qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4
   5@documentlanguage en
   6@documentencoding UTF-8
   7
   8@settitle QEMU Emulator User Documentation
   9@exampleindent 0
  10@paragraphindent 0
  11@c %**end of header
  12
  13@ifinfo
  14@direntry
  15* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  16@end direntry
  17@end ifinfo
  18
  19@iftex
  20@titlepage
  21@sp 7
  22@center @titlefont{QEMU Emulator}
  23@sp 1
  24@center @titlefont{User Documentation}
  25@sp 3
  26@end titlepage
  27@end iftex
  28
  29@ifnottex
  30@node Top
  31@top
  32
  33@menu
  34* Introduction::
  35* Installation::
  36* QEMU PC System emulator::
  37* QEMU System emulator for non PC targets::
  38* QEMU User space emulator::
  39* compilation:: Compilation from the sources
  40* License::
  41* Index::
  42@end menu
  43@end ifnottex
  44
  45@contents
  46
  47@node Introduction
  48@chapter Introduction
  49
  50@menu
  51* intro_features:: Features
  52@end menu
  53
  54@node intro_features
  55@section Features
  56
  57QEMU is a FAST! processor emulator using dynamic translation to
  58achieve good emulation speed.
  59
  60QEMU has two operating modes:
  61
  62@itemize
  63@cindex operating modes
  64
  65@item
  66@cindex system emulation
  67Full system emulation. In this mode, QEMU emulates a full system (for
  68example a PC), including one or several processors and various
  69peripherals. It can be used to launch different Operating Systems
  70without rebooting the PC or to debug system code.
  71
  72@item
  73@cindex user mode emulation
  74User mode emulation. In this mode, QEMU can launch
  75processes compiled for one CPU on another CPU. It can be used to
  76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
  77to ease cross-compilation and cross-debugging.
  78
  79@end itemize
  80
  81QEMU can run without a host kernel driver and yet gives acceptable
  82performance.
  83
  84For system emulation, the following hardware targets are supported:
  85@itemize
  86@cindex emulated target systems
  87@cindex supported target systems
  88@item PC (x86 or x86_64 processor)
  89@item ISA PC (old style PC without PCI bus)
  90@item PREP (PowerPC processor)
  91@item G3 Beige PowerMac (PowerPC processor)
  92@item Mac99 PowerMac (PowerPC processor, in progress)
  93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
  94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
  95@item Malta board (32-bit and 64-bit MIPS processors)
  96@item MIPS Magnum (64-bit MIPS processor)
  97@item ARM Integrator/CP (ARM)
  98@item ARM Versatile baseboard (ARM)
  99@item ARM RealView Emulation/Platform baseboard (ARM)
 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
 101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
 102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
 103@item Freescale MCF5208EVB (ColdFire V2).
 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
 105@item Palm Tungsten|E PDA (OMAP310 processor)
 106@item N800 and N810 tablets (OMAP2420 processor)
 107@item MusicPal (MV88W8618 ARM processor)
 108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
 109@item Siemens SX1 smartphone (OMAP310 processor)
 110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
 111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
 113@end itemize
 114
 115@cindex supported user mode targets
 116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
 117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
 118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
 119
 120@node Installation
 121@chapter Installation
 122
 123If you want to compile QEMU yourself, see @ref{compilation}.
 124
 125@menu
 126* install_linux::   Linux
 127* install_windows:: Windows
 128* install_mac::     Macintosh
 129@end menu
 130
 131@node install_linux
 132@section Linux
 133@cindex installation (Linux)
 134
 135If a precompiled package is available for your distribution - you just
 136have to install it. Otherwise, see @ref{compilation}.
 137
 138@node install_windows
 139@section Windows
 140@cindex installation (Windows)
 141
 142Download the experimental binary installer at
 143@url{http://www.free.oszoo.org/@/download.html}.
 144TODO (no longer available)
 145
 146@node install_mac
 147@section Mac OS X
 148
 149Download the experimental binary installer at
 150@url{http://www.free.oszoo.org/@/download.html}.
 151TODO (no longer available)
 152
 153@node QEMU PC System emulator
 154@chapter QEMU PC System emulator
 155@cindex system emulation (PC)
 156
 157@menu
 158* pcsys_introduction:: Introduction
 159* pcsys_quickstart::   Quick Start
 160* sec_invocation::     Invocation
 161* pcsys_keys::         Keys
 162* pcsys_monitor::      QEMU Monitor
 163* disk_images::        Disk Images
 164* pcsys_network::      Network emulation
 165* pcsys_other_devs::   Other Devices
 166* direct_linux_boot::  Direct Linux Boot
 167* pcsys_usb::          USB emulation
 168* vnc_security::       VNC security
 169* gdb_usage::          GDB usage
 170* pcsys_os_specific::  Target OS specific information
 171@end menu
 172
 173@node pcsys_introduction
 174@section Introduction
 175
 176@c man begin DESCRIPTION
 177
 178The QEMU PC System emulator simulates the
 179following peripherals:
 180
 181@itemize @minus
 182@item
 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 184@item
 185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 186extensions (hardware level, including all non standard modes).
 187@item
 188PS/2 mouse and keyboard
 189@item
 1902 PCI IDE interfaces with hard disk and CD-ROM support
 191@item
 192Floppy disk
 193@item
 194PCI and ISA network adapters
 195@item
 196Serial ports
 197@item
 198Creative SoundBlaster 16 sound card
 199@item
 200ENSONIQ AudioPCI ES1370 sound card
 201@item
 202Intel 82801AA AC97 Audio compatible sound card
 203@item
 204Intel HD Audio Controller and HDA codec
 205@item
 206Adlib (OPL2) - Yamaha YM3812 compatible chip
 207@item
 208Gravis Ultrasound GF1 sound card
 209@item
 210CS4231A compatible sound card
 211@item
 212PCI UHCI USB controller and a virtual USB hub.
 213@end itemize
 214
 215SMP is supported with up to 255 CPUs.
 216
 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
 218VGA BIOS.
 219
 220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 221
 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 223by Tibor "TS" Schütz.
 224
 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
 226QEMU must be told to not have parallel ports to have working GUS.
 227
 228@example
 229qemu-system-i386 dos.img -soundhw gus -parallel none
 230@end example
 231
 232Alternatively:
 233@example
 234qemu-system-i386 dos.img -device gus,irq=5
 235@end example
 236
 237Or some other unclaimed IRQ.
 238
 239CS4231A is the chip used in Windows Sound System and GUSMAX products
 240
 241@c man end
 242
 243@node pcsys_quickstart
 244@section Quick Start
 245@cindex quick start
 246
 247Download and uncompress the linux image (@file{linux.img}) and type:
 248
 249@example
 250qemu-system-i386 linux.img
 251@end example
 252
 253Linux should boot and give you a prompt.
 254
 255@node sec_invocation
 256@section Invocation
 257
 258@example
 259@c man begin SYNOPSIS
 260usage: qemu-system-i386 [options] [@var{disk_image}]
 261@c man end
 262@end example
 263
 264@c man begin OPTIONS
 265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 266targets do not need a disk image.
 267
 268@include qemu-options.texi
 269
 270@c man end
 271
 272@node pcsys_keys
 273@section Keys
 274
 275@c man begin OPTIONS
 276
 277During the graphical emulation, you can use special key combinations to change
 278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 281
 282@table @key
 283@item Ctrl-Alt-f
 284@kindex Ctrl-Alt-f
 285Toggle full screen
 286
 287@item Ctrl-Alt-+
 288@kindex Ctrl-Alt-+
 289Enlarge the screen
 290
 291@item Ctrl-Alt--
 292@kindex Ctrl-Alt--
 293Shrink the screen
 294
 295@item Ctrl-Alt-u
 296@kindex Ctrl-Alt-u
 297Restore the screen's un-scaled dimensions
 298
 299@item Ctrl-Alt-n
 300@kindex Ctrl-Alt-n
 301Switch to virtual console 'n'. Standard console mappings are:
 302@table @emph
 303@item 1
 304Target system display
 305@item 2
 306Monitor
 307@item 3
 308Serial port
 309@end table
 310
 311@item Ctrl-Alt
 312@kindex Ctrl-Alt
 313Toggle mouse and keyboard grab.
 314@end table
 315
 316@kindex Ctrl-Up
 317@kindex Ctrl-Down
 318@kindex Ctrl-PageUp
 319@kindex Ctrl-PageDown
 320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 322
 323@kindex Ctrl-a h
 324During emulation, if you are using the @option{-nographic} option, use
 325@key{Ctrl-a h} to get terminal commands:
 326
 327@table @key
 328@item Ctrl-a h
 329@kindex Ctrl-a h
 330@item Ctrl-a ?
 331@kindex Ctrl-a ?
 332Print this help
 333@item Ctrl-a x
 334@kindex Ctrl-a x
 335Exit emulator
 336@item Ctrl-a s
 337@kindex Ctrl-a s
 338Save disk data back to file (if -snapshot)
 339@item Ctrl-a t
 340@kindex Ctrl-a t
 341Toggle console timestamps
 342@item Ctrl-a b
 343@kindex Ctrl-a b
 344Send break (magic sysrq in Linux)
 345@item Ctrl-a c
 346@kindex Ctrl-a c
 347Switch between console and monitor
 348@item Ctrl-a Ctrl-a
 349@kindex Ctrl-a a
 350Send Ctrl-a
 351@end table
 352@c man end
 353
 354@ignore
 355
 356@c man begin SEEALSO
 357The HTML documentation of QEMU for more precise information and Linux
 358user mode emulator invocation.
 359@c man end
 360
 361@c man begin AUTHOR
 362Fabrice Bellard
 363@c man end
 364
 365@end ignore
 366
 367@node pcsys_monitor
 368@section QEMU Monitor
 369@cindex QEMU monitor
 370
 371The QEMU monitor is used to give complex commands to the QEMU
 372emulator. You can use it to:
 373
 374@itemize @minus
 375
 376@item
 377Remove or insert removable media images
 378(such as CD-ROM or floppies).
 379
 380@item
 381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 382from a disk file.
 383
 384@item Inspect the VM state without an external debugger.
 385
 386@end itemize
 387
 388@subsection Commands
 389
 390The following commands are available:
 391
 392@include qemu-monitor.texi
 393
 394@subsection Integer expressions
 395
 396The monitor understands integers expressions for every integer
 397argument. You can use register names to get the value of specifics
 398CPU registers by prefixing them with @emph{$}.
 399
 400@node disk_images
 401@section Disk Images
 402
 403Since version 0.6.1, QEMU supports many disk image formats, including
 404growable disk images (their size increase as non empty sectors are
 405written), compressed and encrypted disk images. Version 0.8.3 added
 406the new qcow2 disk image format which is essential to support VM
 407snapshots.
 408
 409@menu
 410* disk_images_quickstart::    Quick start for disk image creation
 411* disk_images_snapshot_mode:: Snapshot mode
 412* vm_snapshots::              VM snapshots
 413* qemu_img_invocation::       qemu-img Invocation
 414* qemu_nbd_invocation::       qemu-nbd Invocation
 415* disk_images_formats::       Disk image file formats
 416* host_drives::               Using host drives
 417* disk_images_fat_images::    Virtual FAT disk images
 418* disk_images_nbd::           NBD access
 419* disk_images_sheepdog::      Sheepdog disk images
 420* disk_images_iscsi::         iSCSI LUNs
 421* disk_images_gluster::       GlusterFS disk images
 422* disk_images_ssh::           Secure Shell (ssh) disk images
 423@end menu
 424
 425@node disk_images_quickstart
 426@subsection Quick start for disk image creation
 427
 428You can create a disk image with the command:
 429@example
 430qemu-img create myimage.img mysize
 431@end example
 432where @var{myimage.img} is the disk image filename and @var{mysize} is its
 433size in kilobytes. You can add an @code{M} suffix to give the size in
 434megabytes and a @code{G} suffix for gigabytes.
 435
 436See @ref{qemu_img_invocation} for more information.
 437
 438@node disk_images_snapshot_mode
 439@subsection Snapshot mode
 440
 441If you use the option @option{-snapshot}, all disk images are
 442considered as read only. When sectors in written, they are written in
 443a temporary file created in @file{/tmp}. You can however force the
 444write back to the raw disk images by using the @code{commit} monitor
 445command (or @key{C-a s} in the serial console).
 446
 447@node vm_snapshots
 448@subsection VM snapshots
 449
 450VM snapshots are snapshots of the complete virtual machine including
 451CPU state, RAM, device state and the content of all the writable
 452disks. In order to use VM snapshots, you must have at least one non
 453removable and writable block device using the @code{qcow2} disk image
 454format. Normally this device is the first virtual hard drive.
 455
 456Use the monitor command @code{savevm} to create a new VM snapshot or
 457replace an existing one. A human readable name can be assigned to each
 458snapshot in addition to its numerical ID.
 459
 460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 461a VM snapshot. @code{info snapshots} lists the available snapshots
 462with their associated information:
 463
 464@example
 465(qemu) info snapshots
 466Snapshot devices: hda
 467Snapshot list (from hda):
 468ID        TAG                 VM SIZE                DATE       VM CLOCK
 4691         start                   41M 2006-08-06 12:38:02   00:00:14.954
 4702                                 40M 2006-08-06 12:43:29   00:00:18.633
 4713         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 472@end example
 473
 474A VM snapshot is made of a VM state info (its size is shown in
 475@code{info snapshots}) and a snapshot of every writable disk image.
 476The VM state info is stored in the first @code{qcow2} non removable
 477and writable block device. The disk image snapshots are stored in
 478every disk image. The size of a snapshot in a disk image is difficult
 479to evaluate and is not shown by @code{info snapshots} because the
 480associated disk sectors are shared among all the snapshots to save
 481disk space (otherwise each snapshot would need a full copy of all the
 482disk images).
 483
 484When using the (unrelated) @code{-snapshot} option
 485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 486but they are deleted as soon as you exit QEMU.
 487
 488VM snapshots currently have the following known limitations:
 489@itemize
 490@item
 491They cannot cope with removable devices if they are removed or
 492inserted after a snapshot is done.
 493@item
 494A few device drivers still have incomplete snapshot support so their
 495state is not saved or restored properly (in particular USB).
 496@end itemize
 497
 498@node qemu_img_invocation
 499@subsection @code{qemu-img} Invocation
 500
 501@include qemu-img.texi
 502
 503@node qemu_nbd_invocation
 504@subsection @code{qemu-nbd} Invocation
 505
 506@include qemu-nbd.texi
 507
 508@node disk_images_formats
 509@subsection Disk image file formats
 510
 511QEMU supports many image file formats that can be used with VMs as well as with
 512any of the tools (like @code{qemu-img}). This includes the preferred formats
 513raw and qcow2 as well as formats that are supported for compatibility with
 514older QEMU versions or other hypervisors.
 515
 516Depending on the image format, different options can be passed to
 517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
 518This section describes each format and the options that are supported for it.
 519
 520@table @option
 521@item raw
 522
 523Raw disk image format. This format has the advantage of
 524being simple and easily exportable to all other emulators. If your
 525file system supports @emph{holes} (for example in ext2 or ext3 on
 526Linux or NTFS on Windows), then only the written sectors will reserve
 527space. Use @code{qemu-img info} to know the real size used by the
 528image or @code{ls -ls} on Unix/Linux.
 529
 530Supported options:
 531@table @code
 532@item preallocation
 533Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
 534@code{falloc} mode preallocates space for image by calling posix_fallocate().
 535@code{full} mode preallocates space for image by writing zeros to underlying
 536storage.
 537@end table
 538
 539@item qcow2
 540QEMU image format, the most versatile format. Use it to have smaller
 541images (useful if your filesystem does not supports holes, for example
 542on Windows), zlib based compression and support of multiple VM
 543snapshots.
 544
 545Supported options:
 546@table @code
 547@item compat
 548Determines the qcow2 version to use. @code{compat=0.10} uses the
 549traditional image format that can be read by any QEMU since 0.10.
 550@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
 551newer understand (this is the default). Amongst others, this includes
 552zero clusters, which allow efficient copy-on-read for sparse images.
 553
 554@item backing_file
 555File name of a base image (see @option{create} subcommand)
 556@item backing_fmt
 557Image format of the base image
 558@item encryption
 559If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
 560
 561The use of encryption in qcow and qcow2 images is considered to be flawed by
 562modern cryptography standards, suffering from a number of design problems:
 563
 564@itemize @minus
 565@item The AES-CBC cipher is used with predictable initialization vectors based
 566on the sector number. This makes it vulnerable to chosen plaintext attacks
 567which can reveal the existence of encrypted data.
 568@item The user passphrase is directly used as the encryption key. A poorly
 569chosen or short passphrase will compromise the security of the encryption.
 570@item In the event of the passphrase being compromised there is no way to
 571change the passphrase to protect data in any qcow images. The files must
 572be cloned, using a different encryption passphrase in the new file. The
 573original file must then be securely erased using a program like shred,
 574though even this is ineffective with many modern storage technologies.
 575@end itemize
 576
 577Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
 578it will go away in a future release.  Users are recommended to use an
 579alternative encryption technology such as the Linux dm-crypt / LUKS
 580system.
 581
 582@item cluster_size
 583Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
 584sizes can improve the image file size whereas larger cluster sizes generally
 585provide better performance.
 586
 587@item preallocation
 588Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
 589@code{full}). An image with preallocated metadata is initially larger but can
 590improve performance when the image needs to grow. @code{falloc} and @code{full}
 591preallocations are like the same options of @code{raw} format, but sets up
 592metadata also.
 593
 594@item lazy_refcounts
 595If this option is set to @code{on}, reference count updates are postponed with
 596the goal of avoiding metadata I/O and improving performance. This is
 597particularly interesting with @option{cache=writethrough} which doesn't batch
 598metadata updates. The tradeoff is that after a host crash, the reference count
 599tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
 600check -r all} is required, which may take some time.
 601
 602This option can only be enabled if @code{compat=1.1} is specified.
 603
 604@item nocow
 605If this option is set to @code{on}, it will turn off COW of the file. It's only
 606valid on btrfs, no effect on other file systems.
 607
 608Btrfs has low performance when hosting a VM image file, even more when the guest
 609on the VM also using btrfs as file system. Turning off COW is a way to mitigate
 610this bad performance. Generally there are two ways to turn off COW on btrfs:
 611a) Disable it by mounting with nodatacow, then all newly created files will be
 612NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
 613does.
 614
 615Note: this option is only valid to new or empty files. If there is an existing
 616file which is COW and has data blocks already, it couldn't be changed to NOCOW
 617by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
 618the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
 619
 620@end table
 621
 622@item qed
 623Old QEMU image format with support for backing files and compact image files
 624(when your filesystem or transport medium does not support holes).
 625
 626When converting QED images to qcow2, you might want to consider using the
 627@code{lazy_refcounts=on} option to get a more QED-like behaviour.
 628
 629Supported options:
 630@table @code
 631@item backing_file
 632File name of a base image (see @option{create} subcommand).
 633@item backing_fmt
 634Image file format of backing file (optional).  Useful if the format cannot be
 635autodetected because it has no header, like some vhd/vpc files.
 636@item cluster_size
 637Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
 638cluster sizes can improve the image file size whereas larger cluster sizes
 639generally provide better performance.
 640@item table_size
 641Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
 642and 16).  There is normally no need to change this value but this option can be
 643used for performance benchmarking.
 644@end table
 645
 646@item qcow
 647Old QEMU image format with support for backing files, compact image files,
 648encryption and compression.
 649
 650Supported options:
 651@table @code
 652@item backing_file
 653File name of a base image (see @option{create} subcommand)
 654@item encryption
 655If this option is set to @code{on}, the image is encrypted.
 656@end table
 657
 658@item vdi
 659VirtualBox 1.1 compatible image format.
 660Supported options:
 661@table @code
 662@item static
 663If this option is set to @code{on}, the image is created with metadata
 664preallocation.
 665@end table
 666
 667@item vmdk
 668VMware 3 and 4 compatible image format.
 669
 670Supported options:
 671@table @code
 672@item backing_file
 673File name of a base image (see @option{create} subcommand).
 674@item compat6
 675Create a VMDK version 6 image (instead of version 4)
 676@item subformat
 677Specifies which VMDK subformat to use. Valid options are
 678@code{monolithicSparse} (default),
 679@code{monolithicFlat},
 680@code{twoGbMaxExtentSparse},
 681@code{twoGbMaxExtentFlat} and
 682@code{streamOptimized}.
 683@end table
 684
 685@item vpc
 686VirtualPC compatible image format (VHD).
 687Supported options:
 688@table @code
 689@item subformat
 690Specifies which VHD subformat to use. Valid options are
 691@code{dynamic} (default) and @code{fixed}.
 692@end table
 693
 694@item VHDX
 695Hyper-V compatible image format (VHDX).
 696Supported options:
 697@table @code
 698@item subformat
 699Specifies which VHDX subformat to use. Valid options are
 700@code{dynamic} (default) and @code{fixed}.
 701@item block_state_zero
 702Force use of payload blocks of type 'ZERO'.  Can be set to @code{on} (default)
 703or @code{off}.  When set to @code{off}, new blocks will be created as
 704@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
 705arbitrary data for those blocks.  Do not set to @code{off} when using
 706@code{qemu-img convert} with @code{subformat=dynamic}.
 707@item block_size
 708Block size; min 1 MB, max 256 MB.  0 means auto-calculate based on image size.
 709@item log_size
 710Log size; min 1 MB.
 711@end table
 712@end table
 713
 714@subsubsection Read-only formats
 715More disk image file formats are supported in a read-only mode.
 716@table @option
 717@item bochs
 718Bochs images of @code{growing} type.
 719@item cloop
 720Linux Compressed Loop image, useful only to reuse directly compressed
 721CD-ROM images present for example in the Knoppix CD-ROMs.
 722@item dmg
 723Apple disk image.
 724@item parallels
 725Parallels disk image format.
 726@end table
 727
 728
 729@node host_drives
 730@subsection Using host drives
 731
 732In addition to disk image files, QEMU can directly access host
 733devices. We describe here the usage for QEMU version >= 0.8.3.
 734
 735@subsubsection Linux
 736
 737On Linux, you can directly use the host device filename instead of a
 738disk image filename provided you have enough privileges to access
 739it. For example, use @file{/dev/cdrom} to access to the CDROM.
 740
 741@table @code
 742@item CD
 743You can specify a CDROM device even if no CDROM is loaded. QEMU has
 744specific code to detect CDROM insertion or removal. CDROM ejection by
 745the guest OS is supported. Currently only data CDs are supported.
 746@item Floppy
 747You can specify a floppy device even if no floppy is loaded. Floppy
 748removal is currently not detected accurately (if you change floppy
 749without doing floppy access while the floppy is not loaded, the guest
 750OS will think that the same floppy is loaded).
 751Use of the host's floppy device is deprecated, and support for it will
 752be removed in a future release.
 753@item Hard disks
 754Hard disks can be used. Normally you must specify the whole disk
 755(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
 756see it as a partitioned disk. WARNING: unless you know what you do, it
 757is better to only make READ-ONLY accesses to the hard disk otherwise
 758you may corrupt your host data (use the @option{-snapshot} command
 759line option or modify the device permissions accordingly).
 760@end table
 761
 762@subsubsection Windows
 763
 764@table @code
 765@item CD
 766The preferred syntax is the drive letter (e.g. @file{d:}). The
 767alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
 768supported as an alias to the first CDROM drive.
 769
 770Currently there is no specific code to handle removable media, so it
 771is better to use the @code{change} or @code{eject} monitor commands to
 772change or eject media.
 773@item Hard disks
 774Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
 775where @var{N} is the drive number (0 is the first hard disk).
 776
 777WARNING: unless you know what you do, it is better to only make
 778READ-ONLY accesses to the hard disk otherwise you may corrupt your
 779host data (use the @option{-snapshot} command line so that the
 780modifications are written in a temporary file).
 781@end table
 782
 783
 784@subsubsection Mac OS X
 785
 786@file{/dev/cdrom} is an alias to the first CDROM.
 787
 788Currently there is no specific code to handle removable media, so it
 789is better to use the @code{change} or @code{eject} monitor commands to
 790change or eject media.
 791
 792@node disk_images_fat_images
 793@subsection Virtual FAT disk images
 794
 795QEMU can automatically create a virtual FAT disk image from a
 796directory tree. In order to use it, just type:
 797
 798@example
 799qemu-system-i386 linux.img -hdb fat:/my_directory
 800@end example
 801
 802Then you access access to all the files in the @file{/my_directory}
 803directory without having to copy them in a disk image or to export
 804them via SAMBA or NFS. The default access is @emph{read-only}.
 805
 806Floppies can be emulated with the @code{:floppy:} option:
 807
 808@example
 809qemu-system-i386 linux.img -fda fat:floppy:/my_directory
 810@end example
 811
 812A read/write support is available for testing (beta stage) with the
 813@code{:rw:} option:
 814
 815@example
 816qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
 817@end example
 818
 819What you should @emph{never} do:
 820@itemize
 821@item use non-ASCII filenames ;
 822@item use "-snapshot" together with ":rw:" ;
 823@item expect it to work when loadvm'ing ;
 824@item write to the FAT directory on the host system while accessing it with the guest system.
 825@end itemize
 826
 827@node disk_images_nbd
 828@subsection NBD access
 829
 830QEMU can access directly to block device exported using the Network Block Device
 831protocol.
 832
 833@example
 834qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
 835@end example
 836
 837If the NBD server is located on the same host, you can use an unix socket instead
 838of an inet socket:
 839
 840@example
 841qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
 842@end example
 843
 844In this case, the block device must be exported using qemu-nbd:
 845
 846@example
 847qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
 848@end example
 849
 850The use of qemu-nbd allows sharing of a disk between several guests:
 851@example
 852qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
 853@end example
 854
 855@noindent
 856and then you can use it with two guests:
 857@example
 858qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
 859qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
 860@end example
 861
 862If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
 863own embedded NBD server), you must specify an export name in the URI:
 864@example
 865qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
 866qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
 867@end example
 868
 869The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
 870also available.  Here are some example of the older syntax:
 871@example
 872qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
 873qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
 874qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
 875@end example
 876
 877@node disk_images_sheepdog
 878@subsection Sheepdog disk images
 879
 880Sheepdog is a distributed storage system for QEMU.  It provides highly
 881available block level storage volumes that can be attached to
 882QEMU-based virtual machines.
 883
 884You can create a Sheepdog disk image with the command:
 885@example
 886qemu-img create sheepdog:///@var{image} @var{size}
 887@end example
 888where @var{image} is the Sheepdog image name and @var{size} is its
 889size.
 890
 891To import the existing @var{filename} to Sheepdog, you can use a
 892convert command.
 893@example
 894qemu-img convert @var{filename} sheepdog:///@var{image}
 895@end example
 896
 897You can boot from the Sheepdog disk image with the command:
 898@example
 899qemu-system-i386 sheepdog:///@var{image}
 900@end example
 901
 902You can also create a snapshot of the Sheepdog image like qcow2.
 903@example
 904qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
 905@end example
 906where @var{tag} is a tag name of the newly created snapshot.
 907
 908To boot from the Sheepdog snapshot, specify the tag name of the
 909snapshot.
 910@example
 911qemu-system-i386 sheepdog:///@var{image}#@var{tag}
 912@end example
 913
 914You can create a cloned image from the existing snapshot.
 915@example
 916qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
 917@end example
 918where @var{base} is a image name of the source snapshot and @var{tag}
 919is its tag name.
 920
 921You can use an unix socket instead of an inet socket:
 922
 923@example
 924qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
 925@end example
 926
 927If the Sheepdog daemon doesn't run on the local host, you need to
 928specify one of the Sheepdog servers to connect to.
 929@example
 930qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
 931qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
 932@end example
 933
 934@node disk_images_iscsi
 935@subsection iSCSI LUNs
 936
 937iSCSI is a popular protocol used to access SCSI devices across a computer
 938network.
 939
 940There are two different ways iSCSI devices can be used by QEMU.
 941
 942The first method is to mount the iSCSI LUN on the host, and make it appear as
 943any other ordinary SCSI device on the host and then to access this device as a
 944/dev/sd device from QEMU. How to do this differs between host OSes.
 945
 946The second method involves using the iSCSI initiator that is built into
 947QEMU. This provides a mechanism that works the same way regardless of which
 948host OS you are running QEMU on. This section will describe this second method
 949of using iSCSI together with QEMU.
 950
 951In QEMU, iSCSI devices are described using special iSCSI URLs
 952
 953@example
 954URL syntax:
 955iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
 956@end example
 957
 958Username and password are optional and only used if your target is set up
 959using CHAP authentication for access control.
 960Alternatively the username and password can also be set via environment
 961variables to have these not show up in the process list
 962
 963@example
 964export LIBISCSI_CHAP_USERNAME=<username>
 965export LIBISCSI_CHAP_PASSWORD=<password>
 966iscsi://<host>/<target-iqn-name>/<lun>
 967@end example
 968
 969Various session related parameters can be set via special options, either
 970in a configuration file provided via '-readconfig' or directly on the
 971command line.
 972
 973If the initiator-name is not specified qemu will use a default name
 974of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
 975virtual machine.
 976
 977
 978@example
 979Setting a specific initiator name to use when logging in to the target
 980-iscsi initiator-name=iqn.qemu.test:my-initiator
 981@end example
 982
 983@example
 984Controlling which type of header digest to negotiate with the target
 985-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 986@end example
 987
 988These can also be set via a configuration file
 989@example
 990[iscsi]
 991  user = "CHAP username"
 992  password = "CHAP password"
 993  initiator-name = "iqn.qemu.test:my-initiator"
 994  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 995  header-digest = "CRC32C"
 996@end example
 997
 998
 999Setting the target name allows different options for different targets
1000@example
1001[iscsi "iqn.target.name"]
1002  user = "CHAP username"
1003  password = "CHAP password"
1004  initiator-name = "iqn.qemu.test:my-initiator"
1005  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1006  header-digest = "CRC32C"
1007@end example
1008
1009
1010Howto use a configuration file to set iSCSI configuration options:
1011@example
1012cat >iscsi.conf <<EOF
1013[iscsi]
1014  user = "me"
1015  password = "my password"
1016  initiator-name = "iqn.qemu.test:my-initiator"
1017  header-digest = "CRC32C"
1018EOF
1019
1020qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1021    -readconfig iscsi.conf
1022@end example
1023
1024
1025Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1026@example
1027This example shows how to set up an iSCSI target with one CDROM and one DISK
1028using the Linux STGT software target. This target is available on Red Hat based
1029systems as the package 'scsi-target-utils'.
1030
1031tgtd --iscsi portal=127.0.0.1:3260
1032tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1033tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1034    -b /IMAGES/disk.img --device-type=disk
1035tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1036    -b /IMAGES/cd.iso --device-type=cd
1037tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1038
1039qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1040    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1041    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1042@end example
1043
1044@node disk_images_gluster
1045@subsection GlusterFS disk images
1046
1047GlusterFS is an user space distributed file system.
1048
1049You can boot from the GlusterFS disk image with the command:
1050@example
1051qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1052@end example
1053
1054@var{gluster} is the protocol.
1055
1056@var{transport} specifies the transport type used to connect to gluster
1057management daemon (glusterd). Valid transport types are
1058tcp, unix and rdma. If a transport type isn't specified, then tcp
1059type is assumed.
1060
1061@var{server} specifies the server where the volume file specification for
1062the given volume resides. This can be either hostname, ipv4 address
1063or ipv6 address. ipv6 address needs to be within square brackets [ ].
1064If transport type is unix, then @var{server} field should not be specified.
1065Instead @var{socket} field needs to be populated with the path to unix domain
1066socket.
1067
1068@var{port} is the port number on which glusterd is listening. This is optional
1069and if not specified, QEMU will send 0 which will make gluster to use the
1070default port. If the transport type is unix, then @var{port} should not be
1071specified.
1072
1073@var{volname} is the name of the gluster volume which contains the disk image.
1074
1075@var{image} is the path to the actual disk image that resides on gluster volume.
1076
1077You can create a GlusterFS disk image with the command:
1078@example
1079qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1080@end example
1081
1082Examples
1083@example
1084qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1085qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1086qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1087qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1088qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1089qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1090qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1091qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1092@end example
1093
1094@node disk_images_ssh
1095@subsection Secure Shell (ssh) disk images
1096
1097You can access disk images located on a remote ssh server
1098by using the ssh protocol:
1099
1100@example
1101qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1102@end example
1103
1104Alternative syntax using properties:
1105
1106@example
1107qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1108@end example
1109
1110@var{ssh} is the protocol.
1111
1112@var{user} is the remote user.  If not specified, then the local
1113username is tried.
1114
1115@var{server} specifies the remote ssh server.  Any ssh server can be
1116used, but it must implement the sftp-server protocol.  Most Unix/Linux
1117systems should work without requiring any extra configuration.
1118
1119@var{port} is the port number on which sshd is listening.  By default
1120the standard ssh port (22) is used.
1121
1122@var{path} is the path to the disk image.
1123
1124The optional @var{host_key_check} parameter controls how the remote
1125host's key is checked.  The default is @code{yes} which means to use
1126the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
1127turns off known-hosts checking.  Or you can check that the host key
1128matches a specific fingerprint:
1129@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1130(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1131tools only use MD5 to print fingerprints).
1132
1133Currently authentication must be done using ssh-agent.  Other
1134authentication methods may be supported in future.
1135
1136Note: Many ssh servers do not support an @code{fsync}-style operation.
1137The ssh driver cannot guarantee that disk flush requests are
1138obeyed, and this causes a risk of disk corruption if the remote
1139server or network goes down during writes.  The driver will
1140print a warning when @code{fsync} is not supported:
1141
1142warning: ssh server @code{ssh.example.com:22} does not support fsync
1143
1144With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1145supported.
1146
1147@node pcsys_network
1148@section Network emulation
1149
1150QEMU can simulate several network cards (PCI or ISA cards on the PC
1151target) and can connect them to an arbitrary number of Virtual Local
1152Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1153VLAN. VLAN can be connected between separate instances of QEMU to
1154simulate large networks. For simpler usage, a non privileged user mode
1155network stack can replace the TAP device to have a basic network
1156connection.
1157
1158@subsection VLANs
1159
1160QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1161connection between several network devices. These devices can be for
1162example QEMU virtual Ethernet cards or virtual Host ethernet devices
1163(TAP devices).
1164
1165@subsection Using TAP network interfaces
1166
1167This is the standard way to connect QEMU to a real network. QEMU adds
1168a virtual network device on your host (called @code{tapN}), and you
1169can then configure it as if it was a real ethernet card.
1170
1171@subsubsection Linux host
1172
1173As an example, you can download the @file{linux-test-xxx.tar.gz}
1174archive and copy the script @file{qemu-ifup} in @file{/etc} and
1175configure properly @code{sudo} so that the command @code{ifconfig}
1176contained in @file{qemu-ifup} can be executed as root. You must verify
1177that your host kernel supports the TAP network interfaces: the
1178device @file{/dev/net/tun} must be present.
1179
1180See @ref{sec_invocation} to have examples of command lines using the
1181TAP network interfaces.
1182
1183@subsubsection Windows host
1184
1185There is a virtual ethernet driver for Windows 2000/XP systems, called
1186TAP-Win32. But it is not included in standard QEMU for Windows,
1187so you will need to get it separately. It is part of OpenVPN package,
1188so download OpenVPN from : @url{http://openvpn.net/}.
1189
1190@subsection Using the user mode network stack
1191
1192By using the option @option{-net user} (default configuration if no
1193@option{-net} option is specified), QEMU uses a completely user mode
1194network stack (you don't need root privilege to use the virtual
1195network). The virtual network configuration is the following:
1196
1197@example
1198
1199         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1200                           |          (10.0.2.2)
1201                           |
1202                           ---->  DNS server (10.0.2.3)
1203                           |
1204                           ---->  SMB server (10.0.2.4)
1205@end example
1206
1207The QEMU VM behaves as if it was behind a firewall which blocks all
1208incoming connections. You can use a DHCP client to automatically
1209configure the network in the QEMU VM. The DHCP server assign addresses
1210to the hosts starting from 10.0.2.15.
1211
1212In order to check that the user mode network is working, you can ping
1213the address 10.0.2.2 and verify that you got an address in the range
121410.0.2.x from the QEMU virtual DHCP server.
1215
1216Note that ICMP traffic in general does not work with user mode networking.
1217@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1218however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1219ping sockets to allow @code{ping} to the Internet. The host admin has to set
1220the ping_group_range in order to grant access to those sockets. To allow ping
1221for GID 100 (usually users group):
1222
1223@example
1224echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1225@end example
1226
1227When using the built-in TFTP server, the router is also the TFTP
1228server.
1229
1230When using the @option{-redir} option, TCP or UDP connections can be
1231redirected from the host to the guest. It allows for example to
1232redirect X11, telnet or SSH connections.
1233
1234@subsection Connecting VLANs between QEMU instances
1235
1236Using the @option{-net socket} option, it is possible to make VLANs
1237that span several QEMU instances. See @ref{sec_invocation} to have a
1238basic example.
1239
1240@node pcsys_other_devs
1241@section Other Devices
1242
1243@subsection Inter-VM Shared Memory device
1244
1245With KVM enabled on a Linux host, a shared memory device is available.  Guests
1246map a POSIX shared memory region into the guest as a PCI device that enables
1247zero-copy communication to the application level of the guests.  The basic
1248syntax is:
1249
1250@example
1251qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1252@end example
1253
1254If desired, interrupts can be sent between guest VMs accessing the same shared
1255memory region.  Interrupt support requires using a shared memory server and
1256using a chardev socket to connect to it.  The code for the shared memory server
1257is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
1258memory server is:
1259
1260@example
1261qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1262                 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1263qemu-system-i386 -chardev socket,path=<path>,id=<id>
1264@end example
1265
1266When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1267using the same server to communicate via interrupts.  Guests can read their
1268VM ID from a device register (see example code).  Since receiving the shared
1269memory region from the server is asynchronous, there is a (small) chance the
1270guest may boot before the shared memory is attached.  To allow an application
1271to ensure shared memory is attached, the VM ID register will return -1 (an
1272invalid VM ID) until the memory is attached.  Once the shared memory is
1273attached, the VM ID will return the guest's valid VM ID.  With these semantics,
1274the guest application can check to ensure the shared memory is attached to the
1275guest before proceeding.
1276
1277The @option{role} argument can be set to either master or peer and will affect
1278how the shared memory is migrated.  With @option{role=master}, the guest will
1279copy the shared memory on migration to the destination host.  With
1280@option{role=peer}, the guest will not be able to migrate with the device attached.
1281With the @option{peer} case, the device should be detached and then reattached
1282after migration using the PCI hotplug support.
1283
1284@node direct_linux_boot
1285@section Direct Linux Boot
1286
1287This section explains how to launch a Linux kernel inside QEMU without
1288having to make a full bootable image. It is very useful for fast Linux
1289kernel testing.
1290
1291The syntax is:
1292@example
1293qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1294@end example
1295
1296Use @option{-kernel} to provide the Linux kernel image and
1297@option{-append} to give the kernel command line arguments. The
1298@option{-initrd} option can be used to provide an INITRD image.
1299
1300When using the direct Linux boot, a disk image for the first hard disk
1301@file{hda} is required because its boot sector is used to launch the
1302Linux kernel.
1303
1304If you do not need graphical output, you can disable it and redirect
1305the virtual serial port and the QEMU monitor to the console with the
1306@option{-nographic} option. The typical command line is:
1307@example
1308qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1309                 -append "root=/dev/hda console=ttyS0" -nographic
1310@end example
1311
1312Use @key{Ctrl-a c} to switch between the serial console and the
1313monitor (@pxref{pcsys_keys}).
1314
1315@node pcsys_usb
1316@section USB emulation
1317
1318QEMU emulates a PCI UHCI USB controller. You can virtually plug
1319virtual USB devices or real host USB devices (experimental, works only
1320on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
1321as necessary to connect multiple USB devices.
1322
1323@menu
1324* usb_devices::
1325* host_usb_devices::
1326@end menu
1327@node usb_devices
1328@subsection Connecting USB devices
1329
1330USB devices can be connected with the @option{-usbdevice} commandline option
1331or the @code{usb_add} monitor command.  Available devices are:
1332
1333@table @code
1334@item mouse
1335Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1336@item tablet
1337Pointer device that uses absolute coordinates (like a touchscreen).
1338This means QEMU is able to report the mouse position without having
1339to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1340@item disk:@var{file}
1341Mass storage device based on @var{file} (@pxref{disk_images})
1342@item host:@var{bus.addr}
1343Pass through the host device identified by @var{bus.addr}
1344(Linux only)
1345@item host:@var{vendor_id:product_id}
1346Pass through the host device identified by @var{vendor_id:product_id}
1347(Linux only)
1348@item wacom-tablet
1349Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1350above but it can be used with the tslib library because in addition to touch
1351coordinates it reports touch pressure.
1352@item keyboard
1353Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1354@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1355Serial converter. This emulates an FTDI FT232BM chip connected to host character
1356device @var{dev}. The available character devices are the same as for the
1357@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1358used to override the default 0403:6001. For instance,
1359@example
1360usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1361@end example
1362will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1363serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1364@item braille
1365Braille device.  This will use BrlAPI to display the braille output on a real
1366or fake device.
1367@item net:@var{options}
1368Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1369specifies NIC options as with @code{-net nic,}@var{options} (see description).
1370For instance, user-mode networking can be used with
1371@example
1372qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1373@end example
1374Currently this cannot be used in machines that support PCI NICs.
1375@item bt[:@var{hci-type}]
1376Bluetooth dongle whose type is specified in the same format as with
1377the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1378no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1379This USB device implements the USB Transport Layer of HCI.  Example
1380usage:
1381@example
1382qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1383@end example
1384@end table
1385
1386@node host_usb_devices
1387@subsection Using host USB devices on a Linux host
1388
1389WARNING: this is an experimental feature. QEMU will slow down when
1390using it. USB devices requiring real time streaming (i.e. USB Video
1391Cameras) are not supported yet.
1392
1393@enumerate
1394@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1395is actually using the USB device. A simple way to do that is simply to
1396disable the corresponding kernel module by renaming it from @file{mydriver.o}
1397to @file{mydriver.o.disabled}.
1398
1399@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1400@example
1401ls /proc/bus/usb
1402001  devices  drivers
1403@end example
1404
1405@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1406@example
1407chown -R myuid /proc/bus/usb
1408@end example
1409
1410@item Launch QEMU and do in the monitor:
1411@example
1412info usbhost
1413  Device 1.2, speed 480 Mb/s
1414    Class 00: USB device 1234:5678, USB DISK
1415@end example
1416You should see the list of the devices you can use (Never try to use
1417hubs, it won't work).
1418
1419@item Add the device in QEMU by using:
1420@example
1421usb_add host:1234:5678
1422@end example
1423
1424Normally the guest OS should report that a new USB device is
1425plugged. You can use the option @option{-usbdevice} to do the same.
1426
1427@item Now you can try to use the host USB device in QEMU.
1428
1429@end enumerate
1430
1431When relaunching QEMU, you may have to unplug and plug again the USB
1432device to make it work again (this is a bug).
1433
1434@node vnc_security
1435@section VNC security
1436
1437The VNC server capability provides access to the graphical console
1438of the guest VM across the network. This has a number of security
1439considerations depending on the deployment scenarios.
1440
1441@menu
1442* vnc_sec_none::
1443* vnc_sec_password::
1444* vnc_sec_certificate::
1445* vnc_sec_certificate_verify::
1446* vnc_sec_certificate_pw::
1447* vnc_sec_sasl::
1448* vnc_sec_certificate_sasl::
1449* vnc_generate_cert::
1450* vnc_setup_sasl::
1451@end menu
1452@node vnc_sec_none
1453@subsection Without passwords
1454
1455The simplest VNC server setup does not include any form of authentication.
1456For this setup it is recommended to restrict it to listen on a UNIX domain
1457socket only. For example
1458
1459@example
1460qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1461@end example
1462
1463This ensures that only users on local box with read/write access to that
1464path can access the VNC server. To securely access the VNC server from a
1465remote machine, a combination of netcat+ssh can be used to provide a secure
1466tunnel.
1467
1468@node vnc_sec_password
1469@subsection With passwords
1470
1471The VNC protocol has limited support for password based authentication. Since
1472the protocol limits passwords to 8 characters it should not be considered
1473to provide high security. The password can be fairly easily brute-forced by
1474a client making repeat connections. For this reason, a VNC server using password
1475authentication should be restricted to only listen on the loopback interface
1476or UNIX domain sockets. Password authentication is not supported when operating
1477in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1478authentication is requested with the @code{password} option, and then once QEMU
1479is running the password is set with the monitor. Until the monitor is used to
1480set the password all clients will be rejected.
1481
1482@example
1483qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1484(qemu) change vnc password
1485Password: ********
1486(qemu)
1487@end example
1488
1489@node vnc_sec_certificate
1490@subsection With x509 certificates
1491
1492The QEMU VNC server also implements the VeNCrypt extension allowing use of
1493TLS for encryption of the session, and x509 certificates for authentication.
1494The use of x509 certificates is strongly recommended, because TLS on its
1495own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1496support provides a secure session, but no authentication. This allows any
1497client to connect, and provides an encrypted session.
1498
1499@example
1500qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1501@end example
1502
1503In the above example @code{/etc/pki/qemu} should contain at least three files,
1504@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1505users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1506NB the @code{server-key.pem} file should be protected with file mode 0600 to
1507only be readable by the user owning it.
1508
1509@node vnc_sec_certificate_verify
1510@subsection With x509 certificates and client verification
1511
1512Certificates can also provide a means to authenticate the client connecting.
1513The server will request that the client provide a certificate, which it will
1514then validate against the CA certificate. This is a good choice if deploying
1515in an environment with a private internal certificate authority.
1516
1517@example
1518qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1519@end example
1520
1521
1522@node vnc_sec_certificate_pw
1523@subsection With x509 certificates, client verification and passwords
1524
1525Finally, the previous method can be combined with VNC password authentication
1526to provide two layers of authentication for clients.
1527
1528@example
1529qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1530(qemu) change vnc password
1531Password: ********
1532(qemu)
1533@end example
1534
1535
1536@node vnc_sec_sasl
1537@subsection With SASL authentication
1538
1539The SASL authentication method is a VNC extension, that provides an
1540easily extendable, pluggable authentication method. This allows for
1541integration with a wide range of authentication mechanisms, such as
1542PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1543The strength of the authentication depends on the exact mechanism
1544configured. If the chosen mechanism also provides a SSF layer, then
1545it will encrypt the datastream as well.
1546
1547Refer to the later docs on how to choose the exact SASL mechanism
1548used for authentication, but assuming use of one supporting SSF,
1549then QEMU can be launched with:
1550
1551@example
1552qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1553@end example
1554
1555@node vnc_sec_certificate_sasl
1556@subsection With x509 certificates and SASL authentication
1557
1558If the desired SASL authentication mechanism does not supported
1559SSF layers, then it is strongly advised to run it in combination
1560with TLS and x509 certificates. This provides securely encrypted
1561data stream, avoiding risk of compromising of the security
1562credentials. This can be enabled, by combining the 'sasl' option
1563with the aforementioned TLS + x509 options:
1564
1565@example
1566qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1567@end example
1568
1569
1570@node vnc_generate_cert
1571@subsection Generating certificates for VNC
1572
1573The GNU TLS packages provides a command called @code{certtool} which can
1574be used to generate certificates and keys in PEM format. At a minimum it
1575is necessary to setup a certificate authority, and issue certificates to
1576each server. If using certificates for authentication, then each client
1577will also need to be issued a certificate. The recommendation is for the
1578server to keep its certificates in either @code{/etc/pki/qemu} or for
1579unprivileged users in @code{$HOME/.pki/qemu}.
1580
1581@menu
1582* vnc_generate_ca::
1583* vnc_generate_server::
1584* vnc_generate_client::
1585@end menu
1586@node vnc_generate_ca
1587@subsubsection Setup the Certificate Authority
1588
1589This step only needs to be performed once per organization / organizational
1590unit. First the CA needs a private key. This key must be kept VERY secret
1591and secure. If this key is compromised the entire trust chain of the certificates
1592issued with it is lost.
1593
1594@example
1595# certtool --generate-privkey > ca-key.pem
1596@end example
1597
1598A CA needs to have a public certificate. For simplicity it can be a self-signed
1599certificate, or one issue by a commercial certificate issuing authority. To
1600generate a self-signed certificate requires one core piece of information, the
1601name of the organization.
1602
1603@example
1604# cat > ca.info <<EOF
1605cn = Name of your organization
1606ca
1607cert_signing_key
1608EOF
1609# certtool --generate-self-signed \
1610           --load-privkey ca-key.pem
1611           --template ca.info \
1612           --outfile ca-cert.pem
1613@end example
1614
1615The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1616TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1617
1618@node vnc_generate_server
1619@subsubsection Issuing server certificates
1620
1621Each server (or host) needs to be issued with a key and certificate. When connecting
1622the certificate is sent to the client which validates it against the CA certificate.
1623The core piece of information for a server certificate is the hostname. This should
1624be the fully qualified hostname that the client will connect with, since the client
1625will typically also verify the hostname in the certificate. On the host holding the
1626secure CA private key:
1627
1628@example
1629# cat > server.info <<EOF
1630organization = Name  of your organization
1631cn = server.foo.example.com
1632tls_www_server
1633encryption_key
1634signing_key
1635EOF
1636# certtool --generate-privkey > server-key.pem
1637# certtool --generate-certificate \
1638           --load-ca-certificate ca-cert.pem \
1639           --load-ca-privkey ca-key.pem \
1640           --load-privkey server-key.pem \
1641           --template server.info \
1642           --outfile server-cert.pem
1643@end example
1644
1645The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1646to the server for which they were generated. The @code{server-key.pem} is security
1647sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1648
1649@node vnc_generate_client
1650@subsubsection Issuing client certificates
1651
1652If the QEMU VNC server is to use the @code{x509verify} option to validate client
1653certificates as its authentication mechanism, each client also needs to be issued
1654a certificate. The client certificate contains enough metadata to uniquely identify
1655the client, typically organization, state, city, building, etc. On the host holding
1656the secure CA private key:
1657
1658@example
1659# cat > client.info <<EOF
1660country = GB
1661state = London
1662locality = London
1663organization = Name of your organization
1664cn = client.foo.example.com
1665tls_www_client
1666encryption_key
1667signing_key
1668EOF
1669# certtool --generate-privkey > client-key.pem
1670# certtool --generate-certificate \
1671           --load-ca-certificate ca-cert.pem \
1672           --load-ca-privkey ca-key.pem \
1673           --load-privkey client-key.pem \
1674           --template client.info \
1675           --outfile client-cert.pem
1676@end example
1677
1678The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1679copied to the client for which they were generated.
1680
1681
1682@node vnc_setup_sasl
1683
1684@subsection Configuring SASL mechanisms
1685
1686The following documentation assumes use of the Cyrus SASL implementation on a
1687Linux host, but the principals should apply to any other SASL impl. When SASL
1688is enabled, the mechanism configuration will be loaded from system default
1689SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1690unprivileged user, an environment variable SASL_CONF_PATH can be used
1691to make it search alternate locations for the service config.
1692
1693The default configuration might contain
1694
1695@example
1696mech_list: digest-md5
1697sasldb_path: /etc/qemu/passwd.db
1698@end example
1699
1700This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1701Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1702in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1703command. While this mechanism is easy to configure and use, it is not
1704considered secure by modern standards, so only suitable for developers /
1705ad-hoc testing.
1706
1707A more serious deployment might use Kerberos, which is done with the 'gssapi'
1708mechanism
1709
1710@example
1711mech_list: gssapi
1712keytab: /etc/qemu/krb5.tab
1713@end example
1714
1715For this to work the administrator of your KDC must generate a Kerberos
1716principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1717replacing 'somehost.example.com' with the fully qualified host name of the
1718machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1719
1720Other configurations will be left as an exercise for the reader. It should
1721be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1722encryption. For all other mechanisms, VNC should always be configured to
1723use TLS and x509 certificates to protect security credentials from snooping.
1724
1725@node gdb_usage
1726@section GDB usage
1727
1728QEMU has a primitive support to work with gdb, so that you can do
1729'Ctrl-C' while the virtual machine is running and inspect its state.
1730
1731In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1732gdb connection:
1733@example
1734qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1735                    -append "root=/dev/hda"
1736Connected to host network interface: tun0
1737Waiting gdb connection on port 1234
1738@end example
1739
1740Then launch gdb on the 'vmlinux' executable:
1741@example
1742> gdb vmlinux
1743@end example
1744
1745In gdb, connect to QEMU:
1746@example
1747(gdb) target remote localhost:1234
1748@end example
1749
1750Then you can use gdb normally. For example, type 'c' to launch the kernel:
1751@example
1752(gdb) c
1753@end example
1754
1755Here are some useful tips in order to use gdb on system code:
1756
1757@enumerate
1758@item
1759Use @code{info reg} to display all the CPU registers.
1760@item
1761Use @code{x/10i $eip} to display the code at the PC position.
1762@item
1763Use @code{set architecture i8086} to dump 16 bit code. Then use
1764@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1765@end enumerate
1766
1767Advanced debugging options:
1768
1769The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1770@table @code
1771@item maintenance packet qqemu.sstepbits
1772
1773This will display the MASK bits used to control the single stepping IE:
1774@example
1775(gdb) maintenance packet qqemu.sstepbits
1776sending: "qqemu.sstepbits"
1777received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1778@end example
1779@item maintenance packet qqemu.sstep
1780
1781This will display the current value of the mask used when single stepping IE:
1782@example
1783(gdb) maintenance packet qqemu.sstep
1784sending: "qqemu.sstep"
1785received: "0x7"
1786@end example
1787@item maintenance packet Qqemu.sstep=HEX_VALUE
1788
1789This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1790@example
1791(gdb) maintenance packet Qqemu.sstep=0x5
1792sending: "qemu.sstep=0x5"
1793received: "OK"
1794@end example
1795@end table
1796
1797@node pcsys_os_specific
1798@section Target OS specific information
1799
1800@subsection Linux
1801
1802To have access to SVGA graphic modes under X11, use the @code{vesa} or
1803the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1804color depth in the guest and the host OS.
1805
1806When using a 2.6 guest Linux kernel, you should add the option
1807@code{clock=pit} on the kernel command line because the 2.6 Linux
1808kernels make very strict real time clock checks by default that QEMU
1809cannot simulate exactly.
1810
1811When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1812not activated because QEMU is slower with this patch. The QEMU
1813Accelerator Module is also much slower in this case. Earlier Fedora
1814Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1815patch by default. Newer kernels don't have it.
1816
1817@subsection Windows
1818
1819If you have a slow host, using Windows 95 is better as it gives the
1820best speed. Windows 2000 is also a good choice.
1821
1822@subsubsection SVGA graphic modes support
1823
1824QEMU emulates a Cirrus Logic GD5446 Video
1825card. All Windows versions starting from Windows 95 should recognize
1826and use this graphic card. For optimal performances, use 16 bit color
1827depth in the guest and the host OS.
1828
1829If you are using Windows XP as guest OS and if you want to use high
1830resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18311280x1024x16), then you should use the VESA VBE virtual graphic card
1832(option @option{-std-vga}).
1833
1834@subsubsection CPU usage reduction
1835
1836Windows 9x does not correctly use the CPU HLT
1837instruction. The result is that it takes host CPU cycles even when
1838idle. You can install the utility from
1839@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1840problem. Note that no such tool is needed for NT, 2000 or XP.
1841
1842@subsubsection Windows 2000 disk full problem
1843
1844Windows 2000 has a bug which gives a disk full problem during its
1845installation. When installing it, use the @option{-win2k-hack} QEMU
1846option to enable a specific workaround. After Windows 2000 is
1847installed, you no longer need this option (this option slows down the
1848IDE transfers).
1849
1850@subsubsection Windows 2000 shutdown
1851
1852Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1853can. It comes from the fact that Windows 2000 does not automatically
1854use the APM driver provided by the BIOS.
1855
1856In order to correct that, do the following (thanks to Struan
1857Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1858Add/Troubleshoot a device => Add a new device & Next => No, select the
1859hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1860(again) a few times. Now the driver is installed and Windows 2000 now
1861correctly instructs QEMU to shutdown at the appropriate moment.
1862
1863@subsubsection Share a directory between Unix and Windows
1864
1865See @ref{sec_invocation} about the help of the option @option{-smb}.
1866
1867@subsubsection Windows XP security problem
1868
1869Some releases of Windows XP install correctly but give a security
1870error when booting:
1871@example
1872A problem is preventing Windows from accurately checking the
1873license for this computer. Error code: 0x800703e6.
1874@end example
1875
1876The workaround is to install a service pack for XP after a boot in safe
1877mode. Then reboot, and the problem should go away. Since there is no
1878network while in safe mode, its recommended to download the full
1879installation of SP1 or SP2 and transfer that via an ISO or using the
1880vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1881
1882@subsection MS-DOS and FreeDOS
1883
1884@subsubsection CPU usage reduction
1885
1886DOS does not correctly use the CPU HLT instruction. The result is that
1887it takes host CPU cycles even when idle. You can install the utility
1888from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1889problem.
1890
1891@node QEMU System emulator for non PC targets
1892@chapter QEMU System emulator for non PC targets
1893
1894QEMU is a generic emulator and it emulates many non PC
1895machines. Most of the options are similar to the PC emulator. The
1896differences are mentioned in the following sections.
1897
1898@menu
1899* PowerPC System emulator::
1900* Sparc32 System emulator::
1901* Sparc64 System emulator::
1902* MIPS System emulator::
1903* ARM System emulator::
1904* ColdFire System emulator::
1905* Cris System emulator::
1906* Microblaze System emulator::
1907* SH4 System emulator::
1908* Xtensa System emulator::
1909@end menu
1910
1911@node PowerPC System emulator
1912@section PowerPC System emulator
1913@cindex system emulation (PowerPC)
1914
1915Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1916or PowerMac PowerPC system.
1917
1918QEMU emulates the following PowerMac peripherals:
1919
1920@itemize @minus
1921@item
1922UniNorth or Grackle PCI Bridge
1923@item
1924PCI VGA compatible card with VESA Bochs Extensions
1925@item
19262 PMAC IDE interfaces with hard disk and CD-ROM support
1927@item
1928NE2000 PCI adapters
1929@item
1930Non Volatile RAM
1931@item
1932VIA-CUDA with ADB keyboard and mouse.
1933@end itemize
1934
1935QEMU emulates the following PREP peripherals:
1936
1937@itemize @minus
1938@item
1939PCI Bridge
1940@item
1941PCI VGA compatible card with VESA Bochs Extensions
1942@item
19432 IDE interfaces with hard disk and CD-ROM support
1944@item
1945Floppy disk
1946@item
1947NE2000 network adapters
1948@item
1949Serial port
1950@item
1951PREP Non Volatile RAM
1952@item
1953PC compatible keyboard and mouse.
1954@end itemize
1955
1956QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1957@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1958
1959Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1960for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1961v2) portable firmware implementation. The goal is to implement a 100%
1962IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1963
1964@c man begin OPTIONS
1965
1966The following options are specific to the PowerPC emulation:
1967
1968@table @option
1969
1970@item -g @var{W}x@var{H}[x@var{DEPTH}]
1971
1972Set the initial VGA graphic mode. The default is 800x600x32.
1973
1974@item -prom-env @var{string}
1975
1976Set OpenBIOS variables in NVRAM, for example:
1977
1978@example
1979qemu-system-ppc -prom-env 'auto-boot?=false' \
1980 -prom-env 'boot-device=hd:2,\yaboot' \
1981 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1982@end example
1983
1984These variables are not used by Open Hack'Ware.
1985
1986@end table
1987
1988@c man end
1989
1990
1991More information is available at
1992@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1993
1994@node Sparc32 System emulator
1995@section Sparc32 System emulator
1996@cindex system emulation (Sparc32)
1997
1998Use the executable @file{qemu-system-sparc} to simulate the following
1999Sun4m architecture machines:
2000@itemize @minus
2001@item
2002SPARCstation 4
2003@item
2004SPARCstation 5
2005@item
2006SPARCstation 10
2007@item
2008SPARCstation 20
2009@item
2010SPARCserver 600MP
2011@item
2012SPARCstation LX
2013@item
2014SPARCstation Voyager
2015@item
2016SPARCclassic
2017@item
2018SPARCbook
2019@end itemize
2020
2021The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2022but Linux limits the number of usable CPUs to 4.
2023
2024QEMU emulates the following sun4m peripherals:
2025
2026@itemize @minus
2027@item
2028IOMMU
2029@item
2030TCX or cgthree Frame buffer
2031@item
2032Lance (Am7990) Ethernet
2033@item
2034Non Volatile RAM M48T02/M48T08
2035@item
2036Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2037and power/reset logic
2038@item
2039ESP SCSI controller with hard disk and CD-ROM support
2040@item
2041Floppy drive (not on SS-600MP)
2042@item
2043CS4231 sound device (only on SS-5, not working yet)
2044@end itemize
2045
2046The number of peripherals is fixed in the architecture.  Maximum
2047memory size depends on the machine type, for SS-5 it is 256MB and for
2048others 2047MB.
2049
2050Since version 0.8.2, QEMU uses OpenBIOS
2051@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2052firmware implementation. The goal is to implement a 100% IEEE
20531275-1994 (referred to as Open Firmware) compliant firmware.
2054
2055A sample Linux 2.6 series kernel and ram disk image are available on
2056the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2057most kernel versions work. Please note that currently older Solaris kernels
2058don't work probably due to interface issues between OpenBIOS and
2059Solaris.
2060
2061@c man begin OPTIONS
2062
2063The following options are specific to the Sparc32 emulation:
2064
2065@table @option
2066
2067@item -g @var{W}x@var{H}x[x@var{DEPTH}]
2068
2069Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2070option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2071of 1152x900x8 for people who wish to use OBP.
2072
2073@item -prom-env @var{string}
2074
2075Set OpenBIOS variables in NVRAM, for example:
2076
2077@example
2078qemu-system-sparc -prom-env 'auto-boot?=false' \
2079 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2080@end example
2081
2082@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2083
2084Set the emulated machine type. Default is SS-5.
2085
2086@end table
2087
2088@c man end
2089
2090@node Sparc64 System emulator
2091@section Sparc64 System emulator
2092@cindex system emulation (Sparc64)
2093
2094Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2095(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2096Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2097able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2098Sun4v and Niagara emulators are still a work in progress.
2099
2100QEMU emulates the following peripherals:
2101
2102@itemize @minus
2103@item
2104UltraSparc IIi APB PCI Bridge
2105@item
2106PCI VGA compatible card with VESA Bochs Extensions
2107@item
2108PS/2 mouse and keyboard
2109@item
2110Non Volatile RAM M48T59
2111@item
2112PC-compatible serial ports
2113@item
21142 PCI IDE interfaces with hard disk and CD-ROM support
2115@item
2116Floppy disk
2117@end itemize
2118
2119@c man begin OPTIONS
2120
2121The following options are specific to the Sparc64 emulation:
2122
2123@table @option
2124
2125@item -prom-env @var{string}
2126
2127Set OpenBIOS variables in NVRAM, for example:
2128
2129@example
2130qemu-system-sparc64 -prom-env 'auto-boot?=false'
2131@end example
2132
2133@item -M [sun4u|sun4v|Niagara]
2134
2135Set the emulated machine type. The default is sun4u.
2136
2137@end table
2138
2139@c man end
2140
2141@node MIPS System emulator
2142@section MIPS System emulator
2143@cindex system emulation (MIPS)
2144
2145Four executables cover simulation of 32 and 64-bit MIPS systems in
2146both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2147@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2148Five different machine types are emulated:
2149
2150@itemize @minus
2151@item
2152A generic ISA PC-like machine "mips"
2153@item
2154The MIPS Malta prototype board "malta"
2155@item
2156An ACER Pica "pica61". This machine needs the 64-bit emulator.
2157@item
2158MIPS emulator pseudo board "mipssim"
2159@item
2160A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2161@end itemize
2162
2163The generic emulation is supported by Debian 'Etch' and is able to
2164install Debian into a virtual disk image. The following devices are
2165emulated:
2166
2167@itemize @minus
2168@item
2169A range of MIPS CPUs, default is the 24Kf
2170@item
2171PC style serial port
2172@item
2173PC style IDE disk
2174@item
2175NE2000 network card
2176@end itemize
2177
2178The Malta emulation supports the following devices:
2179
2180@itemize @minus
2181@item
2182Core board with MIPS 24Kf CPU and Galileo system controller
2183@item
2184PIIX4 PCI/USB/SMbus controller
2185@item
2186The Multi-I/O chip's serial device
2187@item
2188PCI network cards (PCnet32 and others)
2189@item
2190Malta FPGA serial device
2191@item
2192Cirrus (default) or any other PCI VGA graphics card
2193@end itemize
2194
2195The ACER Pica emulation supports:
2196
2197@itemize @minus
2198@item
2199MIPS R4000 CPU
2200@item
2201PC-style IRQ and DMA controllers
2202@item
2203PC Keyboard
2204@item
2205IDE controller
2206@end itemize
2207
2208The mipssim pseudo board emulation provides an environment similar
2209to what the proprietary MIPS emulator uses for running Linux.
2210It supports:
2211
2212@itemize @minus
2213@item
2214A range of MIPS CPUs, default is the 24Kf
2215@item
2216PC style serial port
2217@item
2218MIPSnet network emulation
2219@end itemize
2220
2221The MIPS Magnum R4000 emulation supports:
2222
2223@itemize @minus
2224@item
2225MIPS R4000 CPU
2226@item
2227PC-style IRQ controller
2228@item
2229PC Keyboard
2230@item
2231SCSI controller
2232@item
2233G364 framebuffer
2234@end itemize
2235
2236
2237@node ARM System emulator
2238@section ARM System emulator
2239@cindex system emulation (ARM)
2240
2241Use the executable @file{qemu-system-arm} to simulate a ARM
2242machine. The ARM Integrator/CP board is emulated with the following
2243devices:
2244
2245@itemize @minus
2246@item
2247ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2248@item
2249Two PL011 UARTs
2250@item
2251SMC 91c111 Ethernet adapter
2252@item
2253PL110 LCD controller
2254@item
2255PL050 KMI with PS/2 keyboard and mouse.
2256@item
2257PL181 MultiMedia Card Interface with SD card.
2258@end itemize
2259
2260The ARM Versatile baseboard is emulated with the following devices:
2261
2262@itemize @minus
2263@item
2264ARM926E, ARM1136 or Cortex-A8 CPU
2265@item
2266PL190 Vectored Interrupt Controller
2267@item
2268Four PL011 UARTs
2269@item
2270SMC 91c111 Ethernet adapter
2271@item
2272PL110 LCD controller
2273@item
2274PL050 KMI with PS/2 keyboard and mouse.
2275@item
2276PCI host bridge.  Note the emulated PCI bridge only provides access to
2277PCI memory space.  It does not provide access to PCI IO space.
2278This means some devices (eg. ne2k_pci NIC) are not usable, and others
2279(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2280mapped control registers.
2281@item
2282PCI OHCI USB controller.
2283@item
2284LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2285@item
2286PL181 MultiMedia Card Interface with SD card.
2287@end itemize
2288
2289Several variants of the ARM RealView baseboard are emulated,
2290including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2291bootloader, only certain Linux kernel configurations work out
2292of the box on these boards.
2293
2294Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2295enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2296should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2297disabled and expect 1024M RAM.
2298
2299The following devices are emulated:
2300
2301@itemize @minus
2302@item
2303ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2304@item
2305ARM AMBA Generic/Distributed Interrupt Controller
2306@item
2307Four PL011 UARTs
2308@item
2309SMC 91c111 or SMSC LAN9118 Ethernet adapter
2310@item
2311PL110 LCD controller
2312@item
2313PL050 KMI with PS/2 keyboard and mouse
2314@item
2315PCI host bridge
2316@item
2317PCI OHCI USB controller
2318@item
2319LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2320@item
2321PL181 MultiMedia Card Interface with SD card.
2322@end itemize
2323
2324The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2325and "Terrier") emulation includes the following peripherals:
2326
2327@itemize @minus
2328@item
2329Intel PXA270 System-on-chip (ARM V5TE core)
2330@item
2331NAND Flash memory
2332@item
2333IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2334@item
2335On-chip OHCI USB controller
2336@item
2337On-chip LCD controller
2338@item
2339On-chip Real Time Clock
2340@item
2341TI ADS7846 touchscreen controller on SSP bus
2342@item
2343Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2344@item
2345GPIO-connected keyboard controller and LEDs
2346@item
2347Secure Digital card connected to PXA MMC/SD host
2348@item
2349Three on-chip UARTs
2350@item
2351WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2352@end itemize
2353
2354The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2355following elements:
2356
2357@itemize @minus
2358@item
2359Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2360@item
2361ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2362@item
2363On-chip LCD controller
2364@item
2365On-chip Real Time Clock
2366@item
2367TI TSC2102i touchscreen controller / analog-digital converter / Audio
2368CODEC, connected through MicroWire and I@math{^2}S busses
2369@item
2370GPIO-connected matrix keypad
2371@item
2372Secure Digital card connected to OMAP MMC/SD host
2373@item
2374Three on-chip UARTs
2375@end itemize
2376
2377Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2378emulation supports the following elements:
2379
2380@itemize @minus
2381@item
2382Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2383@item
2384RAM and non-volatile OneNAND Flash memories
2385@item
2386Display connected to EPSON remote framebuffer chip and OMAP on-chip
2387display controller and a LS041y3 MIPI DBI-C controller
2388@item
2389TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2390driven through SPI bus
2391@item
2392National Semiconductor LM8323-controlled qwerty keyboard driven
2393through I@math{^2}C bus
2394@item
2395Secure Digital card connected to OMAP MMC/SD host
2396@item
2397Three OMAP on-chip UARTs and on-chip STI debugging console
2398@item
2399A Bluetooth(R) transceiver and HCI connected to an UART
2400@item
2401Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2402TUSB6010 chip - only USB host mode is supported
2403@item
2404TI TMP105 temperature sensor driven through I@math{^2}C bus
2405@item
2406TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2407@item
2408Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2409through CBUS
2410@end itemize
2411
2412The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2413devices:
2414
2415@itemize @minus
2416@item
2417Cortex-M3 CPU core.
2418@item
241964k Flash and 8k SRAM.
2420@item
2421Timers, UARTs, ADC and I@math{^2}C interface.
2422@item
2423OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2424@end itemize
2425
2426The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2427devices:
2428
2429@itemize @minus
2430@item
2431Cortex-M3 CPU core.
2432@item
2433256k Flash and 64k SRAM.
2434@item
2435Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2436@item
2437OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2438@end itemize
2439
2440The Freecom MusicPal internet radio emulation includes the following
2441elements:
2442
2443@itemize @minus
2444@item
2445Marvell MV88W8618 ARM core.
2446@item
244732 MB RAM, 256 KB SRAM, 8 MB flash.
2448@item
2449Up to 2 16550 UARTs
2450@item
2451MV88W8xx8 Ethernet controller
2452@item
2453MV88W8618 audio controller, WM8750 CODEC and mixer
2454@item
2455128×64 display with brightness control
2456@item
24572 buttons, 2 navigation wheels with button function
2458@end itemize
2459
2460The Siemens SX1 models v1 and v2 (default) basic emulation.
2461The emulation includes the following elements:
2462
2463@itemize @minus
2464@item
2465Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2466@item
2467ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2468V1
24691 Flash of 16MB and 1 Flash of 8MB
2470V2
24711 Flash of 32MB
2472@item
2473On-chip LCD controller
2474@item
2475On-chip Real Time Clock
2476@item
2477Secure Digital card connected to OMAP MMC/SD host
2478@item
2479Three on-chip UARTs
2480@end itemize
2481
2482A Linux 2.6 test image is available on the QEMU web site. More
2483information is available in the QEMU mailing-list archive.
2484
2485@c man begin OPTIONS
2486
2487The following options are specific to the ARM emulation:
2488
2489@table @option
2490
2491@item -semihosting
2492Enable semihosting syscall emulation.
2493
2494On ARM this implements the "Angel" interface.
2495
2496Note that this allows guest direct access to the host filesystem,
2497so should only be used with trusted guest OS.
2498
2499@end table
2500
2501@node ColdFire System emulator
2502@section ColdFire System emulator
2503@cindex system emulation (ColdFire)
2504@cindex system emulation (M68K)
2505
2506Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2507The emulator is able to boot a uClinux kernel.
2508
2509The M5208EVB emulation includes the following devices:
2510
2511@itemize @minus
2512@item
2513MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2514@item
2515Three Two on-chip UARTs.
2516@item
2517Fast Ethernet Controller (FEC)
2518@end itemize
2519
2520The AN5206 emulation includes the following devices:
2521
2522@itemize @minus
2523@item
2524MCF5206 ColdFire V2 Microprocessor.
2525@item
2526Two on-chip UARTs.
2527@end itemize
2528
2529@c man begin OPTIONS
2530
2531The following options are specific to the ColdFire emulation:
2532
2533@table @option
2534
2535@item -semihosting
2536Enable semihosting syscall emulation.
2537
2538On M68K this implements the "ColdFire GDB" interface used by libgloss.
2539
2540Note that this allows guest direct access to the host filesystem,
2541so should only be used with trusted guest OS.
2542
2543@end table
2544
2545@node Cris System emulator
2546@section Cris System emulator
2547@cindex system emulation (Cris)
2548
2549TODO
2550
2551@node Microblaze System emulator
2552@section Microblaze System emulator
2553@cindex system emulation (Microblaze)
2554
2555TODO
2556
2557@node SH4 System emulator
2558@section SH4 System emulator
2559@cindex system emulation (SH4)
2560
2561TODO
2562
2563@node Xtensa System emulator
2564@section Xtensa System emulator
2565@cindex system emulation (Xtensa)
2566
2567Two executables cover simulation of both Xtensa endian options,
2568@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2569Two different machine types are emulated:
2570
2571@itemize @minus
2572@item
2573Xtensa emulator pseudo board "sim"
2574@item
2575Avnet LX60/LX110/LX200 board
2576@end itemize
2577
2578The sim pseudo board emulation provides an environment similar
2579to one provided by the proprietary Tensilica ISS.
2580It supports:
2581
2582@itemize @minus
2583@item
2584A range of Xtensa CPUs, default is the DC232B
2585@item
2586Console and filesystem access via semihosting calls
2587@end itemize
2588
2589The Avnet LX60/LX110/LX200 emulation supports:
2590
2591@itemize @minus
2592@item
2593A range of Xtensa CPUs, default is the DC232B
2594@item
259516550 UART
2596@item
2597OpenCores 10/100 Mbps Ethernet MAC
2598@end itemize
2599
2600@c man begin OPTIONS
2601
2602The following options are specific to the Xtensa emulation:
2603
2604@table @option
2605
2606@item -semihosting
2607Enable semihosting syscall emulation.
2608
2609Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2610Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2611
2612Note that this allows guest direct access to the host filesystem,
2613so should only be used with trusted guest OS.
2614
2615@end table
2616@node QEMU User space emulator
2617@chapter QEMU User space emulator
2618
2619@menu
2620* Supported Operating Systems ::
2621* Linux User space emulator::
2622* BSD User space emulator ::
2623@end menu
2624
2625@node Supported Operating Systems
2626@section Supported Operating Systems
2627
2628The following OS are supported in user space emulation:
2629
2630@itemize @minus
2631@item
2632Linux (referred as qemu-linux-user)
2633@item
2634BSD (referred as qemu-bsd-user)
2635@end itemize
2636
2637@node Linux User space emulator
2638@section Linux User space emulator
2639
2640@menu
2641* Quick Start::
2642* Wine launch::
2643* Command line options::
2644* Other binaries::
2645@end menu
2646
2647@node Quick Start
2648@subsection Quick Start
2649
2650In order to launch a Linux process, QEMU needs the process executable
2651itself and all the target (x86) dynamic libraries used by it.
2652
2653@itemize
2654
2655@item On x86, you can just try to launch any process by using the native
2656libraries:
2657
2658@example
2659qemu-i386 -L / /bin/ls
2660@end example
2661
2662@code{-L /} tells that the x86 dynamic linker must be searched with a
2663@file{/} prefix.
2664
2665@item Since QEMU is also a linux process, you can launch QEMU with
2666QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2667
2668@example
2669qemu-i386 -L / qemu-i386 -L / /bin/ls
2670@end example
2671
2672@item On non x86 CPUs, you need first to download at least an x86 glibc
2673(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2674@code{LD_LIBRARY_PATH} is not set:
2675
2676@example
2677unset LD_LIBRARY_PATH
2678@end example
2679
2680Then you can launch the precompiled @file{ls} x86 executable:
2681
2682@example
2683qemu-i386 tests/i386/ls
2684@end example
2685You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2686QEMU is automatically launched by the Linux kernel when you try to
2687launch x86 executables. It requires the @code{binfmt_misc} module in the
2688Linux kernel.
2689
2690@item The x86 version of QEMU is also included. You can try weird things such as:
2691@example
2692qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2693          /usr/local/qemu-i386/bin/ls-i386
2694@end example
2695
2696@end itemize
2697
2698@node Wine launch
2699@subsection Wine launch
2700
2701@itemize
2702
2703@item Ensure that you have a working QEMU with the x86 glibc
2704distribution (see previous section). In order to verify it, you must be
2705able to do:
2706
2707@example
2708qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2709@end example
2710
2711@item Download the binary x86 Wine install
2712(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2713
2714@item Configure Wine on your account. Look at the provided script
2715@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2716@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2717
2718@item Then you can try the example @file{putty.exe}:
2719
2720@example
2721qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2722          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2723@end example
2724
2725@end itemize
2726
2727@node Command line options
2728@subsection Command line options
2729
2730@example
2731usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2732@end example
2733
2734@table @option
2735@item -h
2736Print the help
2737@item -L path
2738Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2739@item -s size
2740Set the x86 stack size in bytes (default=524288)
2741@item -cpu model
2742Select CPU model (-cpu help for list and additional feature selection)
2743@item -E @var{var}=@var{value}
2744Set environment @var{var} to @var{value}.
2745@item -U @var{var}
2746Remove @var{var} from the environment.
2747@item -B offset
2748Offset guest address by the specified number of bytes.  This is useful when
2749the address region required by guest applications is reserved on the host.
2750This option is currently only supported on some hosts.
2751@item -R size
2752Pre-allocate a guest virtual address space of the given size (in bytes).
2753"G", "M", and "k" suffixes may be used when specifying the size.
2754@end table
2755
2756Debug options:
2757
2758@table @option
2759@item -d item1,...
2760Activate logging of the specified items (use '-d help' for a list of log items)
2761@item -p pagesize
2762Act as if the host page size was 'pagesize' bytes
2763@item -g port
2764Wait gdb connection to port
2765@item -singlestep
2766Run the emulation in single step mode.
2767@end table
2768
2769Environment variables:
2770
2771@table @env
2772@item QEMU_STRACE
2773Print system calls and arguments similar to the 'strace' program
2774(NOTE: the actual 'strace' program will not work because the user
2775space emulator hasn't implemented ptrace).  At the moment this is
2776incomplete.  All system calls that don't have a specific argument
2777format are printed with information for six arguments.  Many
2778flag-style arguments don't have decoders and will show up as numbers.
2779@end table
2780
2781@node Other binaries
2782@subsection Other binaries
2783
2784@cindex user mode (Alpha)
2785@command{qemu-alpha} TODO.
2786
2787@cindex user mode (ARM)
2788@command{qemu-armeb} TODO.
2789
2790@cindex user mode (ARM)
2791@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2792binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2793configurations), and arm-uclinux bFLT format binaries.
2794
2795@cindex user mode (ColdFire)
2796@cindex user mode (M68K)
2797@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2798(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2799coldfire uClinux bFLT format binaries.
2800
2801The binary format is detected automatically.
2802
2803@cindex user mode (Cris)
2804@command{qemu-cris} TODO.
2805
2806@cindex user mode (i386)
2807@command{qemu-i386} TODO.
2808@command{qemu-x86_64} TODO.
2809
2810@cindex user mode (Microblaze)
2811@command{qemu-microblaze} TODO.
2812
2813@cindex user mode (MIPS)
2814@command{qemu-mips} TODO.
2815@command{qemu-mipsel} TODO.
2816
2817@cindex user mode (PowerPC)
2818@command{qemu-ppc64abi32} TODO.
2819@command{qemu-ppc64} TODO.
2820@command{qemu-ppc} TODO.
2821
2822@cindex user mode (SH4)
2823@command{qemu-sh4eb} TODO.
2824@command{qemu-sh4} TODO.
2825
2826@cindex user mode (SPARC)
2827@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2828
2829@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2830(Sparc64 CPU, 32 bit ABI).
2831
2832@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2833SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2834
2835@node BSD User space emulator
2836@section BSD User space emulator
2837
2838@menu
2839* BSD Status::
2840* BSD Quick Start::
2841* BSD Command line options::
2842@end menu
2843
2844@node BSD Status
2845@subsection BSD Status
2846
2847@itemize @minus
2848@item
2849target Sparc64 on Sparc64: Some trivial programs work.
2850@end itemize
2851
2852@node BSD Quick Start
2853@subsection Quick Start
2854
2855In order to launch a BSD process, QEMU needs the process executable
2856itself and all the target dynamic libraries used by it.
2857
2858@itemize
2859
2860@item On Sparc64, you can just try to launch any process by using the native
2861libraries:
2862
2863@example
2864qemu-sparc64 /bin/ls
2865@end example
2866
2867@end itemize
2868
2869@node BSD Command line options
2870@subsection Command line options
2871
2872@example
2873usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2874@end example
2875
2876@table @option
2877@item -h
2878Print the help
2879@item -L path
2880Set the library root path (default=/)
2881@item -s size
2882Set the stack size in bytes (default=524288)
2883@item -ignore-environment
2884Start with an empty environment. Without this option,
2885the initial environment is a copy of the caller's environment.
2886@item -E @var{var}=@var{value}
2887Set environment @var{var} to @var{value}.
2888@item -U @var{var}
2889Remove @var{var} from the environment.
2890@item -bsd type
2891Set the type of the emulated BSD Operating system. Valid values are
2892FreeBSD, NetBSD and OpenBSD (default).
2893@end table
2894
2895Debug options:
2896
2897@table @option
2898@item -d item1,...
2899Activate logging of the specified items (use '-d help' for a list of log items)
2900@item -p pagesize
2901Act as if the host page size was 'pagesize' bytes
2902@item -singlestep
2903Run the emulation in single step mode.
2904@end table
2905
2906@node compilation
2907@chapter Compilation from the sources
2908
2909@menu
2910* Linux/Unix::
2911* Windows::
2912* Cross compilation for Windows with Linux::
2913* Mac OS X::
2914* Make targets::
2915@end menu
2916
2917@node Linux/Unix
2918@section Linux/Unix
2919
2920@subsection Compilation
2921
2922First you must decompress the sources:
2923@example
2924cd /tmp
2925tar zxvf qemu-x.y.z.tar.gz
2926cd qemu-x.y.z
2927@end example
2928
2929Then you configure QEMU and build it (usually no options are needed):
2930@example
2931./configure
2932make
2933@end example
2934
2935Then type as root user:
2936@example
2937make install
2938@end example
2939to install QEMU in @file{/usr/local}.
2940
2941@node Windows
2942@section Windows
2943
2944@itemize
2945@item Install the current versions of MSYS and MinGW from
2946@url{http://www.mingw.org/}. You can find detailed installation
2947instructions in the download section and the FAQ.
2948
2949@item Download
2950the MinGW development library of SDL 1.2.x
2951(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2952@url{http://www.libsdl.org}. Unpack it in a temporary place and
2953edit the @file{sdl-config} script so that it gives the
2954correct SDL directory when invoked.
2955
2956@item Install the MinGW version of zlib and make sure
2957@file{zlib.h} and @file{libz.dll.a} are in
2958MinGW's default header and linker search paths.
2959
2960@item Extract the current version of QEMU.
2961
2962@item Start the MSYS shell (file @file{msys.bat}).
2963
2964@item Change to the QEMU directory. Launch @file{./configure} and
2965@file{make}.  If you have problems using SDL, verify that
2966@file{sdl-config} can be launched from the MSYS command line.
2967
2968@item You can install QEMU in @file{Program Files/QEMU} by typing
2969@file{make install}. Don't forget to copy @file{SDL.dll} in
2970@file{Program Files/QEMU}.
2971
2972@end itemize
2973
2974@node Cross compilation for Windows with Linux
2975@section Cross compilation for Windows with Linux
2976
2977@itemize
2978@item
2979Install the MinGW cross compilation tools available at
2980@url{http://www.mingw.org/}.
2981
2982@item Download
2983the MinGW development library of SDL 1.2.x
2984(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2985@url{http://www.libsdl.org}. Unpack it in a temporary place and
2986edit the @file{sdl-config} script so that it gives the
2987correct SDL directory when invoked.  Set up the @code{PATH} environment
2988variable so that @file{sdl-config} can be launched by
2989the QEMU configuration script.
2990
2991@item Install the MinGW version of zlib and make sure
2992@file{zlib.h} and @file{libz.dll.a} are in
2993MinGW's default header and linker search paths.
2994
2995@item
2996Configure QEMU for Windows cross compilation:
2997@example
2998PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2999@end example
3000The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3001MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
3002We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3003use --cross-prefix to specify the name of the cross compiler.
3004You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3005
3006Under Fedora Linux, you can run:
3007@example
3008yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
3009@end example
3010to get a suitable cross compilation environment.
3011
3012@item You can install QEMU in the installation directory by typing
3013@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3014installation directory.
3015
3016@end itemize
3017
3018Wine can be used to launch the resulting qemu-system-i386.exe
3019and all other qemu-system-@var{target}.exe compiled for Win32.
3020
3021@node Mac OS X
3022@section Mac OS X
3023
3024The Mac OS X patches are not fully merged in QEMU, so you should look
3025at the QEMU mailing list archive to have all the necessary
3026information.
3027
3028@node Make targets
3029@section Make targets
3030
3031@table @code
3032
3033@item make
3034@item make all
3035Make everything which is typically needed.
3036
3037@item install
3038TODO
3039
3040@item install-doc
3041TODO
3042
3043@item make clean
3044Remove most files which were built during make.
3045
3046@item make distclean
3047Remove everything which was built during make.
3048
3049@item make dvi
3050@item make html
3051@item make info
3052@item make pdf
3053Create documentation in dvi, html, info or pdf format.
3054
3055@item make cscope
3056TODO
3057
3058@item make defconfig
3059(Re-)create some build configuration files.
3060User made changes will be overwritten.
3061
3062@item tar
3063@item tarbin
3064TODO
3065
3066@end table
3067
3068@node License
3069@appendix License
3070
3071QEMU is a trademark of Fabrice Bellard.
3072
3073QEMU is released under the GNU General Public License (TODO: add link).
3074Parts of QEMU have specific licenses, see file LICENSE.
3075
3076TODO (refer to file LICENSE, include it, include the GPL?)
3077
3078@node Index
3079@appendix Index
3080@menu
3081* Concept Index::
3082* Function Index::
3083* Keystroke Index::
3084* Program Index::
3085* Data Type Index::
3086* Variable Index::
3087@end menu
3088
3089@node Concept Index
3090@section Concept Index
3091This is the main index. Should we combine all keywords in one index? TODO
3092@printindex cp
3093
3094@node Function Index
3095@section Function Index
3096This index could be used for command line options and monitor functions.
3097@printindex fn
3098
3099@node Keystroke Index
3100@section Keystroke Index
3101
3102This is a list of all keystrokes which have a special function
3103in system emulation.
3104
3105@printindex ky
3106
3107@node Program Index
3108@section Program Index
3109@printindex pg
3110
3111@node Data Type Index
3112@section Data Type Index
3113
3114This index could be used for qdev device names and options.
3115
3116@printindex tp
3117
3118@node Variable Index
3119@section Variable Index
3120@printindex vr
3121
3122@bye
3123