qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4
   5@documentlanguage en
   6@documentencoding UTF-8
   7
   8@settitle QEMU Emulator User Documentation
   9@exampleindent 0
  10@paragraphindent 0
  11@c %**end of header
  12
  13@ifinfo
  14@direntry
  15* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  16@end direntry
  17@end ifinfo
  18
  19@iftex
  20@titlepage
  21@sp 7
  22@center @titlefont{QEMU Emulator}
  23@sp 1
  24@center @titlefont{User Documentation}
  25@sp 3
  26@end titlepage
  27@end iftex
  28
  29@ifnottex
  30@node Top
  31@top
  32
  33@menu
  34* Introduction::
  35* Installation::
  36* QEMU PC System emulator::
  37* QEMU System emulator for non PC targets::
  38* QEMU User space emulator::
  39* compilation:: Compilation from the sources
  40* License::
  41* Index::
  42@end menu
  43@end ifnottex
  44
  45@contents
  46
  47@node Introduction
  48@chapter Introduction
  49
  50@menu
  51* intro_features:: Features
  52@end menu
  53
  54@node intro_features
  55@section Features
  56
  57QEMU is a FAST! processor emulator using dynamic translation to
  58achieve good emulation speed.
  59
  60QEMU has two operating modes:
  61
  62@itemize
  63@cindex operating modes
  64
  65@item
  66@cindex system emulation
  67Full system emulation. In this mode, QEMU emulates a full system (for
  68example a PC), including one or several processors and various
  69peripherals. It can be used to launch different Operating Systems
  70without rebooting the PC or to debug system code.
  71
  72@item
  73@cindex user mode emulation
  74User mode emulation. In this mode, QEMU can launch
  75processes compiled for one CPU on another CPU. It can be used to
  76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
  77to ease cross-compilation and cross-debugging.
  78
  79@end itemize
  80
  81QEMU can run without a host kernel driver and yet gives acceptable
  82performance.
  83
  84For system emulation, the following hardware targets are supported:
  85@itemize
  86@cindex emulated target systems
  87@cindex supported target systems
  88@item PC (x86 or x86_64 processor)
  89@item ISA PC (old style PC without PCI bus)
  90@item PREP (PowerPC processor)
  91@item G3 Beige PowerMac (PowerPC processor)
  92@item Mac99 PowerMac (PowerPC processor, in progress)
  93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
  94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
  95@item Malta board (32-bit and 64-bit MIPS processors)
  96@item MIPS Magnum (64-bit MIPS processor)
  97@item ARM Integrator/CP (ARM)
  98@item ARM Versatile baseboard (ARM)
  99@item ARM RealView Emulation/Platform baseboard (ARM)
 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
 101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
 102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
 103@item Freescale MCF5208EVB (ColdFire V2).
 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
 105@item Palm Tungsten|E PDA (OMAP310 processor)
 106@item N800 and N810 tablets (OMAP2420 processor)
 107@item MusicPal (MV88W8618 ARM processor)
 108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
 109@item Siemens SX1 smartphone (OMAP310 processor)
 110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
 111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
 113@end itemize
 114
 115@cindex supported user mode targets
 116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
 117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
 118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
 119
 120@node Installation
 121@chapter Installation
 122
 123If you want to compile QEMU yourself, see @ref{compilation}.
 124
 125@menu
 126* install_linux::   Linux
 127* install_windows:: Windows
 128* install_mac::     Macintosh
 129@end menu
 130
 131@node install_linux
 132@section Linux
 133@cindex installation (Linux)
 134
 135If a precompiled package is available for your distribution - you just
 136have to install it. Otherwise, see @ref{compilation}.
 137
 138@node install_windows
 139@section Windows
 140@cindex installation (Windows)
 141
 142Download the experimental binary installer at
 143@url{http://www.free.oszoo.org/@/download.html}.
 144TODO (no longer available)
 145
 146@node install_mac
 147@section Mac OS X
 148
 149Download the experimental binary installer at
 150@url{http://www.free.oszoo.org/@/download.html}.
 151TODO (no longer available)
 152
 153@node QEMU PC System emulator
 154@chapter QEMU PC System emulator
 155@cindex system emulation (PC)
 156
 157@menu
 158* pcsys_introduction:: Introduction
 159* pcsys_quickstart::   Quick Start
 160* sec_invocation::     Invocation
 161* pcsys_keys::         Keys
 162* pcsys_monitor::      QEMU Monitor
 163* disk_images::        Disk Images
 164* pcsys_network::      Network emulation
 165* pcsys_other_devs::   Other Devices
 166* direct_linux_boot::  Direct Linux Boot
 167* pcsys_usb::          USB emulation
 168* vnc_security::       VNC security
 169* gdb_usage::          GDB usage
 170* pcsys_os_specific::  Target OS specific information
 171@end menu
 172
 173@node pcsys_introduction
 174@section Introduction
 175
 176@c man begin DESCRIPTION
 177
 178The QEMU PC System emulator simulates the
 179following peripherals:
 180
 181@itemize @minus
 182@item
 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 184@item
 185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 186extensions (hardware level, including all non standard modes).
 187@item
 188PS/2 mouse and keyboard
 189@item
 1902 PCI IDE interfaces with hard disk and CD-ROM support
 191@item
 192Floppy disk
 193@item
 194PCI and ISA network adapters
 195@item
 196Serial ports
 197@item
 198Creative SoundBlaster 16 sound card
 199@item
 200ENSONIQ AudioPCI ES1370 sound card
 201@item
 202Intel 82801AA AC97 Audio compatible sound card
 203@item
 204Intel HD Audio Controller and HDA codec
 205@item
 206Adlib (OPL2) - Yamaha YM3812 compatible chip
 207@item
 208Gravis Ultrasound GF1 sound card
 209@item
 210CS4231A compatible sound card
 211@item
 212PCI UHCI USB controller and a virtual USB hub.
 213@end itemize
 214
 215SMP is supported with up to 255 CPUs.
 216
 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
 218VGA BIOS.
 219
 220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 221
 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 223by Tibor "TS" Schütz.
 224
 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
 226QEMU must be told to not have parallel ports to have working GUS.
 227
 228@example
 229qemu-system-i386 dos.img -soundhw gus -parallel none
 230@end example
 231
 232Alternatively:
 233@example
 234qemu-system-i386 dos.img -device gus,irq=5
 235@end example
 236
 237Or some other unclaimed IRQ.
 238
 239CS4231A is the chip used in Windows Sound System and GUSMAX products
 240
 241@c man end
 242
 243@node pcsys_quickstart
 244@section Quick Start
 245@cindex quick start
 246
 247Download and uncompress the linux image (@file{linux.img}) and type:
 248
 249@example
 250qemu-system-i386 linux.img
 251@end example
 252
 253Linux should boot and give you a prompt.
 254
 255@node sec_invocation
 256@section Invocation
 257
 258@example
 259@c man begin SYNOPSIS
 260usage: qemu-system-i386 [options] [@var{disk_image}]
 261@c man end
 262@end example
 263
 264@c man begin OPTIONS
 265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 266targets do not need a disk image.
 267
 268@include qemu-options.texi
 269
 270@c man end
 271
 272@node pcsys_keys
 273@section Keys
 274
 275@c man begin OPTIONS
 276
 277During the graphical emulation, you can use special key combinations to change
 278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 281
 282@table @key
 283@item Ctrl-Alt-f
 284@kindex Ctrl-Alt-f
 285Toggle full screen
 286
 287@item Ctrl-Alt-+
 288@kindex Ctrl-Alt-+
 289Enlarge the screen
 290
 291@item Ctrl-Alt--
 292@kindex Ctrl-Alt--
 293Shrink the screen
 294
 295@item Ctrl-Alt-u
 296@kindex Ctrl-Alt-u
 297Restore the screen's un-scaled dimensions
 298
 299@item Ctrl-Alt-n
 300@kindex Ctrl-Alt-n
 301Switch to virtual console 'n'. Standard console mappings are:
 302@table @emph
 303@item 1
 304Target system display
 305@item 2
 306Monitor
 307@item 3
 308Serial port
 309@end table
 310
 311@item Ctrl-Alt
 312@kindex Ctrl-Alt
 313Toggle mouse and keyboard grab.
 314@end table
 315
 316@kindex Ctrl-Up
 317@kindex Ctrl-Down
 318@kindex Ctrl-PageUp
 319@kindex Ctrl-PageDown
 320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 322
 323@kindex Ctrl-a h
 324During emulation, if you are using the @option{-nographic} option, use
 325@key{Ctrl-a h} to get terminal commands:
 326
 327@table @key
 328@item Ctrl-a h
 329@kindex Ctrl-a h
 330@item Ctrl-a ?
 331@kindex Ctrl-a ?
 332Print this help
 333@item Ctrl-a x
 334@kindex Ctrl-a x
 335Exit emulator
 336@item Ctrl-a s
 337@kindex Ctrl-a s
 338Save disk data back to file (if -snapshot)
 339@item Ctrl-a t
 340@kindex Ctrl-a t
 341Toggle console timestamps
 342@item Ctrl-a b
 343@kindex Ctrl-a b
 344Send break (magic sysrq in Linux)
 345@item Ctrl-a c
 346@kindex Ctrl-a c
 347Switch between console and monitor
 348@item Ctrl-a Ctrl-a
 349@kindex Ctrl-a a
 350Send Ctrl-a
 351@end table
 352@c man end
 353
 354@ignore
 355
 356@c man begin SEEALSO
 357The HTML documentation of QEMU for more precise information and Linux
 358user mode emulator invocation.
 359@c man end
 360
 361@c man begin AUTHOR
 362Fabrice Bellard
 363@c man end
 364
 365@end ignore
 366
 367@node pcsys_monitor
 368@section QEMU Monitor
 369@cindex QEMU monitor
 370
 371The QEMU monitor is used to give complex commands to the QEMU
 372emulator. You can use it to:
 373
 374@itemize @minus
 375
 376@item
 377Remove or insert removable media images
 378(such as CD-ROM or floppies).
 379
 380@item
 381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 382from a disk file.
 383
 384@item Inspect the VM state without an external debugger.
 385
 386@end itemize
 387
 388@subsection Commands
 389
 390The following commands are available:
 391
 392@include qemu-monitor.texi
 393
 394@include qemu-monitor-info.texi
 395
 396@subsection Integer expressions
 397
 398The monitor understands integers expressions for every integer
 399argument. You can use register names to get the value of specifics
 400CPU registers by prefixing them with @emph{$}.
 401
 402@node disk_images
 403@section Disk Images
 404
 405Since version 0.6.1, QEMU supports many disk image formats, including
 406growable disk images (their size increase as non empty sectors are
 407written), compressed and encrypted disk images. Version 0.8.3 added
 408the new qcow2 disk image format which is essential to support VM
 409snapshots.
 410
 411@menu
 412* disk_images_quickstart::    Quick start for disk image creation
 413* disk_images_snapshot_mode:: Snapshot mode
 414* vm_snapshots::              VM snapshots
 415* qemu_img_invocation::       qemu-img Invocation
 416* qemu_nbd_invocation::       qemu-nbd Invocation
 417* qemu_ga_invocation::        qemu-ga Invocation
 418* disk_images_formats::       Disk image file formats
 419* host_drives::               Using host drives
 420* disk_images_fat_images::    Virtual FAT disk images
 421* disk_images_nbd::           NBD access
 422* disk_images_sheepdog::      Sheepdog disk images
 423* disk_images_iscsi::         iSCSI LUNs
 424* disk_images_gluster::       GlusterFS disk images
 425* disk_images_ssh::           Secure Shell (ssh) disk images
 426@end menu
 427
 428@node disk_images_quickstart
 429@subsection Quick start for disk image creation
 430
 431You can create a disk image with the command:
 432@example
 433qemu-img create myimage.img mysize
 434@end example
 435where @var{myimage.img} is the disk image filename and @var{mysize} is its
 436size in kilobytes. You can add an @code{M} suffix to give the size in
 437megabytes and a @code{G} suffix for gigabytes.
 438
 439See @ref{qemu_img_invocation} for more information.
 440
 441@node disk_images_snapshot_mode
 442@subsection Snapshot mode
 443
 444If you use the option @option{-snapshot}, all disk images are
 445considered as read only. When sectors in written, they are written in
 446a temporary file created in @file{/tmp}. You can however force the
 447write back to the raw disk images by using the @code{commit} monitor
 448command (or @key{C-a s} in the serial console).
 449
 450@node vm_snapshots
 451@subsection VM snapshots
 452
 453VM snapshots are snapshots of the complete virtual machine including
 454CPU state, RAM, device state and the content of all the writable
 455disks. In order to use VM snapshots, you must have at least one non
 456removable and writable block device using the @code{qcow2} disk image
 457format. Normally this device is the first virtual hard drive.
 458
 459Use the monitor command @code{savevm} to create a new VM snapshot or
 460replace an existing one. A human readable name can be assigned to each
 461snapshot in addition to its numerical ID.
 462
 463Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 464a VM snapshot. @code{info snapshots} lists the available snapshots
 465with their associated information:
 466
 467@example
 468(qemu) info snapshots
 469Snapshot devices: hda
 470Snapshot list (from hda):
 471ID        TAG                 VM SIZE                DATE       VM CLOCK
 4721         start                   41M 2006-08-06 12:38:02   00:00:14.954
 4732                                 40M 2006-08-06 12:43:29   00:00:18.633
 4743         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 475@end example
 476
 477A VM snapshot is made of a VM state info (its size is shown in
 478@code{info snapshots}) and a snapshot of every writable disk image.
 479The VM state info is stored in the first @code{qcow2} non removable
 480and writable block device. The disk image snapshots are stored in
 481every disk image. The size of a snapshot in a disk image is difficult
 482to evaluate and is not shown by @code{info snapshots} because the
 483associated disk sectors are shared among all the snapshots to save
 484disk space (otherwise each snapshot would need a full copy of all the
 485disk images).
 486
 487When using the (unrelated) @code{-snapshot} option
 488(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 489but they are deleted as soon as you exit QEMU.
 490
 491VM snapshots currently have the following known limitations:
 492@itemize
 493@item
 494They cannot cope with removable devices if they are removed or
 495inserted after a snapshot is done.
 496@item
 497A few device drivers still have incomplete snapshot support so their
 498state is not saved or restored properly (in particular USB).
 499@end itemize
 500
 501@node qemu_img_invocation
 502@subsection @code{qemu-img} Invocation
 503
 504@include qemu-img.texi
 505
 506@node qemu_nbd_invocation
 507@subsection @code{qemu-nbd} Invocation
 508
 509@include qemu-nbd.texi
 510
 511@node qemu_ga_invocation
 512@subsection @code{qemu-ga} Invocation
 513
 514@include qemu-ga.texi
 515
 516@node disk_images_formats
 517@subsection Disk image file formats
 518
 519QEMU supports many image file formats that can be used with VMs as well as with
 520any of the tools (like @code{qemu-img}). This includes the preferred formats
 521raw and qcow2 as well as formats that are supported for compatibility with
 522older QEMU versions or other hypervisors.
 523
 524Depending on the image format, different options can be passed to
 525@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
 526This section describes each format and the options that are supported for it.
 527
 528@table @option
 529@item raw
 530
 531Raw disk image format. This format has the advantage of
 532being simple and easily exportable to all other emulators. If your
 533file system supports @emph{holes} (for example in ext2 or ext3 on
 534Linux or NTFS on Windows), then only the written sectors will reserve
 535space. Use @code{qemu-img info} to know the real size used by the
 536image or @code{ls -ls} on Unix/Linux.
 537
 538Supported options:
 539@table @code
 540@item preallocation
 541Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
 542@code{falloc} mode preallocates space for image by calling posix_fallocate().
 543@code{full} mode preallocates space for image by writing zeros to underlying
 544storage.
 545@end table
 546
 547@item qcow2
 548QEMU image format, the most versatile format. Use it to have smaller
 549images (useful if your filesystem does not supports holes, for example
 550on Windows), zlib based compression and support of multiple VM
 551snapshots.
 552
 553Supported options:
 554@table @code
 555@item compat
 556Determines the qcow2 version to use. @code{compat=0.10} uses the
 557traditional image format that can be read by any QEMU since 0.10.
 558@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
 559newer understand (this is the default). Amongst others, this includes
 560zero clusters, which allow efficient copy-on-read for sparse images.
 561
 562@item backing_file
 563File name of a base image (see @option{create} subcommand)
 564@item backing_fmt
 565Image format of the base image
 566@item encryption
 567If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
 568
 569The use of encryption in qcow and qcow2 images is considered to be flawed by
 570modern cryptography standards, suffering from a number of design problems:
 571
 572@itemize @minus
 573@item The AES-CBC cipher is used with predictable initialization vectors based
 574on the sector number. This makes it vulnerable to chosen plaintext attacks
 575which can reveal the existence of encrypted data.
 576@item The user passphrase is directly used as the encryption key. A poorly
 577chosen or short passphrase will compromise the security of the encryption.
 578@item In the event of the passphrase being compromised there is no way to
 579change the passphrase to protect data in any qcow images. The files must
 580be cloned, using a different encryption passphrase in the new file. The
 581original file must then be securely erased using a program like shred,
 582though even this is ineffective with many modern storage technologies.
 583@end itemize
 584
 585Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
 586it will go away in a future release.  Users are recommended to use an
 587alternative encryption technology such as the Linux dm-crypt / LUKS
 588system.
 589
 590@item cluster_size
 591Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
 592sizes can improve the image file size whereas larger cluster sizes generally
 593provide better performance.
 594
 595@item preallocation
 596Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
 597@code{full}). An image with preallocated metadata is initially larger but can
 598improve performance when the image needs to grow. @code{falloc} and @code{full}
 599preallocations are like the same options of @code{raw} format, but sets up
 600metadata also.
 601
 602@item lazy_refcounts
 603If this option is set to @code{on}, reference count updates are postponed with
 604the goal of avoiding metadata I/O and improving performance. This is
 605particularly interesting with @option{cache=writethrough} which doesn't batch
 606metadata updates. The tradeoff is that after a host crash, the reference count
 607tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
 608check -r all} is required, which may take some time.
 609
 610This option can only be enabled if @code{compat=1.1} is specified.
 611
 612@item nocow
 613If this option is set to @code{on}, it will turn off COW of the file. It's only
 614valid on btrfs, no effect on other file systems.
 615
 616Btrfs has low performance when hosting a VM image file, even more when the guest
 617on the VM also using btrfs as file system. Turning off COW is a way to mitigate
 618this bad performance. Generally there are two ways to turn off COW on btrfs:
 619a) Disable it by mounting with nodatacow, then all newly created files will be
 620NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
 621does.
 622
 623Note: this option is only valid to new or empty files. If there is an existing
 624file which is COW and has data blocks already, it couldn't be changed to NOCOW
 625by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
 626the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
 627
 628@end table
 629
 630@item qed
 631Old QEMU image format with support for backing files and compact image files
 632(when your filesystem or transport medium does not support holes).
 633
 634When converting QED images to qcow2, you might want to consider using the
 635@code{lazy_refcounts=on} option to get a more QED-like behaviour.
 636
 637Supported options:
 638@table @code
 639@item backing_file
 640File name of a base image (see @option{create} subcommand).
 641@item backing_fmt
 642Image file format of backing file (optional).  Useful if the format cannot be
 643autodetected because it has no header, like some vhd/vpc files.
 644@item cluster_size
 645Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
 646cluster sizes can improve the image file size whereas larger cluster sizes
 647generally provide better performance.
 648@item table_size
 649Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
 650and 16).  There is normally no need to change this value but this option can be
 651used for performance benchmarking.
 652@end table
 653
 654@item qcow
 655Old QEMU image format with support for backing files, compact image files,
 656encryption and compression.
 657
 658Supported options:
 659@table @code
 660@item backing_file
 661File name of a base image (see @option{create} subcommand)
 662@item encryption
 663If this option is set to @code{on}, the image is encrypted.
 664@end table
 665
 666@item vdi
 667VirtualBox 1.1 compatible image format.
 668Supported options:
 669@table @code
 670@item static
 671If this option is set to @code{on}, the image is created with metadata
 672preallocation.
 673@end table
 674
 675@item vmdk
 676VMware 3 and 4 compatible image format.
 677
 678Supported options:
 679@table @code
 680@item backing_file
 681File name of a base image (see @option{create} subcommand).
 682@item compat6
 683Create a VMDK version 6 image (instead of version 4)
 684@item subformat
 685Specifies which VMDK subformat to use. Valid options are
 686@code{monolithicSparse} (default),
 687@code{monolithicFlat},
 688@code{twoGbMaxExtentSparse},
 689@code{twoGbMaxExtentFlat} and
 690@code{streamOptimized}.
 691@end table
 692
 693@item vpc
 694VirtualPC compatible image format (VHD).
 695Supported options:
 696@table @code
 697@item subformat
 698Specifies which VHD subformat to use. Valid options are
 699@code{dynamic} (default) and @code{fixed}.
 700@end table
 701
 702@item VHDX
 703Hyper-V compatible image format (VHDX).
 704Supported options:
 705@table @code
 706@item subformat
 707Specifies which VHDX subformat to use. Valid options are
 708@code{dynamic} (default) and @code{fixed}.
 709@item block_state_zero
 710Force use of payload blocks of type 'ZERO'.  Can be set to @code{on} (default)
 711or @code{off}.  When set to @code{off}, new blocks will be created as
 712@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
 713arbitrary data for those blocks.  Do not set to @code{off} when using
 714@code{qemu-img convert} with @code{subformat=dynamic}.
 715@item block_size
 716Block size; min 1 MB, max 256 MB.  0 means auto-calculate based on image size.
 717@item log_size
 718Log size; min 1 MB.
 719@end table
 720@end table
 721
 722@subsubsection Read-only formats
 723More disk image file formats are supported in a read-only mode.
 724@table @option
 725@item bochs
 726Bochs images of @code{growing} type.
 727@item cloop
 728Linux Compressed Loop image, useful only to reuse directly compressed
 729CD-ROM images present for example in the Knoppix CD-ROMs.
 730@item dmg
 731Apple disk image.
 732@item parallels
 733Parallels disk image format.
 734@end table
 735
 736
 737@node host_drives
 738@subsection Using host drives
 739
 740In addition to disk image files, QEMU can directly access host
 741devices. We describe here the usage for QEMU version >= 0.8.3.
 742
 743@subsubsection Linux
 744
 745On Linux, you can directly use the host device filename instead of a
 746disk image filename provided you have enough privileges to access
 747it. For example, use @file{/dev/cdrom} to access to the CDROM.
 748
 749@table @code
 750@item CD
 751You can specify a CDROM device even if no CDROM is loaded. QEMU has
 752specific code to detect CDROM insertion or removal. CDROM ejection by
 753the guest OS is supported. Currently only data CDs are supported.
 754@item Floppy
 755You can specify a floppy device even if no floppy is loaded. Floppy
 756removal is currently not detected accurately (if you change floppy
 757without doing floppy access while the floppy is not loaded, the guest
 758OS will think that the same floppy is loaded).
 759Use of the host's floppy device is deprecated, and support for it will
 760be removed in a future release.
 761@item Hard disks
 762Hard disks can be used. Normally you must specify the whole disk
 763(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
 764see it as a partitioned disk. WARNING: unless you know what you do, it
 765is better to only make READ-ONLY accesses to the hard disk otherwise
 766you may corrupt your host data (use the @option{-snapshot} command
 767line option or modify the device permissions accordingly).
 768@end table
 769
 770@subsubsection Windows
 771
 772@table @code
 773@item CD
 774The preferred syntax is the drive letter (e.g. @file{d:}). The
 775alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
 776supported as an alias to the first CDROM drive.
 777
 778Currently there is no specific code to handle removable media, so it
 779is better to use the @code{change} or @code{eject} monitor commands to
 780change or eject media.
 781@item Hard disks
 782Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
 783where @var{N} is the drive number (0 is the first hard disk).
 784
 785WARNING: unless you know what you do, it is better to only make
 786READ-ONLY accesses to the hard disk otherwise you may corrupt your
 787host data (use the @option{-snapshot} command line so that the
 788modifications are written in a temporary file).
 789@end table
 790
 791
 792@subsubsection Mac OS X
 793
 794@file{/dev/cdrom} is an alias to the first CDROM.
 795
 796Currently there is no specific code to handle removable media, so it
 797is better to use the @code{change} or @code{eject} monitor commands to
 798change or eject media.
 799
 800@node disk_images_fat_images
 801@subsection Virtual FAT disk images
 802
 803QEMU can automatically create a virtual FAT disk image from a
 804directory tree. In order to use it, just type:
 805
 806@example
 807qemu-system-i386 linux.img -hdb fat:/my_directory
 808@end example
 809
 810Then you access access to all the files in the @file{/my_directory}
 811directory without having to copy them in a disk image or to export
 812them via SAMBA or NFS. The default access is @emph{read-only}.
 813
 814Floppies can be emulated with the @code{:floppy:} option:
 815
 816@example
 817qemu-system-i386 linux.img -fda fat:floppy:/my_directory
 818@end example
 819
 820A read/write support is available for testing (beta stage) with the
 821@code{:rw:} option:
 822
 823@example
 824qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
 825@end example
 826
 827What you should @emph{never} do:
 828@itemize
 829@item use non-ASCII filenames ;
 830@item use "-snapshot" together with ":rw:" ;
 831@item expect it to work when loadvm'ing ;
 832@item write to the FAT directory on the host system while accessing it with the guest system.
 833@end itemize
 834
 835@node disk_images_nbd
 836@subsection NBD access
 837
 838QEMU can access directly to block device exported using the Network Block Device
 839protocol.
 840
 841@example
 842qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
 843@end example
 844
 845If the NBD server is located on the same host, you can use an unix socket instead
 846of an inet socket:
 847
 848@example
 849qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
 850@end example
 851
 852In this case, the block device must be exported using qemu-nbd:
 853
 854@example
 855qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
 856@end example
 857
 858The use of qemu-nbd allows sharing of a disk between several guests:
 859@example
 860qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
 861@end example
 862
 863@noindent
 864and then you can use it with two guests:
 865@example
 866qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
 867qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
 868@end example
 869
 870If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
 871own embedded NBD server), you must specify an export name in the URI:
 872@example
 873qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
 874qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
 875@end example
 876
 877The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
 878also available.  Here are some example of the older syntax:
 879@example
 880qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
 881qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
 882qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
 883@end example
 884
 885@node disk_images_sheepdog
 886@subsection Sheepdog disk images
 887
 888Sheepdog is a distributed storage system for QEMU.  It provides highly
 889available block level storage volumes that can be attached to
 890QEMU-based virtual machines.
 891
 892You can create a Sheepdog disk image with the command:
 893@example
 894qemu-img create sheepdog:///@var{image} @var{size}
 895@end example
 896where @var{image} is the Sheepdog image name and @var{size} is its
 897size.
 898
 899To import the existing @var{filename} to Sheepdog, you can use a
 900convert command.
 901@example
 902qemu-img convert @var{filename} sheepdog:///@var{image}
 903@end example
 904
 905You can boot from the Sheepdog disk image with the command:
 906@example
 907qemu-system-i386 sheepdog:///@var{image}
 908@end example
 909
 910You can also create a snapshot of the Sheepdog image like qcow2.
 911@example
 912qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
 913@end example
 914where @var{tag} is a tag name of the newly created snapshot.
 915
 916To boot from the Sheepdog snapshot, specify the tag name of the
 917snapshot.
 918@example
 919qemu-system-i386 sheepdog:///@var{image}#@var{tag}
 920@end example
 921
 922You can create a cloned image from the existing snapshot.
 923@example
 924qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
 925@end example
 926where @var{base} is a image name of the source snapshot and @var{tag}
 927is its tag name.
 928
 929You can use an unix socket instead of an inet socket:
 930
 931@example
 932qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
 933@end example
 934
 935If the Sheepdog daemon doesn't run on the local host, you need to
 936specify one of the Sheepdog servers to connect to.
 937@example
 938qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
 939qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
 940@end example
 941
 942@node disk_images_iscsi
 943@subsection iSCSI LUNs
 944
 945iSCSI is a popular protocol used to access SCSI devices across a computer
 946network.
 947
 948There are two different ways iSCSI devices can be used by QEMU.
 949
 950The first method is to mount the iSCSI LUN on the host, and make it appear as
 951any other ordinary SCSI device on the host and then to access this device as a
 952/dev/sd device from QEMU. How to do this differs between host OSes.
 953
 954The second method involves using the iSCSI initiator that is built into
 955QEMU. This provides a mechanism that works the same way regardless of which
 956host OS you are running QEMU on. This section will describe this second method
 957of using iSCSI together with QEMU.
 958
 959In QEMU, iSCSI devices are described using special iSCSI URLs
 960
 961@example
 962URL syntax:
 963iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
 964@end example
 965
 966Username and password are optional and only used if your target is set up
 967using CHAP authentication for access control.
 968Alternatively the username and password can also be set via environment
 969variables to have these not show up in the process list
 970
 971@example
 972export LIBISCSI_CHAP_USERNAME=<username>
 973export LIBISCSI_CHAP_PASSWORD=<password>
 974iscsi://<host>/<target-iqn-name>/<lun>
 975@end example
 976
 977Various session related parameters can be set via special options, either
 978in a configuration file provided via '-readconfig' or directly on the
 979command line.
 980
 981If the initiator-name is not specified qemu will use a default name
 982of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
 983virtual machine.
 984
 985
 986@example
 987Setting a specific initiator name to use when logging in to the target
 988-iscsi initiator-name=iqn.qemu.test:my-initiator
 989@end example
 990
 991@example
 992Controlling which type of header digest to negotiate with the target
 993-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 994@end example
 995
 996These can also be set via a configuration file
 997@example
 998[iscsi]
 999  user = "CHAP username"
1000  password = "CHAP password"
1001  initiator-name = "iqn.qemu.test:my-initiator"
1002  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1003  header-digest = "CRC32C"
1004@end example
1005
1006
1007Setting the target name allows different options for different targets
1008@example
1009[iscsi "iqn.target.name"]
1010  user = "CHAP username"
1011  password = "CHAP password"
1012  initiator-name = "iqn.qemu.test:my-initiator"
1013  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1014  header-digest = "CRC32C"
1015@end example
1016
1017
1018Howto use a configuration file to set iSCSI configuration options:
1019@example
1020cat >iscsi.conf <<EOF
1021[iscsi]
1022  user = "me"
1023  password = "my password"
1024  initiator-name = "iqn.qemu.test:my-initiator"
1025  header-digest = "CRC32C"
1026EOF
1027
1028qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1029    -readconfig iscsi.conf
1030@end example
1031
1032
1033Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1034@example
1035This example shows how to set up an iSCSI target with one CDROM and one DISK
1036using the Linux STGT software target. This target is available on Red Hat based
1037systems as the package 'scsi-target-utils'.
1038
1039tgtd --iscsi portal=127.0.0.1:3260
1040tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1041tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1042    -b /IMAGES/disk.img --device-type=disk
1043tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1044    -b /IMAGES/cd.iso --device-type=cd
1045tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1046
1047qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1048    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1049    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1050@end example
1051
1052@node disk_images_gluster
1053@subsection GlusterFS disk images
1054
1055GlusterFS is an user space distributed file system.
1056
1057You can boot from the GlusterFS disk image with the command:
1058@example
1059qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1060@end example
1061
1062@var{gluster} is the protocol.
1063
1064@var{transport} specifies the transport type used to connect to gluster
1065management daemon (glusterd). Valid transport types are
1066tcp, unix and rdma. If a transport type isn't specified, then tcp
1067type is assumed.
1068
1069@var{server} specifies the server where the volume file specification for
1070the given volume resides. This can be either hostname, ipv4 address
1071or ipv6 address. ipv6 address needs to be within square brackets [ ].
1072If transport type is unix, then @var{server} field should not be specified.
1073Instead @var{socket} field needs to be populated with the path to unix domain
1074socket.
1075
1076@var{port} is the port number on which glusterd is listening. This is optional
1077and if not specified, QEMU will send 0 which will make gluster to use the
1078default port. If the transport type is unix, then @var{port} should not be
1079specified.
1080
1081@var{volname} is the name of the gluster volume which contains the disk image.
1082
1083@var{image} is the path to the actual disk image that resides on gluster volume.
1084
1085You can create a GlusterFS disk image with the command:
1086@example
1087qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1088@end example
1089
1090Examples
1091@example
1092qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1093qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1094qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1095qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1096qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1097qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1098qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1099qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1100@end example
1101
1102@node disk_images_ssh
1103@subsection Secure Shell (ssh) disk images
1104
1105You can access disk images located on a remote ssh server
1106by using the ssh protocol:
1107
1108@example
1109qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1110@end example
1111
1112Alternative syntax using properties:
1113
1114@example
1115qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1116@end example
1117
1118@var{ssh} is the protocol.
1119
1120@var{user} is the remote user.  If not specified, then the local
1121username is tried.
1122
1123@var{server} specifies the remote ssh server.  Any ssh server can be
1124used, but it must implement the sftp-server protocol.  Most Unix/Linux
1125systems should work without requiring any extra configuration.
1126
1127@var{port} is the port number on which sshd is listening.  By default
1128the standard ssh port (22) is used.
1129
1130@var{path} is the path to the disk image.
1131
1132The optional @var{host_key_check} parameter controls how the remote
1133host's key is checked.  The default is @code{yes} which means to use
1134the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
1135turns off known-hosts checking.  Or you can check that the host key
1136matches a specific fingerprint:
1137@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1138(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1139tools only use MD5 to print fingerprints).
1140
1141Currently authentication must be done using ssh-agent.  Other
1142authentication methods may be supported in future.
1143
1144Note: Many ssh servers do not support an @code{fsync}-style operation.
1145The ssh driver cannot guarantee that disk flush requests are
1146obeyed, and this causes a risk of disk corruption if the remote
1147server or network goes down during writes.  The driver will
1148print a warning when @code{fsync} is not supported:
1149
1150warning: ssh server @code{ssh.example.com:22} does not support fsync
1151
1152With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1153supported.
1154
1155@node pcsys_network
1156@section Network emulation
1157
1158QEMU can simulate several network cards (PCI or ISA cards on the PC
1159target) and can connect them to an arbitrary number of Virtual Local
1160Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1161VLAN. VLAN can be connected between separate instances of QEMU to
1162simulate large networks. For simpler usage, a non privileged user mode
1163network stack can replace the TAP device to have a basic network
1164connection.
1165
1166@subsection VLANs
1167
1168QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1169connection between several network devices. These devices can be for
1170example QEMU virtual Ethernet cards or virtual Host ethernet devices
1171(TAP devices).
1172
1173@subsection Using TAP network interfaces
1174
1175This is the standard way to connect QEMU to a real network. QEMU adds
1176a virtual network device on your host (called @code{tapN}), and you
1177can then configure it as if it was a real ethernet card.
1178
1179@subsubsection Linux host
1180
1181As an example, you can download the @file{linux-test-xxx.tar.gz}
1182archive and copy the script @file{qemu-ifup} in @file{/etc} and
1183configure properly @code{sudo} so that the command @code{ifconfig}
1184contained in @file{qemu-ifup} can be executed as root. You must verify
1185that your host kernel supports the TAP network interfaces: the
1186device @file{/dev/net/tun} must be present.
1187
1188See @ref{sec_invocation} to have examples of command lines using the
1189TAP network interfaces.
1190
1191@subsubsection Windows host
1192
1193There is a virtual ethernet driver for Windows 2000/XP systems, called
1194TAP-Win32. But it is not included in standard QEMU for Windows,
1195so you will need to get it separately. It is part of OpenVPN package,
1196so download OpenVPN from : @url{http://openvpn.net/}.
1197
1198@subsection Using the user mode network stack
1199
1200By using the option @option{-net user} (default configuration if no
1201@option{-net} option is specified), QEMU uses a completely user mode
1202network stack (you don't need root privilege to use the virtual
1203network). The virtual network configuration is the following:
1204
1205@example
1206
1207         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1208                           |          (10.0.2.2)
1209                           |
1210                           ---->  DNS server (10.0.2.3)
1211                           |
1212                           ---->  SMB server (10.0.2.4)
1213@end example
1214
1215The QEMU VM behaves as if it was behind a firewall which blocks all
1216incoming connections. You can use a DHCP client to automatically
1217configure the network in the QEMU VM. The DHCP server assign addresses
1218to the hosts starting from 10.0.2.15.
1219
1220In order to check that the user mode network is working, you can ping
1221the address 10.0.2.2 and verify that you got an address in the range
122210.0.2.x from the QEMU virtual DHCP server.
1223
1224Note that ICMP traffic in general does not work with user mode networking.
1225@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1226however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1227ping sockets to allow @code{ping} to the Internet. The host admin has to set
1228the ping_group_range in order to grant access to those sockets. To allow ping
1229for GID 100 (usually users group):
1230
1231@example
1232echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1233@end example
1234
1235When using the built-in TFTP server, the router is also the TFTP
1236server.
1237
1238When using the @option{-redir} option, TCP or UDP connections can be
1239redirected from the host to the guest. It allows for example to
1240redirect X11, telnet or SSH connections.
1241
1242@subsection Connecting VLANs between QEMU instances
1243
1244Using the @option{-net socket} option, it is possible to make VLANs
1245that span several QEMU instances. See @ref{sec_invocation} to have a
1246basic example.
1247
1248@node pcsys_other_devs
1249@section Other Devices
1250
1251@subsection Inter-VM Shared Memory device
1252
1253With KVM enabled on a Linux host, a shared memory device is available.  Guests
1254map a POSIX shared memory region into the guest as a PCI device that enables
1255zero-copy communication to the application level of the guests.  The basic
1256syntax is:
1257
1258@example
1259qemu-system-i386 -device ivshmem,size=@var{size},shm=@var{shm-name}
1260@end example
1261
1262If desired, interrupts can be sent between guest VMs accessing the same shared
1263memory region.  Interrupt support requires using a shared memory server and
1264using a chardev socket to connect to it.  The code for the shared memory server
1265is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
1266memory server is:
1267
1268@example
1269# First start the ivshmem server once and for all
1270ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1271
1272# Then start your qemu instances with matching arguments
1273qemu-system-i386 -device ivshmem,size=@var{shm-size},vectors=@var{vectors},chardev=@var{id}
1274                 [,msi=on][,ioeventfd=on][,role=peer|master]
1275                 -chardev socket,path=@var{path},id=@var{id}
1276@end example
1277
1278When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1279using the same server to communicate via interrupts.  Guests can read their
1280VM ID from a device register (see example code).  Since receiving the shared
1281memory region from the server is asynchronous, there is a (small) chance the
1282guest may boot before the shared memory is attached.  To allow an application
1283to ensure shared memory is attached, the VM ID register will return -1 (an
1284invalid VM ID) until the memory is attached.  Once the shared memory is
1285attached, the VM ID will return the guest's valid VM ID.  With these semantics,
1286the guest application can check to ensure the shared memory is attached to the
1287guest before proceeding.
1288
1289The @option{role} argument can be set to either master or peer and will affect
1290how the shared memory is migrated.  With @option{role=master}, the guest will
1291copy the shared memory on migration to the destination host.  With
1292@option{role=peer}, the guest will not be able to migrate with the device attached.
1293With the @option{peer} case, the device should be detached and then reattached
1294after migration using the PCI hotplug support.
1295
1296@subsubsection ivshmem and hugepages
1297
1298Instead of specifying the <shm size> using POSIX shm, you may specify
1299a memory backend that has hugepage support:
1300
1301@example
1302qemu-system-i386 -object memory-backend-file,size=1G,mem-path=/mnt/hugepages/my-shmem-file,id=mb1
1303                 -device ivshmem,x-memdev=mb1
1304@end example
1305
1306ivshmem-server also supports hugepages mount points with the
1307@option{-m} memory path argument.
1308
1309@node direct_linux_boot
1310@section Direct Linux Boot
1311
1312This section explains how to launch a Linux kernel inside QEMU without
1313having to make a full bootable image. It is very useful for fast Linux
1314kernel testing.
1315
1316The syntax is:
1317@example
1318qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1319@end example
1320
1321Use @option{-kernel} to provide the Linux kernel image and
1322@option{-append} to give the kernel command line arguments. The
1323@option{-initrd} option can be used to provide an INITRD image.
1324
1325When using the direct Linux boot, a disk image for the first hard disk
1326@file{hda} is required because its boot sector is used to launch the
1327Linux kernel.
1328
1329If you do not need graphical output, you can disable it and redirect
1330the virtual serial port and the QEMU monitor to the console with the
1331@option{-nographic} option. The typical command line is:
1332@example
1333qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1334                 -append "root=/dev/hda console=ttyS0" -nographic
1335@end example
1336
1337Use @key{Ctrl-a c} to switch between the serial console and the
1338monitor (@pxref{pcsys_keys}).
1339
1340@node pcsys_usb
1341@section USB emulation
1342
1343QEMU emulates a PCI UHCI USB controller. You can virtually plug
1344virtual USB devices or real host USB devices (experimental, works only
1345on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
1346as necessary to connect multiple USB devices.
1347
1348@menu
1349* usb_devices::
1350* host_usb_devices::
1351@end menu
1352@node usb_devices
1353@subsection Connecting USB devices
1354
1355USB devices can be connected with the @option{-usbdevice} commandline option
1356or the @code{usb_add} monitor command.  Available devices are:
1357
1358@table @code
1359@item mouse
1360Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1361@item tablet
1362Pointer device that uses absolute coordinates (like a touchscreen).
1363This means QEMU is able to report the mouse position without having
1364to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1365@item disk:@var{file}
1366Mass storage device based on @var{file} (@pxref{disk_images})
1367@item host:@var{bus.addr}
1368Pass through the host device identified by @var{bus.addr}
1369(Linux only)
1370@item host:@var{vendor_id:product_id}
1371Pass through the host device identified by @var{vendor_id:product_id}
1372(Linux only)
1373@item wacom-tablet
1374Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1375above but it can be used with the tslib library because in addition to touch
1376coordinates it reports touch pressure.
1377@item keyboard
1378Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1379@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1380Serial converter. This emulates an FTDI FT232BM chip connected to host character
1381device @var{dev}. The available character devices are the same as for the
1382@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1383used to override the default 0403:6001. For instance,
1384@example
1385usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1386@end example
1387will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1388serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1389@item braille
1390Braille device.  This will use BrlAPI to display the braille output on a real
1391or fake device.
1392@item net:@var{options}
1393Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1394specifies NIC options as with @code{-net nic,}@var{options} (see description).
1395For instance, user-mode networking can be used with
1396@example
1397qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1398@end example
1399Currently this cannot be used in machines that support PCI NICs.
1400@item bt[:@var{hci-type}]
1401Bluetooth dongle whose type is specified in the same format as with
1402the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1403no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1404This USB device implements the USB Transport Layer of HCI.  Example
1405usage:
1406@example
1407qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1408@end example
1409@end table
1410
1411@node host_usb_devices
1412@subsection Using host USB devices on a Linux host
1413
1414WARNING: this is an experimental feature. QEMU will slow down when
1415using it. USB devices requiring real time streaming (i.e. USB Video
1416Cameras) are not supported yet.
1417
1418@enumerate
1419@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1420is actually using the USB device. A simple way to do that is simply to
1421disable the corresponding kernel module by renaming it from @file{mydriver.o}
1422to @file{mydriver.o.disabled}.
1423
1424@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1425@example
1426ls /proc/bus/usb
1427001  devices  drivers
1428@end example
1429
1430@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1431@example
1432chown -R myuid /proc/bus/usb
1433@end example
1434
1435@item Launch QEMU and do in the monitor:
1436@example
1437info usbhost
1438  Device 1.2, speed 480 Mb/s
1439    Class 00: USB device 1234:5678, USB DISK
1440@end example
1441You should see the list of the devices you can use (Never try to use
1442hubs, it won't work).
1443
1444@item Add the device in QEMU by using:
1445@example
1446usb_add host:1234:5678
1447@end example
1448
1449Normally the guest OS should report that a new USB device is
1450plugged. You can use the option @option{-usbdevice} to do the same.
1451
1452@item Now you can try to use the host USB device in QEMU.
1453
1454@end enumerate
1455
1456When relaunching QEMU, you may have to unplug and plug again the USB
1457device to make it work again (this is a bug).
1458
1459@node vnc_security
1460@section VNC security
1461
1462The VNC server capability provides access to the graphical console
1463of the guest VM across the network. This has a number of security
1464considerations depending on the deployment scenarios.
1465
1466@menu
1467* vnc_sec_none::
1468* vnc_sec_password::
1469* vnc_sec_certificate::
1470* vnc_sec_certificate_verify::
1471* vnc_sec_certificate_pw::
1472* vnc_sec_sasl::
1473* vnc_sec_certificate_sasl::
1474* vnc_generate_cert::
1475* vnc_setup_sasl::
1476@end menu
1477@node vnc_sec_none
1478@subsection Without passwords
1479
1480The simplest VNC server setup does not include any form of authentication.
1481For this setup it is recommended to restrict it to listen on a UNIX domain
1482socket only. For example
1483
1484@example
1485qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1486@end example
1487
1488This ensures that only users on local box with read/write access to that
1489path can access the VNC server. To securely access the VNC server from a
1490remote machine, a combination of netcat+ssh can be used to provide a secure
1491tunnel.
1492
1493@node vnc_sec_password
1494@subsection With passwords
1495
1496The VNC protocol has limited support for password based authentication. Since
1497the protocol limits passwords to 8 characters it should not be considered
1498to provide high security. The password can be fairly easily brute-forced by
1499a client making repeat connections. For this reason, a VNC server using password
1500authentication should be restricted to only listen on the loopback interface
1501or UNIX domain sockets. Password authentication is not supported when operating
1502in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1503authentication is requested with the @code{password} option, and then once QEMU
1504is running the password is set with the monitor. Until the monitor is used to
1505set the password all clients will be rejected.
1506
1507@example
1508qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1509(qemu) change vnc password
1510Password: ********
1511(qemu)
1512@end example
1513
1514@node vnc_sec_certificate
1515@subsection With x509 certificates
1516
1517The QEMU VNC server also implements the VeNCrypt extension allowing use of
1518TLS for encryption of the session, and x509 certificates for authentication.
1519The use of x509 certificates is strongly recommended, because TLS on its
1520own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1521support provides a secure session, but no authentication. This allows any
1522client to connect, and provides an encrypted session.
1523
1524@example
1525qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1526@end example
1527
1528In the above example @code{/etc/pki/qemu} should contain at least three files,
1529@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1530users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1531NB the @code{server-key.pem} file should be protected with file mode 0600 to
1532only be readable by the user owning it.
1533
1534@node vnc_sec_certificate_verify
1535@subsection With x509 certificates and client verification
1536
1537Certificates can also provide a means to authenticate the client connecting.
1538The server will request that the client provide a certificate, which it will
1539then validate against the CA certificate. This is a good choice if deploying
1540in an environment with a private internal certificate authority.
1541
1542@example
1543qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1544@end example
1545
1546
1547@node vnc_sec_certificate_pw
1548@subsection With x509 certificates, client verification and passwords
1549
1550Finally, the previous method can be combined with VNC password authentication
1551to provide two layers of authentication for clients.
1552
1553@example
1554qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1555(qemu) change vnc password
1556Password: ********
1557(qemu)
1558@end example
1559
1560
1561@node vnc_sec_sasl
1562@subsection With SASL authentication
1563
1564The SASL authentication method is a VNC extension, that provides an
1565easily extendable, pluggable authentication method. This allows for
1566integration with a wide range of authentication mechanisms, such as
1567PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1568The strength of the authentication depends on the exact mechanism
1569configured. If the chosen mechanism also provides a SSF layer, then
1570it will encrypt the datastream as well.
1571
1572Refer to the later docs on how to choose the exact SASL mechanism
1573used for authentication, but assuming use of one supporting SSF,
1574then QEMU can be launched with:
1575
1576@example
1577qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1578@end example
1579
1580@node vnc_sec_certificate_sasl
1581@subsection With x509 certificates and SASL authentication
1582
1583If the desired SASL authentication mechanism does not supported
1584SSF layers, then it is strongly advised to run it in combination
1585with TLS and x509 certificates. This provides securely encrypted
1586data stream, avoiding risk of compromising of the security
1587credentials. This can be enabled, by combining the 'sasl' option
1588with the aforementioned TLS + x509 options:
1589
1590@example
1591qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1592@end example
1593
1594
1595@node vnc_generate_cert
1596@subsection Generating certificates for VNC
1597
1598The GNU TLS packages provides a command called @code{certtool} which can
1599be used to generate certificates and keys in PEM format. At a minimum it
1600is necessary to setup a certificate authority, and issue certificates to
1601each server. If using certificates for authentication, then each client
1602will also need to be issued a certificate. The recommendation is for the
1603server to keep its certificates in either @code{/etc/pki/qemu} or for
1604unprivileged users in @code{$HOME/.pki/qemu}.
1605
1606@menu
1607* vnc_generate_ca::
1608* vnc_generate_server::
1609* vnc_generate_client::
1610@end menu
1611@node vnc_generate_ca
1612@subsubsection Setup the Certificate Authority
1613
1614This step only needs to be performed once per organization / organizational
1615unit. First the CA needs a private key. This key must be kept VERY secret
1616and secure. If this key is compromised the entire trust chain of the certificates
1617issued with it is lost.
1618
1619@example
1620# certtool --generate-privkey > ca-key.pem
1621@end example
1622
1623A CA needs to have a public certificate. For simplicity it can be a self-signed
1624certificate, or one issue by a commercial certificate issuing authority. To
1625generate a self-signed certificate requires one core piece of information, the
1626name of the organization.
1627
1628@example
1629# cat > ca.info <<EOF
1630cn = Name of your organization
1631ca
1632cert_signing_key
1633EOF
1634# certtool --generate-self-signed \
1635           --load-privkey ca-key.pem
1636           --template ca.info \
1637           --outfile ca-cert.pem
1638@end example
1639
1640The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1641TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1642
1643@node vnc_generate_server
1644@subsubsection Issuing server certificates
1645
1646Each server (or host) needs to be issued with a key and certificate. When connecting
1647the certificate is sent to the client which validates it against the CA certificate.
1648The core piece of information for a server certificate is the hostname. This should
1649be the fully qualified hostname that the client will connect with, since the client
1650will typically also verify the hostname in the certificate. On the host holding the
1651secure CA private key:
1652
1653@example
1654# cat > server.info <<EOF
1655organization = Name  of your organization
1656cn = server.foo.example.com
1657tls_www_server
1658encryption_key
1659signing_key
1660EOF
1661# certtool --generate-privkey > server-key.pem
1662# certtool --generate-certificate \
1663           --load-ca-certificate ca-cert.pem \
1664           --load-ca-privkey ca-key.pem \
1665           --load-privkey server-key.pem \
1666           --template server.info \
1667           --outfile server-cert.pem
1668@end example
1669
1670The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1671to the server for which they were generated. The @code{server-key.pem} is security
1672sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1673
1674@node vnc_generate_client
1675@subsubsection Issuing client certificates
1676
1677If the QEMU VNC server is to use the @code{x509verify} option to validate client
1678certificates as its authentication mechanism, each client also needs to be issued
1679a certificate. The client certificate contains enough metadata to uniquely identify
1680the client, typically organization, state, city, building, etc. On the host holding
1681the secure CA private key:
1682
1683@example
1684# cat > client.info <<EOF
1685country = GB
1686state = London
1687locality = London
1688organization = Name of your organization
1689cn = client.foo.example.com
1690tls_www_client
1691encryption_key
1692signing_key
1693EOF
1694# certtool --generate-privkey > client-key.pem
1695# certtool --generate-certificate \
1696           --load-ca-certificate ca-cert.pem \
1697           --load-ca-privkey ca-key.pem \
1698           --load-privkey client-key.pem \
1699           --template client.info \
1700           --outfile client-cert.pem
1701@end example
1702
1703The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1704copied to the client for which they were generated.
1705
1706
1707@node vnc_setup_sasl
1708
1709@subsection Configuring SASL mechanisms
1710
1711The following documentation assumes use of the Cyrus SASL implementation on a
1712Linux host, but the principals should apply to any other SASL impl. When SASL
1713is enabled, the mechanism configuration will be loaded from system default
1714SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1715unprivileged user, an environment variable SASL_CONF_PATH can be used
1716to make it search alternate locations for the service config.
1717
1718The default configuration might contain
1719
1720@example
1721mech_list: digest-md5
1722sasldb_path: /etc/qemu/passwd.db
1723@end example
1724
1725This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1726Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1727in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1728command. While this mechanism is easy to configure and use, it is not
1729considered secure by modern standards, so only suitable for developers /
1730ad-hoc testing.
1731
1732A more serious deployment might use Kerberos, which is done with the 'gssapi'
1733mechanism
1734
1735@example
1736mech_list: gssapi
1737keytab: /etc/qemu/krb5.tab
1738@end example
1739
1740For this to work the administrator of your KDC must generate a Kerberos
1741principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1742replacing 'somehost.example.com' with the fully qualified host name of the
1743machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1744
1745Other configurations will be left as an exercise for the reader. It should
1746be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1747encryption. For all other mechanisms, VNC should always be configured to
1748use TLS and x509 certificates to protect security credentials from snooping.
1749
1750@node gdb_usage
1751@section GDB usage
1752
1753QEMU has a primitive support to work with gdb, so that you can do
1754'Ctrl-C' while the virtual machine is running and inspect its state.
1755
1756In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1757gdb connection:
1758@example
1759qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1760                    -append "root=/dev/hda"
1761Connected to host network interface: tun0
1762Waiting gdb connection on port 1234
1763@end example
1764
1765Then launch gdb on the 'vmlinux' executable:
1766@example
1767> gdb vmlinux
1768@end example
1769
1770In gdb, connect to QEMU:
1771@example
1772(gdb) target remote localhost:1234
1773@end example
1774
1775Then you can use gdb normally. For example, type 'c' to launch the kernel:
1776@example
1777(gdb) c
1778@end example
1779
1780Here are some useful tips in order to use gdb on system code:
1781
1782@enumerate
1783@item
1784Use @code{info reg} to display all the CPU registers.
1785@item
1786Use @code{x/10i $eip} to display the code at the PC position.
1787@item
1788Use @code{set architecture i8086} to dump 16 bit code. Then use
1789@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1790@end enumerate
1791
1792Advanced debugging options:
1793
1794The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1795@table @code
1796@item maintenance packet qqemu.sstepbits
1797
1798This will display the MASK bits used to control the single stepping IE:
1799@example
1800(gdb) maintenance packet qqemu.sstepbits
1801sending: "qqemu.sstepbits"
1802received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1803@end example
1804@item maintenance packet qqemu.sstep
1805
1806This will display the current value of the mask used when single stepping IE:
1807@example
1808(gdb) maintenance packet qqemu.sstep
1809sending: "qqemu.sstep"
1810received: "0x7"
1811@end example
1812@item maintenance packet Qqemu.sstep=HEX_VALUE
1813
1814This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1815@example
1816(gdb) maintenance packet Qqemu.sstep=0x5
1817sending: "qemu.sstep=0x5"
1818received: "OK"
1819@end example
1820@end table
1821
1822@node pcsys_os_specific
1823@section Target OS specific information
1824
1825@subsection Linux
1826
1827To have access to SVGA graphic modes under X11, use the @code{vesa} or
1828the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1829color depth in the guest and the host OS.
1830
1831When using a 2.6 guest Linux kernel, you should add the option
1832@code{clock=pit} on the kernel command line because the 2.6 Linux
1833kernels make very strict real time clock checks by default that QEMU
1834cannot simulate exactly.
1835
1836When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1837not activated because QEMU is slower with this patch. The QEMU
1838Accelerator Module is also much slower in this case. Earlier Fedora
1839Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1840patch by default. Newer kernels don't have it.
1841
1842@subsection Windows
1843
1844If you have a slow host, using Windows 95 is better as it gives the
1845best speed. Windows 2000 is also a good choice.
1846
1847@subsubsection SVGA graphic modes support
1848
1849QEMU emulates a Cirrus Logic GD5446 Video
1850card. All Windows versions starting from Windows 95 should recognize
1851and use this graphic card. For optimal performances, use 16 bit color
1852depth in the guest and the host OS.
1853
1854If you are using Windows XP as guest OS and if you want to use high
1855resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18561280x1024x16), then you should use the VESA VBE virtual graphic card
1857(option @option{-std-vga}).
1858
1859@subsubsection CPU usage reduction
1860
1861Windows 9x does not correctly use the CPU HLT
1862instruction. The result is that it takes host CPU cycles even when
1863idle. You can install the utility from
1864@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1865problem. Note that no such tool is needed for NT, 2000 or XP.
1866
1867@subsubsection Windows 2000 disk full problem
1868
1869Windows 2000 has a bug which gives a disk full problem during its
1870installation. When installing it, use the @option{-win2k-hack} QEMU
1871option to enable a specific workaround. After Windows 2000 is
1872installed, you no longer need this option (this option slows down the
1873IDE transfers).
1874
1875@subsubsection Windows 2000 shutdown
1876
1877Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1878can. It comes from the fact that Windows 2000 does not automatically
1879use the APM driver provided by the BIOS.
1880
1881In order to correct that, do the following (thanks to Struan
1882Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1883Add/Troubleshoot a device => Add a new device & Next => No, select the
1884hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1885(again) a few times. Now the driver is installed and Windows 2000 now
1886correctly instructs QEMU to shutdown at the appropriate moment.
1887
1888@subsubsection Share a directory between Unix and Windows
1889
1890See @ref{sec_invocation} about the help of the option @option{-smb}.
1891
1892@subsubsection Windows XP security problem
1893
1894Some releases of Windows XP install correctly but give a security
1895error when booting:
1896@example
1897A problem is preventing Windows from accurately checking the
1898license for this computer. Error code: 0x800703e6.
1899@end example
1900
1901The workaround is to install a service pack for XP after a boot in safe
1902mode. Then reboot, and the problem should go away. Since there is no
1903network while in safe mode, its recommended to download the full
1904installation of SP1 or SP2 and transfer that via an ISO or using the
1905vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1906
1907@subsection MS-DOS and FreeDOS
1908
1909@subsubsection CPU usage reduction
1910
1911DOS does not correctly use the CPU HLT instruction. The result is that
1912it takes host CPU cycles even when idle. You can install the utility
1913from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1914problem.
1915
1916@node QEMU System emulator for non PC targets
1917@chapter QEMU System emulator for non PC targets
1918
1919QEMU is a generic emulator and it emulates many non PC
1920machines. Most of the options are similar to the PC emulator. The
1921differences are mentioned in the following sections.
1922
1923@menu
1924* PowerPC System emulator::
1925* Sparc32 System emulator::
1926* Sparc64 System emulator::
1927* MIPS System emulator::
1928* ARM System emulator::
1929* ColdFire System emulator::
1930* Cris System emulator::
1931* Microblaze System emulator::
1932* SH4 System emulator::
1933* Xtensa System emulator::
1934@end menu
1935
1936@node PowerPC System emulator
1937@section PowerPC System emulator
1938@cindex system emulation (PowerPC)
1939
1940Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1941or PowerMac PowerPC system.
1942
1943QEMU emulates the following PowerMac peripherals:
1944
1945@itemize @minus
1946@item
1947UniNorth or Grackle PCI Bridge
1948@item
1949PCI VGA compatible card with VESA Bochs Extensions
1950@item
19512 PMAC IDE interfaces with hard disk and CD-ROM support
1952@item
1953NE2000 PCI adapters
1954@item
1955Non Volatile RAM
1956@item
1957VIA-CUDA with ADB keyboard and mouse.
1958@end itemize
1959
1960QEMU emulates the following PREP peripherals:
1961
1962@itemize @minus
1963@item
1964PCI Bridge
1965@item
1966PCI VGA compatible card with VESA Bochs Extensions
1967@item
19682 IDE interfaces with hard disk and CD-ROM support
1969@item
1970Floppy disk
1971@item
1972NE2000 network adapters
1973@item
1974Serial port
1975@item
1976PREP Non Volatile RAM
1977@item
1978PC compatible keyboard and mouse.
1979@end itemize
1980
1981QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1982@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1983
1984Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1985for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1986v2) portable firmware implementation. The goal is to implement a 100%
1987IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1988
1989@c man begin OPTIONS
1990
1991The following options are specific to the PowerPC emulation:
1992
1993@table @option
1994
1995@item -g @var{W}x@var{H}[x@var{DEPTH}]
1996
1997Set the initial VGA graphic mode. The default is 800x600x32.
1998
1999@item -prom-env @var{string}
2000
2001Set OpenBIOS variables in NVRAM, for example:
2002
2003@example
2004qemu-system-ppc -prom-env 'auto-boot?=false' \
2005 -prom-env 'boot-device=hd:2,\yaboot' \
2006 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2007@end example
2008
2009These variables are not used by Open Hack'Ware.
2010
2011@end table
2012
2013@c man end
2014
2015
2016More information is available at
2017@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2018
2019@node Sparc32 System emulator
2020@section Sparc32 System emulator
2021@cindex system emulation (Sparc32)
2022
2023Use the executable @file{qemu-system-sparc} to simulate the following
2024Sun4m architecture machines:
2025@itemize @minus
2026@item
2027SPARCstation 4
2028@item
2029SPARCstation 5
2030@item
2031SPARCstation 10
2032@item
2033SPARCstation 20
2034@item
2035SPARCserver 600MP
2036@item
2037SPARCstation LX
2038@item
2039SPARCstation Voyager
2040@item
2041SPARCclassic
2042@item
2043SPARCbook
2044@end itemize
2045
2046The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2047but Linux limits the number of usable CPUs to 4.
2048
2049QEMU emulates the following sun4m peripherals:
2050
2051@itemize @minus
2052@item
2053IOMMU
2054@item
2055TCX or cgthree Frame buffer
2056@item
2057Lance (Am7990) Ethernet
2058@item
2059Non Volatile RAM M48T02/M48T08
2060@item
2061Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2062and power/reset logic
2063@item
2064ESP SCSI controller with hard disk and CD-ROM support
2065@item
2066Floppy drive (not on SS-600MP)
2067@item
2068CS4231 sound device (only on SS-5, not working yet)
2069@end itemize
2070
2071The number of peripherals is fixed in the architecture.  Maximum
2072memory size depends on the machine type, for SS-5 it is 256MB and for
2073others 2047MB.
2074
2075Since version 0.8.2, QEMU uses OpenBIOS
2076@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2077firmware implementation. The goal is to implement a 100% IEEE
20781275-1994 (referred to as Open Firmware) compliant firmware.
2079
2080A sample Linux 2.6 series kernel and ram disk image are available on
2081the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2082most kernel versions work. Please note that currently older Solaris kernels
2083don't work probably due to interface issues between OpenBIOS and
2084Solaris.
2085
2086@c man begin OPTIONS
2087
2088The following options are specific to the Sparc32 emulation:
2089
2090@table @option
2091
2092@item -g @var{W}x@var{H}x[x@var{DEPTH}]
2093
2094Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2095option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2096of 1152x900x8 for people who wish to use OBP.
2097
2098@item -prom-env @var{string}
2099
2100Set OpenBIOS variables in NVRAM, for example:
2101
2102@example
2103qemu-system-sparc -prom-env 'auto-boot?=false' \
2104 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2105@end example
2106
2107@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2108
2109Set the emulated machine type. Default is SS-5.
2110
2111@end table
2112
2113@c man end
2114
2115@node Sparc64 System emulator
2116@section Sparc64 System emulator
2117@cindex system emulation (Sparc64)
2118
2119Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2120(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2121Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2122able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2123Sun4v and Niagara emulators are still a work in progress.
2124
2125QEMU emulates the following peripherals:
2126
2127@itemize @minus
2128@item
2129UltraSparc IIi APB PCI Bridge
2130@item
2131PCI VGA compatible card with VESA Bochs Extensions
2132@item
2133PS/2 mouse and keyboard
2134@item
2135Non Volatile RAM M48T59
2136@item
2137PC-compatible serial ports
2138@item
21392 PCI IDE interfaces with hard disk and CD-ROM support
2140@item
2141Floppy disk
2142@end itemize
2143
2144@c man begin OPTIONS
2145
2146The following options are specific to the Sparc64 emulation:
2147
2148@table @option
2149
2150@item -prom-env @var{string}
2151
2152Set OpenBIOS variables in NVRAM, for example:
2153
2154@example
2155qemu-system-sparc64 -prom-env 'auto-boot?=false'
2156@end example
2157
2158@item -M [sun4u|sun4v|Niagara]
2159
2160Set the emulated machine type. The default is sun4u.
2161
2162@end table
2163
2164@c man end
2165
2166@node MIPS System emulator
2167@section MIPS System emulator
2168@cindex system emulation (MIPS)
2169
2170Four executables cover simulation of 32 and 64-bit MIPS systems in
2171both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2172@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2173Five different machine types are emulated:
2174
2175@itemize @minus
2176@item
2177A generic ISA PC-like machine "mips"
2178@item
2179The MIPS Malta prototype board "malta"
2180@item
2181An ACER Pica "pica61". This machine needs the 64-bit emulator.
2182@item
2183MIPS emulator pseudo board "mipssim"
2184@item
2185A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2186@end itemize
2187
2188The generic emulation is supported by Debian 'Etch' and is able to
2189install Debian into a virtual disk image. The following devices are
2190emulated:
2191
2192@itemize @minus
2193@item
2194A range of MIPS CPUs, default is the 24Kf
2195@item
2196PC style serial port
2197@item
2198PC style IDE disk
2199@item
2200NE2000 network card
2201@end itemize
2202
2203The Malta emulation supports the following devices:
2204
2205@itemize @minus
2206@item
2207Core board with MIPS 24Kf CPU and Galileo system controller
2208@item
2209PIIX4 PCI/USB/SMbus controller
2210@item
2211The Multi-I/O chip's serial device
2212@item
2213PCI network cards (PCnet32 and others)
2214@item
2215Malta FPGA serial device
2216@item
2217Cirrus (default) or any other PCI VGA graphics card
2218@end itemize
2219
2220The ACER Pica emulation supports:
2221
2222@itemize @minus
2223@item
2224MIPS R4000 CPU
2225@item
2226PC-style IRQ and DMA controllers
2227@item
2228PC Keyboard
2229@item
2230IDE controller
2231@end itemize
2232
2233The mipssim pseudo board emulation provides an environment similar
2234to what the proprietary MIPS emulator uses for running Linux.
2235It supports:
2236
2237@itemize @minus
2238@item
2239A range of MIPS CPUs, default is the 24Kf
2240@item
2241PC style serial port
2242@item
2243MIPSnet network emulation
2244@end itemize
2245
2246The MIPS Magnum R4000 emulation supports:
2247
2248@itemize @minus
2249@item
2250MIPS R4000 CPU
2251@item
2252PC-style IRQ controller
2253@item
2254PC Keyboard
2255@item
2256SCSI controller
2257@item
2258G364 framebuffer
2259@end itemize
2260
2261
2262@node ARM System emulator
2263@section ARM System emulator
2264@cindex system emulation (ARM)
2265
2266Use the executable @file{qemu-system-arm} to simulate a ARM
2267machine. The ARM Integrator/CP board is emulated with the following
2268devices:
2269
2270@itemize @minus
2271@item
2272ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2273@item
2274Two PL011 UARTs
2275@item
2276SMC 91c111 Ethernet adapter
2277@item
2278PL110 LCD controller
2279@item
2280PL050 KMI with PS/2 keyboard and mouse.
2281@item
2282PL181 MultiMedia Card Interface with SD card.
2283@end itemize
2284
2285The ARM Versatile baseboard is emulated with the following devices:
2286
2287@itemize @minus
2288@item
2289ARM926E, ARM1136 or Cortex-A8 CPU
2290@item
2291PL190 Vectored Interrupt Controller
2292@item
2293Four PL011 UARTs
2294@item
2295SMC 91c111 Ethernet adapter
2296@item
2297PL110 LCD controller
2298@item
2299PL050 KMI with PS/2 keyboard and mouse.
2300@item
2301PCI host bridge.  Note the emulated PCI bridge only provides access to
2302PCI memory space.  It does not provide access to PCI IO space.
2303This means some devices (eg. ne2k_pci NIC) are not usable, and others
2304(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2305mapped control registers.
2306@item
2307PCI OHCI USB controller.
2308@item
2309LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2310@item
2311PL181 MultiMedia Card Interface with SD card.
2312@end itemize
2313
2314Several variants of the ARM RealView baseboard are emulated,
2315including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2316bootloader, only certain Linux kernel configurations work out
2317of the box on these boards.
2318
2319Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2320enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2321should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2322disabled and expect 1024M RAM.
2323
2324The following devices are emulated:
2325
2326@itemize @minus
2327@item
2328ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2329@item
2330ARM AMBA Generic/Distributed Interrupt Controller
2331@item
2332Four PL011 UARTs
2333@item
2334SMC 91c111 or SMSC LAN9118 Ethernet adapter
2335@item
2336PL110 LCD controller
2337@item
2338PL050 KMI with PS/2 keyboard and mouse
2339@item
2340PCI host bridge
2341@item
2342PCI OHCI USB controller
2343@item
2344LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2345@item
2346PL181 MultiMedia Card Interface with SD card.
2347@end itemize
2348
2349The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2350and "Terrier") emulation includes the following peripherals:
2351
2352@itemize @minus
2353@item
2354Intel PXA270 System-on-chip (ARM V5TE core)
2355@item
2356NAND Flash memory
2357@item
2358IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2359@item
2360On-chip OHCI USB controller
2361@item
2362On-chip LCD controller
2363@item
2364On-chip Real Time Clock
2365@item
2366TI ADS7846 touchscreen controller on SSP bus
2367@item
2368Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2369@item
2370GPIO-connected keyboard controller and LEDs
2371@item
2372Secure Digital card connected to PXA MMC/SD host
2373@item
2374Three on-chip UARTs
2375@item
2376WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2377@end itemize
2378
2379The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2380following elements:
2381
2382@itemize @minus
2383@item
2384Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2385@item
2386ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2387@item
2388On-chip LCD controller
2389@item
2390On-chip Real Time Clock
2391@item
2392TI TSC2102i touchscreen controller / analog-digital converter / Audio
2393CODEC, connected through MicroWire and I@math{^2}S busses
2394@item
2395GPIO-connected matrix keypad
2396@item
2397Secure Digital card connected to OMAP MMC/SD host
2398@item
2399Three on-chip UARTs
2400@end itemize
2401
2402Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2403emulation supports the following elements:
2404
2405@itemize @minus
2406@item
2407Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2408@item
2409RAM and non-volatile OneNAND Flash memories
2410@item
2411Display connected to EPSON remote framebuffer chip and OMAP on-chip
2412display controller and a LS041y3 MIPI DBI-C controller
2413@item
2414TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2415driven through SPI bus
2416@item
2417National Semiconductor LM8323-controlled qwerty keyboard driven
2418through I@math{^2}C bus
2419@item
2420Secure Digital card connected to OMAP MMC/SD host
2421@item
2422Three OMAP on-chip UARTs and on-chip STI debugging console
2423@item
2424A Bluetooth(R) transceiver and HCI connected to an UART
2425@item
2426Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2427TUSB6010 chip - only USB host mode is supported
2428@item
2429TI TMP105 temperature sensor driven through I@math{^2}C bus
2430@item
2431TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2432@item
2433Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2434through CBUS
2435@end itemize
2436
2437The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2438devices:
2439
2440@itemize @minus
2441@item
2442Cortex-M3 CPU core.
2443@item
244464k Flash and 8k SRAM.
2445@item
2446Timers, UARTs, ADC and I@math{^2}C interface.
2447@item
2448OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2449@end itemize
2450
2451The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2452devices:
2453
2454@itemize @minus
2455@item
2456Cortex-M3 CPU core.
2457@item
2458256k Flash and 64k SRAM.
2459@item
2460Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2461@item
2462OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2463@end itemize
2464
2465The Freecom MusicPal internet radio emulation includes the following
2466elements:
2467
2468@itemize @minus
2469@item
2470Marvell MV88W8618 ARM core.
2471@item
247232 MB RAM, 256 KB SRAM, 8 MB flash.
2473@item
2474Up to 2 16550 UARTs
2475@item
2476MV88W8xx8 Ethernet controller
2477@item
2478MV88W8618 audio controller, WM8750 CODEC and mixer
2479@item
2480128×64 display with brightness control
2481@item
24822 buttons, 2 navigation wheels with button function
2483@end itemize
2484
2485The Siemens SX1 models v1 and v2 (default) basic emulation.
2486The emulation includes the following elements:
2487
2488@itemize @minus
2489@item
2490Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2491@item
2492ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2493V1
24941 Flash of 16MB and 1 Flash of 8MB
2495V2
24961 Flash of 32MB
2497@item
2498On-chip LCD controller
2499@item
2500On-chip Real Time Clock
2501@item
2502Secure Digital card connected to OMAP MMC/SD host
2503@item
2504Three on-chip UARTs
2505@end itemize
2506
2507A Linux 2.6 test image is available on the QEMU web site. More
2508information is available in the QEMU mailing-list archive.
2509
2510@c man begin OPTIONS
2511
2512The following options are specific to the ARM emulation:
2513
2514@table @option
2515
2516@item -semihosting
2517Enable semihosting syscall emulation.
2518
2519On ARM this implements the "Angel" interface.
2520
2521Note that this allows guest direct access to the host filesystem,
2522so should only be used with trusted guest OS.
2523
2524@end table
2525
2526@node ColdFire System emulator
2527@section ColdFire System emulator
2528@cindex system emulation (ColdFire)
2529@cindex system emulation (M68K)
2530
2531Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2532The emulator is able to boot a uClinux kernel.
2533
2534The M5208EVB emulation includes the following devices:
2535
2536@itemize @minus
2537@item
2538MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2539@item
2540Three Two on-chip UARTs.
2541@item
2542Fast Ethernet Controller (FEC)
2543@end itemize
2544
2545The AN5206 emulation includes the following devices:
2546
2547@itemize @minus
2548@item
2549MCF5206 ColdFire V2 Microprocessor.
2550@item
2551Two on-chip UARTs.
2552@end itemize
2553
2554@c man begin OPTIONS
2555
2556The following options are specific to the ColdFire emulation:
2557
2558@table @option
2559
2560@item -semihosting
2561Enable semihosting syscall emulation.
2562
2563On M68K this implements the "ColdFire GDB" interface used by libgloss.
2564
2565Note that this allows guest direct access to the host filesystem,
2566so should only be used with trusted guest OS.
2567
2568@end table
2569
2570@node Cris System emulator
2571@section Cris System emulator
2572@cindex system emulation (Cris)
2573
2574TODO
2575
2576@node Microblaze System emulator
2577@section Microblaze System emulator
2578@cindex system emulation (Microblaze)
2579
2580TODO
2581
2582@node SH4 System emulator
2583@section SH4 System emulator
2584@cindex system emulation (SH4)
2585
2586TODO
2587
2588@node Xtensa System emulator
2589@section Xtensa System emulator
2590@cindex system emulation (Xtensa)
2591
2592Two executables cover simulation of both Xtensa endian options,
2593@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2594Two different machine types are emulated:
2595
2596@itemize @minus
2597@item
2598Xtensa emulator pseudo board "sim"
2599@item
2600Avnet LX60/LX110/LX200 board
2601@end itemize
2602
2603The sim pseudo board emulation provides an environment similar
2604to one provided by the proprietary Tensilica ISS.
2605It supports:
2606
2607@itemize @minus
2608@item
2609A range of Xtensa CPUs, default is the DC232B
2610@item
2611Console and filesystem access via semihosting calls
2612@end itemize
2613
2614The Avnet LX60/LX110/LX200 emulation supports:
2615
2616@itemize @minus
2617@item
2618A range of Xtensa CPUs, default is the DC232B
2619@item
262016550 UART
2621@item
2622OpenCores 10/100 Mbps Ethernet MAC
2623@end itemize
2624
2625@c man begin OPTIONS
2626
2627The following options are specific to the Xtensa emulation:
2628
2629@table @option
2630
2631@item -semihosting
2632Enable semihosting syscall emulation.
2633
2634Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2635Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2636
2637Note that this allows guest direct access to the host filesystem,
2638so should only be used with trusted guest OS.
2639
2640@end table
2641@node QEMU User space emulator
2642@chapter QEMU User space emulator
2643
2644@menu
2645* Supported Operating Systems ::
2646* Linux User space emulator::
2647* BSD User space emulator ::
2648@end menu
2649
2650@node Supported Operating Systems
2651@section Supported Operating Systems
2652
2653The following OS are supported in user space emulation:
2654
2655@itemize @minus
2656@item
2657Linux (referred as qemu-linux-user)
2658@item
2659BSD (referred as qemu-bsd-user)
2660@end itemize
2661
2662@node Linux User space emulator
2663@section Linux User space emulator
2664
2665@menu
2666* Quick Start::
2667* Wine launch::
2668* Command line options::
2669* Other binaries::
2670@end menu
2671
2672@node Quick Start
2673@subsection Quick Start
2674
2675In order to launch a Linux process, QEMU needs the process executable
2676itself and all the target (x86) dynamic libraries used by it.
2677
2678@itemize
2679
2680@item On x86, you can just try to launch any process by using the native
2681libraries:
2682
2683@example
2684qemu-i386 -L / /bin/ls
2685@end example
2686
2687@code{-L /} tells that the x86 dynamic linker must be searched with a
2688@file{/} prefix.
2689
2690@item Since QEMU is also a linux process, you can launch QEMU with
2691QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2692
2693@example
2694qemu-i386 -L / qemu-i386 -L / /bin/ls
2695@end example
2696
2697@item On non x86 CPUs, you need first to download at least an x86 glibc
2698(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2699@code{LD_LIBRARY_PATH} is not set:
2700
2701@example
2702unset LD_LIBRARY_PATH
2703@end example
2704
2705Then you can launch the precompiled @file{ls} x86 executable:
2706
2707@example
2708qemu-i386 tests/i386/ls
2709@end example
2710You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2711QEMU is automatically launched by the Linux kernel when you try to
2712launch x86 executables. It requires the @code{binfmt_misc} module in the
2713Linux kernel.
2714
2715@item The x86 version of QEMU is also included. You can try weird things such as:
2716@example
2717qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2718          /usr/local/qemu-i386/bin/ls-i386
2719@end example
2720
2721@end itemize
2722
2723@node Wine launch
2724@subsection Wine launch
2725
2726@itemize
2727
2728@item Ensure that you have a working QEMU with the x86 glibc
2729distribution (see previous section). In order to verify it, you must be
2730able to do:
2731
2732@example
2733qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2734@end example
2735
2736@item Download the binary x86 Wine install
2737(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2738
2739@item Configure Wine on your account. Look at the provided script
2740@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2741@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2742
2743@item Then you can try the example @file{putty.exe}:
2744
2745@example
2746qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2747          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2748@end example
2749
2750@end itemize
2751
2752@node Command line options
2753@subsection Command line options
2754
2755@example
2756usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2757@end example
2758
2759@table @option
2760@item -h
2761Print the help
2762@item -L path
2763Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2764@item -s size
2765Set the x86 stack size in bytes (default=524288)
2766@item -cpu model
2767Select CPU model (-cpu help for list and additional feature selection)
2768@item -E @var{var}=@var{value}
2769Set environment @var{var} to @var{value}.
2770@item -U @var{var}
2771Remove @var{var} from the environment.
2772@item -B offset
2773Offset guest address by the specified number of bytes.  This is useful when
2774the address region required by guest applications is reserved on the host.
2775This option is currently only supported on some hosts.
2776@item -R size
2777Pre-allocate a guest virtual address space of the given size (in bytes).
2778"G", "M", and "k" suffixes may be used when specifying the size.
2779@end table
2780
2781Debug options:
2782
2783@table @option
2784@item -d item1,...
2785Activate logging of the specified items (use '-d help' for a list of log items)
2786@item -p pagesize
2787Act as if the host page size was 'pagesize' bytes
2788@item -g port
2789Wait gdb connection to port
2790@item -singlestep
2791Run the emulation in single step mode.
2792@end table
2793
2794Environment variables:
2795
2796@table @env
2797@item QEMU_STRACE
2798Print system calls and arguments similar to the 'strace' program
2799(NOTE: the actual 'strace' program will not work because the user
2800space emulator hasn't implemented ptrace).  At the moment this is
2801incomplete.  All system calls that don't have a specific argument
2802format are printed with information for six arguments.  Many
2803flag-style arguments don't have decoders and will show up as numbers.
2804@end table
2805
2806@node Other binaries
2807@subsection Other binaries
2808
2809@cindex user mode (Alpha)
2810@command{qemu-alpha} TODO.
2811
2812@cindex user mode (ARM)
2813@command{qemu-armeb} TODO.
2814
2815@cindex user mode (ARM)
2816@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2817binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2818configurations), and arm-uclinux bFLT format binaries.
2819
2820@cindex user mode (ColdFire)
2821@cindex user mode (M68K)
2822@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2823(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2824coldfire uClinux bFLT format binaries.
2825
2826The binary format is detected automatically.
2827
2828@cindex user mode (Cris)
2829@command{qemu-cris} TODO.
2830
2831@cindex user mode (i386)
2832@command{qemu-i386} TODO.
2833@command{qemu-x86_64} TODO.
2834
2835@cindex user mode (Microblaze)
2836@command{qemu-microblaze} TODO.
2837
2838@cindex user mode (MIPS)
2839@command{qemu-mips} TODO.
2840@command{qemu-mipsel} TODO.
2841
2842@cindex user mode (PowerPC)
2843@command{qemu-ppc64abi32} TODO.
2844@command{qemu-ppc64} TODO.
2845@command{qemu-ppc} TODO.
2846
2847@cindex user mode (SH4)
2848@command{qemu-sh4eb} TODO.
2849@command{qemu-sh4} TODO.
2850
2851@cindex user mode (SPARC)
2852@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2853
2854@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2855(Sparc64 CPU, 32 bit ABI).
2856
2857@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2858SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2859
2860@node BSD User space emulator
2861@section BSD User space emulator
2862
2863@menu
2864* BSD Status::
2865* BSD Quick Start::
2866* BSD Command line options::
2867@end menu
2868
2869@node BSD Status
2870@subsection BSD Status
2871
2872@itemize @minus
2873@item
2874target Sparc64 on Sparc64: Some trivial programs work.
2875@end itemize
2876
2877@node BSD Quick Start
2878@subsection Quick Start
2879
2880In order to launch a BSD process, QEMU needs the process executable
2881itself and all the target dynamic libraries used by it.
2882
2883@itemize
2884
2885@item On Sparc64, you can just try to launch any process by using the native
2886libraries:
2887
2888@example
2889qemu-sparc64 /bin/ls
2890@end example
2891
2892@end itemize
2893
2894@node BSD Command line options
2895@subsection Command line options
2896
2897@example
2898usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2899@end example
2900
2901@table @option
2902@item -h
2903Print the help
2904@item -L path
2905Set the library root path (default=/)
2906@item -s size
2907Set the stack size in bytes (default=524288)
2908@item -ignore-environment
2909Start with an empty environment. Without this option,
2910the initial environment is a copy of the caller's environment.
2911@item -E @var{var}=@var{value}
2912Set environment @var{var} to @var{value}.
2913@item -U @var{var}
2914Remove @var{var} from the environment.
2915@item -bsd type
2916Set the type of the emulated BSD Operating system. Valid values are
2917FreeBSD, NetBSD and OpenBSD (default).
2918@end table
2919
2920Debug options:
2921
2922@table @option
2923@item -d item1,...
2924Activate logging of the specified items (use '-d help' for a list of log items)
2925@item -p pagesize
2926Act as if the host page size was 'pagesize' bytes
2927@item -singlestep
2928Run the emulation in single step mode.
2929@end table
2930
2931@node compilation
2932@chapter Compilation from the sources
2933
2934@menu
2935* Linux/Unix::
2936* Windows::
2937* Cross compilation for Windows with Linux::
2938* Mac OS X::
2939* Make targets::
2940@end menu
2941
2942@node Linux/Unix
2943@section Linux/Unix
2944
2945@subsection Compilation
2946
2947First you must decompress the sources:
2948@example
2949cd /tmp
2950tar zxvf qemu-x.y.z.tar.gz
2951cd qemu-x.y.z
2952@end example
2953
2954Then you configure QEMU and build it (usually no options are needed):
2955@example
2956./configure
2957make
2958@end example
2959
2960Then type as root user:
2961@example
2962make install
2963@end example
2964to install QEMU in @file{/usr/local}.
2965
2966@node Windows
2967@section Windows
2968
2969@itemize
2970@item Install the current versions of MSYS and MinGW from
2971@url{http://www.mingw.org/}. You can find detailed installation
2972instructions in the download section and the FAQ.
2973
2974@item Download
2975the MinGW development library of SDL 1.2.x
2976(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2977@url{http://www.libsdl.org}. Unpack it in a temporary place and
2978edit the @file{sdl-config} script so that it gives the
2979correct SDL directory when invoked.
2980
2981@item Install the MinGW version of zlib and make sure
2982@file{zlib.h} and @file{libz.dll.a} are in
2983MinGW's default header and linker search paths.
2984
2985@item Extract the current version of QEMU.
2986
2987@item Start the MSYS shell (file @file{msys.bat}).
2988
2989@item Change to the QEMU directory. Launch @file{./configure} and
2990@file{make}.  If you have problems using SDL, verify that
2991@file{sdl-config} can be launched from the MSYS command line.
2992
2993@item You can install QEMU in @file{Program Files/QEMU} by typing
2994@file{make install}. Don't forget to copy @file{SDL.dll} in
2995@file{Program Files/QEMU}.
2996
2997@end itemize
2998
2999@node Cross compilation for Windows with Linux
3000@section Cross compilation for Windows with Linux
3001
3002@itemize
3003@item
3004Install the MinGW cross compilation tools available at
3005@url{http://www.mingw.org/}.
3006
3007@item Download
3008the MinGW development library of SDL 1.2.x
3009(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3010@url{http://www.libsdl.org}. Unpack it in a temporary place and
3011edit the @file{sdl-config} script so that it gives the
3012correct SDL directory when invoked.  Set up the @code{PATH} environment
3013variable so that @file{sdl-config} can be launched by
3014the QEMU configuration script.
3015
3016@item Install the MinGW version of zlib and make sure
3017@file{zlib.h} and @file{libz.dll.a} are in
3018MinGW's default header and linker search paths.
3019
3020@item
3021Configure QEMU for Windows cross compilation:
3022@example
3023PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3024@end example
3025The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3026MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
3027We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3028use --cross-prefix to specify the name of the cross compiler.
3029You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3030
3031Under Fedora Linux, you can run:
3032@example
3033yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
3034@end example
3035to get a suitable cross compilation environment.
3036
3037@item You can install QEMU in the installation directory by typing
3038@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3039installation directory.
3040
3041@end itemize
3042
3043Wine can be used to launch the resulting qemu-system-i386.exe
3044and all other qemu-system-@var{target}.exe compiled for Win32.
3045
3046@node Mac OS X
3047@section Mac OS X
3048
3049System Requirements:
3050@itemize
3051@item Mac OS 10.5 or higher
3052@item The clang compiler shipped with Xcode 4.2 or higher,
3053or GCC 4.3 or higher
3054@end itemize
3055
3056Additional Requirements (install in order):
3057@enumerate
3058@item libffi: @uref{https://sourceware.org/libffi/}
3059@item gettext: @uref{http://www.gnu.org/software/gettext/}
3060@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3061@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3062@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3063@item automake: @uref{http://www.gnu.org/software/automake/}
3064@item libtool: @uref{http://www.gnu.org/software/libtool/}
3065@item pixman: @uref{http://www.pixman.org/}
3066@end enumerate
3067
3068* You may find it easiest to get these from a third-party packager
3069such as Homebrew, Macports, or Fink.
3070
3071After downloading the QEMU source code, double-click it to expand it.
3072
3073Then configure and make QEMU:
3074@example
3075./configure
3076make
3077@end example
3078
3079If you have a recent version of Mac OS X (OSX 10.7 or better
3080with Xcode 4.2 or better) we recommend building QEMU with the
3081default compiler provided by Apple, for your version of Mac OS X
3082(which will be 'clang'). The configure script will
3083automatically pick this.
3084
3085Note: If after the configure step you see a message like this:
3086@example
3087ERROR: Your compiler does not support the __thread specifier for
3088       Thread-Local Storage (TLS). Please upgrade to a version that does.
3089@end example
3090you may have to build your own version of gcc from source. Expect that to take
3091several hours. More information can be found here:
3092@uref{https://gcc.gnu.org/install/} @*
3093
3094These are some of the third party binaries of gcc available for download:
3095@itemize
3096@item Homebrew: @uref{http://brew.sh/}
3097@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3098@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3099@end itemize
3100
3101You can have several versions of GCC on your system. To specify a certain version,
3102use the --cc and --cxx options.
3103@example
3104./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3105@end example
3106
3107@node Make targets
3108@section Make targets
3109
3110@table @code
3111
3112@item make
3113@item make all
3114Make everything which is typically needed.
3115
3116@item install
3117TODO
3118
3119@item install-doc
3120TODO
3121
3122@item make clean
3123Remove most files which were built during make.
3124
3125@item make distclean
3126Remove everything which was built during make.
3127
3128@item make dvi
3129@item make html
3130@item make info
3131@item make pdf
3132Create documentation in dvi, html, info or pdf format.
3133
3134@item make cscope
3135TODO
3136
3137@item make defconfig
3138(Re-)create some build configuration files.
3139User made changes will be overwritten.
3140
3141@item tar
3142@item tarbin
3143TODO
3144
3145@end table
3146
3147@node License
3148@appendix License
3149
3150QEMU is a trademark of Fabrice Bellard.
3151
3152QEMU is released under the GNU General Public License (TODO: add link).
3153Parts of QEMU have specific licenses, see file LICENSE.
3154
3155TODO (refer to file LICENSE, include it, include the GPL?)
3156
3157@node Index
3158@appendix Index
3159@menu
3160* Concept Index::
3161* Function Index::
3162* Keystroke Index::
3163* Program Index::
3164* Data Type Index::
3165* Variable Index::
3166@end menu
3167
3168@node Concept Index
3169@section Concept Index
3170This is the main index. Should we combine all keywords in one index? TODO
3171@printindex cp
3172
3173@node Function Index
3174@section Function Index
3175This index could be used for command line options and monitor functions.
3176@printindex fn
3177
3178@node Keystroke Index
3179@section Keystroke Index
3180
3181This is a list of all keystrokes which have a special function
3182in system emulation.
3183
3184@printindex ky
3185
3186@node Program Index
3187@section Program Index
3188@printindex pg
3189
3190@node Data Type Index
3191@section Data Type Index
3192
3193This index could be used for qdev device names and options.
3194
3195@printindex tp
3196
3197@node Variable Index
3198@section Variable Index
3199@printindex vr
3200
3201@bye
3202