00:00:23.514 472@end example 473 474A VM snapshot is made of a VM state info (its size is shown in 475@code{info snapshots}) and a snapshot of every writable disk image. 476The VM state info is stored in the first @code{qcow2} non removable 477and writable block device. The disk image snapshots are stored in 478every disk image. The size of a snapshot in a disk image is difficult 479to evaluate and is not shown by @code{info snapshots} because the 480associated disk sectors are shared among all the snapshots to save 481disk space (otherwise each snapshot would need a full copy of all the 482disk images). 483 484When using the (unrelated) @code{-snapshot} option 485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots, 486but they are deleted as soon as you exit QEMU. 487 488VM snapshots currently have the following known limitations: 489@itemize 490@item 491They cannot cope with removable devices if they are removed or 492inserted after a snapshot is done. 493@item 494A few device drivers still have incomplete snapshot support so their 495state is not saved or restored properly (in particular USB). 496@end itemize 497 498@node qemu_img_invocation 499@subsection @code{qemu-img} Invocation 500 501@include qemu-img.texi 502 503@node qemu_nbd_invocation 504@subsection @code{qemu-nbd} Invocation 505 506@include qemu-nbd.texi 507 508@node disk_images_formats 509@subsection Disk image file formats 510 511QEMU supports many image file formats that can be used with VMs as well as with 512any of the tools (like @code{qemu-img}). This includes the preferred formats 513raw and qcow2 as well as formats that are supported for compatibility with 514older QEMU versions or other hypervisors. 515 516Depending on the image format, different options can be passed to 517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option. 518This section describes each format and the options that are supported for it. 519 520@table @option 521@item raw 522 523Raw disk image format. This format has the advantage of 524being simple and easily exportable to all other emulators. If your 525file system supports @emph{holes} (for example in ext2 or ext3 on 526Linux or NTFS on Windows), then only the written sectors will reserve 527space. Use @code{qemu-img info} to know the real size used by the 528image or @code{ls -ls} on Unix/Linux. 529 530Supported options: 531@table @code 532@item preallocation 533Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}). 534@code{falloc} mode preallocates space for image by calling posix_fallocate(). 535@code{full} mode preallocates space for image by writing zeros to underlying 536storage. 537@end table 538 539@item qcow2 540QEMU image format, the most versatile format. Use it to have smaller 541images (useful if your filesystem does not supports holes, for example 542on Windows), zlib based compression and support of multiple VM 543snapshots. 544 545Supported options: 546@table @code 547@item compat 548Determines the qcow2 version to use. @code{compat=0.10} uses the 549traditional image format that can be read by any QEMU since 0.10. 550@code{compat=1.1} enables image format extensions that only QEMU 1.1 and 551newer understand (this is the default). Amongst others, this includes 552zero clusters, which allow efficient copy-on-read for sparse images. 553 554@item backing_file 555File name of a base image (see @option{create} subcommand) 556@item backing_fmt 557Image format of the base image 558@item encryption 559If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC. 560 561The use of encryption in qcow and qcow2 images is considered to be flawed by 562modern cryptography standards, suffering from a number of design problems: 563 564@itemize @minus 565@item The AES-CBC cipher is used with predictable initialization vectors based 566on the sector number. This makes it vulnerable to chosen plaintext attacks 567which can reveal the existence of encrypted data. 568@item The user passphrase is directly used as the encryption key. A poorly 569chosen or short passphrase will compromise the security of the encryption. 570@item In the event of the passphrase being compromised there is no way to 571change the passphrase to protect data in any qcow images. The files must 572be cloned, using a different encryption passphrase in the new file. The 573original file must then be securely erased using a program like shred, 574though even this is ineffective with many modern storage technologies. 575@end itemize 576 577Use of qcow / qcow2 encryption with QEMU is deprecated, and support for 578it will go away in a future release. Users are recommended to use an 579alternative encryption technology such as the Linux dm-crypt / LUKS 580system. 581 582@item cluster_size 583Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster 584sizes can improve the image file size whereas larger cluster sizes generally 585provide better performance. 586 587@item preallocation 588Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc}, 589@code{full}). An image with preallocated metadata is initially larger but can 590improve performance when the image needs to grow. @code{falloc} and @code{full} 591preallocations are like the same options of @code{raw} format, but sets up 592metadata also. 593 594@item lazy_refcounts 595If this option is set to @code{on}, reference count updates are postponed with 596the goal of avoiding metadata I/O and improving performance. This is 597particularly interesting with @option{cache=writethrough} which doesn't batch 598metadata updates. The tradeoff is that after a host crash, the reference count 599tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img 600check -r all} is required, which may take some time. 601 602This option can only be enabled if @code{compat=1.1} is specified. 603 604@item nocow 605If this option is set to @code{on}, it will turn off COW of the file. It's only 606valid on btrfs, no effect on other file systems. 607 608Btrfs has low performance when hosting a VM image file, even more when the guest 609on the VM also using btrfs as file system. Turning off COW is a way to mitigate 610this bad performance. Generally there are two ways to turn off COW on btrfs: 611a) Disable it by mounting with nodatacow, then all newly created files will be 612NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option 613does. 614 615Note: this option is only valid to new or empty files. If there is an existing 616file which is COW and has data blocks already, it couldn't be changed to NOCOW 617by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if 618the NOCOW flag is set or not (Capital 'C' is NOCOW flag). 619 620@end table 621 622@item qed 623Old QEMU image format with support for backing files and compact image files 624(when your filesystem or transport medium does not support holes). 625 626When converting QED images to qcow2, you might want to consider using the 627@code{lazy_refcounts=on} option to get a more QED-like behaviour. 628 629Supported options: 630@table @code 631@item backing_file 632File name of a base image (see @option{create} subcommand). 633@item backing_fmt 634Image file format of backing file (optional). Useful if the format cannot be 635autodetected because it has no header, like some vhd/vpc files. 636@item cluster_size 637Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller 638cluster sizes can improve the image file size whereas larger cluster sizes 639generally provide better performance. 640@item table_size 641Changes the number of clusters per L1/L2 table (must be power-of-2 between 1 642and 16). There is normally no need to change this value but this option can be 643used for performance benchmarking. 644@end table 645 646@item qcow 647Old QEMU image format with support for backing files, compact image files, 648encryption and compression. 649 650Supported options: 651@table @code 652@item backing_file 653File name of a base image (see @option{create} subcommand) 654@item encryption 655If this option is set to @code{on}, the image is encrypted. 656@end table 657 658@item vdi 659VirtualBox 1.1 compatible image format. 660Supported options: 661@table @code 662@item static 663If this option is set to @code{on}, the image is created with metadata 664preallocation. 665@end table 666 667@item vmdk 668VMware 3 and 4 compatible image format. 669 670Supported options: 671@table @code 672@item backing_file 673File name of a base image (see @option{create} subcommand). 674@item compat6 675Create a VMDK version 6 image (instead of version 4) 676@item subformat 677Specifies which VMDK subformat to use. Valid options are 678@code{monolithicSparse} (default), 679@code{monolithicFlat}, 680@code{twoGbMaxExtentSparse}, 681@code{twoGbMaxExtentFlat} and 682@code{streamOptimized}. 683@end table 684 685@item vpc 686VirtualPC compatible image format (VHD). 687Supported options: 688@table @code 689@item subformat 690Specifies which VHD subformat to use. Valid options are 691@code{dynamic} (default) and @code{fixed}. 692@end table 693 694@item VHDX 695Hyper-V compatible image format (VHDX). 696Supported options: 697@table @code 698@item subformat 699Specifies which VHDX subformat to use. Valid options are 700@code{dynamic} (default) and @code{fixed}. 701@item block_state_zero 702Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default) 703or @code{off}. When set to @code{off}, new blocks will be created as 704@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return 705arbitrary data for those blocks. Do not set to @code{off} when using 706@code{qemu-img convert} with @code{subformat=dynamic}. 707@item block_size 708Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size. 709@item log_size 710Log size; min 1 MB. 711@end table 712@end table 713 714@subsubsection Read-only formats 715More disk image file formats are supported in a read-only mode. 716@table @option 717@item bochs 718Bochs images of @code{growing} type. 719@item cloop 720Linux Compressed Loop image, useful only to reuse directly compressed 721CD-ROM images present for example in the Knoppix CD-ROMs. 722@item dmg 723Apple disk image. 724@item parallels 725Parallels disk image format. 726@end table 727 728 729@node host_drives 730@subsection Using host drives 731 732In addition to disk image files, QEMU can directly access host 733devices. We describe here the usage for QEMU version >= 0.8.3. 734 735@subsubsection Linux 736 737On Linux, you can directly use the host device filename instead of a 738disk image filename provided you have enough privileges to access 739it. For example, use @file{/dev/cdrom} to access to the CDROM. 740 741@table @code 742@item CD 743You can specify a CDROM device even if no CDROM is loaded. QEMU has 744specific code to detect CDROM insertion or removal. CDROM ejection by 745the guest OS is supported. Currently only data CDs are supported. 746@item Floppy 747You can specify a floppy device even if no floppy is loaded. Floppy 748removal is currently not detected accurately (if you change floppy 749without doing floppy access while the floppy is not loaded, the guest 750OS will think that the same floppy is loaded). 751Use of the host's floppy device is deprecated, and support for it will 752be removed in a future release. 753@item Hard disks 754Hard disks can be used. Normally you must specify the whole disk 755(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can 756see it as a partitioned disk. WARNING: unless you know what you do, it 757is better to only make READ-ONLY accesses to the hard disk otherwise 758you may corrupt your host data (use the @option{-snapshot} command 759line option or modify the device permissions accordingly). 760@end table 761 762@subsubsection Windows 763 764@table @code 765@item CD 766The preferred syntax is the drive letter (e.g. @file{d:}). The 767alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is 768supported as an alias to the first CDROM drive. 769 770Currently there is no specific code to handle removable media, so it 771is better to use the @code{change} or @code{eject} monitor commands to 772change or eject media. 773@item Hard disks 774Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}} 775where @var{N} is the drive number (0 is the first hard disk). 776 777WARNING: unless you know what you do, it is better to only make 778READ-ONLY accesses to the hard disk otherwise you may corrupt your 779host data (use the @option{-snapshot} command line so that the 780modifications are written in a temporary file). 781@end table 782 783 784@subsubsection Mac OS X 785 786@file{/dev/cdrom} is an alias to the first CDROM. 787 788Currently there is no specific code to handle removable media, so it 789is better to use the @code{change} or @code{eject} monitor commands to 790change or eject media. 791 792@node disk_images_fat_images 793@subsection Virtual FAT disk images 794 795QEMU can automatically create a virtual FAT disk image from a 796directory tree. In order to use it, just type: 797 798@example 799qemu-system-i386 linux.img -hdb fat:/my_directory 800@end example 801 802Then you access access to all the files in the @file{/my_directory} 803directory without having to copy them in a disk image or to export 804them via SAMBA or NFS. The default access is @emph{read-only}. 805 806Floppies can be emulated with the @code{:floppy:} option: 807 808@example 809qemu-system-i386 linux.img -fda fat:floppy:/my_directory 810@end example 811 812A read/write support is available for testing (beta stage) with the 813@code{:rw:} option: 814 815@example 816qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory 817@end example 818 819What you should @emph{never} do: 820@itemize 821@item use non-ASCII filenames ; 822@item use "-snapshot" together with ":rw:" ; 823@item expect it to work when loadvm'ing ; 824@item write to the FAT directory on the host system while accessing it with the guest system. 825@end itemize 826 827@node disk_images_nbd 828@subsection NBD access 829 830QEMU can access directly to block device exported using the Network Block Device 831protocol. 832 833@example 834qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/ 835@end example 836 837If the NBD server is located on the same host, you can use an unix socket instead 838of an inet socket: 839 840@example 841qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket 842@end example 843 844In this case, the block device must be exported using qemu-nbd: 845 846@example 847qemu-nbd --socket=/tmp/my_socket my_disk.qcow2 848@end example 849 850The use of qemu-nbd allows sharing of a disk between several guests: 851@example 852qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2 853@end example 854 855@noindent 856and then you can use it with two guests: 857@example 858qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket 859qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket 860@end example 861 862If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's 863own embedded NBD server), you must specify an export name in the URI: 864@example 865qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst 866qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst 867@end example 868 869The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is 870also available. Here are some example of the older syntax: 871@example 872qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024 873qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket 874qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst 875@end example 876 877@node disk_images_sheepdog 878@subsection Sheepdog disk images 879 880Sheepdog is a distributed storage system for QEMU. It provides highly 881available block level storage volumes that can be attached to 882QEMU-based virtual machines. 883 884You can create a Sheepdog disk image with the command: 885@example 886qemu-img create sheepdog:///@var{image} @var{size} 887@end example 888where @var{image} is the Sheepdog image name and @var{size} is its 889size. 890 891To import the existing @var{filename} to Sheepdog, you can use a 892convert command. 893@example 894qemu-img convert @var{filename} sheepdog:///@var{image} 895@end example 896 897You can boot from the Sheepdog disk image with the command: 898@example 899qemu-system-i386 sheepdog:///@var{image} 900@end example 901 902You can also create a snapshot of the Sheepdog image like qcow2. 903@example 904qemu-img snapshot -c @var{tag} sheepdog:///@var{image} 905@end example 906where @var{tag} is a tag name of the newly created snapshot. 907 908To boot from the Sheepdog snapshot, specify the tag name of the 909snapshot. 910@example 911qemu-system-i386 sheepdog:///@var{image}#@var{tag} 912@end example 913 914You can create a cloned image from the existing snapshot. 915@example 916qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image} 917@end example 918where @var{base} is a image name of the source snapshot and @var{tag} 919is its tag name. 920 921You can use an unix socket instead of an inet socket: 922 923@example 924qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path} 925@end example 926 927If the Sheepdog daemon doesn't run on the local host, you need to 928specify one of the Sheepdog servers to connect to. 929@example 930qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size} 931qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image} 932@end example 933 934@node disk_images_iscsi 935@subsection iSCSI LUNs 936 937iSCSI is a popular protocol used to access SCSI devices across a computer 938network. 939 940There are two different ways iSCSI devices can be used by QEMU. 941 942The first method is to mount the iSCSI LUN on the host, and make it appear as 943any other ordinary SCSI device on the host and then to access this device as a 944/dev/sd device from QEMU. How to do this differs between host OSes. 945 946The second method involves using the iSCSI initiator that is built into 947QEMU. This provides a mechanism that works the same way regardless of which 948host OS you are running QEMU on. This section will describe this second method 949of using iSCSI together with QEMU. 950 951In QEMU, iSCSI devices are described using special iSCSI URLs 952 953@example 954URL syntax: 955iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun> 956@end example 957 958Username and password are optional and only used if your target is set up 959using CHAP authentication for access control. 960Alternatively the username and password can also be set via environment 961variables to have these not show up in the process list 962 963@example 964export LIBISCSI_CHAP_USERNAME=<username> 965export LIBISCSI_CHAP_PASSWORD=<password> 966iscsi://<host>/<target-iqn-name>/<lun> 967@end example 968 969Various session related parameters can be set via special options, either 970in a configuration file provided via '-readconfig' or directly on the 971command line. 972 973If the initiator-name is not specified qemu will use a default name 974of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the 975virtual machine. 976 977 978@example 979Setting a specific initiator name to use when logging in to the target 980-iscsi initiator-name=iqn.qemu.test:my-initiator 981@end example 982 983@example 984Controlling which type of header digest to negotiate with the target 985-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE 986@end example 987 988These can also be set via a configuration file 989@example 990[iscsi] 991 user = "CHAP username" 992 password = "CHAP password" 993 initiator-name = "iqn.qemu.test:my-initiator" 994 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE 995 header-digest = "CRC32C" 996@end example 997 998 999Setting the target name allows different options for different targets 1000@example
1001[iscsi "iqn.target.name"] 1002 user = "CHAP username" 1003 password = "CHAP password" 1004 initiator-name = "iqn.qemu.test:my-initiator" 1005 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE 1006 header-digest = "CRC32C" 1007@end example 1008 1009 1010Howto use a configuration file to set iSCSI configuration options: 1011@example 1012cat >iscsi.conf <<EOF 1013[iscsi] 1014 user = "me" 1015 password = "my password" 1016 initiator-name = "iqn.qemu.test:my-initiator" 1017 header-digest = "CRC32C" 1018EOF 1019 1020qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \ 1021 -readconfig iscsi.conf 1022@end example 1023 1024 1025Howto set up a simple iSCSI target on loopback and accessing it via QEMU: 1026@example 1027This example shows how to set up an iSCSI target with one CDROM and one DISK 1028using the Linux STGT software target. This target is available on Red Hat based 1029systems as the package 'scsi-target-utils'. 1030 1031tgtd --iscsi portal=127.0.0.1:3260 1032tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test 1033tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \ 1034 -b /IMAGES/disk.img --device-type=disk 1035tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \ 1036 -b /IMAGES/cd.iso --device-type=cd 1037tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL 1038 1039qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \ 1040 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \ 1041 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2 1042@end example 1043 1044@node disk_images_gluster 1045@subsection GlusterFS disk images 1046 1047GlusterFS is an user space distributed file system. 1048 1049You can boot from the GlusterFS disk image with the command: 1050@example 1051qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...] 1052@end example 1053 1054@var{gluster} is the protocol. 1055 1056@var{transport} specifies the transport type used to connect to gluster 1057management daemon (glusterd). Valid transport types are 1058tcp, unix and rdma. If a transport type isn't specified, then tcp 1059type is assumed. 1060 1061@var{server} specifies the server where the volume file specification for 1062the given volume resides. This can be either hostname, ipv4 address 1063or ipv6 address. ipv6 address needs to be within square brackets [ ]. 1064If transport type is unix, then @var{server} field should not be specifed. 1065Instead @var{socket} field needs to be populated with the path to unix domain 1066socket. 1067 1068@var{port} is the port number on which glusterd is listening. This is optional 1069and if not specified, QEMU will send 0 which will make gluster to use the 1070default port. If the transport type is unix, then @var{port} should not be 1071specified. 1072 1073@var{volname} is the name of the gluster volume which contains the disk image. 1074 1075@var{image} is the path to the actual disk image that resides on gluster volume. 1076 1077You can create a GlusterFS disk image with the command: 1078@example 1079qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size} 1080@end example 1081 1082Examples 1083@example 1084qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img 1085qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img 1086qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img 1087qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img 1088qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img 1089qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img 1090qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket 1091qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img 1092@end example 1093 1094@node disk_images_ssh 1095@subsection Secure Shell (ssh) disk images 1096 1097You can access disk images located on a remote ssh server 1098by using the ssh protocol: 1099 1100@example 1101qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}] 1102@end example 1103 1104Alternative syntax using properties: 1105 1106@example 1107qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}] 1108@end example 1109 1110@var{ssh} is the protocol. 1111 1112@var{user} is the remote user. If not specified, then the local 1113username is tried. 1114 1115@var{server} specifies the remote ssh server. Any ssh server can be 1116used, but it must implement the sftp-server protocol. Most Unix/Linux 1117systems should work without requiring any extra configuration. 1118 1119@var{port} is the port number on which sshd is listening. By default 1120the standard ssh port (22) is used. 1121 1122@var{path} is the path to the disk image. 1123 1124The optional @var{host_key_check} parameter controls how the remote 1125host's key is checked. The default is @code{yes} which means to use 1126the local @file{.ssh/known_hosts} file. Setting this to @code{no} 1127turns off known-hosts checking. Or you can check that the host key 1128matches a specific fingerprint: 1129@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8} 1130(@code{sha1:} can also be used as a prefix, but note that OpenSSH 1131tools only use MD5 to print fingerprints). 1132 1133Currently authentication must be done using ssh-agent. Other 1134authentication methods may be supported in future. 1135 1136Note: Many ssh servers do not support an @code{fsync}-style operation. 1137The ssh driver cannot guarantee that disk flush requests are 1138obeyed, and this causes a risk of disk corruption if the remote 1139server or network goes down during writes. The driver will 1140print a warning when @code{fsync} is not supported: 1141 1142warning: ssh server @code{ssh.example.com:22} does not support fsync 1143 1144With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is 1145supported. 1146 1147@node pcsys_network 1148@section Network emulation 1149 1150QEMU can simulate several network cards (PCI or ISA cards on the PC 1151target) and can connect them to an arbitrary number of Virtual Local 1152Area Networks (VLANs). Host TAP devices can be connected to any QEMU 1153VLAN. VLAN can be connected between separate instances of QEMU to 1154simulate large networks. For simpler usage, a non privileged user mode 1155network stack can replace the TAP device to have a basic network 1156connection. 1157 1158@subsection VLANs 1159 1160QEMU simulates several VLANs. A VLAN can be symbolised as a virtual 1161connection between several network devices. These devices can be for 1162example QEMU virtual Ethernet cards or virtual Host ethernet devices 1163(TAP devices). 1164 1165@subsection Using TAP network interfaces 1166 1167This is the standard way to connect QEMU to a real network. QEMU adds 1168a virtual network device on your host (called @code{tapN}), and you 1169can then configure it as if it was a real ethernet card. 1170 1171@subsubsection Linux host 1172 1173As an example, you can download the @file{linux-test-xxx.tar.gz} 1174archive and copy the script @file{qemu-ifup} in @file{/etc} and 1175configure properly @code{sudo} so that the command @code{ifconfig} 1176contained in @file{qemu-ifup} can be executed as root. You must verify 1177that your host kernel supports the TAP network interfaces: the 1178device @file{/dev/net/tun} must be present. 1179 1180See @ref{sec_invocation} to have examples of command lines using the 1181TAP network interfaces. 1182 1183@subsubsection Windows host 1184 1185There is a virtual ethernet driver for Windows 2000/XP systems, called 1186TAP-Win32. But it is not included in standard QEMU for Windows, 1187so you will need to get it separately. It is part of OpenVPN package, 1188so download OpenVPN from : @url{http://openvpn.net/}. 1189 1190@subsection Using the user mode network stack 1191 1192By using the option @option{-net user} (default configuration if no 1193@option{-net} option is specified), QEMU uses a completely user mode 1194network stack (you don't need root privilege to use the virtual 1195network). The virtual network configuration is the following: 1196 1197@example 1198 1199 QEMU VLAN <------> Firewall/DHCP server <-----> Internet 1200 | (10.0.2.2) 1201 | 1202 ----> DNS server (10.0.2.3) 1203 | 1204 ----> SMB server (10.0.2.4) 1205@end example 1206 1207The QEMU VM behaves as if it was behind a firewall which blocks all 1208incoming connections. You can use a DHCP client to automatically 1209configure the network in the QEMU VM. The DHCP server assign addresses 1210to the hosts starting from 10.0.2.15. 1211 1212In order to check that the user mode network is working, you can ping 1213the address 10.0.2.2 and verify that you got an address in the range 121410.0.2.x from the QEMU virtual DHCP server. 1215 1216Note that ICMP traffic in general does not work with user mode networking. 1217@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work, 1218however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP 1219ping sockets to allow @code{ping} to the Internet. The host admin has to set 1220the ping_group_range in order to grant access to those sockets. To allow ping 1221for GID 100 (usually users group): 1222 1223@example 1224echo 100 100 > /proc/sys/net/ipv4/ping_group_range 1225@end example 1226 1227When using the built-in TFTP server, the router is also the TFTP 1228server. 1229 1230When using the @option{-redir} option, TCP or UDP connections can be 1231redirected from the host to the guest. It allows for example to 1232redirect X11, telnet or SSH connections. 1233 1234@subsection Connecting VLANs between QEMU instances 1235 1236Using the @option{-net socket} option, it is possible to make VLANs 1237that span several QEMU instances. See @ref{sec_invocation} to have a 1238basic example. 1239 1240@node pcsys_other_devs 1241@section Other Devices 1242 1243@subsection Inter-VM Shared Memory device 1244 1245With KVM enabled on a Linux host, a shared memory device is available. Guests 1246map a POSIX shared memory region into the guest as a PCI device that enables 1247zero-copy communication to the application level of the guests. The basic 1248syntax is: 1249 1250@example 1251qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>] 1252@end example 1253 1254If desired, interrupts can be sent between guest VMs accessing the same shared 1255memory region. Interrupt support requires using a shared memory server and 1256using a chardev socket to connect to it. The code for the shared memory server 1257is qemu.git/contrib/ivshmem-server. An example syntax when using the shared 1258memory server is: 1259 1260@example 1261qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>] 1262 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master] 1263qemu-system-i386 -chardev socket,path=<path>,id=<id> 1264@end example 1265 1266When using the server, the guest will be assigned a VM ID (>=0) that allows guests 1267using the same server to communicate via interrupts. Guests can read their 1268VM ID from a device register (see example code). Since receiving the shared 1269memory region from the server is asynchronous, there is a (small) chance the 1270guest may boot before the shared memory is attached. To allow an application 1271to ensure shared memory is attached, the VM ID register will return -1 (an 1272invalid VM ID) until the memory is attached. Once the shared memory is 1273attached, the VM ID will return the guest's valid VM ID. With these semantics, 1274the guest application can check to ensure the shared memory is attached to the 1275guest before proceeding. 1276 1277The @option{role} argument can be set to either master or peer and will affect 1278how the shared memory is migrated. With @option{role=master}, the guest will 1279copy the shared memory on migration to the destination host. With 1280@option{role=peer}, the guest will not be able to migrate with the device attached. 1281With the @option{peer} case, the device should be detached and then reattached 1282after migration using the PCI hotplug support. 1283 1284@node direct_linux_boot 1285@section Direct Linux Boot 1286 1287This section explains how to launch a Linux kernel inside QEMU without 1288having to make a full bootable image. It is very useful for fast Linux 1289kernel testing. 1290 1291The syntax is: 1292@example 1293qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda" 1294@end example 1295 1296Use @option{-kernel} to provide the Linux kernel image and 1297@option{-append} to give the kernel command line arguments. The 1298@option{-initrd} option can be used to provide an INITRD image. 1299 1300When using the direct Linux boot, a disk image for the first hard disk 1301@file{hda} is required because its boot sector is used to launch the 1302Linux kernel. 1303 1304If you do not need graphical output, you can disable it and redirect 1305the virtual serial port and the QEMU monitor to the console with the 1306@option{-nographic} option. The typical command line is: 1307@example 1308qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ 1309 -append "root=/dev/hda console=ttyS0" -nographic 1310@end example 1311 1312Use @key{Ctrl-a c} to switch between the serial console and the 1313monitor (@pxref{pcsys_keys}). 1314 1315@node pcsys_usb 1316@section USB emulation 1317 1318QEMU emulates a PCI UHCI USB controller. You can virtually plug 1319virtual USB devices or real host USB devices (experimental, works only 1320on Linux hosts). QEMU will automatically create and connect virtual USB hubs 1321as necessary to connect multiple USB devices. 1322 1323@menu 1324* usb_devices:: 1325* host_usb_devices:: 1326@end menu 1327@node usb_devices 1328@subsection Connecting USB devices 1329 1330USB devices can be connected with the @option{-usbdevice} commandline option 1331or the @code{usb_add} monitor command. Available devices are: 1332 1333@table @code 1334@item mouse 1335Virtual Mouse. This will override the PS/2 mouse emulation when activated. 1336@item tablet 1337Pointer device that uses absolute coordinates (like a touchscreen). 1338This means QEMU is able to report the mouse position without having 1339to grab the mouse. Also overrides the PS/2 mouse emulation when activated. 1340@item disk:@var{file} 1341Mass storage device based on @var{file} (@pxref{disk_images}) 1342@item host:@var{bus.addr} 1343Pass through the host device identified by @var{bus.addr} 1344(Linux only) 1345@item host:@var{vendor_id:product_id} 1346Pass through the host device identified by @var{vendor_id:product_id} 1347(Linux only) 1348@item wacom-tablet 1349Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet} 1350above but it can be used with the tslib library because in addition to touch 1351coordinates it reports touch pressure. 1352@item keyboard 1353Standard USB keyboard. Will override the PS/2 keyboard (if present). 1354@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev} 1355Serial converter. This emulates an FTDI FT232BM chip connected to host character 1356device @var{dev}. The available character devices are the same as for the 1357@code{-serial} option. The @code{vendorid} and @code{productid} options can be 1358used to override the default 0403:6001. For instance, 1359@example 1360usb_add serial:productid=FA00:tcp:192.168.0.2:4444 1361@end example 1362will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual 1363serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00). 1364@item braille 1365Braille device. This will use BrlAPI to display the braille output on a real 1366or fake device. 1367@item net:@var{options} 1368Network adapter that supports CDC ethernet and RNDIS protocols. @var{options} 1369specifies NIC options as with @code{-net nic,}@var{options} (see description). 1370For instance, user-mode networking can be used with 1371@example 1372qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0 1373@end example 1374Currently this cannot be used in machines that support PCI NICs. 1375@item bt[:@var{hci-type}] 1376Bluetooth dongle whose type is specified in the same format as with 1377the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If 1378no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}. 1379This USB device implements the USB Transport Layer of HCI. Example 1380usage: 1381@example 1382qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3 1383@end example 1384@end table 1385 1386@node host_usb_devices 1387@subsection Using host USB devices on a Linux host 1388 1389WARNING: this is an experimental feature. QEMU will slow down when 1390using it. USB devices requiring real time streaming (i.e. USB Video 1391Cameras) are not supported yet. 1392 1393@enumerate 1394@item If you use an early Linux 2.4 kernel, verify that no Linux driver 1395is actually using the USB device. A simple way to do that is simply to 1396disable the corresponding kernel module by renaming it from @file{mydriver.o} 1397to @file{mydriver.o.disabled}. 1398 1399@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that: 1400@example 1401ls /proc/bus/usb 1402001 devices drivers 1403@end example 1404 1405@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices: 1406@example 1407chown -R myuid /proc/bus/usb 1408@end example 1409 1410@item Launch QEMU and do in the monitor: 1411@example 1412info usbhost 1413 Device 1.2, speed 480 Mb/s 1414 Class 00: USB device 1234:5678, USB DISK 1415@end example 1416You should see the list of the devices you can use (Never try to use 1417hubs, it won't work). 1418 1419@item Add the device in QEMU by using: 1420@example 1421usb_add host:1234:5678 1422@end example 1423 1424Normally the guest OS should report that a new USB device is 1425plugged. You can use the option @option{-usbdevice} to do the same. 1426 1427@item Now you can try to use the host USB device in QEMU. 1428 1429@end enumerate 1430 1431When relaunching QEMU, you may have to unplug and plug again the USB 1432device to make it work again (this is a bug). 1433 1434@node vnc_security 1435@section VNC security 1436 1437The VNC server capability provides access to the graphical console 1438of the guest VM across the network. This has a number of security 1439considerations depending on the deployment scenarios. 1440 1441@menu 1442* vnc_sec_none:: 1443* vnc_sec_password:: 1444* vnc_sec_certificate:: 1445* vnc_sec_certificate_verify:: 1446* vnc_sec_certificate_pw:: 1447* vnc_sec_sasl:: 1448* vnc_sec_certificate_sasl:: 1449* vnc_generate_cert:: 1450* vnc_setup_sasl:: 1451@end menu 1452@node vnc_sec_none 1453@subsection Without passwords 1454 1455The simplest VNC server setup does not include any form of authentication. 1456For this setup it is recommended to restrict it to listen on a UNIX domain 1457socket only. For example 1458 1459@example 1460qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc 1461@end example 1462 1463This ensures that only users on local box with read/write access to that 1464path can access the VNC server. To securely access the VNC server from a 1465remote machine, a combination of netcat+ssh can be used to provide a secure 1466tunnel. 1467 1468@node vnc_sec_password 1469@subsection With passwords 1470 1471The VNC protocol has limited support for password based authentication. Since 1472the protocol limits passwords to 8 characters it should not be considered 1473to provide high security. The password can be fairly easily brute-forced by 1474a client making repeat connections. For this reason, a VNC server using password 1475authentication should be restricted to only listen on the loopback interface 1476or UNIX domain sockets. Password authentication is not supported when operating 1477in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password 1478authentication is requested with the @code{password} option, and then once QEMU 1479is running the password is set with the monitor. Until the monitor is used to 1480set the password all clients will be rejected. 1481 1482@example 1483qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio 1484(qemu) change vnc password 1485Password: ******** 1486(qemu) 1487@end example 1488 1489@node vnc_sec_certificate 1490@subsection With x509 certificates 1491 1492The QEMU VNC server also implements the VeNCrypt extension allowing use of 1493TLS for encryption of the session, and x509 certificates for authentication. 1494The use of x509 certificates is strongly recommended, because TLS on its 1495own is susceptible to man-in-the-middle attacks. Basic x509 certificate 1496support provides a secure session, but no authentication. This allows any 1497client to connect, and provides an encrypted session. 1498 1499@example 1500qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio 1501@end example 1502 1503In the above example @code{/etc/pki/qemu} should contain at least three files, 1504@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged 1505users will want to use a private directory, for example @code{$HOME/.pki/qemu}. 1506NB the @code{server-key.pem} file should be protected with file mode 0600 to 1507only be readable by the user owning it. 1508 1509@node vnc_sec_certificate_verify 1510@subsection With x509 certificates and client verification 1511 1512Certificates can also provide a means to authenticate the client connecting. 1513The server will request that the client provide a certificate, which it will 1514then validate against the CA certificate. This is a good choice if deploying 1515in an environment with a private internal certificate authority. 1516 1517@example 1518qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio 1519@end example 1520 1521 1522@node vnc_sec_certificate_pw 1523@subsection With x509 certificates, client verification and passwords 1524 1525Finally, the previous method can be combined with VNC password authentication 1526to provide two layers of authentication for clients. 1527 1528@example 1529qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio 1530(qemu) change vnc password 1531Password: ******** 1532(qemu) 1533@end example 1534 1535 1536@node vnc_sec_sasl 1537@subsection With SASL authentication 1538 1539The SASL authentication method is a VNC extension, that provides an 1540easily extendable, pluggable authentication method. This allows for 1541integration with a wide range of authentication mechanisms, such as 1542PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more. 1543The strength of the authentication depends on the exact mechanism 1544configured. If the chosen mechanism also provides a SSF layer, then 1545it will encrypt the datastream as well. 1546 1547Refer to the later docs on how to choose the exact SASL mechanism 1548used for authentication, but assuming use of one supporting SSF, 1549then QEMU can be launched with: 1550 1551@example 1552qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio 1553@end example 1554 1555@node vnc_sec_certificate_sasl 1556@subsection With x509 certificates and SASL authentication 1557 1558If the desired SASL authentication mechanism does not supported 1559SSF layers, then it is strongly advised to run it in combination 1560with TLS and x509 certificates. This provides securely encrypted 1561data stream, avoiding risk of compromising of the security 1562credentials. This can be enabled, by combining the 'sasl' option 1563with the aforementioned TLS + x509 options: 1564 1565@example 1566qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio 1567@end example 1568 1569 1570@node vnc_generate_cert 1571@subsection Generating certificates for VNC 1572 1573The GNU TLS packages provides a command called @code{certtool} which can 1574be used to generate certificates and keys in PEM format. At a minimum it 1575is necessary to setup a certificate authority, and issue certificates to 1576each server. If using certificates for authentication, then each client 1577will also need to be issued a certificate. The recommendation is for the 1578server to keep its certificates in either @code{/etc/pki/qemu} or for 1579unprivileged users in @code{$HOME/.pki/qemu}. 1580 1581@menu 1582* vnc_generate_ca:: 1583* vnc_generate_server:: 1584* vnc_generate_client:: 1585@end menu 1586@node vnc_generate_ca 1587@subsubsection Setup the Certificate Authority 1588 1589This step only needs to be performed once per organization / organizational 1590unit. First the CA needs a private key. This key must be kept VERY secret 1591and secure. If this key is compromised the entire trust chain of the certificates 1592issued with it is lost. 1593 1594@example 1595# certtool --generate-privkey > ca-key.pem 1596@end example 1597 1598A CA needs to have a public certificate. For simplicity it can be a self-signed 1599certificate, or one issue by a commercial certificate issuing authority. To 1600generate a self-signed certificate requires one core piece of information, the 1601name of the organization. 1602 1603@example 1604# cat > ca.info <<EOF 1605cn = Name of your organization 1606ca 1607cert_signing_key 1608EOF 1609# certtool --generate-self-signed \ 1610 --load-privkey ca-key.pem 1611 --template ca.info \ 1612 --outfile ca-cert.pem 1613@end example 1614 1615The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize 1616TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all. 1617 1618@node vnc_generate_server 1619@subsubsection Issuing server certificates 1620 1621Each server (or host) needs to be issued with a key and certificate. When connecting 1622the certificate is sent to the client which validates it against the CA certificate. 1623The core piece of information for a server certificate is the hostname. This should 1624be the fully qualified hostname that the client will connect with, since the client 1625will typically also verify the hostname in the certificate. On the host holding the 1626secure CA private key: 1627 1628@example 1629# cat > server.info <<EOF 1630organization = Name of your organization 1631cn = server.foo.example.com 1632tls_www_server 1633encryption_key 1634signing_key 1635EOF 1636# certtool --generate-privkey > server-key.pem 1637# certtool --generate-certificate \ 1638 --load-ca-certificate ca-cert.pem \ 1639 --load-ca-privkey ca-key.pem \ 1640 --load-privkey server-key.pem \ 1641 --template server.info \ 1642 --outfile server-cert.pem 1643@end example 1644 1645The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied 1646to the server for which they were generated. The @code{server-key.pem} is security 1647sensitive and should be kept protected with file mode 0600 to prevent disclosure. 1648 1649@node vnc_generate_client 1650@subsubsection Issuing client certificates 1651 1652If the QEMU VNC server is to use the @code{x509verify} option to validate client 1653certificates as its authentication mechanism, each client also needs to be issued 1654a certificate. The client certificate contains enough metadata to uniquely identify 1655the client, typically organization, state, city, building, etc. On the host holding 1656the secure CA private key: 1657 1658@example 1659# cat > client.info <<EOF 1660country = GB 1661state = London 1662locality = London 1663organization = Name of your organization 1664cn = client.foo.example.com 1665tls_www_client 1666encryption_key 1667signing_key 1668EOF 1669# certtool --generate-privkey > client-key.pem 1670# certtool --generate-certificate \ 1671 --load-ca-certificate ca-cert.pem \ 1672 --load-ca-privkey ca-key.pem \ 1673 --load-privkey client-key.pem \ 1674 --template client.info \ 1675 --outfile client-cert.pem 1676@end example 1677 1678The @code{client-key.pem} and @code{client-cert.pem} files should now be securely 1679copied to the client for which they were generated. 1680 1681 1682@node vnc_setup_sasl 1683 1684@subsection Configuring SASL mechanisms 1685 1686The following documentation assumes use of the Cyrus SASL implementation on a 1687Linux host, but the principals should apply to any other SASL impl. When SASL 1688is enabled, the mechanism configuration will be loaded from system default 1689SASL service config /etc/sasl2/qemu.conf. If running QEMU as an 1690unprivileged user, an environment variable SASL_CONF_PATH can be used 1691to make it search alternate locations for the service config. 1692 1693The default configuration might contain 1694 1695@example 1696mech_list: digest-md5 1697sasldb_path: /etc/qemu/passwd.db 1698@end example 1699 1700This says to use the 'Digest MD5' mechanism, which is similar to the HTTP 1701Digest-MD5 mechanism. The list of valid usernames & passwords is maintained 1702in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2 1703command. While this mechanism is easy to configure and use, it is not 1704considered secure by modern standards, so only suitable for developers / 1705ad-hoc testing. 1706 1707A more serious deployment might use Kerberos, which is done with the 'gssapi' 1708mechanism 1709 1710@example 1711mech_list: gssapi 1712keytab: /etc/qemu/krb5.tab 1713@end example 1714 1715For this to work the administrator of your KDC must generate a Kerberos 1716principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' 1717replacing 'somehost.example.com' with the fully qualified host name of the 1718machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm. 1719 1720Other configurations will be left as an exercise for the reader. It should 1721be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data 1722encryption. For all other mechanisms, VNC should always be configured to 1723use TLS and x509 certificates to protect security credentials from snooping. 1724 1725@node gdb_usage 1726@section GDB usage 1727 1728QEMU has a primitive support to work with gdb, so that you can do 1729'Ctrl-C' while the virtual machine is running and inspect its state. 1730 1731In order to use gdb, launch QEMU with the '-s' option. It will wait for a 1732gdb connection: 1733@example 1734qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \ 1735 -append "root=/dev/hda" 1736Connected to host network interface: tun0 1737Waiting gdb connection on port 1234 1738@end example 1739 1740Then launch gdb on the 'vmlinux' executable: 1741@example 1742> gdb vmlinux 1743@end example 1744 1745In gdb, connect to QEMU: 1746@example 1747(gdb) target remote localhost:1234 1748@end example 1749 1750Then you can use gdb normally. For example, type 'c' to launch the kernel: 1751@example 1752(gdb) c 1753@end example 1754 1755Here are some useful tips in order to use gdb on system code: 1756 1757@enumerate 1758@item 1759Use @code{info reg} to display all the CPU registers. 1760@item 1761Use @code{x/10i $eip} to display the code at the PC position. 1762@item 1763Use @code{set architecture i8086} to dump 16 bit code. Then use 1764@code{x/10i $cs*16+$eip} to dump the code at the PC position. 1765@end enumerate 1766 1767Advanced debugging options: 1768 1769The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior: 1770@table @code 1771@item maintenance packet qqemu.sstepbits 1772 1773This will display the MASK bits used to control the single stepping IE: 1774@example 1775(gdb) maintenance packet qqemu.sstepbits 1776sending: "qqemu.sstepbits" 1777received: "ENABLE=1,NOIRQ=2,NOTIMER=4" 1778@end example 1779@item maintenance packet qqemu.sstep 1780 1781This will display the current value of the mask used when single stepping IE: 1782@example 1783(gdb) maintenance packet qqemu.sstep 1784sending: "qqemu.sstep" 1785received: "0x7" 1786@end example 1787@item maintenance packet Qqemu.sstep=HEX_VALUE 1788 1789This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use: 1790@example 1791(gdb) maintenance packet Qqemu.sstep=0x5 1792sending: "qemu.sstep=0x5" 1793received: "OK" 1794@end example 1795@end table 1796 1797@node pcsys_os_specific 1798@section Target OS specific information 1799 1800@subsection Linux 1801 1802To have access to SVGA graphic modes under X11, use the @code{vesa} or 1803the @code{cirrus} X11 driver. For optimal performances, use 16 bit 1804color depth in the guest and the host OS. 1805 1806When using a 2.6 guest Linux kernel, you should add the option 1807@code{clock=pit} on the kernel command line because the 2.6 Linux 1808kernels make very strict real time clock checks by default that QEMU 1809cannot simulate exactly. 1810 1811When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is 1812not activated because QEMU is slower with this patch. The QEMU 1813Accelerator Module is also much slower in this case. Earlier Fedora 1814Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this 1815patch by default. Newer kernels don't have it. 1816 1817@subsection Windows 1818 1819If you have a slow host, using Windows 95 is better as it gives the 1820best speed. Windows 2000 is also a good choice. 1821 1822@subsubsection SVGA graphic modes support 1823 1824QEMU emulates a Cirrus Logic GD5446 Video 1825card. All Windows versions starting from Windows 95 should recognize 1826and use this graphic card. For optimal performances, use 16 bit color 1827depth in the guest and the host OS. 1828 1829If you are using Windows XP as guest OS and if you want to use high 1830resolution modes which the Cirrus Logic BIOS does not support (i.e. >= 18311280x1024x16), then you should use the VESA VBE virtual graphic card 1832(option @option{-std-vga}). 1833 1834@subsubsection CPU usage reduction 1835 1836Windows 9x does not correctly use the CPU HLT 1837instruction. The result is that it takes host CPU cycles even when 1838idle. You can install the utility from 1839@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this 1840problem. Note that no such tool is needed for NT, 2000 or XP. 1841 1842@subsubsection Windows 2000 disk full problem 1843 1844Windows 2000 has a bug which gives a disk full problem during its 1845installation. When installing it, use the @option{-win2k-hack} QEMU 1846option to enable a specific workaround. After Windows 2000 is 1847installed, you no longer need this option (this option slows down the 1848IDE transfers). 1849 1850@subsubsection Windows 2000 shutdown 1851 1852Windows 2000 cannot automatically shutdown in QEMU although Windows 98 1853can. It comes from the fact that Windows 2000 does not automatically 1854use the APM driver provided by the BIOS. 1855 1856In order to correct that, do the following (thanks to Struan 1857Bartlett): go to the Control Panel => Add/Remove Hardware & Next => 1858Add/Troubleshoot a device => Add a new device & Next => No, select the 1859hardware from a list & Next => NT Apm/Legacy Support & Next => Next 1860(again) a few times. Now the driver is installed and Windows 2000 now 1861correctly instructs QEMU to shutdown at the appropriate moment. 1862 1863@subsubsection Share a directory between Unix and Windows 1864 1865See @ref{sec_invocation} about the help of the option @option{-smb}. 1866 1867@subsubsection Windows XP security problem 1868 1869Some releases of Windows XP install correctly but give a security 1870error when booting: 1871@example 1872A problem is preventing Windows from accurately checking the 1873license for this computer. Error code: 0x800703e6. 1874@end example 1875 1876The workaround is to install a service pack for XP after a boot in safe 1877mode. Then reboot, and the problem should go away. Since there is no 1878network while in safe mode, its recommended to download the full 1879installation of SP1 or SP2 and transfer that via an ISO or using the 1880vvfat block device ("-hdb fat:directory_which_holds_the_SP"). 1881 1882@subsection MS-DOS and FreeDOS 1883 1884@subsubsection CPU usage reduction 1885 1886DOS does not correctly use the CPU HLT instruction. The result is that 1887it takes host CPU cycles even when idle. You can install the utility 1888from @url{http://www.vmware.com/software/dosidle210.zip} to solve this 1889problem. 1890 1891@node QEMU System emulator for non PC targets 1892@chapter QEMU System emulator for non PC targets 1893 1894QEMU is a generic emulator and it emulates many non PC 1895machines. Most of the options are similar to the PC emulator. The 1896differences are mentioned in the following sections. 1897 1898@menu 1899* PowerPC System emulator:: 1900* Sparc32 System emulator:: 1901* Sparc64 System emulator:: 1902* MIPS System emulator:: 1903* ARM System emulator:: 1904* ColdFire System emulator:: 1905* Cris System emulator:: 1906* Microblaze System emulator:: 1907* SH4 System emulator:: 1908* Xtensa System emulator:: 1909@end menu 1910 1911@node PowerPC System emulator 1912@section PowerPC System emulator 1913@cindex system emulation (PowerPC) 1914 1915Use the executable @file{qemu-system-ppc} to simulate a complete PREP 1916or PowerMac PowerPC system. 1917 1918QEMU emulates the following PowerMac peripherals: 1919 1920@itemize @minus 1921@item 1922UniNorth or Grackle PCI Bridge 1923@item 1924PCI VGA compatible card with VESA Bochs Extensions 1925@item 19262 PMAC IDE interfaces with hard disk and CD-ROM support 1927@item 1928NE2000 PCI adapters 1929@item 1930Non Volatile RAM 1931@item 1932VIA-CUDA with ADB keyboard and mouse. 1933@end itemize 1934 1935QEMU emulates the following PREP peripherals: 1936 1937@itemize @minus 1938@item 1939PCI Bridge 1940@item 1941PCI VGA compatible card with VESA Bochs Extensions 1942@item 19432 IDE interfaces with hard disk and CD-ROM support 1944@item 1945Floppy disk 1946@item 1947NE2000 network adapters 1948@item 1949Serial port 1950@item 1951PREP Non Volatile RAM 1952@item 1953PC compatible keyboard and mouse. 1954@end itemize 1955 1956QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at 1957@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}. 1958 1959Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/} 1960for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL 1961v2) portable firmware implementation. The goal is to implement a 100% 1962IEEE 1275-1994 (referred to as Open Firmware) compliant firmware. 1963 1964@c man begin OPTIONS 1965 1966The following options are specific to the PowerPC emulation: 1967 1968@table @option 1969 1970@item -g @var{W}x@var{H}[x@var{DEPTH}] 1971 1972Set the initial VGA graphic mode. The default is 800x600x32. 1973 1974@item -prom-env @var{string} 1975 1976Set OpenBIOS variables in NVRAM, for example: 1977 1978@example 1979qemu-system-ppc -prom-env 'auto-boot?=false' \ 1980 -prom-env 'boot-device=hd:2,\yaboot' \ 1981 -prom-env 'boot-args=conf=hd:2,\yaboot.conf' 1982@end example 1983 1984These variables are not used by Open Hack'Ware. 1985 1986@end table 1987 1988@c man end 1989 1990 1991More information is available at 1992@url{http://perso.magic.fr/l_indien/qemu-ppc/}. 1993 1994@node Sparc32 System emulator 1995@section Sparc32 System emulator 1996@cindex system emulation (Sparc32) 1997 1998Use the executable @file{qemu-system-sparc} to simulate the following 1999Sun4m architecture machines: 2000@itemize @minus
2001@item 2002SPARCstation 4 2003@item 2004SPARCstation 5 2005@item 2006SPARCstation 10 2007@item 2008SPARCstation 20 2009@item 2010SPARCserver 600MP 2011@item 2012SPARCstation LX 2013@item 2014SPARCstation Voyager 2015@item 2016SPARCclassic 2017@item 2018SPARCbook 2019@end itemize 2020 2021The emulation is somewhat complete. SMP up to 16 CPUs is supported, 2022but Linux limits the number of usable CPUs to 4. 2023 2024QEMU emulates the following sun4m peripherals: 2025 2026@itemize @minus 2027@item 2028IOMMU 2029@item 2030TCX or cgthree Frame buffer 2031@item 2032Lance (Am7990) Ethernet 2033@item 2034Non Volatile RAM M48T02/M48T08 2035@item 2036Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard 2037and power/reset logic 2038@item 2039ESP SCSI controller with hard disk and CD-ROM support 2040@item 2041Floppy drive (not on SS-600MP) 2042@item 2043CS4231 sound device (only on SS-5, not working yet) 2044@end itemize 2045 2046The number of peripherals is fixed in the architecture. Maximum 2047memory size depends on the machine type, for SS-5 it is 256MB and for 2048others 2047MB. 2049 2050Since version 0.8.2, QEMU uses OpenBIOS 2051@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable 2052firmware implementation. The goal is to implement a 100% IEEE 20531275-1994 (referred to as Open Firmware) compliant firmware. 2054 2055A sample Linux 2.6 series kernel and ram disk image are available on 2056the QEMU web site. There are still issues with NetBSD and OpenBSD, but 2057most kernel versions work. Please note that currently older Solaris kernels 2058don't work probably due to interface issues between OpenBIOS and 2059Solaris. 2060 2061@c man begin OPTIONS 2062 2063The following options are specific to the Sparc32 emulation: 2064 2065@table @option 2066 2067@item -g @var{W}x@var{H}x[x@var{DEPTH}] 2068 2069Set the initial graphics mode. For TCX, the default is 1024x768x8 with the 2070option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option 2071of 1152x900x8 for people who wish to use OBP. 2072 2073@item -prom-env @var{string} 2074 2075Set OpenBIOS variables in NVRAM, for example: 2076 2077@example 2078qemu-system-sparc -prom-env 'auto-boot?=false' \ 2079 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single' 2080@end example 2081 2082@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook] 2083 2084Set the emulated machine type. Default is SS-5. 2085 2086@end table 2087 2088@c man end 2089 2090@node Sparc64 System emulator 2091@section Sparc64 System emulator 2092@cindex system emulation (Sparc64) 2093 2094Use the executable @file{qemu-system-sparc64} to simulate a Sun4u 2095(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic 2096Niagara (T1) machine. The Sun4u emulator is mostly complete, being 2097able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The 2098Sun4v and Niagara emulators are still a work in progress. 2099 2100QEMU emulates the following peripherals: 2101 2102@itemize @minus 2103@item 2104UltraSparc IIi APB PCI Bridge 2105@item 2106PCI VGA compatible card with VESA Bochs Extensions 2107@item 2108PS/2 mouse and keyboard 2109@item 2110Non Volatile RAM M48T59 2111@item 2112PC-compatible serial ports 2113@item 21142 PCI IDE interfaces with hard disk and CD-ROM support 2115@item 2116Floppy disk 2117@end itemize 2118 2119@c man begin OPTIONS 2120 2121The following options are specific to the Sparc64 emulation: 2122 2123@table @option 2124 2125@item -prom-env @var{string} 2126 2127Set OpenBIOS variables in NVRAM, for example: 2128 2129@example 2130qemu-system-sparc64 -prom-env 'auto-boot?=false' 2131@end example 2132 2133@item -M [sun4u|sun4v|Niagara] 2134 2135Set the emulated machine type. The default is sun4u. 2136 2137@end table 2138 2139@c man end 2140 2141@node MIPS System emulator 2142@section MIPS System emulator 2143@cindex system emulation (MIPS) 2144 2145Four executables cover simulation of 32 and 64-bit MIPS systems in 2146both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel} 2147@file{qemu-system-mips64} and @file{qemu-system-mips64el}. 2148Five different machine types are emulated: 2149 2150@itemize @minus 2151@item 2152A generic ISA PC-like machine "mips" 2153@item 2154The MIPS Malta prototype board "malta" 2155@item 2156An ACER Pica "pica61". This machine needs the 64-bit emulator. 2157@item 2158MIPS emulator pseudo board "mipssim" 2159@item 2160A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator. 2161@end itemize 2162 2163The generic emulation is supported by Debian 'Etch' and is able to 2164install Debian into a virtual disk image. The following devices are 2165emulated: 2166 2167@itemize @minus 2168@item 2169A range of MIPS CPUs, default is the 24Kf 2170@item 2171PC style serial port 2172@item 2173PC style IDE disk 2174@item 2175NE2000 network card 2176@end itemize 2177 2178The Malta emulation supports the following devices: 2179 2180@itemize @minus 2181@item 2182Core board with MIPS 24Kf CPU and Galileo system controller 2183@item 2184PIIX4 PCI/USB/SMbus controller 2185@item 2186The Multi-I/O chip's serial device 2187@item 2188PCI network cards (PCnet32 and others) 2189@item 2190Malta FPGA serial device 2191@item 2192Cirrus (default) or any other PCI VGA graphics card 2193@end itemize 2194 2195The ACER Pica emulation supports: 2196 2197@itemize @minus 2198@item 2199MIPS R4000 CPU 2200@item 2201PC-style IRQ and DMA controllers 2202@item 2203PC Keyboard 2204@item 2205IDE controller 2206@end itemize 2207 2208The mipssim pseudo board emulation provides an environment similar 2209to what the proprietary MIPS emulator uses for running Linux. 2210It supports: 2211 2212@itemize @minus 2213@item 2214A range of MIPS CPUs, default is the 24Kf 2215@item 2216PC style serial port 2217@item 2218MIPSnet network emulation 2219@end itemize 2220 2221The MIPS Magnum R4000 emulation supports: 2222 2223@itemize @minus 2224@item 2225MIPS R4000 CPU 2226@item 2227PC-style IRQ controller 2228@item 2229PC Keyboard 2230@item 2231SCSI controller 2232@item 2233G364 framebuffer 2234@end itemize 2235 2236 2237@node ARM System emulator 2238@section ARM System emulator 2239@cindex system emulation (ARM) 2240 2241Use the executable @file{qemu-system-arm} to simulate a ARM 2242machine. The ARM Integrator/CP board is emulated with the following 2243devices: 2244 2245@itemize @minus 2246@item 2247ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU 2248@item 2249Two PL011 UARTs 2250@item 2251SMC 91c111 Ethernet adapter 2252@item 2253PL110 LCD controller 2254@item 2255PL050 KMI with PS/2 keyboard and mouse. 2256@item 2257PL181 MultiMedia Card Interface with SD card. 2258@end itemize 2259 2260The ARM Versatile baseboard is emulated with the following devices: 2261 2262@itemize @minus 2263@item 2264ARM926E, ARM1136 or Cortex-A8 CPU 2265@item 2266PL190 Vectored Interrupt Controller 2267@item 2268Four PL011 UARTs 2269@item 2270SMC 91c111 Ethernet adapter 2271@item 2272PL110 LCD controller 2273@item 2274PL050 KMI with PS/2 keyboard and mouse. 2275@item 2276PCI host bridge. Note the emulated PCI bridge only provides access to 2277PCI memory space. It does not provide access to PCI IO space. 2278This means some devices (eg. ne2k_pci NIC) are not usable, and others 2279(eg. rtl8139 NIC) are only usable when the guest drivers use the memory 2280mapped control registers. 2281@item 2282PCI OHCI USB controller. 2283@item 2284LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices. 2285@item 2286PL181 MultiMedia Card Interface with SD card. 2287@end itemize 2288 2289Several variants of the ARM RealView baseboard are emulated, 2290including the EB, PB-A8 and PBX-A9. Due to interactions with the 2291bootloader, only certain Linux kernel configurations work out 2292of the box on these boards. 2293 2294Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET 2295enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board 2296should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET 2297disabled and expect 1024M RAM. 2298 2299The following devices are emulated: 2300 2301@itemize @minus 2302@item 2303ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU 2304@item 2305ARM AMBA Generic/Distributed Interrupt Controller 2306@item 2307Four PL011 UARTs 2308@item 2309SMC 91c111 or SMSC LAN9118 Ethernet adapter 2310@item 2311PL110 LCD controller 2312@item 2313PL050 KMI with PS/2 keyboard and mouse 2314@item 2315PCI host bridge 2316@item 2317PCI OHCI USB controller 2318@item 2319LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices 2320@item 2321PL181 MultiMedia Card Interface with SD card. 2322@end itemize 2323 2324The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi" 2325and "Terrier") emulation includes the following peripherals: 2326 2327@itemize @minus 2328@item 2329Intel PXA270 System-on-chip (ARM V5TE core) 2330@item 2331NAND Flash memory 2332@item 2333IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita" 2334@item 2335On-chip OHCI USB controller 2336@item 2337On-chip LCD controller 2338@item 2339On-chip Real Time Clock 2340@item 2341TI ADS7846 touchscreen controller on SSP bus 2342@item 2343Maxim MAX1111 analog-digital converter on I@math{^2}C bus 2344@item 2345GPIO-connected keyboard controller and LEDs 2346@item 2347Secure Digital card connected to PXA MMC/SD host 2348@item 2349Three on-chip UARTs 2350@item 2351WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses 2352@end itemize 2353 2354The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the 2355following elements: 2356 2357@itemize @minus 2358@item 2359Texas Instruments OMAP310 System-on-chip (ARM 925T core) 2360@item 2361ROM and RAM memories (ROM firmware image can be loaded with -option-rom) 2362@item 2363On-chip LCD controller 2364@item 2365On-chip Real Time Clock 2366@item 2367TI TSC2102i touchscreen controller / analog-digital converter / Audio 2368CODEC, connected through MicroWire and I@math{^2}S busses 2369@item 2370GPIO-connected matrix keypad 2371@item 2372Secure Digital card connected to OMAP MMC/SD host 2373@item 2374Three on-chip UARTs 2375@end itemize 2376 2377Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48) 2378emulation supports the following elements: 2379 2380@itemize @minus 2381@item 2382Texas Instruments OMAP2420 System-on-chip (ARM 1136 core) 2383@item 2384RAM and non-volatile OneNAND Flash memories 2385@item 2386Display connected to EPSON remote framebuffer chip and OMAP on-chip 2387display controller and a LS041y3 MIPI DBI-C controller 2388@item 2389TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers 2390driven through SPI bus 2391@item 2392National Semiconductor LM8323-controlled qwerty keyboard driven 2393through I@math{^2}C bus 2394@item 2395Secure Digital card connected to OMAP MMC/SD host 2396@item 2397Three OMAP on-chip UARTs and on-chip STI debugging console 2398@item 2399A Bluetooth(R) transceiver and HCI connected to an UART 2400@item 2401Mentor Graphics "Inventra" dual-role USB controller embedded in a TI 2402TUSB6010 chip - only USB host mode is supported 2403@item 2404TI TMP105 temperature sensor driven through I@math{^2}C bus 2405@item 2406TI TWL92230C power management companion with an RTC on I@math{^2}C bus 2407@item 2408Nokia RETU and TAHVO multi-purpose chips with an RTC, connected 2409through CBUS 2410@end itemize 2411 2412The Luminary Micro Stellaris LM3S811EVB emulation includes the following 2413devices: 2414 2415@itemize @minus 2416@item 2417Cortex-M3 CPU core. 2418@item 241964k Flash and 8k SRAM. 2420@item 2421Timers, UARTs, ADC and I@math{^2}C interface. 2422@item 2423OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus. 2424@end itemize 2425 2426The Luminary Micro Stellaris LM3S6965EVB emulation includes the following 2427devices: 2428 2429@itemize @minus 2430@item 2431Cortex-M3 CPU core. 2432@item 2433256k Flash and 64k SRAM. 2434@item 2435Timers, UARTs, ADC, I@math{^2}C and SSI interfaces. 2436@item 2437OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI. 2438@end itemize 2439 2440The Freecom MusicPal internet radio emulation includes the following 2441elements: 2442 2443@itemize @minus 2444@item 2445Marvell MV88W8618 ARM core. 2446@item 244732 MB RAM, 256 KB SRAM, 8 MB flash. 2448@item 2449Up to 2 16550 UARTs 2450@item 2451MV88W8xx8 Ethernet controller 2452@item 2453MV88W8618 audio controller, WM8750 CODEC and mixer 2454@item 2455128×64 display with brightness control 2456@item 24572 buttons, 2 navigation wheels with button function 2458@end itemize 2459 2460The Siemens SX1 models v1 and v2 (default) basic emulation. 2461The emulation includes the following elements: 2462 2463@itemize @minus 2464@item 2465Texas Instruments OMAP310 System-on-chip (ARM 925T core) 2466@item 2467ROM and RAM memories (ROM firmware image can be loaded with -pflash) 2468V1 24691 Flash of 16MB and 1 Flash of 8MB 2470V2 24711 Flash of 32MB 2472@item 2473On-chip LCD controller 2474@item 2475On-chip Real Time Clock 2476@item 2477Secure Digital card connected to OMAP MMC/SD host 2478@item 2479Three on-chip UARTs 2480@end itemize 2481 2482A Linux 2.6 test image is available on the QEMU web site. More 2483information is available in the QEMU mailing-list archive. 2484 2485@c man begin OPTIONS 2486 2487The following options are specific to the ARM emulation: 2488 2489@table @option 2490 2491@item -semihosting 2492Enable semihosting syscall emulation. 2493 2494On ARM this implements the "Angel" interface. 2495 2496Note that this allows guest direct access to the host filesystem, 2497so should only be used with trusted guest OS. 2498 2499@end table 2500 2501@node ColdFire System emulator 2502@section ColdFire System emulator 2503@cindex system emulation (ColdFire) 2504@cindex system emulation (M68K) 2505 2506Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine. 2507The emulator is able to boot a uClinux kernel. 2508 2509The M5208EVB emulation includes the following devices: 2510 2511@itemize @minus 2512@item 2513MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC). 2514@item 2515Three Two on-chip UARTs. 2516@item 2517Fast Ethernet Controller (FEC) 2518@end itemize 2519 2520The AN5206 emulation includes the following devices: 2521 2522@itemize @minus 2523@item 2524MCF5206 ColdFire V2 Microprocessor. 2525@item 2526Two on-chip UARTs. 2527@end itemize 2528 2529@c man begin OPTIONS 2530 2531The following options are specific to the ColdFire emulation: 2532 2533@table @option 2534 2535@item -semihosting 2536Enable semihosting syscall emulation. 2537 2538On M68K this implements the "ColdFire GDB" interface used by libgloss. 2539 2540Note that this allows guest direct access to the host filesystem, 2541so should only be used with trusted guest OS. 2542 2543@end table 2544 2545@node Cris System emulator 2546@section Cris System emulator 2547@cindex system emulation (Cris) 2548 2549TODO 2550 2551@node Microblaze System emulator 2552@section Microblaze System emulator 2553@cindex system emulation (Microblaze) 2554 2555TODO 2556 2557@node SH4 System emulator 2558@section SH4 System emulator 2559@cindex system emulation (SH4) 2560 2561TODO 2562 2563@node Xtensa System emulator 2564@section Xtensa System emulator 2565@cindex system emulation (Xtensa) 2566 2567Two executables cover simulation of both Xtensa endian options, 2568@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}. 2569Two different machine types are emulated: 2570 2571@itemize @minus 2572@item 2573Xtensa emulator pseudo board "sim" 2574@item 2575Avnet LX60/LX110/LX200 board 2576@end itemize 2577 2578The sim pseudo board emulation provides an environment similar 2579to one provided by the proprietary Tensilica ISS. 2580It supports: 2581 2582@itemize @minus 2583@item 2584A range of Xtensa CPUs, default is the DC232B 2585@item 2586Console and filesystem access via semihosting calls 2587@end itemize 2588 2589The Avnet LX60/LX110/LX200 emulation supports: 2590 2591@itemize @minus 2592@item 2593A range of Xtensa CPUs, default is the DC232B 2594@item 259516550 UART 2596@item 2597OpenCores 10/100 Mbps Ethernet MAC 2598@end itemize 2599 2600@c man begin OPTIONS 2601 2602The following options are specific to the Xtensa emulation: 2603 2604@table @option 2605 2606@item -semihosting 2607Enable semihosting syscall emulation. 2608 2609Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select. 2610Tensilica baremetal libc for ISS and linux platform "sim" use this interface. 2611 2612Note that this allows guest direct access to the host filesystem, 2613so should only be used with trusted guest OS. 2614 2615@end table 2616@node QEMU User space emulator 2617@chapter QEMU User space emulator 2618 2619@menu 2620* Supported Operating Systems :: 2621* Linux User space emulator:: 2622* BSD User space emulator :: 2623@end menu 2624 2625@node Supported Operating Systems 2626@section Supported Operating Systems 2627 2628The following OS are supported in user space emulation: 2629 2630@itemize @minus 2631@item 2632Linux (referred as qemu-linux-user) 2633@item 2634BSD (referred as qemu-bsd-user) 2635@end itemize 2636 2637@node Linux User space emulator 2638@section Linux User space emulator 2639 2640@menu 2641* Quick Start:: 2642* Wine launch:: 2643* Command line options:: 2644* Other binaries:: 2645@end menu 2646 2647@node Quick Start 2648@subsection Quick Start 2649 2650In order to launch a Linux process, QEMU needs the process executable 2651itself and all the target (x86) dynamic libraries used by it. 2652 2653@itemize 2654 2655@item On x86, you can just try to launch any process by using the native 2656libraries: 2657 2658@example 2659qemu-i386 -L / /bin/ls 2660@end example 2661 2662@code{-L /} tells that the x86 dynamic linker must be searched with a 2663@file{/} prefix. 2664 2665@item Since QEMU is also a linux process, you can launch QEMU with 2666QEMU (NOTE: you can only do that if you compiled QEMU from the sources): 2667 2668@example 2669qemu-i386 -L / qemu-i386 -L / /bin/ls 2670@end example 2671 2672@item On non x86 CPUs, you need first to download at least an x86 glibc 2673(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that 2674@code{LD_LIBRARY_PATH} is not set: 2675 2676@example 2677unset LD_LIBRARY_PATH 2678@end example 2679 2680Then you can launch the precompiled @file{ls} x86 executable: 2681 2682@example 2683qemu-i386 tests/i386/ls 2684@end example 2685You can look at @file{scripts/qemu-binfmt-conf.sh} so that 2686QEMU is automatically launched by the Linux kernel when you try to 2687launch x86 executables. It requires the @code{binfmt_misc} module in the 2688Linux kernel. 2689 2690@item The x86 version of QEMU is also included. You can try weird things such as: 2691@example 2692qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \ 2693 /usr/local/qemu-i386/bin/ls-i386 2694@end example 2695 2696@end itemize 2697 2698@node Wine launch 2699@subsection Wine launch 2700 2701@itemize 2702 2703@item Ensure that you have a working QEMU with the x86 glibc 2704distribution (see previous section). In order to verify it, you must be 2705able to do: 2706 2707@example 2708qemu-i386 /usr/local/qemu-i386/bin/ls-i386 2709@end example 2710 2711@item Download the binary x86 Wine install 2712(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 2713 2714@item Configure Wine on your account. Look at the provided script 2715@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous 2716@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}. 2717 2718@item Then you can try the example @file{putty.exe}: 2719 2720@example 2721qemu-i386 /usr/local/qemu-i386/wine/bin/wine \ 2722 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe 2723@end example 2724 2725@end itemize 2726 2727@node Command line options 2728@subsection Command line options 2729 2730@example 2731usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...] 2732@end example 2733 2734@table @option 2735@item -h 2736Print the help 2737@item -L path 2738Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386) 2739@item -s size 2740Set the x86 stack size in bytes (default=524288) 2741@item -cpu model 2742Select CPU model (-cpu help for list and additional feature selection) 2743@item -E @var{var}=@var{value} 2744Set environment @var{var} to @var{value}. 2745@item -U @var{var} 2746Remove @var{var} from the environment. 2747@item -B offset 2748Offset guest address by the specified number of bytes. This is useful when 2749the address region required by guest applications is reserved on the host. 2750This option is currently only supported on some hosts. 2751@item -R size 2752Pre-allocate a guest virtual address space of the given size (in bytes). 2753"G", "M", and "k" suffixes may be used when specifying the size. 2754@end table 2755 2756Debug options: 2757 2758@table @option 2759@item -d item1,... 2760Activate logging of the specified items (use '-d help' for a list of log items) 2761@item -p pagesize 2762Act as if the host page size was 'pagesize' bytes 2763@item -g port 2764Wait gdb connection to port 2765@item -singlestep 2766Run the emulation in single step mode. 2767@end table 2768 2769Environment variables: 2770 2771@table @env 2772@item QEMU_STRACE 2773Print system calls and arguments similar to the 'strace' program 2774(NOTE: the actual 'strace' program will not work because the user 2775space emulator hasn't implemented ptrace). At the moment this is 2776incomplete. All system calls that don't have a specific argument 2777format are printed with information for six arguments. Many 2778flag-style arguments don't have decoders and will show up as numbers. 2779@end table 2780 2781@node Other binaries 2782@subsection Other binaries 2783 2784@cindex user mode (Alpha) 2785@command{qemu-alpha} TODO. 2786 2787@cindex user mode (ARM) 2788@command{qemu-armeb} TODO. 2789 2790@cindex user mode (ARM) 2791@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF 2792binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB 2793configurations), and arm-uclinux bFLT format binaries. 2794 2795@cindex user mode (ColdFire) 2796@cindex user mode (M68K) 2797@command{qemu-m68k} is capable of running semihosted binaries using the BDM 2798(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and 2799coldfire uClinux bFLT format binaries. 2800 2801The binary format is detected automatically. 2802 2803@cindex user mode (Cris) 2804@command{qemu-cris} TODO. 2805 2806@cindex user mode (i386) 2807@command{qemu-i386} TODO. 2808@command{qemu-x86_64} TODO. 2809 2810@cindex user mode (Microblaze) 2811@command{qemu-microblaze} TODO. 2812 2813@cindex user mode (MIPS) 2814@command{qemu-mips} TODO. 2815@command{qemu-mipsel} TODO. 2816 2817@cindex user mode (PowerPC) 2818@command{qemu-ppc64abi32} TODO. 2819@command{qemu-ppc64} TODO. 2820@command{qemu-ppc} TODO. 2821 2822@cindex user mode (SH4) 2823@command{qemu-sh4eb} TODO. 2824@command{qemu-sh4} TODO. 2825 2826@cindex user mode (SPARC) 2827@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI). 2828 2829@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries 2830(Sparc64 CPU, 32 bit ABI). 2831 2832@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and 2833SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI). 2834 2835@node BSD User space emulator 2836@section BSD User space emulator 2837 2838@menu 2839* BSD Status:: 2840* BSD Quick Start:: 2841* BSD Command line options:: 2842@end menu 2843 2844@node BSD Status 2845@subsection BSD Status 2846 2847@itemize @minus 2848@item 2849target Sparc64 on Sparc64: Some trivial programs work. 2850@end itemize 2851 2852@node BSD Quick Start 2853@subsection Quick Start 2854 2855In order to launch a BSD process, QEMU needs the process executable 2856itself and all the target dynamic libraries used by it. 2857 2858@itemize 2859 2860@item On Sparc64, you can just try to launch any process by using the native 2861libraries: 2862 2863@example 2864qemu-sparc64 /bin/ls 2865@end example 2866 2867@end itemize 2868 2869@node BSD Command line options 2870@subsection Command line options 2871 2872@example 2873usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...] 2874@end example 2875 2876@table @option 2877@item -h 2878Print the help 2879@item -L path 2880Set the library root path (default=/) 2881@item -s size 2882Set the stack size in bytes (default=524288) 2883@item -ignore-environment 2884Start with an empty environment. Without this option, 2885the initial environment is a copy of the caller's environment. 2886@item -E @var{var}=@var{value} 2887Set environment @var{var} to @var{value}. 2888@item -U @var{var} 2889Remove @var{var} from the environment. 2890@item -bsd type 2891Set the type of the emulated BSD Operating system. Valid values are 2892FreeBSD, NetBSD and OpenBSD (default). 2893@end table 2894 2895Debug options: 2896 2897@table @option 2898@item -d item1,... 2899Activate logging of the specified items (use '-d help' for a list of log items) 2900@item -p pagesize 2901Act as if the host page size was 'pagesize' bytes 2902@item -singlestep 2903Run the emulation in single step mode. 2904@end table 2905 2906@node compilation 2907@chapter Compilation from the sources 2908 2909@menu 2910* Linux/Unix:: 2911* Windows:: 2912* Cross compilation for Windows with Linux:: 2913* Mac OS X:: 2914* Make targets:: 2915@end menu 2916 2917@node Linux/Unix 2918@section Linux/Unix 2919 2920@subsection Compilation 2921 2922First you must decompress the sources: 2923@example 2924cd /tmp 2925tar zxvf qemu-x.y.z.tar.gz 2926cd qemu-x.y.z 2927@end example 2928 2929Then you configure QEMU and build it (usually no options are needed): 2930@example 2931./configure 2932make 2933@end example 2934 2935Then type as root user: 2936@example 2937make install 2938@end example 2939to install QEMU in @file{/usr/local}. 2940 2941@node Windows 2942@section Windows 2943 2944@itemize 2945@item Install the current versions of MSYS and MinGW from 2946@url{http://www.mingw.org/}. You can find detailed installation 2947instructions in the download section and the FAQ. 2948 2949@item Download 2950the MinGW development library of SDL 1.2.x 2951(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from 2952@url{http://www.libsdl.org}. Unpack it in a temporary place and 2953edit the @file{sdl-config} script so that it gives the 2954correct SDL directory when invoked. 2955 2956@item Install the MinGW version of zlib and make sure 2957@file{zlib.h} and @file{libz.dll.a} are in 2958MinGW's default header and linker search paths. 2959 2960@item Extract the current version of QEMU. 2961 2962@item Start the MSYS shell (file @file{msys.bat}). 2963 2964@item Change to the QEMU directory. Launch @file{./configure} and 2965@file{make}. If you have problems using SDL, verify that 2966@file{sdl-config} can be launched from the MSYS command line. 2967 2968@item You can install QEMU in @file{Program Files/QEMU} by typing 2969@file{make install}. Don't forget to copy @file{SDL.dll} in 2970@file{Program Files/QEMU}. 2971 2972@end itemize 2973 2974@node Cross compilation for Windows with Linux 2975@section Cross compilation for Windows with Linux 2976 2977@itemize 2978@item 2979Install the MinGW cross compilation tools available at 2980@url{http://www.mingw.org/}. 2981 2982@item Download 2983the MinGW development library of SDL 1.2.x 2984(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from 2985@url{http://www.libsdl.org}. Unpack it in a temporary place and 2986edit the @file{sdl-config} script so that it gives the 2987correct SDL directory when invoked. Set up the @code{PATH} environment 2988variable so that @file{sdl-config} can be launched by 2989the QEMU configuration script. 2990 2991@item Install the MinGW version of zlib and make sure 2992@file{zlib.h} and @file{libz.dll.a} are in 2993MinGW's default header and linker search paths. 2994 2995@item 2996Configure QEMU for Windows cross compilation: 2997@example 2998PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-' 2999@end example 3000The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3001MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}. 3002We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and 3003use --cross-prefix to specify the name of the cross compiler. 3004You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}. 3005 3006Under Fedora Linux, you can run: 3007@example 3008yum -y install mingw32-gcc mingw32-SDL mingw32-zlib 3009@end example 3010to get a suitable cross compilation environment. 3011 3012@item You can install QEMU in the installation directory by typing 3013@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the 3014installation directory. 3015 3016@end itemize 3017 3018Wine can be used to launch the resulting qemu-system-i386.exe 3019and all other qemu-system-@var{target}.exe compiled for Win32. 3020 3021@node Mac OS X 3022@section Mac OS X 3023 3024The Mac OS X patches are not fully merged in QEMU, so you should look 3025at the QEMU mailing list archive to have all the necessary 3026information. 3027 3028@node Make targets 3029@section Make targets 3030 3031@table @code 3032 3033@item make 3034@item make all 3035Make everything which is typically needed. 3036 3037@item install 3038TODO 3039 3040@item install-doc 3041TODO 3042 3043@item make clean 3044Remove most files which were built during make. 3045 3046@item make distclean 3047Remove everything which was built during make. 3048 3049@item make dvi 3050@item make html 3051@item make info 3052@item make pdf 3053Create documentation in dvi, html, info or pdf format. 3054 3055@item make cscope 3056TODO 3057 3058@item make defconfig 3059(Re-)create some build configuration files. 3060User made changes will be overwritten. 3061 3062@item tar 3063@item tarbin 3064TODO 3065 3066@end table 3067 3068@node License 3069@appendix License 3070 3071QEMU is a trademark of Fabrice Bellard. 3072 3073QEMU is released under the GNU General Public License (TODO: add link). 3074Parts of QEMU have specific licenses, see file LICENSE. 3075 3076TODO (refer to file LICENSE, include it, include the GPL?) 3077 3078@node Index 3079@appendix Index 3080@menu 3081* Concept Index:: 3082* Function Index:: 3083* Keystroke Index:: 3084* Program Index:: 3085* Data Type Index:: 3086* Variable Index:: 3087@end menu 3088 3089@node Concept Index 3090@section Concept Index 3091This is the main index. Should we combine all keywords in one index? TODO 3092@printindex cp 3093 3094@node Function Index 3095@section Function Index 3096This index could be used for command line options and monitor functions. 3097@printindex fn 3098 3099@node Keystroke Index 3100@section Keystroke Index 3101 3102This is a list of all keystrokes which have a special function 3103in system emulation. 3104 3105@printindex ky 3106 3107@node Program Index 3108@section Program Index 3109@printindex pg 3110 3111@node Data Type Index 3112@section Data Type Index 3113 3114This index could be used for qdev device names and options. 3115 3116@printindex tp 3117 3118@node Variable Index 3119@section Variable Index 3120@printindex vr 3121 3122@bye 3123