qemu/memory.c
<<
>>
Prefs
   1/*
   2 * Physical memory management
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 * Contributions after 2012-01-13 are licensed under the terms of the
  13 * GNU GPL, version 2 or (at your option) any later version.
  14 */
  15
  16#include "qemu/osdep.h"
  17#include "qapi/error.h"
  18#include "exec/memory.h"
  19#include "exec/address-spaces.h"
  20#include "exec/ioport.h"
  21#include "qapi/visitor.h"
  22#include "qemu/bitops.h"
  23#include "qemu/error-report.h"
  24#include "qom/object.h"
  25#include "trace.h"
  26
  27#include "exec/memory-internal.h"
  28#include "exec/ram_addr.h"
  29#include "sysemu/kvm.h"
  30#include "sysemu/sysemu.h"
  31
  32//#define DEBUG_UNASSIGNED
  33
  34#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  35
  36static unsigned memory_region_transaction_depth;
  37static bool memory_region_update_pending;
  38static bool ioeventfd_update_pending;
  39static bool global_dirty_log = false;
  40
  41static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
  42    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
  43
  44static QTAILQ_HEAD(, AddressSpace) address_spaces
  45    = QTAILQ_HEAD_INITIALIZER(address_spaces);
  46
  47typedef struct AddrRange AddrRange;
  48
  49/*
  50 * Note that signed integers are needed for negative offsetting in aliases
  51 * (large MemoryRegion::alias_offset).
  52 */
  53struct AddrRange {
  54    Int128 start;
  55    Int128 size;
  56};
  57
  58static AddrRange addrrange_make(Int128 start, Int128 size)
  59{
  60    return (AddrRange) { start, size };
  61}
  62
  63static bool addrrange_equal(AddrRange r1, AddrRange r2)
  64{
  65    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
  66}
  67
  68static Int128 addrrange_end(AddrRange r)
  69{
  70    return int128_add(r.start, r.size);
  71}
  72
  73static AddrRange addrrange_shift(AddrRange range, Int128 delta)
  74{
  75    int128_addto(&range.start, delta);
  76    return range;
  77}
  78
  79static bool addrrange_contains(AddrRange range, Int128 addr)
  80{
  81    return int128_ge(addr, range.start)
  82        && int128_lt(addr, addrrange_end(range));
  83}
  84
  85static bool addrrange_intersects(AddrRange r1, AddrRange r2)
  86{
  87    return addrrange_contains(r1, r2.start)
  88        || addrrange_contains(r2, r1.start);
  89}
  90
  91static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
  92{
  93    Int128 start = int128_max(r1.start, r2.start);
  94    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
  95    return addrrange_make(start, int128_sub(end, start));
  96}
  97
  98enum ListenerDirection { Forward, Reverse };
  99
 100static bool memory_listener_match(MemoryListener *listener,
 101                                  MemoryRegionSection *section)
 102{
 103    return !listener->address_space_filter
 104        || listener->address_space_filter == section->address_space;
 105}
 106
 107#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
 108    do {                                                                \
 109        MemoryListener *_listener;                                      \
 110                                                                        \
 111        switch (_direction) {                                           \
 112        case Forward:                                                   \
 113            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
 114                if (_listener->_callback) {                             \
 115                    _listener->_callback(_listener, ##_args);           \
 116                }                                                       \
 117            }                                                           \
 118            break;                                                      \
 119        case Reverse:                                                   \
 120            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
 121                                   memory_listeners, link) {            \
 122                if (_listener->_callback) {                             \
 123                    _listener->_callback(_listener, ##_args);           \
 124                }                                                       \
 125            }                                                           \
 126            break;                                                      \
 127        default:                                                        \
 128            abort();                                                    \
 129        }                                                               \
 130    } while (0)
 131
 132#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
 133    do {                                                                \
 134        MemoryListener *_listener;                                      \
 135                                                                        \
 136        switch (_direction) {                                           \
 137        case Forward:                                                   \
 138            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
 139                if (_listener->_callback                                \
 140                    && memory_listener_match(_listener, _section)) {    \
 141                    _listener->_callback(_listener, _section, ##_args); \
 142                }                                                       \
 143            }                                                           \
 144            break;                                                      \
 145        case Reverse:                                                   \
 146            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
 147                                   memory_listeners, link) {            \
 148                if (_listener->_callback                                \
 149                    && memory_listener_match(_listener, _section)) {    \
 150                    _listener->_callback(_listener, _section, ##_args); \
 151                }                                                       \
 152            }                                                           \
 153            break;                                                      \
 154        default:                                                        \
 155            abort();                                                    \
 156        }                                                               \
 157    } while (0)
 158
 159/* No need to ref/unref .mr, the FlatRange keeps it alive.  */
 160#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
 161    MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
 162        .mr = (fr)->mr,                                                 \
 163        .address_space = (as),                                          \
 164        .offset_within_region = (fr)->offset_in_region,                 \
 165        .size = (fr)->addr.size,                                        \
 166        .offset_within_address_space = int128_get64((fr)->addr.start),  \
 167        .readonly = (fr)->readonly,                                     \
 168              }), ##_args)
 169
 170struct CoalescedMemoryRange {
 171    AddrRange addr;
 172    QTAILQ_ENTRY(CoalescedMemoryRange) link;
 173};
 174
 175struct MemoryRegionIoeventfd {
 176    AddrRange addr;
 177    bool match_data;
 178    uint64_t data;
 179    EventNotifier *e;
 180};
 181
 182static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
 183                                           MemoryRegionIoeventfd b)
 184{
 185    if (int128_lt(a.addr.start, b.addr.start)) {
 186        return true;
 187    } else if (int128_gt(a.addr.start, b.addr.start)) {
 188        return false;
 189    } else if (int128_lt(a.addr.size, b.addr.size)) {
 190        return true;
 191    } else if (int128_gt(a.addr.size, b.addr.size)) {
 192        return false;
 193    } else if (a.match_data < b.match_data) {
 194        return true;
 195    } else  if (a.match_data > b.match_data) {
 196        return false;
 197    } else if (a.match_data) {
 198        if (a.data < b.data) {
 199            return true;
 200        } else if (a.data > b.data) {
 201            return false;
 202        }
 203    }
 204    if (a.e < b.e) {
 205        return true;
 206    } else if (a.e > b.e) {
 207        return false;
 208    }
 209    return false;
 210}
 211
 212static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
 213                                          MemoryRegionIoeventfd b)
 214{
 215    return !memory_region_ioeventfd_before(a, b)
 216        && !memory_region_ioeventfd_before(b, a);
 217}
 218
 219typedef struct FlatRange FlatRange;
 220typedef struct FlatView FlatView;
 221
 222/* Range of memory in the global map.  Addresses are absolute. */
 223struct FlatRange {
 224    MemoryRegion *mr;
 225    hwaddr offset_in_region;
 226    AddrRange addr;
 227    uint8_t dirty_log_mask;
 228    bool romd_mode;
 229    bool readonly;
 230};
 231
 232/* Flattened global view of current active memory hierarchy.  Kept in sorted
 233 * order.
 234 */
 235struct FlatView {
 236    struct rcu_head rcu;
 237    unsigned ref;
 238    FlatRange *ranges;
 239    unsigned nr;
 240    unsigned nr_allocated;
 241};
 242
 243typedef struct AddressSpaceOps AddressSpaceOps;
 244
 245#define FOR_EACH_FLAT_RANGE(var, view)          \
 246    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
 247
 248static bool flatrange_equal(FlatRange *a, FlatRange *b)
 249{
 250    return a->mr == b->mr
 251        && addrrange_equal(a->addr, b->addr)
 252        && a->offset_in_region == b->offset_in_region
 253        && a->romd_mode == b->romd_mode
 254        && a->readonly == b->readonly;
 255}
 256
 257static void flatview_init(FlatView *view)
 258{
 259    view->ref = 1;
 260    view->ranges = NULL;
 261    view->nr = 0;
 262    view->nr_allocated = 0;
 263}
 264
 265/* Insert a range into a given position.  Caller is responsible for maintaining
 266 * sorting order.
 267 */
 268static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
 269{
 270    if (view->nr == view->nr_allocated) {
 271        view->nr_allocated = MAX(2 * view->nr, 10);
 272        view->ranges = g_realloc(view->ranges,
 273                                    view->nr_allocated * sizeof(*view->ranges));
 274    }
 275    memmove(view->ranges + pos + 1, view->ranges + pos,
 276            (view->nr - pos) * sizeof(FlatRange));
 277    view->ranges[pos] = *range;
 278    memory_region_ref(range->mr);
 279    ++view->nr;
 280}
 281
 282static void flatview_destroy(FlatView *view)
 283{
 284    int i;
 285
 286    for (i = 0; i < view->nr; i++) {
 287        memory_region_unref(view->ranges[i].mr);
 288    }
 289    g_free(view->ranges);
 290    g_free(view);
 291}
 292
 293static void flatview_ref(FlatView *view)
 294{
 295    atomic_inc(&view->ref);
 296}
 297
 298static void flatview_unref(FlatView *view)
 299{
 300    if (atomic_fetch_dec(&view->ref) == 1) {
 301        flatview_destroy(view);
 302    }
 303}
 304
 305static bool can_merge(FlatRange *r1, FlatRange *r2)
 306{
 307    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
 308        && r1->mr == r2->mr
 309        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
 310                                r1->addr.size),
 311                     int128_make64(r2->offset_in_region))
 312        && r1->dirty_log_mask == r2->dirty_log_mask
 313        && r1->romd_mode == r2->romd_mode
 314        && r1->readonly == r2->readonly;
 315}
 316
 317/* Attempt to simplify a view by merging adjacent ranges */
 318static void flatview_simplify(FlatView *view)
 319{
 320    unsigned i, j;
 321
 322    i = 0;
 323    while (i < view->nr) {
 324        j = i + 1;
 325        while (j < view->nr
 326               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
 327            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
 328            ++j;
 329        }
 330        ++i;
 331        memmove(&view->ranges[i], &view->ranges[j],
 332                (view->nr - j) * sizeof(view->ranges[j]));
 333        view->nr -= j - i;
 334    }
 335}
 336
 337static bool memory_region_big_endian(MemoryRegion *mr)
 338{
 339#ifdef TARGET_WORDS_BIGENDIAN
 340    return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
 341#else
 342    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
 343#endif
 344}
 345
 346static bool memory_region_wrong_endianness(MemoryRegion *mr)
 347{
 348#ifdef TARGET_WORDS_BIGENDIAN
 349    return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
 350#else
 351    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
 352#endif
 353}
 354
 355static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
 356{
 357    if (memory_region_wrong_endianness(mr)) {
 358        switch (size) {
 359        case 1:
 360            break;
 361        case 2:
 362            *data = bswap16(*data);
 363            break;
 364        case 4:
 365            *data = bswap32(*data);
 366            break;
 367        case 8:
 368            *data = bswap64(*data);
 369            break;
 370        default:
 371            abort();
 372        }
 373    }
 374}
 375
 376static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
 377{
 378    MemoryRegion *root;
 379    hwaddr abs_addr = offset;
 380
 381    abs_addr += mr->addr;
 382    for (root = mr; root->container; ) {
 383        root = root->container;
 384        abs_addr += root->addr;
 385    }
 386
 387    return abs_addr;
 388}
 389
 390static int get_cpu_index(void)
 391{
 392    if (current_cpu) {
 393        return current_cpu->cpu_index;
 394    }
 395    return -1;
 396}
 397
 398static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
 399                                                       hwaddr addr,
 400                                                       uint64_t *value,
 401                                                       unsigned size,
 402                                                       unsigned shift,
 403                                                       uint64_t mask,
 404                                                       MemTxAttrs attrs)
 405{
 406    uint64_t tmp;
 407
 408    tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
 409    if (mr->subpage) {
 410        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 411    } else if (mr == &io_mem_notdirty) {
 412        /* Accesses to code which has previously been translated into a TB show
 413         * up in the MMIO path, as accesses to the io_mem_notdirty
 414         * MemoryRegion. */
 415        trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
 416    } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
 417        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 418        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
 419    }
 420    *value |= (tmp & mask) << shift;
 421    return MEMTX_OK;
 422}
 423
 424static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
 425                                                hwaddr addr,
 426                                                uint64_t *value,
 427                                                unsigned size,
 428                                                unsigned shift,
 429                                                uint64_t mask,
 430                                                MemTxAttrs attrs)
 431{
 432    uint64_t tmp;
 433
 434    tmp = mr->ops->read(mr->opaque, addr, size);
 435    if (mr->subpage) {
 436        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 437    } else if (mr == &io_mem_notdirty) {
 438        /* Accesses to code which has previously been translated into a TB show
 439         * up in the MMIO path, as accesses to the io_mem_notdirty
 440         * MemoryRegion. */
 441        trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
 442    } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
 443        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 444        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
 445    }
 446    *value |= (tmp & mask) << shift;
 447    return MEMTX_OK;
 448}
 449
 450static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
 451                                                          hwaddr addr,
 452                                                          uint64_t *value,
 453                                                          unsigned size,
 454                                                          unsigned shift,
 455                                                          uint64_t mask,
 456                                                          MemTxAttrs attrs)
 457{
 458    uint64_t tmp = 0;
 459    MemTxResult r;
 460
 461    r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
 462    if (mr->subpage) {
 463        trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
 464    } else if (mr == &io_mem_notdirty) {
 465        /* Accesses to code which has previously been translated into a TB show
 466         * up in the MMIO path, as accesses to the io_mem_notdirty
 467         * MemoryRegion. */
 468        trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
 469    } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
 470        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 471        trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
 472    }
 473    *value |= (tmp & mask) << shift;
 474    return r;
 475}
 476
 477static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
 478                                                        hwaddr addr,
 479                                                        uint64_t *value,
 480                                                        unsigned size,
 481                                                        unsigned shift,
 482                                                        uint64_t mask,
 483                                                        MemTxAttrs attrs)
 484{
 485    uint64_t tmp;
 486
 487    tmp = (*value >> shift) & mask;
 488    if (mr->subpage) {
 489        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 490    } else if (mr == &io_mem_notdirty) {
 491        /* Accesses to code which has previously been translated into a TB show
 492         * up in the MMIO path, as accesses to the io_mem_notdirty
 493         * MemoryRegion. */
 494        trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
 495    } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
 496        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 497        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
 498    }
 499    mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
 500    return MEMTX_OK;
 501}
 502
 503static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
 504                                                hwaddr addr,
 505                                                uint64_t *value,
 506                                                unsigned size,
 507                                                unsigned shift,
 508                                                uint64_t mask,
 509                                                MemTxAttrs attrs)
 510{
 511    uint64_t tmp;
 512
 513    tmp = (*value >> shift) & mask;
 514    if (mr->subpage) {
 515        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 516    } else if (mr == &io_mem_notdirty) {
 517        /* Accesses to code which has previously been translated into a TB show
 518         * up in the MMIO path, as accesses to the io_mem_notdirty
 519         * MemoryRegion. */
 520        trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
 521    } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
 522        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 523        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
 524    }
 525    mr->ops->write(mr->opaque, addr, tmp, size);
 526    return MEMTX_OK;
 527}
 528
 529static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
 530                                                           hwaddr addr,
 531                                                           uint64_t *value,
 532                                                           unsigned size,
 533                                                           unsigned shift,
 534                                                           uint64_t mask,
 535                                                           MemTxAttrs attrs)
 536{
 537    uint64_t tmp;
 538
 539    tmp = (*value >> shift) & mask;
 540    if (mr->subpage) {
 541        trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
 542    } else if (mr == &io_mem_notdirty) {
 543        /* Accesses to code which has previously been translated into a TB show
 544         * up in the MMIO path, as accesses to the io_mem_notdirty
 545         * MemoryRegion. */
 546        trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
 547    } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
 548        hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
 549        trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
 550    }
 551    return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
 552}
 553
 554static MemTxResult access_with_adjusted_size(hwaddr addr,
 555                                      uint64_t *value,
 556                                      unsigned size,
 557                                      unsigned access_size_min,
 558                                      unsigned access_size_max,
 559                                      MemTxResult (*access)(MemoryRegion *mr,
 560                                                            hwaddr addr,
 561                                                            uint64_t *value,
 562                                                            unsigned size,
 563                                                            unsigned shift,
 564                                                            uint64_t mask,
 565                                                            MemTxAttrs attrs),
 566                                      MemoryRegion *mr,
 567                                      MemTxAttrs attrs)
 568{
 569    uint64_t access_mask;
 570    unsigned access_size;
 571    unsigned i;
 572    MemTxResult r = MEMTX_OK;
 573
 574    if (!access_size_min) {
 575        access_size_min = 1;
 576    }
 577    if (!access_size_max) {
 578        access_size_max = 4;
 579    }
 580
 581    /* FIXME: support unaligned access? */
 582    access_size = MAX(MIN(size, access_size_max), access_size_min);
 583    access_mask = -1ULL >> (64 - access_size * 8);
 584    if (memory_region_big_endian(mr)) {
 585        for (i = 0; i < size; i += access_size) {
 586            r |= access(mr, addr + i, value, access_size,
 587                        (size - access_size - i) * 8, access_mask, attrs);
 588        }
 589    } else {
 590        for (i = 0; i < size; i += access_size) {
 591            r |= access(mr, addr + i, value, access_size, i * 8,
 592                        access_mask, attrs);
 593        }
 594    }
 595    return r;
 596}
 597
 598static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
 599{
 600    AddressSpace *as;
 601
 602    while (mr->container) {
 603        mr = mr->container;
 604    }
 605    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 606        if (mr == as->root) {
 607            return as;
 608        }
 609    }
 610    return NULL;
 611}
 612
 613/* Render a memory region into the global view.  Ranges in @view obscure
 614 * ranges in @mr.
 615 */
 616static void render_memory_region(FlatView *view,
 617                                 MemoryRegion *mr,
 618                                 Int128 base,
 619                                 AddrRange clip,
 620                                 bool readonly)
 621{
 622    MemoryRegion *subregion;
 623    unsigned i;
 624    hwaddr offset_in_region;
 625    Int128 remain;
 626    Int128 now;
 627    FlatRange fr;
 628    AddrRange tmp;
 629
 630    if (!mr->enabled) {
 631        return;
 632    }
 633
 634    int128_addto(&base, int128_make64(mr->addr));
 635    readonly |= mr->readonly;
 636
 637    tmp = addrrange_make(base, mr->size);
 638
 639    if (!addrrange_intersects(tmp, clip)) {
 640        return;
 641    }
 642
 643    clip = addrrange_intersection(tmp, clip);
 644
 645    if (mr->alias) {
 646        int128_subfrom(&base, int128_make64(mr->alias->addr));
 647        int128_subfrom(&base, int128_make64(mr->alias_offset));
 648        render_memory_region(view, mr->alias, base, clip, readonly);
 649        return;
 650    }
 651
 652    /* Render subregions in priority order. */
 653    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
 654        render_memory_region(view, subregion, base, clip, readonly);
 655    }
 656
 657    if (!mr->terminates) {
 658        return;
 659    }
 660
 661    offset_in_region = int128_get64(int128_sub(clip.start, base));
 662    base = clip.start;
 663    remain = clip.size;
 664
 665    fr.mr = mr;
 666    fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
 667    fr.romd_mode = mr->romd_mode;
 668    fr.readonly = readonly;
 669
 670    /* Render the region itself into any gaps left by the current view. */
 671    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
 672        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
 673            continue;
 674        }
 675        if (int128_lt(base, view->ranges[i].addr.start)) {
 676            now = int128_min(remain,
 677                             int128_sub(view->ranges[i].addr.start, base));
 678            fr.offset_in_region = offset_in_region;
 679            fr.addr = addrrange_make(base, now);
 680            flatview_insert(view, i, &fr);
 681            ++i;
 682            int128_addto(&base, now);
 683            offset_in_region += int128_get64(now);
 684            int128_subfrom(&remain, now);
 685        }
 686        now = int128_sub(int128_min(int128_add(base, remain),
 687                                    addrrange_end(view->ranges[i].addr)),
 688                         base);
 689        int128_addto(&base, now);
 690        offset_in_region += int128_get64(now);
 691        int128_subfrom(&remain, now);
 692    }
 693    if (int128_nz(remain)) {
 694        fr.offset_in_region = offset_in_region;
 695        fr.addr = addrrange_make(base, remain);
 696        flatview_insert(view, i, &fr);
 697    }
 698}
 699
 700/* Render a memory topology into a list of disjoint absolute ranges. */
 701static FlatView *generate_memory_topology(MemoryRegion *mr)
 702{
 703    FlatView *view;
 704
 705    view = g_new(FlatView, 1);
 706    flatview_init(view);
 707
 708    if (mr) {
 709        render_memory_region(view, mr, int128_zero(),
 710                             addrrange_make(int128_zero(), int128_2_64()), false);
 711    }
 712    flatview_simplify(view);
 713
 714    return view;
 715}
 716
 717static void address_space_add_del_ioeventfds(AddressSpace *as,
 718                                             MemoryRegionIoeventfd *fds_new,
 719                                             unsigned fds_new_nb,
 720                                             MemoryRegionIoeventfd *fds_old,
 721                                             unsigned fds_old_nb)
 722{
 723    unsigned iold, inew;
 724    MemoryRegionIoeventfd *fd;
 725    MemoryRegionSection section;
 726
 727    /* Generate a symmetric difference of the old and new fd sets, adding
 728     * and deleting as necessary.
 729     */
 730
 731    iold = inew = 0;
 732    while (iold < fds_old_nb || inew < fds_new_nb) {
 733        if (iold < fds_old_nb
 734            && (inew == fds_new_nb
 735                || memory_region_ioeventfd_before(fds_old[iold],
 736                                                  fds_new[inew]))) {
 737            fd = &fds_old[iold];
 738            section = (MemoryRegionSection) {
 739                .address_space = as,
 740                .offset_within_address_space = int128_get64(fd->addr.start),
 741                .size = fd->addr.size,
 742            };
 743            MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
 744                                 fd->match_data, fd->data, fd->e);
 745            ++iold;
 746        } else if (inew < fds_new_nb
 747                   && (iold == fds_old_nb
 748                       || memory_region_ioeventfd_before(fds_new[inew],
 749                                                         fds_old[iold]))) {
 750            fd = &fds_new[inew];
 751            section = (MemoryRegionSection) {
 752                .address_space = as,
 753                .offset_within_address_space = int128_get64(fd->addr.start),
 754                .size = fd->addr.size,
 755            };
 756            MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
 757                                 fd->match_data, fd->data, fd->e);
 758            ++inew;
 759        } else {
 760            ++iold;
 761            ++inew;
 762        }
 763    }
 764}
 765
 766static FlatView *address_space_get_flatview(AddressSpace *as)
 767{
 768    FlatView *view;
 769
 770    rcu_read_lock();
 771    view = atomic_rcu_read(&as->current_map);
 772    flatview_ref(view);
 773    rcu_read_unlock();
 774    return view;
 775}
 776
 777static void address_space_update_ioeventfds(AddressSpace *as)
 778{
 779    FlatView *view;
 780    FlatRange *fr;
 781    unsigned ioeventfd_nb = 0;
 782    MemoryRegionIoeventfd *ioeventfds = NULL;
 783    AddrRange tmp;
 784    unsigned i;
 785
 786    view = address_space_get_flatview(as);
 787    FOR_EACH_FLAT_RANGE(fr, view) {
 788        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
 789            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
 790                                  int128_sub(fr->addr.start,
 791                                             int128_make64(fr->offset_in_region)));
 792            if (addrrange_intersects(fr->addr, tmp)) {
 793                ++ioeventfd_nb;
 794                ioeventfds = g_realloc(ioeventfds,
 795                                          ioeventfd_nb * sizeof(*ioeventfds));
 796                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
 797                ioeventfds[ioeventfd_nb-1].addr = tmp;
 798            }
 799        }
 800    }
 801
 802    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
 803                                     as->ioeventfds, as->ioeventfd_nb);
 804
 805    g_free(as->ioeventfds);
 806    as->ioeventfds = ioeventfds;
 807    as->ioeventfd_nb = ioeventfd_nb;
 808    flatview_unref(view);
 809}
 810
 811static void address_space_update_topology_pass(AddressSpace *as,
 812                                               const FlatView *old_view,
 813                                               const FlatView *new_view,
 814                                               bool adding)
 815{
 816    unsigned iold, inew;
 817    FlatRange *frold, *frnew;
 818
 819    /* Generate a symmetric difference of the old and new memory maps.
 820     * Kill ranges in the old map, and instantiate ranges in the new map.
 821     */
 822    iold = inew = 0;
 823    while (iold < old_view->nr || inew < new_view->nr) {
 824        if (iold < old_view->nr) {
 825            frold = &old_view->ranges[iold];
 826        } else {
 827            frold = NULL;
 828        }
 829        if (inew < new_view->nr) {
 830            frnew = &new_view->ranges[inew];
 831        } else {
 832            frnew = NULL;
 833        }
 834
 835        if (frold
 836            && (!frnew
 837                || int128_lt(frold->addr.start, frnew->addr.start)
 838                || (int128_eq(frold->addr.start, frnew->addr.start)
 839                    && !flatrange_equal(frold, frnew)))) {
 840            /* In old but not in new, or in both but attributes changed. */
 841
 842            if (!adding) {
 843                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
 844            }
 845
 846            ++iold;
 847        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
 848            /* In both and unchanged (except logging may have changed) */
 849
 850            if (adding) {
 851                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
 852                if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
 853                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
 854                                                  frold->dirty_log_mask,
 855                                                  frnew->dirty_log_mask);
 856                }
 857                if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
 858                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
 859                                                  frold->dirty_log_mask,
 860                                                  frnew->dirty_log_mask);
 861                }
 862            }
 863
 864            ++iold;
 865            ++inew;
 866        } else {
 867            /* In new */
 868
 869            if (adding) {
 870                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
 871            }
 872
 873            ++inew;
 874        }
 875    }
 876}
 877
 878
 879static void address_space_update_topology(AddressSpace *as)
 880{
 881    FlatView *old_view = address_space_get_flatview(as);
 882    FlatView *new_view = generate_memory_topology(as->root);
 883
 884    address_space_update_topology_pass(as, old_view, new_view, false);
 885    address_space_update_topology_pass(as, old_view, new_view, true);
 886
 887    /* Writes are protected by the BQL.  */
 888    atomic_rcu_set(&as->current_map, new_view);
 889    call_rcu(old_view, flatview_unref, rcu);
 890
 891    /* Note that all the old MemoryRegions are still alive up to this
 892     * point.  This relieves most MemoryListeners from the need to
 893     * ref/unref the MemoryRegions they get---unless they use them
 894     * outside the iothread mutex, in which case precise reference
 895     * counting is necessary.
 896     */
 897    flatview_unref(old_view);
 898
 899    address_space_update_ioeventfds(as);
 900}
 901
 902void memory_region_transaction_begin(void)
 903{
 904    qemu_flush_coalesced_mmio_buffer();
 905    ++memory_region_transaction_depth;
 906}
 907
 908static void memory_region_clear_pending(void)
 909{
 910    memory_region_update_pending = false;
 911    ioeventfd_update_pending = false;
 912}
 913
 914void memory_region_transaction_commit(void)
 915{
 916    AddressSpace *as;
 917
 918    assert(memory_region_transaction_depth);
 919    --memory_region_transaction_depth;
 920    if (!memory_region_transaction_depth) {
 921        if (memory_region_update_pending) {
 922            MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
 923
 924            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 925                address_space_update_topology(as);
 926            }
 927
 928            MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
 929        } else if (ioeventfd_update_pending) {
 930            QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
 931                address_space_update_ioeventfds(as);
 932            }
 933        }
 934        memory_region_clear_pending();
 935   }
 936}
 937
 938static void memory_region_destructor_none(MemoryRegion *mr)
 939{
 940}
 941
 942static void memory_region_destructor_ram(MemoryRegion *mr)
 943{
 944    qemu_ram_free(mr->ram_block);
 945}
 946
 947static void memory_region_destructor_rom_device(MemoryRegion *mr)
 948{
 949    qemu_ram_free(mr->ram_block);
 950}
 951
 952static bool memory_region_need_escape(char c)
 953{
 954    return c == '/' || c == '[' || c == '\\' || c == ']';
 955}
 956
 957static char *memory_region_escape_name(const char *name)
 958{
 959    const char *p;
 960    char *escaped, *q;
 961    uint8_t c;
 962    size_t bytes = 0;
 963
 964    for (p = name; *p; p++) {
 965        bytes += memory_region_need_escape(*p) ? 4 : 1;
 966    }
 967    if (bytes == p - name) {
 968       return g_memdup(name, bytes + 1);
 969    }
 970
 971    escaped = g_malloc(bytes + 1);
 972    for (p = name, q = escaped; *p; p++) {
 973        c = *p;
 974        if (unlikely(memory_region_need_escape(c))) {
 975            *q++ = '\\';
 976            *q++ = 'x';
 977            *q++ = "0123456789abcdef"[c >> 4];
 978            c = "0123456789abcdef"[c & 15];
 979        }
 980        *q++ = c;
 981    }
 982    *q = 0;
 983    return escaped;
 984}
 985
 986void memory_region_init(MemoryRegion *mr,
 987                        Object *owner,
 988                        const char *name,
 989                        uint64_t size)
 990{
 991    object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
 992    mr->size = int128_make64(size);
 993    if (size == UINT64_MAX) {
 994        mr->size = int128_2_64();
 995    }
 996    mr->name = g_strdup(name);
 997    mr->owner = owner;
 998    mr->ram_block = NULL;
 999
1000    if (name) {
1001        char *escaped_name = memory_region_escape_name(name);
1002        char *name_array = g_strdup_printf("%s[*]", escaped_name);
1003
1004        if (!owner) {
1005            owner = container_get(qdev_get_machine(), "/unattached");
1006        }
1007
1008        object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1009        object_unref(OBJECT(mr));
1010        g_free(name_array);
1011        g_free(escaped_name);
1012    }
1013}
1014
1015static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1016                                   void *opaque, Error **errp)
1017{
1018    MemoryRegion *mr = MEMORY_REGION(obj);
1019    uint64_t value = mr->addr;
1020
1021    visit_type_uint64(v, name, &value, errp);
1022}
1023
1024static void memory_region_get_container(Object *obj, Visitor *v,
1025                                        const char *name, void *opaque,
1026                                        Error **errp)
1027{
1028    MemoryRegion *mr = MEMORY_REGION(obj);
1029    gchar *path = (gchar *)"";
1030
1031    if (mr->container) {
1032        path = object_get_canonical_path(OBJECT(mr->container));
1033    }
1034    visit_type_str(v, name, &path, errp);
1035    if (mr->container) {
1036        g_free(path);
1037    }
1038}
1039
1040static Object *memory_region_resolve_container(Object *obj, void *opaque,
1041                                               const char *part)
1042{
1043    MemoryRegion *mr = MEMORY_REGION(obj);
1044
1045    return OBJECT(mr->container);
1046}
1047
1048static void memory_region_get_priority(Object *obj, Visitor *v,
1049                                       const char *name, void *opaque,
1050                                       Error **errp)
1051{
1052    MemoryRegion *mr = MEMORY_REGION(obj);
1053    int32_t value = mr->priority;
1054
1055    visit_type_int32(v, name, &value, errp);
1056}
1057
1058static bool memory_region_get_may_overlap(Object *obj, Error **errp)
1059{
1060    MemoryRegion *mr = MEMORY_REGION(obj);
1061
1062    return mr->may_overlap;
1063}
1064
1065static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1066                                   void *opaque, Error **errp)
1067{
1068    MemoryRegion *mr = MEMORY_REGION(obj);
1069    uint64_t value = memory_region_size(mr);
1070
1071    visit_type_uint64(v, name, &value, errp);
1072}
1073
1074static void memory_region_initfn(Object *obj)
1075{
1076    MemoryRegion *mr = MEMORY_REGION(obj);
1077    ObjectProperty *op;
1078
1079    mr->ops = &unassigned_mem_ops;
1080    mr->enabled = true;
1081    mr->romd_mode = true;
1082    mr->global_locking = true;
1083    mr->destructor = memory_region_destructor_none;
1084    QTAILQ_INIT(&mr->subregions);
1085    QTAILQ_INIT(&mr->coalesced);
1086
1087    op = object_property_add(OBJECT(mr), "container",
1088                             "link<" TYPE_MEMORY_REGION ">",
1089                             memory_region_get_container,
1090                             NULL, /* memory_region_set_container */
1091                             NULL, NULL, &error_abort);
1092    op->resolve = memory_region_resolve_container;
1093
1094    object_property_add(OBJECT(mr), "addr", "uint64",
1095                        memory_region_get_addr,
1096                        NULL, /* memory_region_set_addr */
1097                        NULL, NULL, &error_abort);
1098    object_property_add(OBJECT(mr), "priority", "uint32",
1099                        memory_region_get_priority,
1100                        NULL, /* memory_region_set_priority */
1101                        NULL, NULL, &error_abort);
1102    object_property_add_bool(OBJECT(mr), "may-overlap",
1103                             memory_region_get_may_overlap,
1104                             NULL, /* memory_region_set_may_overlap */
1105                             &error_abort);
1106    object_property_add(OBJECT(mr), "size", "uint64",
1107                        memory_region_get_size,
1108                        NULL, /* memory_region_set_size, */
1109                        NULL, NULL, &error_abort);
1110}
1111
1112static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1113                                    unsigned size)
1114{
1115#ifdef DEBUG_UNASSIGNED
1116    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1117#endif
1118    if (current_cpu != NULL) {
1119        cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1120    }
1121    return 0;
1122}
1123
1124static void unassigned_mem_write(void *opaque, hwaddr addr,
1125                                 uint64_t val, unsigned size)
1126{
1127#ifdef DEBUG_UNASSIGNED
1128    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1129#endif
1130    if (current_cpu != NULL) {
1131        cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1132    }
1133}
1134
1135static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1136                                   unsigned size, bool is_write)
1137{
1138    return false;
1139}
1140
1141const MemoryRegionOps unassigned_mem_ops = {
1142    .valid.accepts = unassigned_mem_accepts,
1143    .endianness = DEVICE_NATIVE_ENDIAN,
1144};
1145
1146bool memory_region_access_valid(MemoryRegion *mr,
1147                                hwaddr addr,
1148                                unsigned size,
1149                                bool is_write)
1150{
1151    int access_size_min, access_size_max;
1152    int access_size, i;
1153
1154    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1155        return false;
1156    }
1157
1158    if (!mr->ops->valid.accepts) {
1159        return true;
1160    }
1161
1162    access_size_min = mr->ops->valid.min_access_size;
1163    if (!mr->ops->valid.min_access_size) {
1164        access_size_min = 1;
1165    }
1166
1167    access_size_max = mr->ops->valid.max_access_size;
1168    if (!mr->ops->valid.max_access_size) {
1169        access_size_max = 4;
1170    }
1171
1172    access_size = MAX(MIN(size, access_size_max), access_size_min);
1173    for (i = 0; i < size; i += access_size) {
1174        if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1175                                    is_write)) {
1176            return false;
1177        }
1178    }
1179
1180    return true;
1181}
1182
1183static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1184                                                hwaddr addr,
1185                                                uint64_t *pval,
1186                                                unsigned size,
1187                                                MemTxAttrs attrs)
1188{
1189    *pval = 0;
1190
1191    if (mr->ops->read) {
1192        return access_with_adjusted_size(addr, pval, size,
1193                                         mr->ops->impl.min_access_size,
1194                                         mr->ops->impl.max_access_size,
1195                                         memory_region_read_accessor,
1196                                         mr, attrs);
1197    } else if (mr->ops->read_with_attrs) {
1198        return access_with_adjusted_size(addr, pval, size,
1199                                         mr->ops->impl.min_access_size,
1200                                         mr->ops->impl.max_access_size,
1201                                         memory_region_read_with_attrs_accessor,
1202                                         mr, attrs);
1203    } else {
1204        return access_with_adjusted_size(addr, pval, size, 1, 4,
1205                                         memory_region_oldmmio_read_accessor,
1206                                         mr, attrs);
1207    }
1208}
1209
1210MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1211                                        hwaddr addr,
1212                                        uint64_t *pval,
1213                                        unsigned size,
1214                                        MemTxAttrs attrs)
1215{
1216    MemTxResult r;
1217
1218    if (!memory_region_access_valid(mr, addr, size, false)) {
1219        *pval = unassigned_mem_read(mr, addr, size);
1220        return MEMTX_DECODE_ERROR;
1221    }
1222
1223    r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1224    adjust_endianness(mr, pval, size);
1225    return r;
1226}
1227
1228/* Return true if an eventfd was signalled */
1229static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1230                                                    hwaddr addr,
1231                                                    uint64_t data,
1232                                                    unsigned size,
1233                                                    MemTxAttrs attrs)
1234{
1235    MemoryRegionIoeventfd ioeventfd = {
1236        .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1237        .data = data,
1238    };
1239    unsigned i;
1240
1241    for (i = 0; i < mr->ioeventfd_nb; i++) {
1242        ioeventfd.match_data = mr->ioeventfds[i].match_data;
1243        ioeventfd.e = mr->ioeventfds[i].e;
1244
1245        if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1246            event_notifier_set(ioeventfd.e);
1247            return true;
1248        }
1249    }
1250
1251    return false;
1252}
1253
1254MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1255                                         hwaddr addr,
1256                                         uint64_t data,
1257                                         unsigned size,
1258                                         MemTxAttrs attrs)
1259{
1260    if (!memory_region_access_valid(mr, addr, size, true)) {
1261        unassigned_mem_write(mr, addr, data, size);
1262        return MEMTX_DECODE_ERROR;
1263    }
1264
1265    adjust_endianness(mr, &data, size);
1266
1267    if ((!kvm_eventfds_enabled()) &&
1268        memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1269        return MEMTX_OK;
1270    }
1271
1272    if (mr->ops->write) {
1273        return access_with_adjusted_size(addr, &data, size,
1274                                         mr->ops->impl.min_access_size,
1275                                         mr->ops->impl.max_access_size,
1276                                         memory_region_write_accessor, mr,
1277                                         attrs);
1278    } else if (mr->ops->write_with_attrs) {
1279        return
1280            access_with_adjusted_size(addr, &data, size,
1281                                      mr->ops->impl.min_access_size,
1282                                      mr->ops->impl.max_access_size,
1283                                      memory_region_write_with_attrs_accessor,
1284                                      mr, attrs);
1285    } else {
1286        return access_with_adjusted_size(addr, &data, size, 1, 4,
1287                                         memory_region_oldmmio_write_accessor,
1288                                         mr, attrs);
1289    }
1290}
1291
1292void memory_region_init_io(MemoryRegion *mr,
1293                           Object *owner,
1294                           const MemoryRegionOps *ops,
1295                           void *opaque,
1296                           const char *name,
1297                           uint64_t size)
1298{
1299    memory_region_init(mr, owner, name, size);
1300    mr->ops = ops ? ops : &unassigned_mem_ops;
1301    mr->opaque = opaque;
1302    mr->terminates = true;
1303}
1304
1305void memory_region_init_ram(MemoryRegion *mr,
1306                            Object *owner,
1307                            const char *name,
1308                            uint64_t size,
1309                            Error **errp)
1310{
1311    memory_region_init(mr, owner, name, size);
1312    mr->ram = true;
1313    mr->terminates = true;
1314    mr->destructor = memory_region_destructor_ram;
1315    mr->ram_block = qemu_ram_alloc(size, mr, errp);
1316    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1317}
1318
1319void memory_region_init_resizeable_ram(MemoryRegion *mr,
1320                                       Object *owner,
1321                                       const char *name,
1322                                       uint64_t size,
1323                                       uint64_t max_size,
1324                                       void (*resized)(const char*,
1325                                                       uint64_t length,
1326                                                       void *host),
1327                                       Error **errp)
1328{
1329    memory_region_init(mr, owner, name, size);
1330    mr->ram = true;
1331    mr->terminates = true;
1332    mr->destructor = memory_region_destructor_ram;
1333    mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1334                                              mr, errp);
1335    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1336}
1337
1338#ifdef __linux__
1339void memory_region_init_ram_from_file(MemoryRegion *mr,
1340                                      struct Object *owner,
1341                                      const char *name,
1342                                      uint64_t size,
1343                                      bool share,
1344                                      const char *path,
1345                                      Error **errp)
1346{
1347    memory_region_init(mr, owner, name, size);
1348    mr->ram = true;
1349    mr->terminates = true;
1350    mr->destructor = memory_region_destructor_ram;
1351    mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1352    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1353}
1354#endif
1355
1356void memory_region_init_ram_ptr(MemoryRegion *mr,
1357                                Object *owner,
1358                                const char *name,
1359                                uint64_t size,
1360                                void *ptr)
1361{
1362    memory_region_init(mr, owner, name, size);
1363    mr->ram = true;
1364    mr->terminates = true;
1365    mr->destructor = memory_region_destructor_ram;
1366    mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1367
1368    /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1369    assert(ptr != NULL);
1370    mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1371}
1372
1373void memory_region_set_skip_dump(MemoryRegion *mr)
1374{
1375    mr->skip_dump = true;
1376}
1377
1378void memory_region_init_alias(MemoryRegion *mr,
1379                              Object *owner,
1380                              const char *name,
1381                              MemoryRegion *orig,
1382                              hwaddr offset,
1383                              uint64_t size)
1384{
1385    memory_region_init(mr, owner, name, size);
1386    mr->alias = orig;
1387    mr->alias_offset = offset;
1388}
1389
1390void memory_region_init_rom_device(MemoryRegion *mr,
1391                                   Object *owner,
1392                                   const MemoryRegionOps *ops,
1393                                   void *opaque,
1394                                   const char *name,
1395                                   uint64_t size,
1396                                   Error **errp)
1397{
1398    memory_region_init(mr, owner, name, size);
1399    mr->ops = ops;
1400    mr->opaque = opaque;
1401    mr->terminates = true;
1402    mr->rom_device = true;
1403    mr->destructor = memory_region_destructor_rom_device;
1404    mr->ram_block = qemu_ram_alloc(size, mr, errp);
1405}
1406
1407void memory_region_init_iommu(MemoryRegion *mr,
1408                              Object *owner,
1409                              const MemoryRegionIOMMUOps *ops,
1410                              const char *name,
1411                              uint64_t size)
1412{
1413    memory_region_init(mr, owner, name, size);
1414    mr->iommu_ops = ops,
1415    mr->terminates = true;  /* then re-forwards */
1416    notifier_list_init(&mr->iommu_notify);
1417}
1418
1419static void memory_region_finalize(Object *obj)
1420{
1421    MemoryRegion *mr = MEMORY_REGION(obj);
1422
1423    assert(!mr->container);
1424
1425    /* We know the region is not visible in any address space (it
1426     * does not have a container and cannot be a root either because
1427     * it has no references, so we can blindly clear mr->enabled.
1428     * memory_region_set_enabled instead could trigger a transaction
1429     * and cause an infinite loop.
1430     */
1431    mr->enabled = false;
1432    memory_region_transaction_begin();
1433    while (!QTAILQ_EMPTY(&mr->subregions)) {
1434        MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1435        memory_region_del_subregion(mr, subregion);
1436    }
1437    memory_region_transaction_commit();
1438
1439    mr->destructor(mr);
1440    memory_region_clear_coalescing(mr);
1441    g_free((char *)mr->name);
1442    g_free(mr->ioeventfds);
1443}
1444
1445Object *memory_region_owner(MemoryRegion *mr)
1446{
1447    Object *obj = OBJECT(mr);
1448    return obj->parent;
1449}
1450
1451void memory_region_ref(MemoryRegion *mr)
1452{
1453    /* MMIO callbacks most likely will access data that belongs
1454     * to the owner, hence the need to ref/unref the owner whenever
1455     * the memory region is in use.
1456     *
1457     * The memory region is a child of its owner.  As long as the
1458     * owner doesn't call unparent itself on the memory region,
1459     * ref-ing the owner will also keep the memory region alive.
1460     * Memory regions without an owner are supposed to never go away;
1461     * we do not ref/unref them because it slows down DMA sensibly.
1462     */
1463    if (mr && mr->owner) {
1464        object_ref(mr->owner);
1465    }
1466}
1467
1468void memory_region_unref(MemoryRegion *mr)
1469{
1470    if (mr && mr->owner) {
1471        object_unref(mr->owner);
1472    }
1473}
1474
1475uint64_t memory_region_size(MemoryRegion *mr)
1476{
1477    if (int128_eq(mr->size, int128_2_64())) {
1478        return UINT64_MAX;
1479    }
1480    return int128_get64(mr->size);
1481}
1482
1483const char *memory_region_name(const MemoryRegion *mr)
1484{
1485    if (!mr->name) {
1486        ((MemoryRegion *)mr)->name =
1487            object_get_canonical_path_component(OBJECT(mr));
1488    }
1489    return mr->name;
1490}
1491
1492bool memory_region_is_skip_dump(MemoryRegion *mr)
1493{
1494    return mr->skip_dump;
1495}
1496
1497uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1498{
1499    uint8_t mask = mr->dirty_log_mask;
1500    if (global_dirty_log) {
1501        mask |= (1 << DIRTY_MEMORY_MIGRATION);
1502    }
1503    return mask;
1504}
1505
1506bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1507{
1508    return memory_region_get_dirty_log_mask(mr) & (1 << client);
1509}
1510
1511void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1512{
1513    notifier_list_add(&mr->iommu_notify, n);
1514}
1515
1516void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1517                                hwaddr granularity, bool is_write)
1518{
1519    hwaddr addr;
1520    IOMMUTLBEntry iotlb;
1521
1522    for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1523        iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1524        if (iotlb.perm != IOMMU_NONE) {
1525            n->notify(n, &iotlb);
1526        }
1527
1528        /* if (2^64 - MR size) < granularity, it's possible to get an
1529         * infinite loop here.  This should catch such a wraparound */
1530        if ((addr + granularity) < addr) {
1531            break;
1532        }
1533    }
1534}
1535
1536void memory_region_unregister_iommu_notifier(Notifier *n)
1537{
1538    notifier_remove(n);
1539}
1540
1541void memory_region_notify_iommu(MemoryRegion *mr,
1542                                IOMMUTLBEntry entry)
1543{
1544    assert(memory_region_is_iommu(mr));
1545    notifier_list_notify(&mr->iommu_notify, &entry);
1546}
1547
1548void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1549{
1550    uint8_t mask = 1 << client;
1551    uint8_t old_logging;
1552
1553    assert(client == DIRTY_MEMORY_VGA);
1554    old_logging = mr->vga_logging_count;
1555    mr->vga_logging_count += log ? 1 : -1;
1556    if (!!old_logging == !!mr->vga_logging_count) {
1557        return;
1558    }
1559
1560    memory_region_transaction_begin();
1561    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1562    memory_region_update_pending |= mr->enabled;
1563    memory_region_transaction_commit();
1564}
1565
1566bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1567                             hwaddr size, unsigned client)
1568{
1569    assert(mr->ram_block);
1570    return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1571                                         size, client);
1572}
1573
1574void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1575                             hwaddr size)
1576{
1577    assert(mr->ram_block);
1578    cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1579                                        size,
1580                                        memory_region_get_dirty_log_mask(mr));
1581}
1582
1583bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1584                                        hwaddr size, unsigned client)
1585{
1586    assert(mr->ram_block);
1587    return cpu_physical_memory_test_and_clear_dirty(
1588                memory_region_get_ram_addr(mr) + addr, size, client);
1589}
1590
1591
1592void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1593{
1594    AddressSpace *as;
1595    FlatRange *fr;
1596
1597    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1598        FlatView *view = address_space_get_flatview(as);
1599        FOR_EACH_FLAT_RANGE(fr, view) {
1600            if (fr->mr == mr) {
1601                MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1602            }
1603        }
1604        flatview_unref(view);
1605    }
1606}
1607
1608void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1609{
1610    if (mr->readonly != readonly) {
1611        memory_region_transaction_begin();
1612        mr->readonly = readonly;
1613        memory_region_update_pending |= mr->enabled;
1614        memory_region_transaction_commit();
1615    }
1616}
1617
1618void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1619{
1620    if (mr->romd_mode != romd_mode) {
1621        memory_region_transaction_begin();
1622        mr->romd_mode = romd_mode;
1623        memory_region_update_pending |= mr->enabled;
1624        memory_region_transaction_commit();
1625    }
1626}
1627
1628void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1629                               hwaddr size, unsigned client)
1630{
1631    assert(mr->ram_block);
1632    cpu_physical_memory_test_and_clear_dirty(
1633        memory_region_get_ram_addr(mr) + addr, size, client);
1634}
1635
1636int memory_region_get_fd(MemoryRegion *mr)
1637{
1638    if (mr->alias) {
1639        return memory_region_get_fd(mr->alias);
1640    }
1641
1642    assert(mr->ram_block);
1643
1644    return qemu_get_ram_fd(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1645}
1646
1647void *memory_region_get_ram_ptr(MemoryRegion *mr)
1648{
1649    void *ptr;
1650    uint64_t offset = 0;
1651
1652    rcu_read_lock();
1653    while (mr->alias) {
1654        offset += mr->alias_offset;
1655        mr = mr->alias;
1656    }
1657    assert(mr->ram_block);
1658    ptr = qemu_get_ram_ptr(mr->ram_block,
1659                           memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1660    rcu_read_unlock();
1661
1662    return ptr + offset;
1663}
1664
1665ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1666{
1667    return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1668}
1669
1670void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1671{
1672    assert(mr->ram_block);
1673
1674    qemu_ram_resize(memory_region_get_ram_addr(mr), newsize, errp);
1675}
1676
1677static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1678{
1679    FlatView *view;
1680    FlatRange *fr;
1681    CoalescedMemoryRange *cmr;
1682    AddrRange tmp;
1683    MemoryRegionSection section;
1684
1685    view = address_space_get_flatview(as);
1686    FOR_EACH_FLAT_RANGE(fr, view) {
1687        if (fr->mr == mr) {
1688            section = (MemoryRegionSection) {
1689                .address_space = as,
1690                .offset_within_address_space = int128_get64(fr->addr.start),
1691                .size = fr->addr.size,
1692            };
1693
1694            MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1695                                 int128_get64(fr->addr.start),
1696                                 int128_get64(fr->addr.size));
1697            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1698                tmp = addrrange_shift(cmr->addr,
1699                                      int128_sub(fr->addr.start,
1700                                                 int128_make64(fr->offset_in_region)));
1701                if (!addrrange_intersects(tmp, fr->addr)) {
1702                    continue;
1703                }
1704                tmp = addrrange_intersection(tmp, fr->addr);
1705                MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1706                                     int128_get64(tmp.start),
1707                                     int128_get64(tmp.size));
1708            }
1709        }
1710    }
1711    flatview_unref(view);
1712}
1713
1714static void memory_region_update_coalesced_range(MemoryRegion *mr)
1715{
1716    AddressSpace *as;
1717
1718    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1719        memory_region_update_coalesced_range_as(mr, as);
1720    }
1721}
1722
1723void memory_region_set_coalescing(MemoryRegion *mr)
1724{
1725    memory_region_clear_coalescing(mr);
1726    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1727}
1728
1729void memory_region_add_coalescing(MemoryRegion *mr,
1730                                  hwaddr offset,
1731                                  uint64_t size)
1732{
1733    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1734
1735    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1736    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1737    memory_region_update_coalesced_range(mr);
1738    memory_region_set_flush_coalesced(mr);
1739}
1740
1741void memory_region_clear_coalescing(MemoryRegion *mr)
1742{
1743    CoalescedMemoryRange *cmr;
1744    bool updated = false;
1745
1746    qemu_flush_coalesced_mmio_buffer();
1747    mr->flush_coalesced_mmio = false;
1748
1749    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1750        cmr = QTAILQ_FIRST(&mr->coalesced);
1751        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1752        g_free(cmr);
1753        updated = true;
1754    }
1755
1756    if (updated) {
1757        memory_region_update_coalesced_range(mr);
1758    }
1759}
1760
1761void memory_region_set_flush_coalesced(MemoryRegion *mr)
1762{
1763    mr->flush_coalesced_mmio = true;
1764}
1765
1766void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1767{
1768    qemu_flush_coalesced_mmio_buffer();
1769    if (QTAILQ_EMPTY(&mr->coalesced)) {
1770        mr->flush_coalesced_mmio = false;
1771    }
1772}
1773
1774void memory_region_set_global_locking(MemoryRegion *mr)
1775{
1776    mr->global_locking = true;
1777}
1778
1779void memory_region_clear_global_locking(MemoryRegion *mr)
1780{
1781    mr->global_locking = false;
1782}
1783
1784static bool userspace_eventfd_warning;
1785
1786void memory_region_add_eventfd(MemoryRegion *mr,
1787                               hwaddr addr,
1788                               unsigned size,
1789                               bool match_data,
1790                               uint64_t data,
1791                               EventNotifier *e)
1792{
1793    MemoryRegionIoeventfd mrfd = {
1794        .addr.start = int128_make64(addr),
1795        .addr.size = int128_make64(size),
1796        .match_data = match_data,
1797        .data = data,
1798        .e = e,
1799    };
1800    unsigned i;
1801
1802    if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1803                            userspace_eventfd_warning))) {
1804        userspace_eventfd_warning = true;
1805        error_report("Using eventfd without MMIO binding in KVM. "
1806                     "Suboptimal performance expected");
1807    }
1808
1809    if (size) {
1810        adjust_endianness(mr, &mrfd.data, size);
1811    }
1812    memory_region_transaction_begin();
1813    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1814        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1815            break;
1816        }
1817    }
1818    ++mr->ioeventfd_nb;
1819    mr->ioeventfds = g_realloc(mr->ioeventfds,
1820                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1821    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1822            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1823    mr->ioeventfds[i] = mrfd;
1824    ioeventfd_update_pending |= mr->enabled;
1825    memory_region_transaction_commit();
1826}
1827
1828void memory_region_del_eventfd(MemoryRegion *mr,
1829                               hwaddr addr,
1830                               unsigned size,
1831                               bool match_data,
1832                               uint64_t data,
1833                               EventNotifier *e)
1834{
1835    MemoryRegionIoeventfd mrfd = {
1836        .addr.start = int128_make64(addr),
1837        .addr.size = int128_make64(size),
1838        .match_data = match_data,
1839        .data = data,
1840        .e = e,
1841    };
1842    unsigned i;
1843
1844    if (size) {
1845        adjust_endianness(mr, &mrfd.data, size);
1846    }
1847    memory_region_transaction_begin();
1848    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1849        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1850            break;
1851        }
1852    }
1853    assert(i != mr->ioeventfd_nb);
1854    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1855            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1856    --mr->ioeventfd_nb;
1857    mr->ioeventfds = g_realloc(mr->ioeventfds,
1858                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1859    ioeventfd_update_pending |= mr->enabled;
1860    memory_region_transaction_commit();
1861}
1862
1863static void memory_region_update_container_subregions(MemoryRegion *subregion)
1864{
1865    hwaddr offset = subregion->addr;
1866    MemoryRegion *mr = subregion->container;
1867    MemoryRegion *other;
1868
1869    memory_region_transaction_begin();
1870
1871    memory_region_ref(subregion);
1872    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1873        if (subregion->may_overlap || other->may_overlap) {
1874            continue;
1875        }
1876        if (int128_ge(int128_make64(offset),
1877                      int128_add(int128_make64(other->addr), other->size))
1878            || int128_le(int128_add(int128_make64(offset), subregion->size),
1879                         int128_make64(other->addr))) {
1880            continue;
1881        }
1882#if 0
1883        printf("warning: subregion collision %llx/%llx (%s) "
1884               "vs %llx/%llx (%s)\n",
1885               (unsigned long long)offset,
1886               (unsigned long long)int128_get64(subregion->size),
1887               subregion->name,
1888               (unsigned long long)other->addr,
1889               (unsigned long long)int128_get64(other->size),
1890               other->name);
1891#endif
1892    }
1893    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1894        if (subregion->priority >= other->priority) {
1895            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1896            goto done;
1897        }
1898    }
1899    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1900done:
1901    memory_region_update_pending |= mr->enabled && subregion->enabled;
1902    memory_region_transaction_commit();
1903}
1904
1905static void memory_region_add_subregion_common(MemoryRegion *mr,
1906                                               hwaddr offset,
1907                                               MemoryRegion *subregion)
1908{
1909    assert(!subregion->container);
1910    subregion->container = mr;
1911    subregion->addr = offset;
1912    memory_region_update_container_subregions(subregion);
1913}
1914
1915void memory_region_add_subregion(MemoryRegion *mr,
1916                                 hwaddr offset,
1917                                 MemoryRegion *subregion)
1918{
1919    subregion->may_overlap = false;
1920    subregion->priority = 0;
1921    memory_region_add_subregion_common(mr, offset, subregion);
1922}
1923
1924void memory_region_add_subregion_overlap(MemoryRegion *mr,
1925                                         hwaddr offset,
1926                                         MemoryRegion *subregion,
1927                                         int priority)
1928{
1929    subregion->may_overlap = true;
1930    subregion->priority = priority;
1931    memory_region_add_subregion_common(mr, offset, subregion);
1932}
1933
1934void memory_region_del_subregion(MemoryRegion *mr,
1935                                 MemoryRegion *subregion)
1936{
1937    memory_region_transaction_begin();
1938    assert(subregion->container == mr);
1939    subregion->container = NULL;
1940    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1941    memory_region_unref(subregion);
1942    memory_region_update_pending |= mr->enabled && subregion->enabled;
1943    memory_region_transaction_commit();
1944}
1945
1946void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1947{
1948    if (enabled == mr->enabled) {
1949        return;
1950    }
1951    memory_region_transaction_begin();
1952    mr->enabled = enabled;
1953    memory_region_update_pending = true;
1954    memory_region_transaction_commit();
1955}
1956
1957void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1958{
1959    Int128 s = int128_make64(size);
1960
1961    if (size == UINT64_MAX) {
1962        s = int128_2_64();
1963    }
1964    if (int128_eq(s, mr->size)) {
1965        return;
1966    }
1967    memory_region_transaction_begin();
1968    mr->size = s;
1969    memory_region_update_pending = true;
1970    memory_region_transaction_commit();
1971}
1972
1973static void memory_region_readd_subregion(MemoryRegion *mr)
1974{
1975    MemoryRegion *container = mr->container;
1976
1977    if (container) {
1978        memory_region_transaction_begin();
1979        memory_region_ref(mr);
1980        memory_region_del_subregion(container, mr);
1981        mr->container = container;
1982        memory_region_update_container_subregions(mr);
1983        memory_region_unref(mr);
1984        memory_region_transaction_commit();
1985    }
1986}
1987
1988void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1989{
1990    if (addr != mr->addr) {
1991        mr->addr = addr;
1992        memory_region_readd_subregion(mr);
1993    }
1994}
1995
1996void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1997{
1998    assert(mr->alias);
1999
2000    if (offset == mr->alias_offset) {
2001        return;
2002    }
2003
2004    memory_region_transaction_begin();
2005    mr->alias_offset = offset;
2006    memory_region_update_pending |= mr->enabled;
2007    memory_region_transaction_commit();
2008}
2009
2010uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2011{
2012    return mr->align;
2013}
2014
2015static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2016{
2017    const AddrRange *addr = addr_;
2018    const FlatRange *fr = fr_;
2019
2020    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2021        return -1;
2022    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2023        return 1;
2024    }
2025    return 0;
2026}
2027
2028static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2029{
2030    return bsearch(&addr, view->ranges, view->nr,
2031                   sizeof(FlatRange), cmp_flatrange_addr);
2032}
2033
2034bool memory_region_is_mapped(MemoryRegion *mr)
2035{
2036    return mr->container ? true : false;
2037}
2038
2039/* Same as memory_region_find, but it does not add a reference to the
2040 * returned region.  It must be called from an RCU critical section.
2041 */
2042static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2043                                                  hwaddr addr, uint64_t size)
2044{
2045    MemoryRegionSection ret = { .mr = NULL };
2046    MemoryRegion *root;
2047    AddressSpace *as;
2048    AddrRange range;
2049    FlatView *view;
2050    FlatRange *fr;
2051
2052    addr += mr->addr;
2053    for (root = mr; root->container; ) {
2054        root = root->container;
2055        addr += root->addr;
2056    }
2057
2058    as = memory_region_to_address_space(root);
2059    if (!as) {
2060        return ret;
2061    }
2062    range = addrrange_make(int128_make64(addr), int128_make64(size));
2063
2064    view = atomic_rcu_read(&as->current_map);
2065    fr = flatview_lookup(view, range);
2066    if (!fr) {
2067        return ret;
2068    }
2069
2070    while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2071        --fr;
2072    }
2073
2074    ret.mr = fr->mr;
2075    ret.address_space = as;
2076    range = addrrange_intersection(range, fr->addr);
2077    ret.offset_within_region = fr->offset_in_region;
2078    ret.offset_within_region += int128_get64(int128_sub(range.start,
2079                                                        fr->addr.start));
2080    ret.size = range.size;
2081    ret.offset_within_address_space = int128_get64(range.start);
2082    ret.readonly = fr->readonly;
2083    return ret;
2084}
2085
2086MemoryRegionSection memory_region_find(MemoryRegion *mr,
2087                                       hwaddr addr, uint64_t size)
2088{
2089    MemoryRegionSection ret;
2090    rcu_read_lock();
2091    ret = memory_region_find_rcu(mr, addr, size);
2092    if (ret.mr) {
2093        memory_region_ref(ret.mr);
2094    }
2095    rcu_read_unlock();
2096    return ret;
2097}
2098
2099bool memory_region_present(MemoryRegion *container, hwaddr addr)
2100{
2101    MemoryRegion *mr;
2102
2103    rcu_read_lock();
2104    mr = memory_region_find_rcu(container, addr, 1).mr;
2105    rcu_read_unlock();
2106    return mr && mr != container;
2107}
2108
2109void address_space_sync_dirty_bitmap(AddressSpace *as)
2110{
2111    FlatView *view;
2112    FlatRange *fr;
2113
2114    view = address_space_get_flatview(as);
2115    FOR_EACH_FLAT_RANGE(fr, view) {
2116        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2117    }
2118    flatview_unref(view);
2119}
2120
2121void memory_global_dirty_log_start(void)
2122{
2123    global_dirty_log = true;
2124
2125    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2126
2127    /* Refresh DIRTY_LOG_MIGRATION bit.  */
2128    memory_region_transaction_begin();
2129    memory_region_update_pending = true;
2130    memory_region_transaction_commit();
2131}
2132
2133void memory_global_dirty_log_stop(void)
2134{
2135    global_dirty_log = false;
2136
2137    /* Refresh DIRTY_LOG_MIGRATION bit.  */
2138    memory_region_transaction_begin();
2139    memory_region_update_pending = true;
2140    memory_region_transaction_commit();
2141
2142    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2143}
2144
2145static void listener_add_address_space(MemoryListener *listener,
2146                                       AddressSpace *as)
2147{
2148    FlatView *view;
2149    FlatRange *fr;
2150
2151    if (listener->address_space_filter
2152        && listener->address_space_filter != as) {
2153        return;
2154    }
2155
2156    if (listener->begin) {
2157        listener->begin(listener);
2158    }
2159    if (global_dirty_log) {
2160        if (listener->log_global_start) {
2161            listener->log_global_start(listener);
2162        }
2163    }
2164
2165    view = address_space_get_flatview(as);
2166    FOR_EACH_FLAT_RANGE(fr, view) {
2167        MemoryRegionSection section = {
2168            .mr = fr->mr,
2169            .address_space = as,
2170            .offset_within_region = fr->offset_in_region,
2171            .size = fr->addr.size,
2172            .offset_within_address_space = int128_get64(fr->addr.start),
2173            .readonly = fr->readonly,
2174        };
2175        if (fr->dirty_log_mask && listener->log_start) {
2176            listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2177        }
2178        if (listener->region_add) {
2179            listener->region_add(listener, &section);
2180        }
2181    }
2182    if (listener->commit) {
2183        listener->commit(listener);
2184    }
2185    flatview_unref(view);
2186}
2187
2188void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2189{
2190    MemoryListener *other = NULL;
2191    AddressSpace *as;
2192
2193    listener->address_space_filter = filter;
2194    if (QTAILQ_EMPTY(&memory_listeners)
2195        || listener->priority >= QTAILQ_LAST(&memory_listeners,
2196                                             memory_listeners)->priority) {
2197        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2198    } else {
2199        QTAILQ_FOREACH(other, &memory_listeners, link) {
2200            if (listener->priority < other->priority) {
2201                break;
2202            }
2203        }
2204        QTAILQ_INSERT_BEFORE(other, listener, link);
2205    }
2206
2207    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2208        listener_add_address_space(listener, as);
2209    }
2210}
2211
2212void memory_listener_unregister(MemoryListener *listener)
2213{
2214    QTAILQ_REMOVE(&memory_listeners, listener, link);
2215}
2216
2217void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2218{
2219    memory_region_ref(root);
2220    memory_region_transaction_begin();
2221    as->ref_count = 1;
2222    as->root = root;
2223    as->malloced = false;
2224    as->current_map = g_new(FlatView, 1);
2225    flatview_init(as->current_map);
2226    as->ioeventfd_nb = 0;
2227    as->ioeventfds = NULL;
2228    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2229    as->name = g_strdup(name ? name : "anonymous");
2230    address_space_init_dispatch(as);
2231    memory_region_update_pending |= root->enabled;
2232    memory_region_transaction_commit();
2233}
2234
2235static void do_address_space_destroy(AddressSpace *as)
2236{
2237    MemoryListener *listener;
2238    bool do_free = as->malloced;
2239
2240    address_space_destroy_dispatch(as);
2241
2242    QTAILQ_FOREACH(listener, &memory_listeners, link) {
2243        assert(listener->address_space_filter != as);
2244    }
2245
2246    flatview_unref(as->current_map);
2247    g_free(as->name);
2248    g_free(as->ioeventfds);
2249    memory_region_unref(as->root);
2250    if (do_free) {
2251        g_free(as);
2252    }
2253}
2254
2255AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2256{
2257    AddressSpace *as;
2258
2259    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2260        if (root == as->root && as->malloced) {
2261            as->ref_count++;
2262            return as;
2263        }
2264    }
2265
2266    as = g_malloc0(sizeof *as);
2267    address_space_init(as, root, name);
2268    as->malloced = true;
2269    return as;
2270}
2271
2272void address_space_destroy(AddressSpace *as)
2273{
2274    MemoryRegion *root = as->root;
2275
2276    as->ref_count--;
2277    if (as->ref_count) {
2278        return;
2279    }
2280    /* Flush out anything from MemoryListeners listening in on this */
2281    memory_region_transaction_begin();
2282    as->root = NULL;
2283    memory_region_transaction_commit();
2284    QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2285    address_space_unregister(as);
2286
2287    /* At this point, as->dispatch and as->current_map are dummy
2288     * entries that the guest should never use.  Wait for the old
2289     * values to expire before freeing the data.
2290     */
2291    as->root = root;
2292    call_rcu(as, do_address_space_destroy, rcu);
2293}
2294
2295typedef struct MemoryRegionList MemoryRegionList;
2296
2297struct MemoryRegionList {
2298    const MemoryRegion *mr;
2299    QTAILQ_ENTRY(MemoryRegionList) queue;
2300};
2301
2302typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2303
2304static void mtree_print_mr(fprintf_function mon_printf, void *f,
2305                           const MemoryRegion *mr, unsigned int level,
2306                           hwaddr base,
2307                           MemoryRegionListHead *alias_print_queue)
2308{
2309    MemoryRegionList *new_ml, *ml, *next_ml;
2310    MemoryRegionListHead submr_print_queue;
2311    const MemoryRegion *submr;
2312    unsigned int i;
2313
2314    if (!mr) {
2315        return;
2316    }
2317
2318    for (i = 0; i < level; i++) {
2319        mon_printf(f, "  ");
2320    }
2321
2322    if (mr->alias) {
2323        MemoryRegionList *ml;
2324        bool found = false;
2325
2326        /* check if the alias is already in the queue */
2327        QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2328            if (ml->mr == mr->alias) {
2329                found = true;
2330            }
2331        }
2332
2333        if (!found) {
2334            ml = g_new(MemoryRegionList, 1);
2335            ml->mr = mr->alias;
2336            QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2337        }
2338        mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2339                   " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2340                   "-" TARGET_FMT_plx "%s\n",
2341                   base + mr->addr,
2342                   base + mr->addr
2343                   + (int128_nz(mr->size) ?
2344                      (hwaddr)int128_get64(int128_sub(mr->size,
2345                                                      int128_one())) : 0),
2346                   mr->priority,
2347                   mr->romd_mode ? 'R' : '-',
2348                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2349                                                                       : '-',
2350                   memory_region_name(mr),
2351                   memory_region_name(mr->alias),
2352                   mr->alias_offset,
2353                   mr->alias_offset
2354                   + (int128_nz(mr->size) ?
2355                      (hwaddr)int128_get64(int128_sub(mr->size,
2356                                                      int128_one())) : 0),
2357                   mr->enabled ? "" : " [disabled]");
2358    } else {
2359        mon_printf(f,
2360                   TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2361                   base + mr->addr,
2362                   base + mr->addr
2363                   + (int128_nz(mr->size) ?
2364                      (hwaddr)int128_get64(int128_sub(mr->size,
2365                                                      int128_one())) : 0),
2366                   mr->priority,
2367                   mr->romd_mode ? 'R' : '-',
2368                   !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2369                                                                       : '-',
2370                   memory_region_name(mr),
2371                   mr->enabled ? "" : " [disabled]");
2372    }
2373
2374    QTAILQ_INIT(&submr_print_queue);
2375
2376    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2377        new_ml = g_new(MemoryRegionList, 1);
2378        new_ml->mr = submr;
2379        QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2380            if (new_ml->mr->addr < ml->mr->addr ||
2381                (new_ml->mr->addr == ml->mr->addr &&
2382                 new_ml->mr->priority > ml->mr->priority)) {
2383                QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2384                new_ml = NULL;
2385                break;
2386            }
2387        }
2388        if (new_ml) {
2389            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2390        }
2391    }
2392
2393    QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2394        mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2395                       alias_print_queue);
2396    }
2397
2398    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2399        g_free(ml);
2400    }
2401}
2402
2403void mtree_info(fprintf_function mon_printf, void *f)
2404{
2405    MemoryRegionListHead ml_head;
2406    MemoryRegionList *ml, *ml2;
2407    AddressSpace *as;
2408
2409    QTAILQ_INIT(&ml_head);
2410
2411    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2412        mon_printf(f, "address-space: %s\n", as->name);
2413        mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2414        mon_printf(f, "\n");
2415    }
2416
2417    /* print aliased regions */
2418    QTAILQ_FOREACH(ml, &ml_head, queue) {
2419        mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2420        mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2421        mon_printf(f, "\n");
2422    }
2423
2424    QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2425        g_free(ml);
2426    }
2427}
2428
2429static const TypeInfo memory_region_info = {
2430    .parent             = TYPE_OBJECT,
2431    .name               = TYPE_MEMORY_REGION,
2432    .instance_size      = sizeof(MemoryRegion),
2433    .instance_init      = memory_region_initfn,
2434    .instance_finalize  = memory_region_finalize,
2435};
2436
2437static void memory_register_types(void)
2438{
2439    type_register_static(&memory_region_info);
2440}
2441
2442type_init(memory_register_types)
2443