qemu/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include <sys/types.h>
  17#include <sys/ioctl.h>
  18#include <sys/mman.h>
  19#include <stdarg.h>
  20
  21#include <linux/kvm.h>
  22
  23#include "qemu-common.h"
  24#include "qemu/atomic.h"
  25#include "qemu/option.h"
  26#include "qemu/config-file.h"
  27#include "hw/hw.h"
  28#include "hw/pci/msi.h"
  29#include "hw/s390x/adapter.h"
  30#include "exec/gdbstub.h"
  31#include "sysemu/kvm_int.h"
  32#include "qemu/bswap.h"
  33#include "exec/memory.h"
  34#include "exec/ram_addr.h"
  35#include "exec/address-spaces.h"
  36#include "qemu/event_notifier.h"
  37#include "trace.h"
  38#include "hw/irq.h"
  39
  40#include "hw/boards.h"
  41
  42/* This check must be after config-host.h is included */
  43#ifdef CONFIG_EVENTFD
  44#include <sys/eventfd.h>
  45#endif
  46
  47/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  48#define PAGE_SIZE TARGET_PAGE_SIZE
  49
  50//#define DEBUG_KVM
  51
  52#ifdef DEBUG_KVM
  53#define DPRINTF(fmt, ...) \
  54    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  55#else
  56#define DPRINTF(fmt, ...) \
  57    do { } while (0)
  58#endif
  59
  60#define KVM_MSI_HASHTAB_SIZE    256
  61
  62struct KVMState
  63{
  64    AccelState parent_obj;
  65
  66    int nr_slots;
  67    int fd;
  68    int vmfd;
  69    int coalesced_mmio;
  70    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  71    bool coalesced_flush_in_progress;
  72    int broken_set_mem_region;
  73    int vcpu_events;
  74    int robust_singlestep;
  75    int debugregs;
  76#ifdef KVM_CAP_SET_GUEST_DEBUG
  77    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  78#endif
  79    int pit_state2;
  80    int xsave, xcrs;
  81    int many_ioeventfds;
  82    int intx_set_mask;
  83    /* The man page (and posix) say ioctl numbers are signed int, but
  84     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
  85     * unsigned, and treating them as signed here can break things */
  86    unsigned irq_set_ioctl;
  87    unsigned int sigmask_len;
  88    GHashTable *gsimap;
  89#ifdef KVM_CAP_IRQ_ROUTING
  90    struct kvm_irq_routing *irq_routes;
  91    int nr_allocated_irq_routes;
  92    uint32_t *used_gsi_bitmap;
  93    unsigned int gsi_count;
  94    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
  95    bool direct_msi;
  96#endif
  97    KVMMemoryListener memory_listener;
  98};
  99
 100KVMState *kvm_state;
 101bool kvm_kernel_irqchip;
 102bool kvm_async_interrupts_allowed;
 103bool kvm_halt_in_kernel_allowed;
 104bool kvm_eventfds_allowed;
 105bool kvm_irqfds_allowed;
 106bool kvm_resamplefds_allowed;
 107bool kvm_msi_via_irqfd_allowed;
 108bool kvm_gsi_routing_allowed;
 109bool kvm_gsi_direct_mapping;
 110bool kvm_allowed;
 111bool kvm_readonly_mem_allowed;
 112bool kvm_vm_attributes_allowed;
 113
 114static const KVMCapabilityInfo kvm_required_capabilites[] = {
 115    KVM_CAP_INFO(USER_MEMORY),
 116    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 117    KVM_CAP_LAST_INFO
 118};
 119
 120static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 121{
 122    KVMState *s = kvm_state;
 123    int i;
 124
 125    for (i = 0; i < s->nr_slots; i++) {
 126        if (kml->slots[i].memory_size == 0) {
 127            return &kml->slots[i];
 128        }
 129    }
 130
 131    return NULL;
 132}
 133
 134bool kvm_has_free_slot(MachineState *ms)
 135{
 136    KVMState *s = KVM_STATE(ms->accelerator);
 137
 138    return kvm_get_free_slot(&s->memory_listener);
 139}
 140
 141static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 142{
 143    KVMSlot *slot = kvm_get_free_slot(kml);
 144
 145    if (slot) {
 146        return slot;
 147    }
 148
 149    fprintf(stderr, "%s: no free slot available\n", __func__);
 150    abort();
 151}
 152
 153static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 154                                         hwaddr start_addr,
 155                                         hwaddr end_addr)
 156{
 157    KVMState *s = kvm_state;
 158    int i;
 159
 160    for (i = 0; i < s->nr_slots; i++) {
 161        KVMSlot *mem = &kml->slots[i];
 162
 163        if (start_addr == mem->start_addr &&
 164            end_addr == mem->start_addr + mem->memory_size) {
 165            return mem;
 166        }
 167    }
 168
 169    return NULL;
 170}
 171
 172/*
 173 * Find overlapping slot with lowest start address
 174 */
 175static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
 176                                            hwaddr start_addr,
 177                                            hwaddr end_addr)
 178{
 179    KVMState *s = kvm_state;
 180    KVMSlot *found = NULL;
 181    int i;
 182
 183    for (i = 0; i < s->nr_slots; i++) {
 184        KVMSlot *mem = &kml->slots[i];
 185
 186        if (mem->memory_size == 0 ||
 187            (found && found->start_addr < mem->start_addr)) {
 188            continue;
 189        }
 190
 191        if (end_addr > mem->start_addr &&
 192            start_addr < mem->start_addr + mem->memory_size) {
 193            found = mem;
 194        }
 195    }
 196
 197    return found;
 198}
 199
 200int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 201                                       hwaddr *phys_addr)
 202{
 203    KVMMemoryListener *kml = &s->memory_listener;
 204    int i;
 205
 206    for (i = 0; i < s->nr_slots; i++) {
 207        KVMSlot *mem = &kml->slots[i];
 208
 209        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 210            *phys_addr = mem->start_addr + (ram - mem->ram);
 211            return 1;
 212        }
 213    }
 214
 215    return 0;
 216}
 217
 218static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
 219{
 220    KVMState *s = kvm_state;
 221    struct kvm_userspace_memory_region mem;
 222
 223    mem.slot = slot->slot | (kml->as_id << 16);
 224    mem.guest_phys_addr = slot->start_addr;
 225    mem.userspace_addr = (unsigned long)slot->ram;
 226    mem.flags = slot->flags;
 227
 228    if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
 229        /* Set the slot size to 0 before setting the slot to the desired
 230         * value. This is needed based on KVM commit 75d61fbc. */
 231        mem.memory_size = 0;
 232        kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 233    }
 234    mem.memory_size = slot->memory_size;
 235    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 236}
 237
 238int kvm_init_vcpu(CPUState *cpu)
 239{
 240    KVMState *s = kvm_state;
 241    long mmap_size;
 242    int ret;
 243
 244    DPRINTF("kvm_init_vcpu\n");
 245
 246    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
 247    if (ret < 0) {
 248        DPRINTF("kvm_create_vcpu failed\n");
 249        goto err;
 250    }
 251
 252    cpu->kvm_fd = ret;
 253    cpu->kvm_state = s;
 254    cpu->kvm_vcpu_dirty = true;
 255
 256    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 257    if (mmap_size < 0) {
 258        ret = mmap_size;
 259        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 260        goto err;
 261    }
 262
 263    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 264                        cpu->kvm_fd, 0);
 265    if (cpu->kvm_run == MAP_FAILED) {
 266        ret = -errno;
 267        DPRINTF("mmap'ing vcpu state failed\n");
 268        goto err;
 269    }
 270
 271    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 272        s->coalesced_mmio_ring =
 273            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 274    }
 275
 276    ret = kvm_arch_init_vcpu(cpu);
 277err:
 278    return ret;
 279}
 280
 281/*
 282 * dirty pages logging control
 283 */
 284
 285static int kvm_mem_flags(MemoryRegion *mr)
 286{
 287    bool readonly = mr->readonly || memory_region_is_romd(mr);
 288    int flags = 0;
 289
 290    if (memory_region_get_dirty_log_mask(mr) != 0) {
 291        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 292    }
 293    if (readonly && kvm_readonly_mem_allowed) {
 294        flags |= KVM_MEM_READONLY;
 295    }
 296    return flags;
 297}
 298
 299static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 300                                 MemoryRegion *mr)
 301{
 302    int old_flags;
 303
 304    old_flags = mem->flags;
 305    mem->flags = kvm_mem_flags(mr);
 306
 307    /* If nothing changed effectively, no need to issue ioctl */
 308    if (mem->flags == old_flags) {
 309        return 0;
 310    }
 311
 312    return kvm_set_user_memory_region(kml, mem);
 313}
 314
 315static int kvm_section_update_flags(KVMMemoryListener *kml,
 316                                    MemoryRegionSection *section)
 317{
 318    hwaddr phys_addr = section->offset_within_address_space;
 319    ram_addr_t size = int128_get64(section->size);
 320    KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
 321
 322    if (mem == NULL)  {
 323        return 0;
 324    } else {
 325        return kvm_slot_update_flags(kml, mem, section->mr);
 326    }
 327}
 328
 329static void kvm_log_start(MemoryListener *listener,
 330                          MemoryRegionSection *section,
 331                          int old, int new)
 332{
 333    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 334    int r;
 335
 336    if (old != 0) {
 337        return;
 338    }
 339
 340    r = kvm_section_update_flags(kml, section);
 341    if (r < 0) {
 342        abort();
 343    }
 344}
 345
 346static void kvm_log_stop(MemoryListener *listener,
 347                          MemoryRegionSection *section,
 348                          int old, int new)
 349{
 350    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 351    int r;
 352
 353    if (new != 0) {
 354        return;
 355    }
 356
 357    r = kvm_section_update_flags(kml, section);
 358    if (r < 0) {
 359        abort();
 360    }
 361}
 362
 363/* get kvm's dirty pages bitmap and update qemu's */
 364static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 365                                         unsigned long *bitmap)
 366{
 367    ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
 368    ram_addr_t pages = int128_get64(section->size) / getpagesize();
 369
 370    cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
 371    return 0;
 372}
 373
 374#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 375
 376/**
 377 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 378 * This function updates qemu's dirty bitmap using
 379 * memory_region_set_dirty().  This means all bits are set
 380 * to dirty.
 381 *
 382 * @start_add: start of logged region.
 383 * @end_addr: end of logged region.
 384 */
 385static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 386                                          MemoryRegionSection *section)
 387{
 388    KVMState *s = kvm_state;
 389    unsigned long size, allocated_size = 0;
 390    struct kvm_dirty_log d = {};
 391    KVMSlot *mem;
 392    int ret = 0;
 393    hwaddr start_addr = section->offset_within_address_space;
 394    hwaddr end_addr = start_addr + int128_get64(section->size);
 395
 396    d.dirty_bitmap = NULL;
 397    while (start_addr < end_addr) {
 398        mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
 399        if (mem == NULL) {
 400            break;
 401        }
 402
 403        /* XXX bad kernel interface alert
 404         * For dirty bitmap, kernel allocates array of size aligned to
 405         * bits-per-long.  But for case when the kernel is 64bits and
 406         * the userspace is 32bits, userspace can't align to the same
 407         * bits-per-long, since sizeof(long) is different between kernel
 408         * and user space.  This way, userspace will provide buffer which
 409         * may be 4 bytes less than the kernel will use, resulting in
 410         * userspace memory corruption (which is not detectable by valgrind
 411         * too, in most cases).
 412         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 413         * a hope that sizeof(long) wont become >8 any time soon.
 414         */
 415        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
 416                     /*HOST_LONG_BITS*/ 64) / 8;
 417        if (!d.dirty_bitmap) {
 418            d.dirty_bitmap = g_malloc(size);
 419        } else if (size > allocated_size) {
 420            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
 421        }
 422        allocated_size = size;
 423        memset(d.dirty_bitmap, 0, allocated_size);
 424
 425        d.slot = mem->slot | (kml->as_id << 16);
 426        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 427            DPRINTF("ioctl failed %d\n", errno);
 428            ret = -1;
 429            break;
 430        }
 431
 432        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
 433        start_addr = mem->start_addr + mem->memory_size;
 434    }
 435    g_free(d.dirty_bitmap);
 436
 437    return ret;
 438}
 439
 440static void kvm_coalesce_mmio_region(MemoryListener *listener,
 441                                     MemoryRegionSection *secion,
 442                                     hwaddr start, hwaddr size)
 443{
 444    KVMState *s = kvm_state;
 445
 446    if (s->coalesced_mmio) {
 447        struct kvm_coalesced_mmio_zone zone;
 448
 449        zone.addr = start;
 450        zone.size = size;
 451        zone.pad = 0;
 452
 453        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 454    }
 455}
 456
 457static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 458                                       MemoryRegionSection *secion,
 459                                       hwaddr start, hwaddr size)
 460{
 461    KVMState *s = kvm_state;
 462
 463    if (s->coalesced_mmio) {
 464        struct kvm_coalesced_mmio_zone zone;
 465
 466        zone.addr = start;
 467        zone.size = size;
 468        zone.pad = 0;
 469
 470        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 471    }
 472}
 473
 474int kvm_check_extension(KVMState *s, unsigned int extension)
 475{
 476    int ret;
 477
 478    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 479    if (ret < 0) {
 480        ret = 0;
 481    }
 482
 483    return ret;
 484}
 485
 486int kvm_vm_check_extension(KVMState *s, unsigned int extension)
 487{
 488    int ret;
 489
 490    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 491    if (ret < 0) {
 492        /* VM wide version not implemented, use global one instead */
 493        ret = kvm_check_extension(s, extension);
 494    }
 495
 496    return ret;
 497}
 498
 499static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
 500{
 501#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
 502    /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
 503     * endianness, but the memory core hands them in target endianness.
 504     * For example, PPC is always treated as big-endian even if running
 505     * on KVM and on PPC64LE.  Correct here.
 506     */
 507    switch (size) {
 508    case 2:
 509        val = bswap16(val);
 510        break;
 511    case 4:
 512        val = bswap32(val);
 513        break;
 514    }
 515#endif
 516    return val;
 517}
 518
 519static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
 520                                  bool assign, uint32_t size, bool datamatch)
 521{
 522    int ret;
 523    struct kvm_ioeventfd iofd = {
 524        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 525        .addr = addr,
 526        .len = size,
 527        .flags = 0,
 528        .fd = fd,
 529    };
 530
 531    if (!kvm_enabled()) {
 532        return -ENOSYS;
 533    }
 534
 535    if (datamatch) {
 536        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 537    }
 538    if (!assign) {
 539        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 540    }
 541
 542    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 543
 544    if (ret < 0) {
 545        return -errno;
 546    }
 547
 548    return 0;
 549}
 550
 551static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
 552                                 bool assign, uint32_t size, bool datamatch)
 553{
 554    struct kvm_ioeventfd kick = {
 555        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 556        .addr = addr,
 557        .flags = KVM_IOEVENTFD_FLAG_PIO,
 558        .len = size,
 559        .fd = fd,
 560    };
 561    int r;
 562    if (!kvm_enabled()) {
 563        return -ENOSYS;
 564    }
 565    if (datamatch) {
 566        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 567    }
 568    if (!assign) {
 569        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 570    }
 571    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 572    if (r < 0) {
 573        return r;
 574    }
 575    return 0;
 576}
 577
 578
 579static int kvm_check_many_ioeventfds(void)
 580{
 581    /* Userspace can use ioeventfd for io notification.  This requires a host
 582     * that supports eventfd(2) and an I/O thread; since eventfd does not
 583     * support SIGIO it cannot interrupt the vcpu.
 584     *
 585     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 586     * can avoid creating too many ioeventfds.
 587     */
 588#if defined(CONFIG_EVENTFD)
 589    int ioeventfds[7];
 590    int i, ret = 0;
 591    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 592        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 593        if (ioeventfds[i] < 0) {
 594            break;
 595        }
 596        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
 597        if (ret < 0) {
 598            close(ioeventfds[i]);
 599            break;
 600        }
 601    }
 602
 603    /* Decide whether many devices are supported or not */
 604    ret = i == ARRAY_SIZE(ioeventfds);
 605
 606    while (i-- > 0) {
 607        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
 608        close(ioeventfds[i]);
 609    }
 610    return ret;
 611#else
 612    return 0;
 613#endif
 614}
 615
 616static const KVMCapabilityInfo *
 617kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 618{
 619    while (list->name) {
 620        if (!kvm_check_extension(s, list->value)) {
 621            return list;
 622        }
 623        list++;
 624    }
 625    return NULL;
 626}
 627
 628static void kvm_set_phys_mem(KVMMemoryListener *kml,
 629                             MemoryRegionSection *section, bool add)
 630{
 631    KVMState *s = kvm_state;
 632    KVMSlot *mem, old;
 633    int err;
 634    MemoryRegion *mr = section->mr;
 635    bool writeable = !mr->readonly && !mr->rom_device;
 636    hwaddr start_addr = section->offset_within_address_space;
 637    ram_addr_t size = int128_get64(section->size);
 638    void *ram = NULL;
 639    unsigned delta;
 640
 641    /* kvm works in page size chunks, but the function may be called
 642       with sub-page size and unaligned start address. Pad the start
 643       address to next and truncate size to previous page boundary. */
 644    delta = (TARGET_PAGE_SIZE - (start_addr & ~TARGET_PAGE_MASK));
 645    delta &= ~TARGET_PAGE_MASK;
 646    if (delta > size) {
 647        return;
 648    }
 649    start_addr += delta;
 650    size -= delta;
 651    size &= TARGET_PAGE_MASK;
 652    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
 653        return;
 654    }
 655
 656    if (!memory_region_is_ram(mr)) {
 657        if (writeable || !kvm_readonly_mem_allowed) {
 658            return;
 659        } else if (!mr->romd_mode) {
 660            /* If the memory device is not in romd_mode, then we actually want
 661             * to remove the kvm memory slot so all accesses will trap. */
 662            add = false;
 663        }
 664    }
 665
 666    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
 667
 668    while (1) {
 669        mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
 670        if (!mem) {
 671            break;
 672        }
 673
 674        if (add && start_addr >= mem->start_addr &&
 675            (start_addr + size <= mem->start_addr + mem->memory_size) &&
 676            (ram - start_addr == mem->ram - mem->start_addr)) {
 677            /* The new slot fits into the existing one and comes with
 678             * identical parameters - update flags and done. */
 679            kvm_slot_update_flags(kml, mem, mr);
 680            return;
 681        }
 682
 683        old = *mem;
 684
 685        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 686            kvm_physical_sync_dirty_bitmap(kml, section);
 687        }
 688
 689        /* unregister the overlapping slot */
 690        mem->memory_size = 0;
 691        err = kvm_set_user_memory_region(kml, mem);
 692        if (err) {
 693            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 694                    __func__, strerror(-err));
 695            abort();
 696        }
 697
 698        /* Workaround for older KVM versions: we can't join slots, even not by
 699         * unregistering the previous ones and then registering the larger
 700         * slot. We have to maintain the existing fragmentation. Sigh.
 701         *
 702         * This workaround assumes that the new slot starts at the same
 703         * address as the first existing one. If not or if some overlapping
 704         * slot comes around later, we will fail (not seen in practice so far)
 705         * - and actually require a recent KVM version. */
 706        if (s->broken_set_mem_region &&
 707            old.start_addr == start_addr && old.memory_size < size && add) {
 708            mem = kvm_alloc_slot(kml);
 709            mem->memory_size = old.memory_size;
 710            mem->start_addr = old.start_addr;
 711            mem->ram = old.ram;
 712            mem->flags = kvm_mem_flags(mr);
 713
 714            err = kvm_set_user_memory_region(kml, mem);
 715            if (err) {
 716                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 717                        strerror(-err));
 718                abort();
 719            }
 720
 721            start_addr += old.memory_size;
 722            ram += old.memory_size;
 723            size -= old.memory_size;
 724            continue;
 725        }
 726
 727        /* register prefix slot */
 728        if (old.start_addr < start_addr) {
 729            mem = kvm_alloc_slot(kml);
 730            mem->memory_size = start_addr - old.start_addr;
 731            mem->start_addr = old.start_addr;
 732            mem->ram = old.ram;
 733            mem->flags =  kvm_mem_flags(mr);
 734
 735            err = kvm_set_user_memory_region(kml, mem);
 736            if (err) {
 737                fprintf(stderr, "%s: error registering prefix slot: %s\n",
 738                        __func__, strerror(-err));
 739#ifdef TARGET_PPC
 740                fprintf(stderr, "%s: This is probably because your kernel's " \
 741                                "PAGE_SIZE is too big. Please try to use 4k " \
 742                                "PAGE_SIZE!\n", __func__);
 743#endif
 744                abort();
 745            }
 746        }
 747
 748        /* register suffix slot */
 749        if (old.start_addr + old.memory_size > start_addr + size) {
 750            ram_addr_t size_delta;
 751
 752            mem = kvm_alloc_slot(kml);
 753            mem->start_addr = start_addr + size;
 754            size_delta = mem->start_addr - old.start_addr;
 755            mem->memory_size = old.memory_size - size_delta;
 756            mem->ram = old.ram + size_delta;
 757            mem->flags = kvm_mem_flags(mr);
 758
 759            err = kvm_set_user_memory_region(kml, mem);
 760            if (err) {
 761                fprintf(stderr, "%s: error registering suffix slot: %s\n",
 762                        __func__, strerror(-err));
 763                abort();
 764            }
 765        }
 766    }
 767
 768    /* in case the KVM bug workaround already "consumed" the new slot */
 769    if (!size) {
 770        return;
 771    }
 772    if (!add) {
 773        return;
 774    }
 775    mem = kvm_alloc_slot(kml);
 776    mem->memory_size = size;
 777    mem->start_addr = start_addr;
 778    mem->ram = ram;
 779    mem->flags = kvm_mem_flags(mr);
 780
 781    err = kvm_set_user_memory_region(kml, mem);
 782    if (err) {
 783        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 784                strerror(-err));
 785        abort();
 786    }
 787}
 788
 789static void kvm_region_add(MemoryListener *listener,
 790                           MemoryRegionSection *section)
 791{
 792    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 793
 794    memory_region_ref(section->mr);
 795    kvm_set_phys_mem(kml, section, true);
 796}
 797
 798static void kvm_region_del(MemoryListener *listener,
 799                           MemoryRegionSection *section)
 800{
 801    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 802
 803    kvm_set_phys_mem(kml, section, false);
 804    memory_region_unref(section->mr);
 805}
 806
 807static void kvm_log_sync(MemoryListener *listener,
 808                         MemoryRegionSection *section)
 809{
 810    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 811    int r;
 812
 813    r = kvm_physical_sync_dirty_bitmap(kml, section);
 814    if (r < 0) {
 815        abort();
 816    }
 817}
 818
 819static void kvm_mem_ioeventfd_add(MemoryListener *listener,
 820                                  MemoryRegionSection *section,
 821                                  bool match_data, uint64_t data,
 822                                  EventNotifier *e)
 823{
 824    int fd = event_notifier_get_fd(e);
 825    int r;
 826
 827    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 828                               data, true, int128_get64(section->size),
 829                               match_data);
 830    if (r < 0) {
 831        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 832                __func__, strerror(-r));
 833        abort();
 834    }
 835}
 836
 837static void kvm_mem_ioeventfd_del(MemoryListener *listener,
 838                                  MemoryRegionSection *section,
 839                                  bool match_data, uint64_t data,
 840                                  EventNotifier *e)
 841{
 842    int fd = event_notifier_get_fd(e);
 843    int r;
 844
 845    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 846                               data, false, int128_get64(section->size),
 847                               match_data);
 848    if (r < 0) {
 849        abort();
 850    }
 851}
 852
 853static void kvm_io_ioeventfd_add(MemoryListener *listener,
 854                                 MemoryRegionSection *section,
 855                                 bool match_data, uint64_t data,
 856                                 EventNotifier *e)
 857{
 858    int fd = event_notifier_get_fd(e);
 859    int r;
 860
 861    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 862                              data, true, int128_get64(section->size),
 863                              match_data);
 864    if (r < 0) {
 865        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 866                __func__, strerror(-r));
 867        abort();
 868    }
 869}
 870
 871static void kvm_io_ioeventfd_del(MemoryListener *listener,
 872                                 MemoryRegionSection *section,
 873                                 bool match_data, uint64_t data,
 874                                 EventNotifier *e)
 875
 876{
 877    int fd = event_notifier_get_fd(e);
 878    int r;
 879
 880    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 881                              data, false, int128_get64(section->size),
 882                              match_data);
 883    if (r < 0) {
 884        abort();
 885    }
 886}
 887
 888void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
 889                                  AddressSpace *as, int as_id)
 890{
 891    int i;
 892
 893    kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
 894    kml->as_id = as_id;
 895
 896    for (i = 0; i < s->nr_slots; i++) {
 897        kml->slots[i].slot = i;
 898    }
 899
 900    kml->listener.region_add = kvm_region_add;
 901    kml->listener.region_del = kvm_region_del;
 902    kml->listener.log_start = kvm_log_start;
 903    kml->listener.log_stop = kvm_log_stop;
 904    kml->listener.log_sync = kvm_log_sync;
 905    kml->listener.priority = 10;
 906
 907    memory_listener_register(&kml->listener, as);
 908}
 909
 910static MemoryListener kvm_io_listener = {
 911    .eventfd_add = kvm_io_ioeventfd_add,
 912    .eventfd_del = kvm_io_ioeventfd_del,
 913    .priority = 10,
 914};
 915
 916static void kvm_handle_interrupt(CPUState *cpu, int mask)
 917{
 918    cpu->interrupt_request |= mask;
 919
 920    if (!qemu_cpu_is_self(cpu)) {
 921        qemu_cpu_kick(cpu);
 922    }
 923}
 924
 925int kvm_set_irq(KVMState *s, int irq, int level)
 926{
 927    struct kvm_irq_level event;
 928    int ret;
 929
 930    assert(kvm_async_interrupts_enabled());
 931
 932    event.level = level;
 933    event.irq = irq;
 934    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
 935    if (ret < 0) {
 936        perror("kvm_set_irq");
 937        abort();
 938    }
 939
 940    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
 941}
 942
 943#ifdef KVM_CAP_IRQ_ROUTING
 944typedef struct KVMMSIRoute {
 945    struct kvm_irq_routing_entry kroute;
 946    QTAILQ_ENTRY(KVMMSIRoute) entry;
 947} KVMMSIRoute;
 948
 949static void set_gsi(KVMState *s, unsigned int gsi)
 950{
 951    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
 952}
 953
 954static void clear_gsi(KVMState *s, unsigned int gsi)
 955{
 956    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
 957}
 958
 959void kvm_init_irq_routing(KVMState *s)
 960{
 961    int gsi_count, i;
 962
 963    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
 964    if (gsi_count > 0) {
 965        unsigned int gsi_bits, i;
 966
 967        /* Round up so we can search ints using ffs */
 968        gsi_bits = ALIGN(gsi_count, 32);
 969        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
 970        s->gsi_count = gsi_count;
 971
 972        /* Mark any over-allocated bits as already in use */
 973        for (i = gsi_count; i < gsi_bits; i++) {
 974            set_gsi(s, i);
 975        }
 976    }
 977
 978    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
 979    s->nr_allocated_irq_routes = 0;
 980
 981    if (!s->direct_msi) {
 982        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
 983            QTAILQ_INIT(&s->msi_hashtab[i]);
 984        }
 985    }
 986
 987    kvm_arch_init_irq_routing(s);
 988}
 989
 990void kvm_irqchip_commit_routes(KVMState *s)
 991{
 992    int ret;
 993
 994    s->irq_routes->flags = 0;
 995    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
 996    assert(ret == 0);
 997}
 998
 999static void kvm_add_routing_entry(KVMState *s,
1000                                  struct kvm_irq_routing_entry *entry)
1001{
1002    struct kvm_irq_routing_entry *new;
1003    int n, size;
1004
1005    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1006        n = s->nr_allocated_irq_routes * 2;
1007        if (n < 64) {
1008            n = 64;
1009        }
1010        size = sizeof(struct kvm_irq_routing);
1011        size += n * sizeof(*new);
1012        s->irq_routes = g_realloc(s->irq_routes, size);
1013        s->nr_allocated_irq_routes = n;
1014    }
1015    n = s->irq_routes->nr++;
1016    new = &s->irq_routes->entries[n];
1017
1018    *new = *entry;
1019
1020    set_gsi(s, entry->gsi);
1021}
1022
1023static int kvm_update_routing_entry(KVMState *s,
1024                                    struct kvm_irq_routing_entry *new_entry)
1025{
1026    struct kvm_irq_routing_entry *entry;
1027    int n;
1028
1029    for (n = 0; n < s->irq_routes->nr; n++) {
1030        entry = &s->irq_routes->entries[n];
1031        if (entry->gsi != new_entry->gsi) {
1032            continue;
1033        }
1034
1035        if(!memcmp(entry, new_entry, sizeof *entry)) {
1036            return 0;
1037        }
1038
1039        *entry = *new_entry;
1040
1041        kvm_irqchip_commit_routes(s);
1042
1043        return 0;
1044    }
1045
1046    return -ESRCH;
1047}
1048
1049void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1050{
1051    struct kvm_irq_routing_entry e = {};
1052
1053    assert(pin < s->gsi_count);
1054
1055    e.gsi = irq;
1056    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1057    e.flags = 0;
1058    e.u.irqchip.irqchip = irqchip;
1059    e.u.irqchip.pin = pin;
1060    kvm_add_routing_entry(s, &e);
1061}
1062
1063void kvm_irqchip_release_virq(KVMState *s, int virq)
1064{
1065    struct kvm_irq_routing_entry *e;
1066    int i;
1067
1068    if (kvm_gsi_direct_mapping()) {
1069        return;
1070    }
1071
1072    for (i = 0; i < s->irq_routes->nr; i++) {
1073        e = &s->irq_routes->entries[i];
1074        if (e->gsi == virq) {
1075            s->irq_routes->nr--;
1076            *e = s->irq_routes->entries[s->irq_routes->nr];
1077        }
1078    }
1079    clear_gsi(s, virq);
1080}
1081
1082static unsigned int kvm_hash_msi(uint32_t data)
1083{
1084    /* This is optimized for IA32 MSI layout. However, no other arch shall
1085     * repeat the mistake of not providing a direct MSI injection API. */
1086    return data & 0xff;
1087}
1088
1089static void kvm_flush_dynamic_msi_routes(KVMState *s)
1090{
1091    KVMMSIRoute *route, *next;
1092    unsigned int hash;
1093
1094    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1095        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1096            kvm_irqchip_release_virq(s, route->kroute.gsi);
1097            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1098            g_free(route);
1099        }
1100    }
1101}
1102
1103static int kvm_irqchip_get_virq(KVMState *s)
1104{
1105    uint32_t *word = s->used_gsi_bitmap;
1106    int max_words = ALIGN(s->gsi_count, 32) / 32;
1107    int i, zeroes;
1108
1109    /*
1110     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1111     * GSI numbers are more than the number of IRQ route. Allocating a GSI
1112     * number can succeed even though a new route entry cannot be added.
1113     * When this happens, flush dynamic MSI entries to free IRQ route entries.
1114     */
1115    if (!s->direct_msi && s->irq_routes->nr == s->gsi_count) {
1116        kvm_flush_dynamic_msi_routes(s);
1117    }
1118
1119    /* Return the lowest unused GSI in the bitmap */
1120    for (i = 0; i < max_words; i++) {
1121        zeroes = ctz32(~word[i]);
1122        if (zeroes == 32) {
1123            continue;
1124        }
1125
1126        return zeroes + i * 32;
1127    }
1128    return -ENOSPC;
1129
1130}
1131
1132static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1133{
1134    unsigned int hash = kvm_hash_msi(msg.data);
1135    KVMMSIRoute *route;
1136
1137    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1138        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1139            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1140            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1141            return route;
1142        }
1143    }
1144    return NULL;
1145}
1146
1147int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1148{
1149    struct kvm_msi msi;
1150    KVMMSIRoute *route;
1151
1152    if (s->direct_msi) {
1153        msi.address_lo = (uint32_t)msg.address;
1154        msi.address_hi = msg.address >> 32;
1155        msi.data = le32_to_cpu(msg.data);
1156        msi.flags = 0;
1157        memset(msi.pad, 0, sizeof(msi.pad));
1158
1159        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1160    }
1161
1162    route = kvm_lookup_msi_route(s, msg);
1163    if (!route) {
1164        int virq;
1165
1166        virq = kvm_irqchip_get_virq(s);
1167        if (virq < 0) {
1168            return virq;
1169        }
1170
1171        route = g_malloc0(sizeof(KVMMSIRoute));
1172        route->kroute.gsi = virq;
1173        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1174        route->kroute.flags = 0;
1175        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1176        route->kroute.u.msi.address_hi = msg.address >> 32;
1177        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1178
1179        kvm_add_routing_entry(s, &route->kroute);
1180        kvm_irqchip_commit_routes(s);
1181
1182        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1183                           entry);
1184    }
1185
1186    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1187
1188    return kvm_set_irq(s, route->kroute.gsi, 1);
1189}
1190
1191int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1192{
1193    struct kvm_irq_routing_entry kroute = {};
1194    int virq;
1195
1196    if (kvm_gsi_direct_mapping()) {
1197        return kvm_arch_msi_data_to_gsi(msg.data);
1198    }
1199
1200    if (!kvm_gsi_routing_enabled()) {
1201        return -ENOSYS;
1202    }
1203
1204    virq = kvm_irqchip_get_virq(s);
1205    if (virq < 0) {
1206        return virq;
1207    }
1208
1209    kroute.gsi = virq;
1210    kroute.type = KVM_IRQ_ROUTING_MSI;
1211    kroute.flags = 0;
1212    kroute.u.msi.address_lo = (uint32_t)msg.address;
1213    kroute.u.msi.address_hi = msg.address >> 32;
1214    kroute.u.msi.data = le32_to_cpu(msg.data);
1215    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1216        kvm_irqchip_release_virq(s, virq);
1217        return -EINVAL;
1218    }
1219
1220    kvm_add_routing_entry(s, &kroute);
1221    kvm_irqchip_commit_routes(s);
1222
1223    return virq;
1224}
1225
1226int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1227{
1228    struct kvm_irq_routing_entry kroute = {};
1229
1230    if (kvm_gsi_direct_mapping()) {
1231        return 0;
1232    }
1233
1234    if (!kvm_irqchip_in_kernel()) {
1235        return -ENOSYS;
1236    }
1237
1238    kroute.gsi = virq;
1239    kroute.type = KVM_IRQ_ROUTING_MSI;
1240    kroute.flags = 0;
1241    kroute.u.msi.address_lo = (uint32_t)msg.address;
1242    kroute.u.msi.address_hi = msg.address >> 32;
1243    kroute.u.msi.data = le32_to_cpu(msg.data);
1244    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data)) {
1245        return -EINVAL;
1246    }
1247
1248    return kvm_update_routing_entry(s, &kroute);
1249}
1250
1251static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1252                                    bool assign)
1253{
1254    struct kvm_irqfd irqfd = {
1255        .fd = fd,
1256        .gsi = virq,
1257        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1258    };
1259
1260    if (rfd != -1) {
1261        irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1262        irqfd.resamplefd = rfd;
1263    }
1264
1265    if (!kvm_irqfds_enabled()) {
1266        return -ENOSYS;
1267    }
1268
1269    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1270}
1271
1272int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1273{
1274    struct kvm_irq_routing_entry kroute = {};
1275    int virq;
1276
1277    if (!kvm_gsi_routing_enabled()) {
1278        return -ENOSYS;
1279    }
1280
1281    virq = kvm_irqchip_get_virq(s);
1282    if (virq < 0) {
1283        return virq;
1284    }
1285
1286    kroute.gsi = virq;
1287    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1288    kroute.flags = 0;
1289    kroute.u.adapter.summary_addr = adapter->summary_addr;
1290    kroute.u.adapter.ind_addr = adapter->ind_addr;
1291    kroute.u.adapter.summary_offset = adapter->summary_offset;
1292    kroute.u.adapter.ind_offset = adapter->ind_offset;
1293    kroute.u.adapter.adapter_id = adapter->adapter_id;
1294
1295    kvm_add_routing_entry(s, &kroute);
1296    kvm_irqchip_commit_routes(s);
1297
1298    return virq;
1299}
1300
1301#else /* !KVM_CAP_IRQ_ROUTING */
1302
1303void kvm_init_irq_routing(KVMState *s)
1304{
1305}
1306
1307void kvm_irqchip_release_virq(KVMState *s, int virq)
1308{
1309}
1310
1311int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1312{
1313    abort();
1314}
1315
1316int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1317{
1318    return -ENOSYS;
1319}
1320
1321int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1322{
1323    return -ENOSYS;
1324}
1325
1326static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1327{
1328    abort();
1329}
1330
1331int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1332{
1333    return -ENOSYS;
1334}
1335#endif /* !KVM_CAP_IRQ_ROUTING */
1336
1337int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1338                                       EventNotifier *rn, int virq)
1339{
1340    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1341           rn ? event_notifier_get_fd(rn) : -1, virq, true);
1342}
1343
1344int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1345                                          int virq)
1346{
1347    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1348           false);
1349}
1350
1351int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1352                                   EventNotifier *rn, qemu_irq irq)
1353{
1354    gpointer key, gsi;
1355    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1356
1357    if (!found) {
1358        return -ENXIO;
1359    }
1360    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1361}
1362
1363int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1364                                      qemu_irq irq)
1365{
1366    gpointer key, gsi;
1367    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1368
1369    if (!found) {
1370        return -ENXIO;
1371    }
1372    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1373}
1374
1375void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1376{
1377    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1378}
1379
1380static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1381{
1382    int ret;
1383
1384    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1385        ;
1386    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1387        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1388        if (ret < 0) {
1389            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1390            exit(1);
1391        }
1392    } else {
1393        return;
1394    }
1395
1396    /* First probe and see if there's a arch-specific hook to create the
1397     * in-kernel irqchip for us */
1398    ret = kvm_arch_irqchip_create(s);
1399    if (ret == 0) {
1400        ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1401    }
1402    if (ret < 0) {
1403        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1404        exit(1);
1405    }
1406
1407    kvm_kernel_irqchip = true;
1408    /* If we have an in-kernel IRQ chip then we must have asynchronous
1409     * interrupt delivery (though the reverse is not necessarily true)
1410     */
1411    kvm_async_interrupts_allowed = true;
1412    kvm_halt_in_kernel_allowed = true;
1413
1414    kvm_init_irq_routing(s);
1415
1416    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1417}
1418
1419/* Find number of supported CPUs using the recommended
1420 * procedure from the kernel API documentation to cope with
1421 * older kernels that may be missing capabilities.
1422 */
1423static int kvm_recommended_vcpus(KVMState *s)
1424{
1425    int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1426    return (ret) ? ret : 4;
1427}
1428
1429static int kvm_max_vcpus(KVMState *s)
1430{
1431    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1432    return (ret) ? ret : kvm_recommended_vcpus(s);
1433}
1434
1435static int kvm_init(MachineState *ms)
1436{
1437    MachineClass *mc = MACHINE_GET_CLASS(ms);
1438    static const char upgrade_note[] =
1439        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1440        "(see http://sourceforge.net/projects/kvm).\n";
1441    struct {
1442        const char *name;
1443        int num;
1444    } num_cpus[] = {
1445        { "SMP",          smp_cpus },
1446        { "hotpluggable", max_cpus },
1447        { NULL, }
1448    }, *nc = num_cpus;
1449    int soft_vcpus_limit, hard_vcpus_limit;
1450    KVMState *s;
1451    const KVMCapabilityInfo *missing_cap;
1452    int ret;
1453    int type = 0;
1454    const char *kvm_type;
1455
1456    s = KVM_STATE(ms->accelerator);
1457
1458    /*
1459     * On systems where the kernel can support different base page
1460     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1461     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1462     * page size for the system though.
1463     */
1464    assert(TARGET_PAGE_SIZE <= getpagesize());
1465    page_size_init();
1466
1467    s->sigmask_len = 8;
1468
1469#ifdef KVM_CAP_SET_GUEST_DEBUG
1470    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1471#endif
1472    s->vmfd = -1;
1473    s->fd = qemu_open("/dev/kvm", O_RDWR);
1474    if (s->fd == -1) {
1475        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1476        ret = -errno;
1477        goto err;
1478    }
1479
1480    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1481    if (ret < KVM_API_VERSION) {
1482        if (ret >= 0) {
1483            ret = -EINVAL;
1484        }
1485        fprintf(stderr, "kvm version too old\n");
1486        goto err;
1487    }
1488
1489    if (ret > KVM_API_VERSION) {
1490        ret = -EINVAL;
1491        fprintf(stderr, "kvm version not supported\n");
1492        goto err;
1493    }
1494
1495    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1496
1497    /* If unspecified, use the default value */
1498    if (!s->nr_slots) {
1499        s->nr_slots = 32;
1500    }
1501
1502    /* check the vcpu limits */
1503    soft_vcpus_limit = kvm_recommended_vcpus(s);
1504    hard_vcpus_limit = kvm_max_vcpus(s);
1505
1506    while (nc->name) {
1507        if (nc->num > soft_vcpus_limit) {
1508            fprintf(stderr,
1509                    "Warning: Number of %s cpus requested (%d) exceeds "
1510                    "the recommended cpus supported by KVM (%d)\n",
1511                    nc->name, nc->num, soft_vcpus_limit);
1512
1513            if (nc->num > hard_vcpus_limit) {
1514                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1515                        "the maximum cpus supported by KVM (%d)\n",
1516                        nc->name, nc->num, hard_vcpus_limit);
1517                exit(1);
1518            }
1519        }
1520        nc++;
1521    }
1522
1523    kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1524    if (mc->kvm_type) {
1525        type = mc->kvm_type(kvm_type);
1526    } else if (kvm_type) {
1527        ret = -EINVAL;
1528        fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1529        goto err;
1530    }
1531
1532    do {
1533        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1534    } while (ret == -EINTR);
1535
1536    if (ret < 0) {
1537        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1538                strerror(-ret));
1539
1540#ifdef TARGET_S390X
1541        if (ret == -EINVAL) {
1542            fprintf(stderr,
1543                    "Host kernel setup problem detected. Please verify:\n");
1544            fprintf(stderr, "- for kernels supporting the switch_amode or"
1545                    " user_mode parameters, whether\n");
1546            fprintf(stderr,
1547                    "  user space is running in primary address space\n");
1548            fprintf(stderr,
1549                    "- for kernels supporting the vm.allocate_pgste sysctl, "
1550                    "whether it is enabled\n");
1551        }
1552#endif
1553        goto err;
1554    }
1555
1556    s->vmfd = ret;
1557    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1558    if (!missing_cap) {
1559        missing_cap =
1560            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1561    }
1562    if (missing_cap) {
1563        ret = -EINVAL;
1564        fprintf(stderr, "kvm does not support %s\n%s",
1565                missing_cap->name, upgrade_note);
1566        goto err;
1567    }
1568
1569    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1570
1571    s->broken_set_mem_region = 1;
1572    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1573    if (ret > 0) {
1574        s->broken_set_mem_region = 0;
1575    }
1576
1577#ifdef KVM_CAP_VCPU_EVENTS
1578    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1579#endif
1580
1581    s->robust_singlestep =
1582        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1583
1584#ifdef KVM_CAP_DEBUGREGS
1585    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1586#endif
1587
1588#ifdef KVM_CAP_XSAVE
1589    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1590#endif
1591
1592#ifdef KVM_CAP_XCRS
1593    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1594#endif
1595
1596#ifdef KVM_CAP_PIT_STATE2
1597    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1598#endif
1599
1600#ifdef KVM_CAP_IRQ_ROUTING
1601    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1602#endif
1603
1604    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1605
1606    s->irq_set_ioctl = KVM_IRQ_LINE;
1607    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1608        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1609    }
1610
1611#ifdef KVM_CAP_READONLY_MEM
1612    kvm_readonly_mem_allowed =
1613        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1614#endif
1615
1616    kvm_eventfds_allowed =
1617        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1618
1619    kvm_irqfds_allowed =
1620        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1621
1622    kvm_resamplefds_allowed =
1623        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1624
1625    kvm_vm_attributes_allowed =
1626        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1627
1628    ret = kvm_arch_init(ms, s);
1629    if (ret < 0) {
1630        goto err;
1631    }
1632
1633    if (machine_kernel_irqchip_allowed(ms)) {
1634        kvm_irqchip_create(ms, s);
1635    }
1636
1637    kvm_state = s;
1638
1639    s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1640    s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1641    s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1642    s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1643
1644    kvm_memory_listener_register(s, &s->memory_listener,
1645                                 &address_space_memory, 0);
1646    memory_listener_register(&kvm_io_listener,
1647                             &address_space_io);
1648
1649    s->many_ioeventfds = kvm_check_many_ioeventfds();
1650
1651    cpu_interrupt_handler = kvm_handle_interrupt;
1652
1653    return 0;
1654
1655err:
1656    assert(ret < 0);
1657    if (s->vmfd >= 0) {
1658        close(s->vmfd);
1659    }
1660    if (s->fd != -1) {
1661        close(s->fd);
1662    }
1663    g_free(s->memory_listener.slots);
1664
1665    return ret;
1666}
1667
1668void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1669{
1670    s->sigmask_len = sigmask_len;
1671}
1672
1673static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1674                          int size, uint32_t count)
1675{
1676    int i;
1677    uint8_t *ptr = data;
1678
1679    for (i = 0; i < count; i++) {
1680        address_space_rw(&address_space_io, port, attrs,
1681                         ptr, size,
1682                         direction == KVM_EXIT_IO_OUT);
1683        ptr += size;
1684    }
1685}
1686
1687static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1688{
1689    fprintf(stderr, "KVM internal error. Suberror: %d\n",
1690            run->internal.suberror);
1691
1692    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1693        int i;
1694
1695        for (i = 0; i < run->internal.ndata; ++i) {
1696            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1697                    i, (uint64_t)run->internal.data[i]);
1698        }
1699    }
1700    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1701        fprintf(stderr, "emulation failure\n");
1702        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1703            cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1704            return EXCP_INTERRUPT;
1705        }
1706    }
1707    /* FIXME: Should trigger a qmp message to let management know
1708     * something went wrong.
1709     */
1710    return -1;
1711}
1712
1713void kvm_flush_coalesced_mmio_buffer(void)
1714{
1715    KVMState *s = kvm_state;
1716
1717    if (s->coalesced_flush_in_progress) {
1718        return;
1719    }
1720
1721    s->coalesced_flush_in_progress = true;
1722
1723    if (s->coalesced_mmio_ring) {
1724        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1725        while (ring->first != ring->last) {
1726            struct kvm_coalesced_mmio *ent;
1727
1728            ent = &ring->coalesced_mmio[ring->first];
1729
1730            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1731            smp_wmb();
1732            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1733        }
1734    }
1735
1736    s->coalesced_flush_in_progress = false;
1737}
1738
1739static void do_kvm_cpu_synchronize_state(void *arg)
1740{
1741    CPUState *cpu = arg;
1742
1743    if (!cpu->kvm_vcpu_dirty) {
1744        kvm_arch_get_registers(cpu);
1745        cpu->kvm_vcpu_dirty = true;
1746    }
1747}
1748
1749void kvm_cpu_synchronize_state(CPUState *cpu)
1750{
1751    if (!cpu->kvm_vcpu_dirty) {
1752        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1753    }
1754}
1755
1756static void do_kvm_cpu_synchronize_post_reset(void *arg)
1757{
1758    CPUState *cpu = arg;
1759
1760    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1761    cpu->kvm_vcpu_dirty = false;
1762}
1763
1764void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1765{
1766    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1767}
1768
1769static void do_kvm_cpu_synchronize_post_init(void *arg)
1770{
1771    CPUState *cpu = arg;
1772
1773    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1774    cpu->kvm_vcpu_dirty = false;
1775}
1776
1777void kvm_cpu_synchronize_post_init(CPUState *cpu)
1778{
1779    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1780}
1781
1782void kvm_cpu_clean_state(CPUState *cpu)
1783{
1784    cpu->kvm_vcpu_dirty = false;
1785}
1786
1787int kvm_cpu_exec(CPUState *cpu)
1788{
1789    struct kvm_run *run = cpu->kvm_run;
1790    int ret, run_ret;
1791
1792    DPRINTF("kvm_cpu_exec()\n");
1793
1794    if (kvm_arch_process_async_events(cpu)) {
1795        cpu->exit_request = 0;
1796        return EXCP_HLT;
1797    }
1798
1799    qemu_mutex_unlock_iothread();
1800
1801    do {
1802        MemTxAttrs attrs;
1803
1804        if (cpu->kvm_vcpu_dirty) {
1805            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1806            cpu->kvm_vcpu_dirty = false;
1807        }
1808
1809        kvm_arch_pre_run(cpu, run);
1810        if (cpu->exit_request) {
1811            DPRINTF("interrupt exit requested\n");
1812            /*
1813             * KVM requires us to reenter the kernel after IO exits to complete
1814             * instruction emulation. This self-signal will ensure that we
1815             * leave ASAP again.
1816             */
1817            qemu_cpu_kick_self();
1818        }
1819
1820        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1821
1822        attrs = kvm_arch_post_run(cpu, run);
1823
1824        if (run_ret < 0) {
1825            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1826                DPRINTF("io window exit\n");
1827                ret = EXCP_INTERRUPT;
1828                break;
1829            }
1830            fprintf(stderr, "error: kvm run failed %s\n",
1831                    strerror(-run_ret));
1832#ifdef TARGET_PPC
1833            if (run_ret == -EBUSY) {
1834                fprintf(stderr,
1835                        "This is probably because your SMT is enabled.\n"
1836                        "VCPU can only run on primary threads with all "
1837                        "secondary threads offline.\n");
1838            }
1839#endif
1840            ret = -1;
1841            break;
1842        }
1843
1844        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1845        switch (run->exit_reason) {
1846        case KVM_EXIT_IO:
1847            DPRINTF("handle_io\n");
1848            /* Called outside BQL */
1849            kvm_handle_io(run->io.port, attrs,
1850                          (uint8_t *)run + run->io.data_offset,
1851                          run->io.direction,
1852                          run->io.size,
1853                          run->io.count);
1854            ret = 0;
1855            break;
1856        case KVM_EXIT_MMIO:
1857            DPRINTF("handle_mmio\n");
1858            /* Called outside BQL */
1859            address_space_rw(&address_space_memory,
1860                             run->mmio.phys_addr, attrs,
1861                             run->mmio.data,
1862                             run->mmio.len,
1863                             run->mmio.is_write);
1864            ret = 0;
1865            break;
1866        case KVM_EXIT_IRQ_WINDOW_OPEN:
1867            DPRINTF("irq_window_open\n");
1868            ret = EXCP_INTERRUPT;
1869            break;
1870        case KVM_EXIT_SHUTDOWN:
1871            DPRINTF("shutdown\n");
1872            qemu_system_reset_request();
1873            ret = EXCP_INTERRUPT;
1874            break;
1875        case KVM_EXIT_UNKNOWN:
1876            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1877                    (uint64_t)run->hw.hardware_exit_reason);
1878            ret = -1;
1879            break;
1880        case KVM_EXIT_INTERNAL_ERROR:
1881            ret = kvm_handle_internal_error(cpu, run);
1882            break;
1883        case KVM_EXIT_SYSTEM_EVENT:
1884            switch (run->system_event.type) {
1885            case KVM_SYSTEM_EVENT_SHUTDOWN:
1886                qemu_system_shutdown_request();
1887                ret = EXCP_INTERRUPT;
1888                break;
1889            case KVM_SYSTEM_EVENT_RESET:
1890                qemu_system_reset_request();
1891                ret = EXCP_INTERRUPT;
1892                break;
1893            default:
1894                DPRINTF("kvm_arch_handle_exit\n");
1895                ret = kvm_arch_handle_exit(cpu, run);
1896                break;
1897            }
1898            break;
1899        default:
1900            DPRINTF("kvm_arch_handle_exit\n");
1901            ret = kvm_arch_handle_exit(cpu, run);
1902            break;
1903        }
1904    } while (ret == 0);
1905
1906    qemu_mutex_lock_iothread();
1907
1908    if (ret < 0) {
1909        cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1910        vm_stop(RUN_STATE_INTERNAL_ERROR);
1911    }
1912
1913    cpu->exit_request = 0;
1914    return ret;
1915}
1916
1917int kvm_ioctl(KVMState *s, int type, ...)
1918{
1919    int ret;
1920    void *arg;
1921    va_list ap;
1922
1923    va_start(ap, type);
1924    arg = va_arg(ap, void *);
1925    va_end(ap);
1926
1927    trace_kvm_ioctl(type, arg);
1928    ret = ioctl(s->fd, type, arg);
1929    if (ret == -1) {
1930        ret = -errno;
1931    }
1932    return ret;
1933}
1934
1935int kvm_vm_ioctl(KVMState *s, int type, ...)
1936{
1937    int ret;
1938    void *arg;
1939    va_list ap;
1940
1941    va_start(ap, type);
1942    arg = va_arg(ap, void *);
1943    va_end(ap);
1944
1945    trace_kvm_vm_ioctl(type, arg);
1946    ret = ioctl(s->vmfd, type, arg);
1947    if (ret == -1) {
1948        ret = -errno;
1949    }
1950    return ret;
1951}
1952
1953int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1954{
1955    int ret;
1956    void *arg;
1957    va_list ap;
1958
1959    va_start(ap, type);
1960    arg = va_arg(ap, void *);
1961    va_end(ap);
1962
1963    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1964    ret = ioctl(cpu->kvm_fd, type, arg);
1965    if (ret == -1) {
1966        ret = -errno;
1967    }
1968    return ret;
1969}
1970
1971int kvm_device_ioctl(int fd, int type, ...)
1972{
1973    int ret;
1974    void *arg;
1975    va_list ap;
1976
1977    va_start(ap, type);
1978    arg = va_arg(ap, void *);
1979    va_end(ap);
1980
1981    trace_kvm_device_ioctl(fd, type, arg);
1982    ret = ioctl(fd, type, arg);
1983    if (ret == -1) {
1984        ret = -errno;
1985    }
1986    return ret;
1987}
1988
1989int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1990{
1991    int ret;
1992    struct kvm_device_attr attribute = {
1993        .group = group,
1994        .attr = attr,
1995    };
1996
1997    if (!kvm_vm_attributes_allowed) {
1998        return 0;
1999    }
2000
2001    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2002    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2003    return ret ? 0 : 1;
2004}
2005
2006int kvm_has_sync_mmu(void)
2007{
2008    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2009}
2010
2011int kvm_has_vcpu_events(void)
2012{
2013    return kvm_state->vcpu_events;
2014}
2015
2016int kvm_has_robust_singlestep(void)
2017{
2018    return kvm_state->robust_singlestep;
2019}
2020
2021int kvm_has_debugregs(void)
2022{
2023    return kvm_state->debugregs;
2024}
2025
2026int kvm_has_xsave(void)
2027{
2028    return kvm_state->xsave;
2029}
2030
2031int kvm_has_xcrs(void)
2032{
2033    return kvm_state->xcrs;
2034}
2035
2036int kvm_has_pit_state2(void)
2037{
2038    return kvm_state->pit_state2;
2039}
2040
2041int kvm_has_many_ioeventfds(void)
2042{
2043    if (!kvm_enabled()) {
2044        return 0;
2045    }
2046    return kvm_state->many_ioeventfds;
2047}
2048
2049int kvm_has_gsi_routing(void)
2050{
2051#ifdef KVM_CAP_IRQ_ROUTING
2052    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2053#else
2054    return false;
2055#endif
2056}
2057
2058int kvm_has_intx_set_mask(void)
2059{
2060    return kvm_state->intx_set_mask;
2061}
2062
2063void kvm_setup_guest_memory(void *start, size_t size)
2064{
2065    if (!kvm_has_sync_mmu()) {
2066        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2067
2068        if (ret) {
2069            perror("qemu_madvise");
2070            fprintf(stderr,
2071                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2072            exit(1);
2073        }
2074    }
2075}
2076
2077#ifdef KVM_CAP_SET_GUEST_DEBUG
2078struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2079                                                 target_ulong pc)
2080{
2081    struct kvm_sw_breakpoint *bp;
2082
2083    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2084        if (bp->pc == pc) {
2085            return bp;
2086        }
2087    }
2088    return NULL;
2089}
2090
2091int kvm_sw_breakpoints_active(CPUState *cpu)
2092{
2093    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2094}
2095
2096struct kvm_set_guest_debug_data {
2097    struct kvm_guest_debug dbg;
2098    CPUState *cpu;
2099    int err;
2100};
2101
2102static void kvm_invoke_set_guest_debug(void *data)
2103{
2104    struct kvm_set_guest_debug_data *dbg_data = data;
2105
2106    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2107                                   &dbg_data->dbg);
2108}
2109
2110int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2111{
2112    struct kvm_set_guest_debug_data data;
2113
2114    data.dbg.control = reinject_trap;
2115
2116    if (cpu->singlestep_enabled) {
2117        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2118    }
2119    kvm_arch_update_guest_debug(cpu, &data.dbg);
2120    data.cpu = cpu;
2121
2122    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2123    return data.err;
2124}
2125
2126int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2127                          target_ulong len, int type)
2128{
2129    struct kvm_sw_breakpoint *bp;
2130    int err;
2131
2132    if (type == GDB_BREAKPOINT_SW) {
2133        bp = kvm_find_sw_breakpoint(cpu, addr);
2134        if (bp) {
2135            bp->use_count++;
2136            return 0;
2137        }
2138
2139        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2140        bp->pc = addr;
2141        bp->use_count = 1;
2142        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2143        if (err) {
2144            g_free(bp);
2145            return err;
2146        }
2147
2148        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2149    } else {
2150        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2151        if (err) {
2152            return err;
2153        }
2154    }
2155
2156    CPU_FOREACH(cpu) {
2157        err = kvm_update_guest_debug(cpu, 0);
2158        if (err) {
2159            return err;
2160        }
2161    }
2162    return 0;
2163}
2164
2165int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2166                          target_ulong len, int type)
2167{
2168    struct kvm_sw_breakpoint *bp;
2169    int err;
2170
2171    if (type == GDB_BREAKPOINT_SW) {
2172        bp = kvm_find_sw_breakpoint(cpu, addr);
2173        if (!bp) {
2174            return -ENOENT;
2175        }
2176
2177        if (bp->use_count > 1) {
2178            bp->use_count--;
2179            return 0;
2180        }
2181
2182        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2183        if (err) {
2184            return err;
2185        }
2186
2187        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2188        g_free(bp);
2189    } else {
2190        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2191        if (err) {
2192            return err;
2193        }
2194    }
2195
2196    CPU_FOREACH(cpu) {
2197        err = kvm_update_guest_debug(cpu, 0);
2198        if (err) {
2199            return err;
2200        }
2201    }
2202    return 0;
2203}
2204
2205void kvm_remove_all_breakpoints(CPUState *cpu)
2206{
2207    struct kvm_sw_breakpoint *bp, *next;
2208    KVMState *s = cpu->kvm_state;
2209    CPUState *tmpcpu;
2210
2211    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2212        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2213            /* Try harder to find a CPU that currently sees the breakpoint. */
2214            CPU_FOREACH(tmpcpu) {
2215                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2216                    break;
2217                }
2218            }
2219        }
2220        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2221        g_free(bp);
2222    }
2223    kvm_arch_remove_all_hw_breakpoints();
2224
2225    CPU_FOREACH(cpu) {
2226        kvm_update_guest_debug(cpu, 0);
2227    }
2228}
2229
2230#else /* !KVM_CAP_SET_GUEST_DEBUG */
2231
2232int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2233{
2234    return -EINVAL;
2235}
2236
2237int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2238                          target_ulong len, int type)
2239{
2240    return -EINVAL;
2241}
2242
2243int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2244                          target_ulong len, int type)
2245{
2246    return -EINVAL;
2247}
2248
2249void kvm_remove_all_breakpoints(CPUState *cpu)
2250{
2251}
2252#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2253
2254int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2255{
2256    KVMState *s = kvm_state;
2257    struct kvm_signal_mask *sigmask;
2258    int r;
2259
2260    if (!sigset) {
2261        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2262    }
2263
2264    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2265
2266    sigmask->len = s->sigmask_len;
2267    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2268    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2269    g_free(sigmask);
2270
2271    return r;
2272}
2273int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2274{
2275    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2276}
2277
2278int kvm_on_sigbus(int code, void *addr)
2279{
2280    return kvm_arch_on_sigbus(code, addr);
2281}
2282
2283int kvm_create_device(KVMState *s, uint64_t type, bool test)
2284{
2285    int ret;
2286    struct kvm_create_device create_dev;
2287
2288    create_dev.type = type;
2289    create_dev.fd = -1;
2290    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2291
2292    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2293        return -ENOTSUP;
2294    }
2295
2296    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2297    if (ret) {
2298        return ret;
2299    }
2300
2301    return test ? 0 : create_dev.fd;
2302}
2303
2304int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2305{
2306    struct kvm_one_reg reg;
2307    int r;
2308
2309    reg.id = id;
2310    reg.addr = (uintptr_t) source;
2311    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2312    if (r) {
2313        trace_kvm_failed_reg_set(id, strerror(r));
2314    }
2315    return r;
2316}
2317
2318int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2319{
2320    struct kvm_one_reg reg;
2321    int r;
2322
2323    reg.id = id;
2324    reg.addr = (uintptr_t) target;
2325    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2326    if (r) {
2327        trace_kvm_failed_reg_get(id, strerror(r));
2328    }
2329    return r;
2330}
2331
2332static void kvm_accel_class_init(ObjectClass *oc, void *data)
2333{
2334    AccelClass *ac = ACCEL_CLASS(oc);
2335    ac->name = "KVM";
2336    ac->init_machine = kvm_init;
2337    ac->allowed = &kvm_allowed;
2338}
2339
2340static const TypeInfo kvm_accel_type = {
2341    .name = TYPE_KVM_ACCEL,
2342    .parent = TYPE_ACCEL,
2343    .class_init = kvm_accel_class_init,
2344    .instance_size = sizeof(KVMState),
2345};
2346
2347static void kvm_type_init(void)
2348{
2349    type_register_static(&kvm_accel_type);
2350}
2351
2352type_init(kvm_type_init);
2353