qemu/softmmu_template.h
<<
>>
Prefs
   1/*
   2 *  Software MMU support
   3 *
   4 * Generate helpers used by TCG for qemu_ld/st ops and code load
   5 * functions.
   6 *
   7 * Included from target op helpers and exec.c.
   8 *
   9 *  Copyright (c) 2003 Fabrice Bellard
  10 *
  11 * This library is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU Lesser General Public
  13 * License as published by the Free Software Foundation; either
  14 * version 2 of the License, or (at your option) any later version.
  15 *
  16 * This library is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * Lesser General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU Lesser General Public
  22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  23 */
  24#include "qemu/timer.h"
  25#include "exec/address-spaces.h"
  26#include "exec/memory.h"
  27
  28#define DATA_SIZE (1 << SHIFT)
  29
  30#if DATA_SIZE == 8
  31#define SUFFIX q
  32#define LSUFFIX q
  33#define SDATA_TYPE  int64_t
  34#define DATA_TYPE  uint64_t
  35#elif DATA_SIZE == 4
  36#define SUFFIX l
  37#define LSUFFIX l
  38#define SDATA_TYPE  int32_t
  39#define DATA_TYPE  uint32_t
  40#elif DATA_SIZE == 2
  41#define SUFFIX w
  42#define LSUFFIX uw
  43#define SDATA_TYPE  int16_t
  44#define DATA_TYPE  uint16_t
  45#elif DATA_SIZE == 1
  46#define SUFFIX b
  47#define LSUFFIX ub
  48#define SDATA_TYPE  int8_t
  49#define DATA_TYPE  uint8_t
  50#else
  51#error unsupported data size
  52#endif
  53
  54
  55/* For the benefit of TCG generated code, we want to avoid the complication
  56   of ABI-specific return type promotion and always return a value extended
  57   to the register size of the host.  This is tcg_target_long, except in the
  58   case of a 32-bit host and 64-bit data, and for that we always have
  59   uint64_t.  Don't bother with this widened value for SOFTMMU_CODE_ACCESS.  */
  60#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
  61# define WORD_TYPE  DATA_TYPE
  62# define USUFFIX    SUFFIX
  63#else
  64# define WORD_TYPE  tcg_target_ulong
  65# define USUFFIX    glue(u, SUFFIX)
  66# define SSUFFIX    glue(s, SUFFIX)
  67#endif
  68
  69#ifdef SOFTMMU_CODE_ACCESS
  70#define READ_ACCESS_TYPE MMU_INST_FETCH
  71#define ADDR_READ addr_code
  72#else
  73#define READ_ACCESS_TYPE MMU_DATA_LOAD
  74#define ADDR_READ addr_read
  75#endif
  76
  77#if DATA_SIZE == 8
  78# define BSWAP(X)  bswap64(X)
  79#elif DATA_SIZE == 4
  80# define BSWAP(X)  bswap32(X)
  81#elif DATA_SIZE == 2
  82# define BSWAP(X)  bswap16(X)
  83#else
  84# define BSWAP(X)  (X)
  85#endif
  86
  87#ifdef TARGET_WORDS_BIGENDIAN
  88# define TGT_BE(X)  (X)
  89# define TGT_LE(X)  BSWAP(X)
  90#else
  91# define TGT_BE(X)  BSWAP(X)
  92# define TGT_LE(X)  (X)
  93#endif
  94
  95#if DATA_SIZE == 1
  96# define helper_le_ld_name  glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
  97# define helper_be_ld_name  helper_le_ld_name
  98# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
  99# define helper_be_lds_name helper_le_lds_name
 100# define helper_le_st_name  glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
 101# define helper_be_st_name  helper_le_st_name
 102#else
 103# define helper_le_ld_name  glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
 104# define helper_be_ld_name  glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
 105# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
 106# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
 107# define helper_le_st_name  glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
 108# define helper_be_st_name  glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
 109#endif
 110
 111#ifdef TARGET_WORDS_BIGENDIAN
 112# define helper_te_ld_name  helper_be_ld_name
 113# define helper_te_st_name  helper_be_st_name
 114#else
 115# define helper_te_ld_name  helper_le_ld_name
 116# define helper_te_st_name  helper_le_st_name
 117#endif
 118
 119/* macro to check the victim tlb */
 120#define VICTIM_TLB_HIT(ty)                                                    \
 121({                                                                            \
 122    /* we are about to do a page table walk. our last hope is the             \
 123     * victim tlb. try to refill from the victim tlb before walking the       \
 124     * page table. */                                                         \
 125    int vidx;                                                                 \
 126    CPUIOTLBEntry tmpiotlb;                                                   \
 127    CPUTLBEntry tmptlb;                                                       \
 128    for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) {                         \
 129        if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
 130            /* found entry in victim tlb, swap tlb and iotlb */               \
 131            tmptlb = env->tlb_table[mmu_idx][index];                          \
 132            env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
 133            env->tlb_v_table[mmu_idx][vidx] = tmptlb;                         \
 134            tmpiotlb = env->iotlb[mmu_idx][index];                            \
 135            env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx];         \
 136            env->iotlb_v[mmu_idx][vidx] = tmpiotlb;                           \
 137            break;                                                            \
 138        }                                                                     \
 139    }                                                                         \
 140    /* return true when there is a vtlb hit, i.e. vidx >=0 */                 \
 141    vidx >= 0;                                                                \
 142})
 143
 144#ifndef SOFTMMU_CODE_ACCESS
 145static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
 146                                              CPUIOTLBEntry *iotlbentry,
 147                                              target_ulong addr,
 148                                              uintptr_t retaddr)
 149{
 150    uint64_t val;
 151    CPUState *cpu = ENV_GET_CPU(env);
 152    hwaddr physaddr = iotlbentry->addr;
 153    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
 154
 155    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
 156    cpu->mem_io_pc = retaddr;
 157    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 158        cpu_io_recompile(cpu, retaddr);
 159    }
 160
 161    cpu->mem_io_vaddr = addr;
 162    memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
 163                                iotlbentry->attrs);
 164    return val;
 165}
 166#endif
 167
 168WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
 169                            TCGMemOpIdx oi, uintptr_t retaddr)
 170{
 171    unsigned mmu_idx = get_mmuidx(oi);
 172    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 173    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 174    uintptr_t haddr;
 175    DATA_TYPE res;
 176
 177    /* Adjust the given return address.  */
 178    retaddr -= GETPC_ADJ;
 179
 180    /* If the TLB entry is for a different page, reload and try again.  */
 181    if ((addr & TARGET_PAGE_MASK)
 182         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 183        if ((addr & (DATA_SIZE - 1)) != 0
 184            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 185            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 186                                 mmu_idx, retaddr);
 187        }
 188        if (!VICTIM_TLB_HIT(ADDR_READ)) {
 189            tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 190                     mmu_idx, retaddr);
 191        }
 192        tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 193    }
 194
 195    /* Handle an IO access.  */
 196    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 197        CPUIOTLBEntry *iotlbentry;
 198        if ((addr & (DATA_SIZE - 1)) != 0) {
 199            goto do_unaligned_access;
 200        }
 201        iotlbentry = &env->iotlb[mmu_idx][index];
 202
 203        /* ??? Note that the io helpers always read data in the target
 204           byte ordering.  We should push the LE/BE request down into io.  */
 205        res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
 206        res = TGT_LE(res);
 207        return res;
 208    }
 209
 210    /* Handle slow unaligned access (it spans two pages or IO).  */
 211    if (DATA_SIZE > 1
 212        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 213                    >= TARGET_PAGE_SIZE)) {
 214        target_ulong addr1, addr2;
 215        DATA_TYPE res1, res2;
 216        unsigned shift;
 217    do_unaligned_access:
 218        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 219            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 220                                 mmu_idx, retaddr);
 221        }
 222        addr1 = addr & ~(DATA_SIZE - 1);
 223        addr2 = addr1 + DATA_SIZE;
 224        /* Note the adjustment at the beginning of the function.
 225           Undo that for the recursion.  */
 226        res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
 227        res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
 228        shift = (addr & (DATA_SIZE - 1)) * 8;
 229
 230        /* Little-endian combine.  */
 231        res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
 232        return res;
 233    }
 234
 235    /* Handle aligned access or unaligned access in the same page.  */
 236    if ((addr & (DATA_SIZE - 1)) != 0
 237        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 238        cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 239                             mmu_idx, retaddr);
 240    }
 241
 242    haddr = addr + env->tlb_table[mmu_idx][index].addend;
 243#if DATA_SIZE == 1
 244    res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
 245#else
 246    res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
 247#endif
 248    return res;
 249}
 250
 251#if DATA_SIZE > 1
 252WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
 253                            TCGMemOpIdx oi, uintptr_t retaddr)
 254{
 255    unsigned mmu_idx = get_mmuidx(oi);
 256    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 257    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 258    uintptr_t haddr;
 259    DATA_TYPE res;
 260
 261    /* Adjust the given return address.  */
 262    retaddr -= GETPC_ADJ;
 263
 264    /* If the TLB entry is for a different page, reload and try again.  */
 265    if ((addr & TARGET_PAGE_MASK)
 266         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 267        if ((addr & (DATA_SIZE - 1)) != 0
 268            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 269            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 270                                 mmu_idx, retaddr);
 271        }
 272        if (!VICTIM_TLB_HIT(ADDR_READ)) {
 273            tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 274                     mmu_idx, retaddr);
 275        }
 276        tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 277    }
 278
 279    /* Handle an IO access.  */
 280    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 281        CPUIOTLBEntry *iotlbentry;
 282        if ((addr & (DATA_SIZE - 1)) != 0) {
 283            goto do_unaligned_access;
 284        }
 285        iotlbentry = &env->iotlb[mmu_idx][index];
 286
 287        /* ??? Note that the io helpers always read data in the target
 288           byte ordering.  We should push the LE/BE request down into io.  */
 289        res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
 290        res = TGT_BE(res);
 291        return res;
 292    }
 293
 294    /* Handle slow unaligned access (it spans two pages or IO).  */
 295    if (DATA_SIZE > 1
 296        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 297                    >= TARGET_PAGE_SIZE)) {
 298        target_ulong addr1, addr2;
 299        DATA_TYPE res1, res2;
 300        unsigned shift;
 301    do_unaligned_access:
 302        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 303            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 304                                 mmu_idx, retaddr);
 305        }
 306        addr1 = addr & ~(DATA_SIZE - 1);
 307        addr2 = addr1 + DATA_SIZE;
 308        /* Note the adjustment at the beginning of the function.
 309           Undo that for the recursion.  */
 310        res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
 311        res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
 312        shift = (addr & (DATA_SIZE - 1)) * 8;
 313
 314        /* Big-endian combine.  */
 315        res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
 316        return res;
 317    }
 318
 319    /* Handle aligned access or unaligned access in the same page.  */
 320    if ((addr & (DATA_SIZE - 1)) != 0
 321        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 322        cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 323                             mmu_idx, retaddr);
 324    }
 325
 326    haddr = addr + env->tlb_table[mmu_idx][index].addend;
 327    res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
 328    return res;
 329}
 330#endif /* DATA_SIZE > 1 */
 331
 332#ifndef SOFTMMU_CODE_ACCESS
 333
 334/* Provide signed versions of the load routines as well.  We can of course
 335   avoid this for 64-bit data, or for 32-bit data on 32-bit host.  */
 336#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
 337WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
 338                             TCGMemOpIdx oi, uintptr_t retaddr)
 339{
 340    return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
 341}
 342
 343# if DATA_SIZE > 1
 344WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
 345                             TCGMemOpIdx oi, uintptr_t retaddr)
 346{
 347    return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
 348}
 349# endif
 350#endif
 351
 352static inline void glue(io_write, SUFFIX)(CPUArchState *env,
 353                                          CPUIOTLBEntry *iotlbentry,
 354                                          DATA_TYPE val,
 355                                          target_ulong addr,
 356                                          uintptr_t retaddr)
 357{
 358    CPUState *cpu = ENV_GET_CPU(env);
 359    hwaddr physaddr = iotlbentry->addr;
 360    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
 361
 362    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
 363    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 364        cpu_io_recompile(cpu, retaddr);
 365    }
 366
 367    cpu->mem_io_vaddr = addr;
 368    cpu->mem_io_pc = retaddr;
 369    memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
 370                                 iotlbentry->attrs);
 371}
 372
 373void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
 374                       TCGMemOpIdx oi, uintptr_t retaddr)
 375{
 376    unsigned mmu_idx = get_mmuidx(oi);
 377    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 378    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 379    uintptr_t haddr;
 380
 381    /* Adjust the given return address.  */
 382    retaddr -= GETPC_ADJ;
 383
 384    /* If the TLB entry is for a different page, reload and try again.  */
 385    if ((addr & TARGET_PAGE_MASK)
 386        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 387        if ((addr & (DATA_SIZE - 1)) != 0
 388            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 389            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 390                                 mmu_idx, retaddr);
 391        }
 392        if (!VICTIM_TLB_HIT(addr_write)) {
 393            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
 394        }
 395        tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 396    }
 397
 398    /* Handle an IO access.  */
 399    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 400        CPUIOTLBEntry *iotlbentry;
 401        if ((addr & (DATA_SIZE - 1)) != 0) {
 402            goto do_unaligned_access;
 403        }
 404        iotlbentry = &env->iotlb[mmu_idx][index];
 405
 406        /* ??? Note that the io helpers always read data in the target
 407           byte ordering.  We should push the LE/BE request down into io.  */
 408        val = TGT_LE(val);
 409        glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
 410        return;
 411    }
 412
 413    /* Handle slow unaligned access (it spans two pages or IO).  */
 414    if (DATA_SIZE > 1
 415        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 416                     >= TARGET_PAGE_SIZE)) {
 417        int i;
 418    do_unaligned_access:
 419        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 420            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 421                                 mmu_idx, retaddr);
 422        }
 423        /* XXX: not efficient, but simple */
 424        /* Note: relies on the fact that tlb_fill() does not remove the
 425         * previous page from the TLB cache.  */
 426        for (i = DATA_SIZE - 1; i >= 0; i--) {
 427            /* Little-endian extract.  */
 428            uint8_t val8 = val >> (i * 8);
 429            /* Note the adjustment at the beginning of the function.
 430               Undo that for the recursion.  */
 431            glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
 432                                            oi, retaddr + GETPC_ADJ);
 433        }
 434        return;
 435    }
 436
 437    /* Handle aligned access or unaligned access in the same page.  */
 438    if ((addr & (DATA_SIZE - 1)) != 0
 439        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 440        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 441                             mmu_idx, retaddr);
 442    }
 443
 444    haddr = addr + env->tlb_table[mmu_idx][index].addend;
 445#if DATA_SIZE == 1
 446    glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
 447#else
 448    glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
 449#endif
 450}
 451
 452#if DATA_SIZE > 1
 453void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
 454                       TCGMemOpIdx oi, uintptr_t retaddr)
 455{
 456    unsigned mmu_idx = get_mmuidx(oi);
 457    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 458    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 459    uintptr_t haddr;
 460
 461    /* Adjust the given return address.  */
 462    retaddr -= GETPC_ADJ;
 463
 464    /* If the TLB entry is for a different page, reload and try again.  */
 465    if ((addr & TARGET_PAGE_MASK)
 466        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 467        if ((addr & (DATA_SIZE - 1)) != 0
 468            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 469            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 470                                 mmu_idx, retaddr);
 471        }
 472        if (!VICTIM_TLB_HIT(addr_write)) {
 473            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
 474        }
 475        tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 476    }
 477
 478    /* Handle an IO access.  */
 479    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 480        CPUIOTLBEntry *iotlbentry;
 481        if ((addr & (DATA_SIZE - 1)) != 0) {
 482            goto do_unaligned_access;
 483        }
 484        iotlbentry = &env->iotlb[mmu_idx][index];
 485
 486        /* ??? Note that the io helpers always read data in the target
 487           byte ordering.  We should push the LE/BE request down into io.  */
 488        val = TGT_BE(val);
 489        glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
 490        return;
 491    }
 492
 493    /* Handle slow unaligned access (it spans two pages or IO).  */
 494    if (DATA_SIZE > 1
 495        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 496                     >= TARGET_PAGE_SIZE)) {
 497        int i;
 498    do_unaligned_access:
 499        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 500            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 501                                 mmu_idx, retaddr);
 502        }
 503        /* XXX: not efficient, but simple */
 504        /* Note: relies on the fact that tlb_fill() does not remove the
 505         * previous page from the TLB cache.  */
 506        for (i = DATA_SIZE - 1; i >= 0; i--) {
 507            /* Big-endian extract.  */
 508            uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
 509            /* Note the adjustment at the beginning of the function.
 510               Undo that for the recursion.  */
 511            glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
 512                                            oi, retaddr + GETPC_ADJ);
 513        }
 514        return;
 515    }
 516
 517    /* Handle aligned access or unaligned access in the same page.  */
 518    if ((addr & (DATA_SIZE - 1)) != 0
 519        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
 520        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 521                             mmu_idx, retaddr);
 522    }
 523
 524    haddr = addr + env->tlb_table[mmu_idx][index].addend;
 525    glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
 526}
 527#endif /* DATA_SIZE > 1 */
 528
 529#if DATA_SIZE == 1
 530/* Probe for whether the specified guest write access is permitted.
 531 * If it is not permitted then an exception will be taken in the same
 532 * way as if this were a real write access (and we will not return).
 533 * Otherwise the function will return, and there will be a valid
 534 * entry in the TLB for this access.
 535 */
 536void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
 537                 uintptr_t retaddr)
 538{
 539    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 540    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 541
 542    if ((addr & TARGET_PAGE_MASK)
 543        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 544        /* TLB entry is for a different page */
 545        if (!VICTIM_TLB_HIT(addr_write)) {
 546            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
 547        }
 548    }
 549}
 550#endif
 551#endif /* !defined(SOFTMMU_CODE_ACCESS) */
 552
 553#undef READ_ACCESS_TYPE
 554#undef SHIFT
 555#undef DATA_TYPE
 556#undef SUFFIX
 557#undef LSUFFIX
 558#undef DATA_SIZE
 559#undef ADDR_READ
 560#undef WORD_TYPE
 561#undef SDATA_TYPE
 562#undef USUFFIX
 563#undef SSUFFIX
 564#undef BSWAP
 565#undef TGT_BE
 566#undef TGT_LE
 567#undef CPU_BE
 568#undef CPU_LE
 569#undef helper_le_ld_name
 570#undef helper_be_ld_name
 571#undef helper_le_lds_name
 572#undef helper_be_lds_name
 573#undef helper_le_st_name
 574#undef helper_be_st_name
 575#undef helper_te_ld_name
 576#undef helper_te_st_name
 577