qemu/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include <sys/types.h>
  17#include <sys/ioctl.h>
  18#include <sys/mman.h>
  19#include <stdarg.h>
  20
  21#include <linux/kvm.h>
  22
  23#include "qemu-common.h"
  24#include "qemu/atomic.h"
  25#include "qemu/option.h"
  26#include "qemu/config-file.h"
  27#include "qemu/error-report.h"
  28#include "hw/hw.h"
  29#include "hw/pci/msi.h"
  30#include "hw/s390x/adapter.h"
  31#include "exec/gdbstub.h"
  32#include "sysemu/kvm_int.h"
  33#include "qemu/bswap.h"
  34#include "exec/memory.h"
  35#include "exec/ram_addr.h"
  36#include "exec/address-spaces.h"
  37#include "qemu/event_notifier.h"
  38#include "trace.h"
  39#include "hw/irq.h"
  40
  41#include "hw/boards.h"
  42
  43/* This check must be after config-host.h is included */
  44#ifdef CONFIG_EVENTFD
  45#include <sys/eventfd.h>
  46#endif
  47
  48/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
  49#define PAGE_SIZE TARGET_PAGE_SIZE
  50
  51//#define DEBUG_KVM
  52
  53#ifdef DEBUG_KVM
  54#define DPRINTF(fmt, ...) \
  55    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  56#else
  57#define DPRINTF(fmt, ...) \
  58    do { } while (0)
  59#endif
  60
  61#define KVM_MSI_HASHTAB_SIZE    256
  62
  63struct KVMState
  64{
  65    AccelState parent_obj;
  66
  67    int nr_slots;
  68    int fd;
  69    int vmfd;
  70    int coalesced_mmio;
  71    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  72    bool coalesced_flush_in_progress;
  73    int broken_set_mem_region;
  74    int vcpu_events;
  75    int robust_singlestep;
  76    int debugregs;
  77#ifdef KVM_CAP_SET_GUEST_DEBUG
  78    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  79#endif
  80    int many_ioeventfds;
  81    int intx_set_mask;
  82    /* The man page (and posix) say ioctl numbers are signed int, but
  83     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
  84     * unsigned, and treating them as signed here can break things */
  85    unsigned irq_set_ioctl;
  86    unsigned int sigmask_len;
  87    GHashTable *gsimap;
  88#ifdef KVM_CAP_IRQ_ROUTING
  89    struct kvm_irq_routing *irq_routes;
  90    int nr_allocated_irq_routes;
  91    uint32_t *used_gsi_bitmap;
  92    unsigned int gsi_count;
  93    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
  94#endif
  95    KVMMemoryListener memory_listener;
  96};
  97
  98KVMState *kvm_state;
  99bool kvm_kernel_irqchip;
 100bool kvm_async_interrupts_allowed;
 101bool kvm_halt_in_kernel_allowed;
 102bool kvm_eventfds_allowed;
 103bool kvm_irqfds_allowed;
 104bool kvm_resamplefds_allowed;
 105bool kvm_msi_via_irqfd_allowed;
 106bool kvm_gsi_routing_allowed;
 107bool kvm_gsi_direct_mapping;
 108bool kvm_allowed;
 109bool kvm_readonly_mem_allowed;
 110bool kvm_vm_attributes_allowed;
 111bool kvm_direct_msi_allowed;
 112bool kvm_ioeventfd_any_length_allowed;
 113
 114static const KVMCapabilityInfo kvm_required_capabilites[] = {
 115    KVM_CAP_INFO(USER_MEMORY),
 116    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 117    KVM_CAP_LAST_INFO
 118};
 119
 120static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 121{
 122    KVMState *s = kvm_state;
 123    int i;
 124
 125    for (i = 0; i < s->nr_slots; i++) {
 126        if (kml->slots[i].memory_size == 0) {
 127            return &kml->slots[i];
 128        }
 129    }
 130
 131    return NULL;
 132}
 133
 134bool kvm_has_free_slot(MachineState *ms)
 135{
 136    KVMState *s = KVM_STATE(ms->accelerator);
 137
 138    return kvm_get_free_slot(&s->memory_listener);
 139}
 140
 141static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 142{
 143    KVMSlot *slot = kvm_get_free_slot(kml);
 144
 145    if (slot) {
 146        return slot;
 147    }
 148
 149    fprintf(stderr, "%s: no free slot available\n", __func__);
 150    abort();
 151}
 152
 153static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 154                                         hwaddr start_addr,
 155                                         hwaddr end_addr)
 156{
 157    KVMState *s = kvm_state;
 158    int i;
 159
 160    for (i = 0; i < s->nr_slots; i++) {
 161        KVMSlot *mem = &kml->slots[i];
 162
 163        if (start_addr == mem->start_addr &&
 164            end_addr == mem->start_addr + mem->memory_size) {
 165            return mem;
 166        }
 167    }
 168
 169    return NULL;
 170}
 171
 172/*
 173 * Find overlapping slot with lowest start address
 174 */
 175static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
 176                                            hwaddr start_addr,
 177                                            hwaddr end_addr)
 178{
 179    KVMState *s = kvm_state;
 180    KVMSlot *found = NULL;
 181    int i;
 182
 183    for (i = 0; i < s->nr_slots; i++) {
 184        KVMSlot *mem = &kml->slots[i];
 185
 186        if (mem->memory_size == 0 ||
 187            (found && found->start_addr < mem->start_addr)) {
 188            continue;
 189        }
 190
 191        if (end_addr > mem->start_addr &&
 192            start_addr < mem->start_addr + mem->memory_size) {
 193            found = mem;
 194        }
 195    }
 196
 197    return found;
 198}
 199
 200int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 201                                       hwaddr *phys_addr)
 202{
 203    KVMMemoryListener *kml = &s->memory_listener;
 204    int i;
 205
 206    for (i = 0; i < s->nr_slots; i++) {
 207        KVMSlot *mem = &kml->slots[i];
 208
 209        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 210            *phys_addr = mem->start_addr + (ram - mem->ram);
 211            return 1;
 212        }
 213    }
 214
 215    return 0;
 216}
 217
 218static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
 219{
 220    KVMState *s = kvm_state;
 221    struct kvm_userspace_memory_region mem;
 222
 223    mem.slot = slot->slot | (kml->as_id << 16);
 224    mem.guest_phys_addr = slot->start_addr;
 225    mem.userspace_addr = (unsigned long)slot->ram;
 226    mem.flags = slot->flags;
 227
 228    if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
 229        /* Set the slot size to 0 before setting the slot to the desired
 230         * value. This is needed based on KVM commit 75d61fbc. */
 231        mem.memory_size = 0;
 232        kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 233    }
 234    mem.memory_size = slot->memory_size;
 235    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 236}
 237
 238int kvm_init_vcpu(CPUState *cpu)
 239{
 240    KVMState *s = kvm_state;
 241    long mmap_size;
 242    int ret;
 243
 244    DPRINTF("kvm_init_vcpu\n");
 245
 246    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
 247    if (ret < 0) {
 248        DPRINTF("kvm_create_vcpu failed\n");
 249        goto err;
 250    }
 251
 252    cpu->kvm_fd = ret;
 253    cpu->kvm_state = s;
 254    cpu->kvm_vcpu_dirty = true;
 255
 256    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 257    if (mmap_size < 0) {
 258        ret = mmap_size;
 259        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 260        goto err;
 261    }
 262
 263    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 264                        cpu->kvm_fd, 0);
 265    if (cpu->kvm_run == MAP_FAILED) {
 266        ret = -errno;
 267        DPRINTF("mmap'ing vcpu state failed\n");
 268        goto err;
 269    }
 270
 271    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 272        s->coalesced_mmio_ring =
 273            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 274    }
 275
 276    ret = kvm_arch_init_vcpu(cpu);
 277err:
 278    return ret;
 279}
 280
 281/*
 282 * dirty pages logging control
 283 */
 284
 285static int kvm_mem_flags(MemoryRegion *mr)
 286{
 287    bool readonly = mr->readonly || memory_region_is_romd(mr);
 288    int flags = 0;
 289
 290    if (memory_region_get_dirty_log_mask(mr) != 0) {
 291        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 292    }
 293    if (readonly && kvm_readonly_mem_allowed) {
 294        flags |= KVM_MEM_READONLY;
 295    }
 296    return flags;
 297}
 298
 299static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 300                                 MemoryRegion *mr)
 301{
 302    int old_flags;
 303
 304    old_flags = mem->flags;
 305    mem->flags = kvm_mem_flags(mr);
 306
 307    /* If nothing changed effectively, no need to issue ioctl */
 308    if (mem->flags == old_flags) {
 309        return 0;
 310    }
 311
 312    return kvm_set_user_memory_region(kml, mem);
 313}
 314
 315static int kvm_section_update_flags(KVMMemoryListener *kml,
 316                                    MemoryRegionSection *section)
 317{
 318    hwaddr phys_addr = section->offset_within_address_space;
 319    ram_addr_t size = int128_get64(section->size);
 320    KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
 321
 322    if (mem == NULL)  {
 323        return 0;
 324    } else {
 325        return kvm_slot_update_flags(kml, mem, section->mr);
 326    }
 327}
 328
 329static void kvm_log_start(MemoryListener *listener,
 330                          MemoryRegionSection *section,
 331                          int old, int new)
 332{
 333    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 334    int r;
 335
 336    if (old != 0) {
 337        return;
 338    }
 339
 340    r = kvm_section_update_flags(kml, section);
 341    if (r < 0) {
 342        abort();
 343    }
 344}
 345
 346static void kvm_log_stop(MemoryListener *listener,
 347                          MemoryRegionSection *section,
 348                          int old, int new)
 349{
 350    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 351    int r;
 352
 353    if (new != 0) {
 354        return;
 355    }
 356
 357    r = kvm_section_update_flags(kml, section);
 358    if (r < 0) {
 359        abort();
 360    }
 361}
 362
 363/* get kvm's dirty pages bitmap and update qemu's */
 364static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 365                                         unsigned long *bitmap)
 366{
 367    ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
 368    ram_addr_t pages = int128_get64(section->size) / getpagesize();
 369
 370    cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
 371    return 0;
 372}
 373
 374#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 375
 376/**
 377 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 378 * This function updates qemu's dirty bitmap using
 379 * memory_region_set_dirty().  This means all bits are set
 380 * to dirty.
 381 *
 382 * @start_add: start of logged region.
 383 * @end_addr: end of logged region.
 384 */
 385static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 386                                          MemoryRegionSection *section)
 387{
 388    KVMState *s = kvm_state;
 389    unsigned long size, allocated_size = 0;
 390    struct kvm_dirty_log d = {};
 391    KVMSlot *mem;
 392    int ret = 0;
 393    hwaddr start_addr = section->offset_within_address_space;
 394    hwaddr end_addr = start_addr + int128_get64(section->size);
 395
 396    d.dirty_bitmap = NULL;
 397    while (start_addr < end_addr) {
 398        mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
 399        if (mem == NULL) {
 400            break;
 401        }
 402
 403        /* XXX bad kernel interface alert
 404         * For dirty bitmap, kernel allocates array of size aligned to
 405         * bits-per-long.  But for case when the kernel is 64bits and
 406         * the userspace is 32bits, userspace can't align to the same
 407         * bits-per-long, since sizeof(long) is different between kernel
 408         * and user space.  This way, userspace will provide buffer which
 409         * may be 4 bytes less than the kernel will use, resulting in
 410         * userspace memory corruption (which is not detectable by valgrind
 411         * too, in most cases).
 412         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 413         * a hope that sizeof(long) wont become >8 any time soon.
 414         */
 415        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
 416                     /*HOST_LONG_BITS*/ 64) / 8;
 417        if (!d.dirty_bitmap) {
 418            d.dirty_bitmap = g_malloc(size);
 419        } else if (size > allocated_size) {
 420            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
 421        }
 422        allocated_size = size;
 423        memset(d.dirty_bitmap, 0, allocated_size);
 424
 425        d.slot = mem->slot | (kml->as_id << 16);
 426        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 427            DPRINTF("ioctl failed %d\n", errno);
 428            ret = -1;
 429            break;
 430        }
 431
 432        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
 433        start_addr = mem->start_addr + mem->memory_size;
 434    }
 435    g_free(d.dirty_bitmap);
 436
 437    return ret;
 438}
 439
 440static void kvm_coalesce_mmio_region(MemoryListener *listener,
 441                                     MemoryRegionSection *secion,
 442                                     hwaddr start, hwaddr size)
 443{
 444    KVMState *s = kvm_state;
 445
 446    if (s->coalesced_mmio) {
 447        struct kvm_coalesced_mmio_zone zone;
 448
 449        zone.addr = start;
 450        zone.size = size;
 451        zone.pad = 0;
 452
 453        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 454    }
 455}
 456
 457static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 458                                       MemoryRegionSection *secion,
 459                                       hwaddr start, hwaddr size)
 460{
 461    KVMState *s = kvm_state;
 462
 463    if (s->coalesced_mmio) {
 464        struct kvm_coalesced_mmio_zone zone;
 465
 466        zone.addr = start;
 467        zone.size = size;
 468        zone.pad = 0;
 469
 470        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 471    }
 472}
 473
 474int kvm_check_extension(KVMState *s, unsigned int extension)
 475{
 476    int ret;
 477
 478    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 479    if (ret < 0) {
 480        ret = 0;
 481    }
 482
 483    return ret;
 484}
 485
 486int kvm_vm_check_extension(KVMState *s, unsigned int extension)
 487{
 488    int ret;
 489
 490    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 491    if (ret < 0) {
 492        /* VM wide version not implemented, use global one instead */
 493        ret = kvm_check_extension(s, extension);
 494    }
 495
 496    return ret;
 497}
 498
 499static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
 500{
 501#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
 502    /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
 503     * endianness, but the memory core hands them in target endianness.
 504     * For example, PPC is always treated as big-endian even if running
 505     * on KVM and on PPC64LE.  Correct here.
 506     */
 507    switch (size) {
 508    case 2:
 509        val = bswap16(val);
 510        break;
 511    case 4:
 512        val = bswap32(val);
 513        break;
 514    }
 515#endif
 516    return val;
 517}
 518
 519static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
 520                                  bool assign, uint32_t size, bool datamatch)
 521{
 522    int ret;
 523    struct kvm_ioeventfd iofd = {
 524        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 525        .addr = addr,
 526        .len = size,
 527        .flags = 0,
 528        .fd = fd,
 529    };
 530
 531    if (!kvm_enabled()) {
 532        return -ENOSYS;
 533    }
 534
 535    if (datamatch) {
 536        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 537    }
 538    if (!assign) {
 539        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 540    }
 541
 542    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 543
 544    if (ret < 0) {
 545        return -errno;
 546    }
 547
 548    return 0;
 549}
 550
 551static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
 552                                 bool assign, uint32_t size, bool datamatch)
 553{
 554    struct kvm_ioeventfd kick = {
 555        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 556        .addr = addr,
 557        .flags = KVM_IOEVENTFD_FLAG_PIO,
 558        .len = size,
 559        .fd = fd,
 560    };
 561    int r;
 562    if (!kvm_enabled()) {
 563        return -ENOSYS;
 564    }
 565    if (datamatch) {
 566        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 567    }
 568    if (!assign) {
 569        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 570    }
 571    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 572    if (r < 0) {
 573        return r;
 574    }
 575    return 0;
 576}
 577
 578
 579static int kvm_check_many_ioeventfds(void)
 580{
 581    /* Userspace can use ioeventfd for io notification.  This requires a host
 582     * that supports eventfd(2) and an I/O thread; since eventfd does not
 583     * support SIGIO it cannot interrupt the vcpu.
 584     *
 585     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 586     * can avoid creating too many ioeventfds.
 587     */
 588#if defined(CONFIG_EVENTFD)
 589    int ioeventfds[7];
 590    int i, ret = 0;
 591    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 592        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 593        if (ioeventfds[i] < 0) {
 594            break;
 595        }
 596        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
 597        if (ret < 0) {
 598            close(ioeventfds[i]);
 599            break;
 600        }
 601    }
 602
 603    /* Decide whether many devices are supported or not */
 604    ret = i == ARRAY_SIZE(ioeventfds);
 605
 606    while (i-- > 0) {
 607        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
 608        close(ioeventfds[i]);
 609    }
 610    return ret;
 611#else
 612    return 0;
 613#endif
 614}
 615
 616static const KVMCapabilityInfo *
 617kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 618{
 619    while (list->name) {
 620        if (!kvm_check_extension(s, list->value)) {
 621            return list;
 622        }
 623        list++;
 624    }
 625    return NULL;
 626}
 627
 628static void kvm_set_phys_mem(KVMMemoryListener *kml,
 629                             MemoryRegionSection *section, bool add)
 630{
 631    KVMState *s = kvm_state;
 632    KVMSlot *mem, old;
 633    int err;
 634    MemoryRegion *mr = section->mr;
 635    bool writeable = !mr->readonly && !mr->rom_device;
 636    hwaddr start_addr = section->offset_within_address_space;
 637    ram_addr_t size = int128_get64(section->size);
 638    void *ram = NULL;
 639    unsigned delta;
 640
 641    /* kvm works in page size chunks, but the function may be called
 642       with sub-page size and unaligned start address. Pad the start
 643       address to next and truncate size to previous page boundary. */
 644    delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
 645    delta &= ~qemu_real_host_page_mask;
 646    if (delta > size) {
 647        return;
 648    }
 649    start_addr += delta;
 650    size -= delta;
 651    size &= qemu_real_host_page_mask;
 652    if (!size || (start_addr & ~qemu_real_host_page_mask)) {
 653        return;
 654    }
 655
 656    if (!memory_region_is_ram(mr)) {
 657        if (writeable || !kvm_readonly_mem_allowed) {
 658            return;
 659        } else if (!mr->romd_mode) {
 660            /* If the memory device is not in romd_mode, then we actually want
 661             * to remove the kvm memory slot so all accesses will trap. */
 662            add = false;
 663        }
 664    }
 665
 666    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
 667
 668    while (1) {
 669        mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
 670        if (!mem) {
 671            break;
 672        }
 673
 674        if (add && start_addr >= mem->start_addr &&
 675            (start_addr + size <= mem->start_addr + mem->memory_size) &&
 676            (ram - start_addr == mem->ram - mem->start_addr)) {
 677            /* The new slot fits into the existing one and comes with
 678             * identical parameters - update flags and done. */
 679            kvm_slot_update_flags(kml, mem, mr);
 680            return;
 681        }
 682
 683        old = *mem;
 684
 685        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 686            kvm_physical_sync_dirty_bitmap(kml, section);
 687        }
 688
 689        /* unregister the overlapping slot */
 690        mem->memory_size = 0;
 691        err = kvm_set_user_memory_region(kml, mem);
 692        if (err) {
 693            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 694                    __func__, strerror(-err));
 695            abort();
 696        }
 697
 698        /* Workaround for older KVM versions: we can't join slots, even not by
 699         * unregistering the previous ones and then registering the larger
 700         * slot. We have to maintain the existing fragmentation. Sigh.
 701         *
 702         * This workaround assumes that the new slot starts at the same
 703         * address as the first existing one. If not or if some overlapping
 704         * slot comes around later, we will fail (not seen in practice so far)
 705         * - and actually require a recent KVM version. */
 706        if (s->broken_set_mem_region &&
 707            old.start_addr == start_addr && old.memory_size < size && add) {
 708            mem = kvm_alloc_slot(kml);
 709            mem->memory_size = old.memory_size;
 710            mem->start_addr = old.start_addr;
 711            mem->ram = old.ram;
 712            mem->flags = kvm_mem_flags(mr);
 713
 714            err = kvm_set_user_memory_region(kml, mem);
 715            if (err) {
 716                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 717                        strerror(-err));
 718                abort();
 719            }
 720
 721            start_addr += old.memory_size;
 722            ram += old.memory_size;
 723            size -= old.memory_size;
 724            continue;
 725        }
 726
 727        /* register prefix slot */
 728        if (old.start_addr < start_addr) {
 729            mem = kvm_alloc_slot(kml);
 730            mem->memory_size = start_addr - old.start_addr;
 731            mem->start_addr = old.start_addr;
 732            mem->ram = old.ram;
 733            mem->flags =  kvm_mem_flags(mr);
 734
 735            err = kvm_set_user_memory_region(kml, mem);
 736            if (err) {
 737                fprintf(stderr, "%s: error registering prefix slot: %s\n",
 738                        __func__, strerror(-err));
 739#ifdef TARGET_PPC
 740                fprintf(stderr, "%s: This is probably because your kernel's " \
 741                                "PAGE_SIZE is too big. Please try to use 4k " \
 742                                "PAGE_SIZE!\n", __func__);
 743#endif
 744                abort();
 745            }
 746        }
 747
 748        /* register suffix slot */
 749        if (old.start_addr + old.memory_size > start_addr + size) {
 750            ram_addr_t size_delta;
 751
 752            mem = kvm_alloc_slot(kml);
 753            mem->start_addr = start_addr + size;
 754            size_delta = mem->start_addr - old.start_addr;
 755            mem->memory_size = old.memory_size - size_delta;
 756            mem->ram = old.ram + size_delta;
 757            mem->flags = kvm_mem_flags(mr);
 758
 759            err = kvm_set_user_memory_region(kml, mem);
 760            if (err) {
 761                fprintf(stderr, "%s: error registering suffix slot: %s\n",
 762                        __func__, strerror(-err));
 763                abort();
 764            }
 765        }
 766    }
 767
 768    /* in case the KVM bug workaround already "consumed" the new slot */
 769    if (!size) {
 770        return;
 771    }
 772    if (!add) {
 773        return;
 774    }
 775    mem = kvm_alloc_slot(kml);
 776    mem->memory_size = size;
 777    mem->start_addr = start_addr;
 778    mem->ram = ram;
 779    mem->flags = kvm_mem_flags(mr);
 780
 781    err = kvm_set_user_memory_region(kml, mem);
 782    if (err) {
 783        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 784                strerror(-err));
 785        abort();
 786    }
 787}
 788
 789static void kvm_region_add(MemoryListener *listener,
 790                           MemoryRegionSection *section)
 791{
 792    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 793
 794    memory_region_ref(section->mr);
 795    kvm_set_phys_mem(kml, section, true);
 796}
 797
 798static void kvm_region_del(MemoryListener *listener,
 799                           MemoryRegionSection *section)
 800{
 801    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 802
 803    kvm_set_phys_mem(kml, section, false);
 804    memory_region_unref(section->mr);
 805}
 806
 807static void kvm_log_sync(MemoryListener *listener,
 808                         MemoryRegionSection *section)
 809{
 810    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 811    int r;
 812
 813    r = kvm_physical_sync_dirty_bitmap(kml, section);
 814    if (r < 0) {
 815        abort();
 816    }
 817}
 818
 819static void kvm_mem_ioeventfd_add(MemoryListener *listener,
 820                                  MemoryRegionSection *section,
 821                                  bool match_data, uint64_t data,
 822                                  EventNotifier *e)
 823{
 824    int fd = event_notifier_get_fd(e);
 825    int r;
 826
 827    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 828                               data, true, int128_get64(section->size),
 829                               match_data);
 830    if (r < 0) {
 831        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 832                __func__, strerror(-r));
 833        abort();
 834    }
 835}
 836
 837static void kvm_mem_ioeventfd_del(MemoryListener *listener,
 838                                  MemoryRegionSection *section,
 839                                  bool match_data, uint64_t data,
 840                                  EventNotifier *e)
 841{
 842    int fd = event_notifier_get_fd(e);
 843    int r;
 844
 845    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 846                               data, false, int128_get64(section->size),
 847                               match_data);
 848    if (r < 0) {
 849        abort();
 850    }
 851}
 852
 853static void kvm_io_ioeventfd_add(MemoryListener *listener,
 854                                 MemoryRegionSection *section,
 855                                 bool match_data, uint64_t data,
 856                                 EventNotifier *e)
 857{
 858    int fd = event_notifier_get_fd(e);
 859    int r;
 860
 861    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 862                              data, true, int128_get64(section->size),
 863                              match_data);
 864    if (r < 0) {
 865        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 866                __func__, strerror(-r));
 867        abort();
 868    }
 869}
 870
 871static void kvm_io_ioeventfd_del(MemoryListener *listener,
 872                                 MemoryRegionSection *section,
 873                                 bool match_data, uint64_t data,
 874                                 EventNotifier *e)
 875
 876{
 877    int fd = event_notifier_get_fd(e);
 878    int r;
 879
 880    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 881                              data, false, int128_get64(section->size),
 882                              match_data);
 883    if (r < 0) {
 884        abort();
 885    }
 886}
 887
 888void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
 889                                  AddressSpace *as, int as_id)
 890{
 891    int i;
 892
 893    kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
 894    kml->as_id = as_id;
 895
 896    for (i = 0; i < s->nr_slots; i++) {
 897        kml->slots[i].slot = i;
 898    }
 899
 900    kml->listener.region_add = kvm_region_add;
 901    kml->listener.region_del = kvm_region_del;
 902    kml->listener.log_start = kvm_log_start;
 903    kml->listener.log_stop = kvm_log_stop;
 904    kml->listener.log_sync = kvm_log_sync;
 905    kml->listener.priority = 10;
 906
 907    memory_listener_register(&kml->listener, as);
 908}
 909
 910static MemoryListener kvm_io_listener = {
 911    .eventfd_add = kvm_io_ioeventfd_add,
 912    .eventfd_del = kvm_io_ioeventfd_del,
 913    .priority = 10,
 914};
 915
 916static void kvm_handle_interrupt(CPUState *cpu, int mask)
 917{
 918    cpu->interrupt_request |= mask;
 919
 920    if (!qemu_cpu_is_self(cpu)) {
 921        qemu_cpu_kick(cpu);
 922    }
 923}
 924
 925int kvm_set_irq(KVMState *s, int irq, int level)
 926{
 927    struct kvm_irq_level event;
 928    int ret;
 929
 930    assert(kvm_async_interrupts_enabled());
 931
 932    event.level = level;
 933    event.irq = irq;
 934    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
 935    if (ret < 0) {
 936        perror("kvm_set_irq");
 937        abort();
 938    }
 939
 940    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
 941}
 942
 943#ifdef KVM_CAP_IRQ_ROUTING
 944typedef struct KVMMSIRoute {
 945    struct kvm_irq_routing_entry kroute;
 946    QTAILQ_ENTRY(KVMMSIRoute) entry;
 947} KVMMSIRoute;
 948
 949static void set_gsi(KVMState *s, unsigned int gsi)
 950{
 951    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
 952}
 953
 954static void clear_gsi(KVMState *s, unsigned int gsi)
 955{
 956    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
 957}
 958
 959void kvm_init_irq_routing(KVMState *s)
 960{
 961    int gsi_count, i;
 962
 963    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
 964    if (gsi_count > 0) {
 965        unsigned int gsi_bits, i;
 966
 967        /* Round up so we can search ints using ffs */
 968        gsi_bits = ALIGN(gsi_count, 32);
 969        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
 970        s->gsi_count = gsi_count;
 971
 972        /* Mark any over-allocated bits as already in use */
 973        for (i = gsi_count; i < gsi_bits; i++) {
 974            set_gsi(s, i);
 975        }
 976    }
 977
 978    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
 979    s->nr_allocated_irq_routes = 0;
 980
 981    if (!kvm_direct_msi_allowed) {
 982        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
 983            QTAILQ_INIT(&s->msi_hashtab[i]);
 984        }
 985    }
 986
 987    kvm_arch_init_irq_routing(s);
 988}
 989
 990void kvm_irqchip_commit_routes(KVMState *s)
 991{
 992    int ret;
 993
 994    s->irq_routes->flags = 0;
 995    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
 996    assert(ret == 0);
 997}
 998
 999static void kvm_add_routing_entry(KVMState *s,
1000                                  struct kvm_irq_routing_entry *entry)
1001{
1002    struct kvm_irq_routing_entry *new;
1003    int n, size;
1004
1005    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1006        n = s->nr_allocated_irq_routes * 2;
1007        if (n < 64) {
1008            n = 64;
1009        }
1010        size = sizeof(struct kvm_irq_routing);
1011        size += n * sizeof(*new);
1012        s->irq_routes = g_realloc(s->irq_routes, size);
1013        s->nr_allocated_irq_routes = n;
1014    }
1015    n = s->irq_routes->nr++;
1016    new = &s->irq_routes->entries[n];
1017
1018    *new = *entry;
1019
1020    set_gsi(s, entry->gsi);
1021}
1022
1023static int kvm_update_routing_entry(KVMState *s,
1024                                    struct kvm_irq_routing_entry *new_entry)
1025{
1026    struct kvm_irq_routing_entry *entry;
1027    int n;
1028
1029    for (n = 0; n < s->irq_routes->nr; n++) {
1030        entry = &s->irq_routes->entries[n];
1031        if (entry->gsi != new_entry->gsi) {
1032            continue;
1033        }
1034
1035        if(!memcmp(entry, new_entry, sizeof *entry)) {
1036            return 0;
1037        }
1038
1039        *entry = *new_entry;
1040
1041        kvm_irqchip_commit_routes(s);
1042
1043        return 0;
1044    }
1045
1046    return -ESRCH;
1047}
1048
1049void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1050{
1051    struct kvm_irq_routing_entry e = {};
1052
1053    assert(pin < s->gsi_count);
1054
1055    e.gsi = irq;
1056    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1057    e.flags = 0;
1058    e.u.irqchip.irqchip = irqchip;
1059    e.u.irqchip.pin = pin;
1060    kvm_add_routing_entry(s, &e);
1061}
1062
1063void kvm_irqchip_release_virq(KVMState *s, int virq)
1064{
1065    struct kvm_irq_routing_entry *e;
1066    int i;
1067
1068    if (kvm_gsi_direct_mapping()) {
1069        return;
1070    }
1071
1072    for (i = 0; i < s->irq_routes->nr; i++) {
1073        e = &s->irq_routes->entries[i];
1074        if (e->gsi == virq) {
1075            s->irq_routes->nr--;
1076            *e = s->irq_routes->entries[s->irq_routes->nr];
1077        }
1078    }
1079    clear_gsi(s, virq);
1080}
1081
1082static unsigned int kvm_hash_msi(uint32_t data)
1083{
1084    /* This is optimized for IA32 MSI layout. However, no other arch shall
1085     * repeat the mistake of not providing a direct MSI injection API. */
1086    return data & 0xff;
1087}
1088
1089static void kvm_flush_dynamic_msi_routes(KVMState *s)
1090{
1091    KVMMSIRoute *route, *next;
1092    unsigned int hash;
1093
1094    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1095        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1096            kvm_irqchip_release_virq(s, route->kroute.gsi);
1097            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1098            g_free(route);
1099        }
1100    }
1101}
1102
1103static int kvm_irqchip_get_virq(KVMState *s)
1104{
1105    uint32_t *word = s->used_gsi_bitmap;
1106    int max_words = ALIGN(s->gsi_count, 32) / 32;
1107    int i, zeroes;
1108
1109    /*
1110     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1111     * GSI numbers are more than the number of IRQ route. Allocating a GSI
1112     * number can succeed even though a new route entry cannot be added.
1113     * When this happens, flush dynamic MSI entries to free IRQ route entries.
1114     */
1115    if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1116        kvm_flush_dynamic_msi_routes(s);
1117    }
1118
1119    /* Return the lowest unused GSI in the bitmap */
1120    for (i = 0; i < max_words; i++) {
1121        zeroes = ctz32(~word[i]);
1122        if (zeroes == 32) {
1123            continue;
1124        }
1125
1126        return zeroes + i * 32;
1127    }
1128    return -ENOSPC;
1129
1130}
1131
1132static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1133{
1134    unsigned int hash = kvm_hash_msi(msg.data);
1135    KVMMSIRoute *route;
1136
1137    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1138        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1139            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1140            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1141            return route;
1142        }
1143    }
1144    return NULL;
1145}
1146
1147int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1148{
1149    struct kvm_msi msi;
1150    KVMMSIRoute *route;
1151
1152    if (kvm_direct_msi_allowed) {
1153        msi.address_lo = (uint32_t)msg.address;
1154        msi.address_hi = msg.address >> 32;
1155        msi.data = le32_to_cpu(msg.data);
1156        msi.flags = 0;
1157        memset(msi.pad, 0, sizeof(msi.pad));
1158
1159        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1160    }
1161
1162    route = kvm_lookup_msi_route(s, msg);
1163    if (!route) {
1164        int virq;
1165
1166        virq = kvm_irqchip_get_virq(s);
1167        if (virq < 0) {
1168            return virq;
1169        }
1170
1171        route = g_malloc0(sizeof(KVMMSIRoute));
1172        route->kroute.gsi = virq;
1173        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1174        route->kroute.flags = 0;
1175        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1176        route->kroute.u.msi.address_hi = msg.address >> 32;
1177        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1178
1179        kvm_add_routing_entry(s, &route->kroute);
1180        kvm_irqchip_commit_routes(s);
1181
1182        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1183                           entry);
1184    }
1185
1186    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1187
1188    return kvm_set_irq(s, route->kroute.gsi, 1);
1189}
1190
1191int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev)
1192{
1193    struct kvm_irq_routing_entry kroute = {};
1194    int virq;
1195
1196    if (kvm_gsi_direct_mapping()) {
1197        return kvm_arch_msi_data_to_gsi(msg.data);
1198    }
1199
1200    if (!kvm_gsi_routing_enabled()) {
1201        return -ENOSYS;
1202    }
1203
1204    virq = kvm_irqchip_get_virq(s);
1205    if (virq < 0) {
1206        return virq;
1207    }
1208
1209    kroute.gsi = virq;
1210    kroute.type = KVM_IRQ_ROUTING_MSI;
1211    kroute.flags = 0;
1212    kroute.u.msi.address_lo = (uint32_t)msg.address;
1213    kroute.u.msi.address_hi = msg.address >> 32;
1214    kroute.u.msi.data = le32_to_cpu(msg.data);
1215    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1216        kvm_irqchip_release_virq(s, virq);
1217        return -EINVAL;
1218    }
1219
1220    kvm_add_routing_entry(s, &kroute);
1221    kvm_irqchip_commit_routes(s);
1222
1223    return virq;
1224}
1225
1226int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1227                                 PCIDevice *dev)
1228{
1229    struct kvm_irq_routing_entry kroute = {};
1230
1231    if (kvm_gsi_direct_mapping()) {
1232        return 0;
1233    }
1234
1235    if (!kvm_irqchip_in_kernel()) {
1236        return -ENOSYS;
1237    }
1238
1239    kroute.gsi = virq;
1240    kroute.type = KVM_IRQ_ROUTING_MSI;
1241    kroute.flags = 0;
1242    kroute.u.msi.address_lo = (uint32_t)msg.address;
1243    kroute.u.msi.address_hi = msg.address >> 32;
1244    kroute.u.msi.data = le32_to_cpu(msg.data);
1245    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1246        return -EINVAL;
1247    }
1248
1249    return kvm_update_routing_entry(s, &kroute);
1250}
1251
1252static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1253                                    bool assign)
1254{
1255    struct kvm_irqfd irqfd = {
1256        .fd = fd,
1257        .gsi = virq,
1258        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1259    };
1260
1261    if (rfd != -1) {
1262        irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1263        irqfd.resamplefd = rfd;
1264    }
1265
1266    if (!kvm_irqfds_enabled()) {
1267        return -ENOSYS;
1268    }
1269
1270    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1271}
1272
1273int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1274{
1275    struct kvm_irq_routing_entry kroute = {};
1276    int virq;
1277
1278    if (!kvm_gsi_routing_enabled()) {
1279        return -ENOSYS;
1280    }
1281
1282    virq = kvm_irqchip_get_virq(s);
1283    if (virq < 0) {
1284        return virq;
1285    }
1286
1287    kroute.gsi = virq;
1288    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1289    kroute.flags = 0;
1290    kroute.u.adapter.summary_addr = adapter->summary_addr;
1291    kroute.u.adapter.ind_addr = adapter->ind_addr;
1292    kroute.u.adapter.summary_offset = adapter->summary_offset;
1293    kroute.u.adapter.ind_offset = adapter->ind_offset;
1294    kroute.u.adapter.adapter_id = adapter->adapter_id;
1295
1296    kvm_add_routing_entry(s, &kroute);
1297
1298    return virq;
1299}
1300
1301#else /* !KVM_CAP_IRQ_ROUTING */
1302
1303void kvm_init_irq_routing(KVMState *s)
1304{
1305}
1306
1307void kvm_irqchip_release_virq(KVMState *s, int virq)
1308{
1309}
1310
1311int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1312{
1313    abort();
1314}
1315
1316int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1317{
1318    return -ENOSYS;
1319}
1320
1321int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1322{
1323    return -ENOSYS;
1324}
1325
1326static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1327{
1328    abort();
1329}
1330
1331int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1332{
1333    return -ENOSYS;
1334}
1335#endif /* !KVM_CAP_IRQ_ROUTING */
1336
1337int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1338                                       EventNotifier *rn, int virq)
1339{
1340    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1341           rn ? event_notifier_get_fd(rn) : -1, virq, true);
1342}
1343
1344int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1345                                          int virq)
1346{
1347    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1348           false);
1349}
1350
1351int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1352                                   EventNotifier *rn, qemu_irq irq)
1353{
1354    gpointer key, gsi;
1355    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1356
1357    if (!found) {
1358        return -ENXIO;
1359    }
1360    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1361}
1362
1363int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1364                                      qemu_irq irq)
1365{
1366    gpointer key, gsi;
1367    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1368
1369    if (!found) {
1370        return -ENXIO;
1371    }
1372    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1373}
1374
1375void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1376{
1377    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1378}
1379
1380static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1381{
1382    int ret;
1383
1384    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1385        ;
1386    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1387        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1388        if (ret < 0) {
1389            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1390            exit(1);
1391        }
1392    } else {
1393        return;
1394    }
1395
1396    /* First probe and see if there's a arch-specific hook to create the
1397     * in-kernel irqchip for us */
1398    ret = kvm_arch_irqchip_create(s);
1399    if (ret == 0) {
1400        ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1401    }
1402    if (ret < 0) {
1403        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1404        exit(1);
1405    }
1406
1407    kvm_kernel_irqchip = true;
1408    /* If we have an in-kernel IRQ chip then we must have asynchronous
1409     * interrupt delivery (though the reverse is not necessarily true)
1410     */
1411    kvm_async_interrupts_allowed = true;
1412    kvm_halt_in_kernel_allowed = true;
1413
1414    kvm_init_irq_routing(s);
1415
1416    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1417}
1418
1419/* Find number of supported CPUs using the recommended
1420 * procedure from the kernel API documentation to cope with
1421 * older kernels that may be missing capabilities.
1422 */
1423static int kvm_recommended_vcpus(KVMState *s)
1424{
1425    int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1426    return (ret) ? ret : 4;
1427}
1428
1429static int kvm_max_vcpus(KVMState *s)
1430{
1431    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1432    return (ret) ? ret : kvm_recommended_vcpus(s);
1433}
1434
1435static int kvm_init(MachineState *ms)
1436{
1437    MachineClass *mc = MACHINE_GET_CLASS(ms);
1438    static const char upgrade_note[] =
1439        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1440        "(see http://sourceforge.net/projects/kvm).\n";
1441    struct {
1442        const char *name;
1443        int num;
1444    } num_cpus[] = {
1445        { "SMP",          smp_cpus },
1446        { "hotpluggable", max_cpus },
1447        { NULL, }
1448    }, *nc = num_cpus;
1449    int soft_vcpus_limit, hard_vcpus_limit;
1450    KVMState *s;
1451    const KVMCapabilityInfo *missing_cap;
1452    int ret;
1453    int type = 0;
1454    const char *kvm_type;
1455
1456    s = KVM_STATE(ms->accelerator);
1457
1458    /*
1459     * On systems where the kernel can support different base page
1460     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1461     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1462     * page size for the system though.
1463     */
1464    assert(TARGET_PAGE_SIZE <= getpagesize());
1465
1466    s->sigmask_len = 8;
1467
1468#ifdef KVM_CAP_SET_GUEST_DEBUG
1469    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1470#endif
1471    s->vmfd = -1;
1472    s->fd = qemu_open("/dev/kvm", O_RDWR);
1473    if (s->fd == -1) {
1474        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1475        ret = -errno;
1476        goto err;
1477    }
1478
1479    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1480    if (ret < KVM_API_VERSION) {
1481        if (ret >= 0) {
1482            ret = -EINVAL;
1483        }
1484        fprintf(stderr, "kvm version too old\n");
1485        goto err;
1486    }
1487
1488    if (ret > KVM_API_VERSION) {
1489        ret = -EINVAL;
1490        fprintf(stderr, "kvm version not supported\n");
1491        goto err;
1492    }
1493
1494    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1495
1496    /* If unspecified, use the default value */
1497    if (!s->nr_slots) {
1498        s->nr_slots = 32;
1499    }
1500
1501    /* check the vcpu limits */
1502    soft_vcpus_limit = kvm_recommended_vcpus(s);
1503    hard_vcpus_limit = kvm_max_vcpus(s);
1504
1505    while (nc->name) {
1506        if (nc->num > soft_vcpus_limit) {
1507            fprintf(stderr,
1508                    "Warning: Number of %s cpus requested (%d) exceeds "
1509                    "the recommended cpus supported by KVM (%d)\n",
1510                    nc->name, nc->num, soft_vcpus_limit);
1511
1512            if (nc->num > hard_vcpus_limit) {
1513                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1514                        "the maximum cpus supported by KVM (%d)\n",
1515                        nc->name, nc->num, hard_vcpus_limit);
1516                exit(1);
1517            }
1518        }
1519        nc++;
1520    }
1521
1522    kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1523    if (mc->kvm_type) {
1524        type = mc->kvm_type(kvm_type);
1525    } else if (kvm_type) {
1526        ret = -EINVAL;
1527        fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1528        goto err;
1529    }
1530
1531    do {
1532        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1533    } while (ret == -EINTR);
1534
1535    if (ret < 0) {
1536        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1537                strerror(-ret));
1538
1539#ifdef TARGET_S390X
1540        if (ret == -EINVAL) {
1541            fprintf(stderr,
1542                    "Host kernel setup problem detected. Please verify:\n");
1543            fprintf(stderr, "- for kernels supporting the switch_amode or"
1544                    " user_mode parameters, whether\n");
1545            fprintf(stderr,
1546                    "  user space is running in primary address space\n");
1547            fprintf(stderr,
1548                    "- for kernels supporting the vm.allocate_pgste sysctl, "
1549                    "whether it is enabled\n");
1550        }
1551#endif
1552        goto err;
1553    }
1554
1555    s->vmfd = ret;
1556    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1557    if (!missing_cap) {
1558        missing_cap =
1559            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1560    }
1561    if (missing_cap) {
1562        ret = -EINVAL;
1563        fprintf(stderr, "kvm does not support %s\n%s",
1564                missing_cap->name, upgrade_note);
1565        goto err;
1566    }
1567
1568    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1569
1570    s->broken_set_mem_region = 1;
1571    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1572    if (ret > 0) {
1573        s->broken_set_mem_region = 0;
1574    }
1575
1576#ifdef KVM_CAP_VCPU_EVENTS
1577    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1578#endif
1579
1580    s->robust_singlestep =
1581        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1582
1583#ifdef KVM_CAP_DEBUGREGS
1584    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1585#endif
1586
1587#ifdef KVM_CAP_IRQ_ROUTING
1588    kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1589#endif
1590
1591    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1592
1593    s->irq_set_ioctl = KVM_IRQ_LINE;
1594    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1595        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1596    }
1597
1598#ifdef KVM_CAP_READONLY_MEM
1599    kvm_readonly_mem_allowed =
1600        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1601#endif
1602
1603    kvm_eventfds_allowed =
1604        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1605
1606    kvm_irqfds_allowed =
1607        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1608
1609    kvm_resamplefds_allowed =
1610        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1611
1612    kvm_vm_attributes_allowed =
1613        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1614
1615    kvm_ioeventfd_any_length_allowed =
1616        (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1617
1618    ret = kvm_arch_init(ms, s);
1619    if (ret < 0) {
1620        goto err;
1621    }
1622
1623    if (machine_kernel_irqchip_allowed(ms)) {
1624        kvm_irqchip_create(ms, s);
1625    }
1626
1627    kvm_state = s;
1628
1629    s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1630    s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1631    s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1632    s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1633
1634    kvm_memory_listener_register(s, &s->memory_listener,
1635                                 &address_space_memory, 0);
1636    memory_listener_register(&kvm_io_listener,
1637                             &address_space_io);
1638
1639    s->many_ioeventfds = kvm_check_many_ioeventfds();
1640
1641    cpu_interrupt_handler = kvm_handle_interrupt;
1642
1643    return 0;
1644
1645err:
1646    assert(ret < 0);
1647    if (s->vmfd >= 0) {
1648        close(s->vmfd);
1649    }
1650    if (s->fd != -1) {
1651        close(s->fd);
1652    }
1653    g_free(s->memory_listener.slots);
1654
1655    return ret;
1656}
1657
1658void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1659{
1660    s->sigmask_len = sigmask_len;
1661}
1662
1663static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1664                          int size, uint32_t count)
1665{
1666    int i;
1667    uint8_t *ptr = data;
1668
1669    for (i = 0; i < count; i++) {
1670        address_space_rw(&address_space_io, port, attrs,
1671                         ptr, size,
1672                         direction == KVM_EXIT_IO_OUT);
1673        ptr += size;
1674    }
1675}
1676
1677static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1678{
1679    fprintf(stderr, "KVM internal error. Suberror: %d\n",
1680            run->internal.suberror);
1681
1682    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1683        int i;
1684
1685        for (i = 0; i < run->internal.ndata; ++i) {
1686            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1687                    i, (uint64_t)run->internal.data[i]);
1688        }
1689    }
1690    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1691        fprintf(stderr, "emulation failure\n");
1692        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1693            cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1694            return EXCP_INTERRUPT;
1695        }
1696    }
1697    /* FIXME: Should trigger a qmp message to let management know
1698     * something went wrong.
1699     */
1700    return -1;
1701}
1702
1703void kvm_flush_coalesced_mmio_buffer(void)
1704{
1705    KVMState *s = kvm_state;
1706
1707    if (s->coalesced_flush_in_progress) {
1708        return;
1709    }
1710
1711    s->coalesced_flush_in_progress = true;
1712
1713    if (s->coalesced_mmio_ring) {
1714        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1715        while (ring->first != ring->last) {
1716            struct kvm_coalesced_mmio *ent;
1717
1718            ent = &ring->coalesced_mmio[ring->first];
1719
1720            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1721            smp_wmb();
1722            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1723        }
1724    }
1725
1726    s->coalesced_flush_in_progress = false;
1727}
1728
1729static void do_kvm_cpu_synchronize_state(void *arg)
1730{
1731    CPUState *cpu = arg;
1732
1733    if (!cpu->kvm_vcpu_dirty) {
1734        kvm_arch_get_registers(cpu);
1735        cpu->kvm_vcpu_dirty = true;
1736    }
1737}
1738
1739void kvm_cpu_synchronize_state(CPUState *cpu)
1740{
1741    if (!cpu->kvm_vcpu_dirty) {
1742        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1743    }
1744}
1745
1746static void do_kvm_cpu_synchronize_post_reset(void *arg)
1747{
1748    CPUState *cpu = arg;
1749
1750    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1751    cpu->kvm_vcpu_dirty = false;
1752}
1753
1754void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1755{
1756    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1757}
1758
1759static void do_kvm_cpu_synchronize_post_init(void *arg)
1760{
1761    CPUState *cpu = arg;
1762
1763    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1764    cpu->kvm_vcpu_dirty = false;
1765}
1766
1767void kvm_cpu_synchronize_post_init(CPUState *cpu)
1768{
1769    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1770}
1771
1772int kvm_cpu_exec(CPUState *cpu)
1773{
1774    struct kvm_run *run = cpu->kvm_run;
1775    int ret, run_ret;
1776
1777    DPRINTF("kvm_cpu_exec()\n");
1778
1779    if (kvm_arch_process_async_events(cpu)) {
1780        cpu->exit_request = 0;
1781        return EXCP_HLT;
1782    }
1783
1784    qemu_mutex_unlock_iothread();
1785
1786    do {
1787        MemTxAttrs attrs;
1788
1789        if (cpu->kvm_vcpu_dirty) {
1790            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1791            cpu->kvm_vcpu_dirty = false;
1792        }
1793
1794        kvm_arch_pre_run(cpu, run);
1795        if (cpu->exit_request) {
1796            DPRINTF("interrupt exit requested\n");
1797            /*
1798             * KVM requires us to reenter the kernel after IO exits to complete
1799             * instruction emulation. This self-signal will ensure that we
1800             * leave ASAP again.
1801             */
1802            qemu_cpu_kick_self();
1803        }
1804
1805        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1806
1807        attrs = kvm_arch_post_run(cpu, run);
1808
1809        if (run_ret < 0) {
1810            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1811                DPRINTF("io window exit\n");
1812                ret = EXCP_INTERRUPT;
1813                break;
1814            }
1815            fprintf(stderr, "error: kvm run failed %s\n",
1816                    strerror(-run_ret));
1817#ifdef TARGET_PPC
1818            if (run_ret == -EBUSY) {
1819                fprintf(stderr,
1820                        "This is probably because your SMT is enabled.\n"
1821                        "VCPU can only run on primary threads with all "
1822                        "secondary threads offline.\n");
1823            }
1824#endif
1825            ret = -1;
1826            break;
1827        }
1828
1829        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1830        switch (run->exit_reason) {
1831        case KVM_EXIT_IO:
1832            DPRINTF("handle_io\n");
1833            /* Called outside BQL */
1834            kvm_handle_io(run->io.port, attrs,
1835                          (uint8_t *)run + run->io.data_offset,
1836                          run->io.direction,
1837                          run->io.size,
1838                          run->io.count);
1839            ret = 0;
1840            break;
1841        case KVM_EXIT_MMIO:
1842            DPRINTF("handle_mmio\n");
1843            /* Called outside BQL */
1844            address_space_rw(&address_space_memory,
1845                             run->mmio.phys_addr, attrs,
1846                             run->mmio.data,
1847                             run->mmio.len,
1848                             run->mmio.is_write);
1849            ret = 0;
1850            break;
1851        case KVM_EXIT_IRQ_WINDOW_OPEN:
1852            DPRINTF("irq_window_open\n");
1853            ret = EXCP_INTERRUPT;
1854            break;
1855        case KVM_EXIT_SHUTDOWN:
1856            DPRINTF("shutdown\n");
1857            qemu_system_reset_request();
1858            ret = EXCP_INTERRUPT;
1859            break;
1860        case KVM_EXIT_UNKNOWN:
1861            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1862                    (uint64_t)run->hw.hardware_exit_reason);
1863            ret = -1;
1864            break;
1865        case KVM_EXIT_INTERNAL_ERROR:
1866            ret = kvm_handle_internal_error(cpu, run);
1867            break;
1868        case KVM_EXIT_SYSTEM_EVENT:
1869            switch (run->system_event.type) {
1870            case KVM_SYSTEM_EVENT_SHUTDOWN:
1871                qemu_system_shutdown_request();
1872                ret = EXCP_INTERRUPT;
1873                break;
1874            case KVM_SYSTEM_EVENT_RESET:
1875                qemu_system_reset_request();
1876                ret = EXCP_INTERRUPT;
1877                break;
1878            case KVM_SYSTEM_EVENT_CRASH:
1879                qemu_mutex_lock_iothread();
1880                qemu_system_guest_panicked();
1881                qemu_mutex_unlock_iothread();
1882                ret = 0;
1883                break;
1884            default:
1885                DPRINTF("kvm_arch_handle_exit\n");
1886                ret = kvm_arch_handle_exit(cpu, run);
1887                break;
1888            }
1889            break;
1890        default:
1891            DPRINTF("kvm_arch_handle_exit\n");
1892            ret = kvm_arch_handle_exit(cpu, run);
1893            break;
1894        }
1895    } while (ret == 0);
1896
1897    qemu_mutex_lock_iothread();
1898
1899    if (ret < 0) {
1900        cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1901        vm_stop(RUN_STATE_INTERNAL_ERROR);
1902    }
1903
1904    cpu->exit_request = 0;
1905    return ret;
1906}
1907
1908int kvm_ioctl(KVMState *s, int type, ...)
1909{
1910    int ret;
1911    void *arg;
1912    va_list ap;
1913
1914    va_start(ap, type);
1915    arg = va_arg(ap, void *);
1916    va_end(ap);
1917
1918    trace_kvm_ioctl(type, arg);
1919    ret = ioctl(s->fd, type, arg);
1920    if (ret == -1) {
1921        ret = -errno;
1922    }
1923    return ret;
1924}
1925
1926int kvm_vm_ioctl(KVMState *s, int type, ...)
1927{
1928    int ret;
1929    void *arg;
1930    va_list ap;
1931
1932    va_start(ap, type);
1933    arg = va_arg(ap, void *);
1934    va_end(ap);
1935
1936    trace_kvm_vm_ioctl(type, arg);
1937    ret = ioctl(s->vmfd, type, arg);
1938    if (ret == -1) {
1939        ret = -errno;
1940    }
1941    return ret;
1942}
1943
1944int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1945{
1946    int ret;
1947    void *arg;
1948    va_list ap;
1949
1950    va_start(ap, type);
1951    arg = va_arg(ap, void *);
1952    va_end(ap);
1953
1954    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1955    ret = ioctl(cpu->kvm_fd, type, arg);
1956    if (ret == -1) {
1957        ret = -errno;
1958    }
1959    return ret;
1960}
1961
1962int kvm_device_ioctl(int fd, int type, ...)
1963{
1964    int ret;
1965    void *arg;
1966    va_list ap;
1967
1968    va_start(ap, type);
1969    arg = va_arg(ap, void *);
1970    va_end(ap);
1971
1972    trace_kvm_device_ioctl(fd, type, arg);
1973    ret = ioctl(fd, type, arg);
1974    if (ret == -1) {
1975        ret = -errno;
1976    }
1977    return ret;
1978}
1979
1980int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1981{
1982    int ret;
1983    struct kvm_device_attr attribute = {
1984        .group = group,
1985        .attr = attr,
1986    };
1987
1988    if (!kvm_vm_attributes_allowed) {
1989        return 0;
1990    }
1991
1992    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1993    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1994    return ret ? 0 : 1;
1995}
1996
1997int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1998{
1999    struct kvm_device_attr attribute = {
2000        .group = group,
2001        .attr = attr,
2002        .flags = 0,
2003    };
2004
2005    return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2006}
2007
2008void kvm_device_access(int fd, int group, uint64_t attr,
2009                       void *val, bool write)
2010{
2011    struct kvm_device_attr kvmattr;
2012    int err;
2013
2014    kvmattr.flags = 0;
2015    kvmattr.group = group;
2016    kvmattr.attr = attr;
2017    kvmattr.addr = (uintptr_t)val;
2018
2019    err = kvm_device_ioctl(fd,
2020                           write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2021                           &kvmattr);
2022    if (err < 0) {
2023        error_report("KVM_%s_DEVICE_ATTR failed: %s\n"
2024                     "Group %d attr 0x%016" PRIx64, write ? "SET" : "GET",
2025                     strerror(-err), group, attr);
2026        abort();
2027    }
2028}
2029
2030int kvm_has_sync_mmu(void)
2031{
2032    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2033}
2034
2035int kvm_has_vcpu_events(void)
2036{
2037    return kvm_state->vcpu_events;
2038}
2039
2040int kvm_has_robust_singlestep(void)
2041{
2042    return kvm_state->robust_singlestep;
2043}
2044
2045int kvm_has_debugregs(void)
2046{
2047    return kvm_state->debugregs;
2048}
2049
2050int kvm_has_many_ioeventfds(void)
2051{
2052    if (!kvm_enabled()) {
2053        return 0;
2054    }
2055    return kvm_state->many_ioeventfds;
2056}
2057
2058int kvm_has_gsi_routing(void)
2059{
2060#ifdef KVM_CAP_IRQ_ROUTING
2061    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2062#else
2063    return false;
2064#endif
2065}
2066
2067int kvm_has_intx_set_mask(void)
2068{
2069    return kvm_state->intx_set_mask;
2070}
2071
2072void kvm_setup_guest_memory(void *start, size_t size)
2073{
2074    if (!kvm_has_sync_mmu()) {
2075        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2076
2077        if (ret) {
2078            perror("qemu_madvise");
2079            fprintf(stderr,
2080                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2081            exit(1);
2082        }
2083    }
2084}
2085
2086#ifdef KVM_CAP_SET_GUEST_DEBUG
2087struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2088                                                 target_ulong pc)
2089{
2090    struct kvm_sw_breakpoint *bp;
2091
2092    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2093        if (bp->pc == pc) {
2094            return bp;
2095        }
2096    }
2097    return NULL;
2098}
2099
2100int kvm_sw_breakpoints_active(CPUState *cpu)
2101{
2102    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2103}
2104
2105struct kvm_set_guest_debug_data {
2106    struct kvm_guest_debug dbg;
2107    CPUState *cpu;
2108    int err;
2109};
2110
2111static void kvm_invoke_set_guest_debug(void *data)
2112{
2113    struct kvm_set_guest_debug_data *dbg_data = data;
2114
2115    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2116                                   &dbg_data->dbg);
2117}
2118
2119int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2120{
2121    struct kvm_set_guest_debug_data data;
2122
2123    data.dbg.control = reinject_trap;
2124
2125    if (cpu->singlestep_enabled) {
2126        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2127    }
2128    kvm_arch_update_guest_debug(cpu, &data.dbg);
2129    data.cpu = cpu;
2130
2131    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2132    return data.err;
2133}
2134
2135int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2136                          target_ulong len, int type)
2137{
2138    struct kvm_sw_breakpoint *bp;
2139    int err;
2140
2141    if (type == GDB_BREAKPOINT_SW) {
2142        bp = kvm_find_sw_breakpoint(cpu, addr);
2143        if (bp) {
2144            bp->use_count++;
2145            return 0;
2146        }
2147
2148        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2149        bp->pc = addr;
2150        bp->use_count = 1;
2151        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2152        if (err) {
2153            g_free(bp);
2154            return err;
2155        }
2156
2157        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2158    } else {
2159        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2160        if (err) {
2161            return err;
2162        }
2163    }
2164
2165    CPU_FOREACH(cpu) {
2166        err = kvm_update_guest_debug(cpu, 0);
2167        if (err) {
2168            return err;
2169        }
2170    }
2171    return 0;
2172}
2173
2174int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2175                          target_ulong len, int type)
2176{
2177    struct kvm_sw_breakpoint *bp;
2178    int err;
2179
2180    if (type == GDB_BREAKPOINT_SW) {
2181        bp = kvm_find_sw_breakpoint(cpu, addr);
2182        if (!bp) {
2183            return -ENOENT;
2184        }
2185
2186        if (bp->use_count > 1) {
2187            bp->use_count--;
2188            return 0;
2189        }
2190
2191        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2192        if (err) {
2193            return err;
2194        }
2195
2196        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2197        g_free(bp);
2198    } else {
2199        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2200        if (err) {
2201            return err;
2202        }
2203    }
2204
2205    CPU_FOREACH(cpu) {
2206        err = kvm_update_guest_debug(cpu, 0);
2207        if (err) {
2208            return err;
2209        }
2210    }
2211    return 0;
2212}
2213
2214void kvm_remove_all_breakpoints(CPUState *cpu)
2215{
2216    struct kvm_sw_breakpoint *bp, *next;
2217    KVMState *s = cpu->kvm_state;
2218    CPUState *tmpcpu;
2219
2220    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2221        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2222            /* Try harder to find a CPU that currently sees the breakpoint. */
2223            CPU_FOREACH(tmpcpu) {
2224                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2225                    break;
2226                }
2227            }
2228        }
2229        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2230        g_free(bp);
2231    }
2232    kvm_arch_remove_all_hw_breakpoints();
2233
2234    CPU_FOREACH(cpu) {
2235        kvm_update_guest_debug(cpu, 0);
2236    }
2237}
2238
2239#else /* !KVM_CAP_SET_GUEST_DEBUG */
2240
2241int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2242{
2243    return -EINVAL;
2244}
2245
2246int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2247                          target_ulong len, int type)
2248{
2249    return -EINVAL;
2250}
2251
2252int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2253                          target_ulong len, int type)
2254{
2255    return -EINVAL;
2256}
2257
2258void kvm_remove_all_breakpoints(CPUState *cpu)
2259{
2260}
2261#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2262
2263int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2264{
2265    KVMState *s = kvm_state;
2266    struct kvm_signal_mask *sigmask;
2267    int r;
2268
2269    if (!sigset) {
2270        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2271    }
2272
2273    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2274
2275    sigmask->len = s->sigmask_len;
2276    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2277    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2278    g_free(sigmask);
2279
2280    return r;
2281}
2282int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2283{
2284    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2285}
2286
2287int kvm_on_sigbus(int code, void *addr)
2288{
2289    return kvm_arch_on_sigbus(code, addr);
2290}
2291
2292int kvm_create_device(KVMState *s, uint64_t type, bool test)
2293{
2294    int ret;
2295    struct kvm_create_device create_dev;
2296
2297    create_dev.type = type;
2298    create_dev.fd = -1;
2299    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2300
2301    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2302        return -ENOTSUP;
2303    }
2304
2305    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2306    if (ret) {
2307        return ret;
2308    }
2309
2310    return test ? 0 : create_dev.fd;
2311}
2312
2313int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2314{
2315    struct kvm_one_reg reg;
2316    int r;
2317
2318    reg.id = id;
2319    reg.addr = (uintptr_t) source;
2320    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2321    if (r) {
2322        trace_kvm_failed_reg_set(id, strerror(r));
2323    }
2324    return r;
2325}
2326
2327int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2328{
2329    struct kvm_one_reg reg;
2330    int r;
2331
2332    reg.id = id;
2333    reg.addr = (uintptr_t) target;
2334    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2335    if (r) {
2336        trace_kvm_failed_reg_get(id, strerror(r));
2337    }
2338    return r;
2339}
2340
2341static void kvm_accel_class_init(ObjectClass *oc, void *data)
2342{
2343    AccelClass *ac = ACCEL_CLASS(oc);
2344    ac->name = "KVM";
2345    ac->init_machine = kvm_init;
2346    ac->allowed = &kvm_allowed;
2347}
2348
2349static const TypeInfo kvm_accel_type = {
2350    .name = TYPE_KVM_ACCEL,
2351    .parent = TYPE_ACCEL,
2352    .class_init = kvm_accel_class_init,
2353    .instance_size = sizeof(KVMState),
2354};
2355
2356static void kvm_type_init(void)
2357{
2358    type_register_static(&kvm_accel_type);
2359}
2360
2361type_init(kvm_type_init);
2362