qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4
   5@documentlanguage en
   6@documentencoding UTF-8
   7
   8@settitle QEMU Emulator User Documentation
   9@exampleindent 0
  10@paragraphindent 0
  11@c %**end of header
  12
  13@ifinfo
  14@direntry
  15* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  16@end direntry
  17@end ifinfo
  18
  19@iftex
  20@titlepage
  21@sp 7
  22@center @titlefont{QEMU Emulator}
  23@sp 1
  24@center @titlefont{User Documentation}
  25@sp 3
  26@end titlepage
  27@end iftex
  28
  29@ifnottex
  30@node Top
  31@top
  32
  33@menu
  34* Introduction::
  35* Installation::
  36* QEMU PC System emulator::
  37* QEMU System emulator for non PC targets::
  38* QEMU User space emulator::
  39* compilation:: Compilation from the sources
  40* License::
  41* Index::
  42@end menu
  43@end ifnottex
  44
  45@contents
  46
  47@node Introduction
  48@chapter Introduction
  49
  50@menu
  51* intro_features:: Features
  52@end menu
  53
  54@node intro_features
  55@section Features
  56
  57QEMU is a FAST! processor emulator using dynamic translation to
  58achieve good emulation speed.
  59
  60QEMU has two operating modes:
  61
  62@itemize
  63@cindex operating modes
  64
  65@item
  66@cindex system emulation
  67Full system emulation. In this mode, QEMU emulates a full system (for
  68example a PC), including one or several processors and various
  69peripherals. It can be used to launch different Operating Systems
  70without rebooting the PC or to debug system code.
  71
  72@item
  73@cindex user mode emulation
  74User mode emulation. In this mode, QEMU can launch
  75processes compiled for one CPU on another CPU. It can be used to
  76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
  77to ease cross-compilation and cross-debugging.
  78
  79@end itemize
  80
  81QEMU can run without a host kernel driver and yet gives acceptable
  82performance.
  83
  84For system emulation, the following hardware targets are supported:
  85@itemize
  86@cindex emulated target systems
  87@cindex supported target systems
  88@item PC (x86 or x86_64 processor)
  89@item ISA PC (old style PC without PCI bus)
  90@item PREP (PowerPC processor)
  91@item G3 Beige PowerMac (PowerPC processor)
  92@item Mac99 PowerMac (PowerPC processor, in progress)
  93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
  94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
  95@item Malta board (32-bit and 64-bit MIPS processors)
  96@item MIPS Magnum (64-bit MIPS processor)
  97@item ARM Integrator/CP (ARM)
  98@item ARM Versatile baseboard (ARM)
  99@item ARM RealView Emulation/Platform baseboard (ARM)
 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
 101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
 102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
 103@item Freescale MCF5208EVB (ColdFire V2).
 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
 105@item Palm Tungsten|E PDA (OMAP310 processor)
 106@item N800 and N810 tablets (OMAP2420 processor)
 107@item MusicPal (MV88W8618 ARM processor)
 108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
 109@item Siemens SX1 smartphone (OMAP310 processor)
 110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
 111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
 113@end itemize
 114
 115@cindex supported user mode targets
 116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
 117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
 118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
 119
 120@node Installation
 121@chapter Installation
 122
 123If you want to compile QEMU yourself, see @ref{compilation}.
 124
 125@menu
 126* install_linux::   Linux
 127* install_windows:: Windows
 128* install_mac::     Macintosh
 129@end menu
 130
 131@node install_linux
 132@section Linux
 133@cindex installation (Linux)
 134
 135If a precompiled package is available for your distribution - you just
 136have to install it. Otherwise, see @ref{compilation}.
 137
 138@node install_windows
 139@section Windows
 140@cindex installation (Windows)
 141
 142Download the experimental binary installer at
 143@url{http://www.free.oszoo.org/@/download.html}.
 144TODO (no longer available)
 145
 146@node install_mac
 147@section Mac OS X
 148
 149Download the experimental binary installer at
 150@url{http://www.free.oszoo.org/@/download.html}.
 151TODO (no longer available)
 152
 153@node QEMU PC System emulator
 154@chapter QEMU PC System emulator
 155@cindex system emulation (PC)
 156
 157@menu
 158* pcsys_introduction:: Introduction
 159* pcsys_quickstart::   Quick Start
 160* sec_invocation::     Invocation
 161* pcsys_keys::         Keys in the graphical frontends
 162* mux_keys::           Keys in the character backend multiplexer
 163* pcsys_monitor::      QEMU Monitor
 164* disk_images::        Disk Images
 165* pcsys_network::      Network emulation
 166* pcsys_other_devs::   Other Devices
 167* direct_linux_boot::  Direct Linux Boot
 168* pcsys_usb::          USB emulation
 169* vnc_security::       VNC security
 170* gdb_usage::          GDB usage
 171* pcsys_os_specific::  Target OS specific information
 172@end menu
 173
 174@node pcsys_introduction
 175@section Introduction
 176
 177@c man begin DESCRIPTION
 178
 179The QEMU PC System emulator simulates the
 180following peripherals:
 181
 182@itemize @minus
 183@item
 184i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 185@item
 186Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 187extensions (hardware level, including all non standard modes).
 188@item
 189PS/2 mouse and keyboard
 190@item
 1912 PCI IDE interfaces with hard disk and CD-ROM support
 192@item
 193Floppy disk
 194@item
 195PCI and ISA network adapters
 196@item
 197Serial ports
 198@item
 199IPMI BMC, either and internal or external one
 200@item
 201Creative SoundBlaster 16 sound card
 202@item
 203ENSONIQ AudioPCI ES1370 sound card
 204@item
 205Intel 82801AA AC97 Audio compatible sound card
 206@item
 207Intel HD Audio Controller and HDA codec
 208@item
 209Adlib (OPL2) - Yamaha YM3812 compatible chip
 210@item
 211Gravis Ultrasound GF1 sound card
 212@item
 213CS4231A compatible sound card
 214@item
 215PCI UHCI USB controller and a virtual USB hub.
 216@end itemize
 217
 218SMP is supported with up to 255 CPUs.
 219
 220QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
 221VGA BIOS.
 222
 223QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 224
 225QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 226by Tibor "TS" Schütz.
 227
 228Note that, by default, GUS shares IRQ(7) with parallel ports and so
 229QEMU must be told to not have parallel ports to have working GUS.
 230
 231@example
 232qemu-system-i386 dos.img -soundhw gus -parallel none
 233@end example
 234
 235Alternatively:
 236@example
 237qemu-system-i386 dos.img -device gus,irq=5
 238@end example
 239
 240Or some other unclaimed IRQ.
 241
 242CS4231A is the chip used in Windows Sound System and GUSMAX products
 243
 244@c man end
 245
 246@node pcsys_quickstart
 247@section Quick Start
 248@cindex quick start
 249
 250Download and uncompress the linux image (@file{linux.img}) and type:
 251
 252@example
 253qemu-system-i386 linux.img
 254@end example
 255
 256Linux should boot and give you a prompt.
 257
 258@node sec_invocation
 259@section Invocation
 260
 261@example
 262@c man begin SYNOPSIS
 263@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
 264@c man end
 265@end example
 266
 267@c man begin OPTIONS
 268@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 269targets do not need a disk image.
 270
 271@include qemu-options.texi
 272
 273@c man end
 274
 275@node pcsys_keys
 276@section Keys in the graphical frontends
 277
 278@c man begin OPTIONS
 279
 280During the graphical emulation, you can use special key combinations to change
 281modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 282then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 283@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 284
 285@table @key
 286@item Ctrl-Alt-f
 287@kindex Ctrl-Alt-f
 288Toggle full screen
 289
 290@item Ctrl-Alt-+
 291@kindex Ctrl-Alt-+
 292Enlarge the screen
 293
 294@item Ctrl-Alt--
 295@kindex Ctrl-Alt--
 296Shrink the screen
 297
 298@item Ctrl-Alt-u
 299@kindex Ctrl-Alt-u
 300Restore the screen's un-scaled dimensions
 301
 302@item Ctrl-Alt-n
 303@kindex Ctrl-Alt-n
 304Switch to virtual console 'n'. Standard console mappings are:
 305@table @emph
 306@item 1
 307Target system display
 308@item 2
 309Monitor
 310@item 3
 311Serial port
 312@end table
 313
 314@item Ctrl-Alt
 315@kindex Ctrl-Alt
 316Toggle mouse and keyboard grab.
 317@end table
 318
 319@kindex Ctrl-Up
 320@kindex Ctrl-Down
 321@kindex Ctrl-PageUp
 322@kindex Ctrl-PageDown
 323In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 324@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 325
 326@c man end
 327
 328@node mux_keys
 329@section Keys in the character backend multiplexer
 330
 331@c man begin OPTIONS
 332
 333During emulation, if you are using a character backend multiplexer
 334(which is the default if you are using @option{-nographic}) then
 335several commands are available via an escape sequence. These
 336key sequences all start with an escape character, which is @key{Ctrl-a}
 337by default, but can be changed with @option{-echr}. The list below assumes
 338you're using the default.
 339
 340@table @key
 341@item Ctrl-a h
 342@kindex Ctrl-a h
 343Print this help
 344@item Ctrl-a x
 345@kindex Ctrl-a x
 346Exit emulator
 347@item Ctrl-a s
 348@kindex Ctrl-a s
 349Save disk data back to file (if -snapshot)
 350@item Ctrl-a t
 351@kindex Ctrl-a t
 352Toggle console timestamps
 353@item Ctrl-a b
 354@kindex Ctrl-a b
 355Send break (magic sysrq in Linux)
 356@item Ctrl-a c
 357@kindex Ctrl-a c
 358Rotate between the frontends connected to the multiplexer (usually
 359this switches between the monitor and the console)
 360@item Ctrl-a Ctrl-a
 361@kindex Ctrl-a Ctrl-a
 362Send the escape character to the frontend
 363@end table
 364@c man end
 365
 366@ignore
 367
 368@c man begin SEEALSO
 369The HTML documentation of QEMU for more precise information and Linux
 370user mode emulator invocation.
 371@c man end
 372
 373@c man begin AUTHOR
 374Fabrice Bellard
 375@c man end
 376
 377@end ignore
 378
 379@node pcsys_monitor
 380@section QEMU Monitor
 381@cindex QEMU monitor
 382
 383The QEMU monitor is used to give complex commands to the QEMU
 384emulator. You can use it to:
 385
 386@itemize @minus
 387
 388@item
 389Remove or insert removable media images
 390(such as CD-ROM or floppies).
 391
 392@item
 393Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 394from a disk file.
 395
 396@item Inspect the VM state without an external debugger.
 397
 398@end itemize
 399
 400@subsection Commands
 401
 402The following commands are available:
 403
 404@include qemu-monitor.texi
 405
 406@include qemu-monitor-info.texi
 407
 408@subsection Integer expressions
 409
 410The monitor understands integers expressions for every integer
 411argument. You can use register names to get the value of specifics
 412CPU registers by prefixing them with @emph{$}.
 413
 414@node disk_images
 415@section Disk Images
 416
 417Since version 0.6.1, QEMU supports many disk image formats, including
 418growable disk images (their size increase as non empty sectors are
 419written), compressed and encrypted disk images. Version 0.8.3 added
 420the new qcow2 disk image format which is essential to support VM
 421snapshots.
 422
 423@menu
 424* disk_images_quickstart::    Quick start for disk image creation
 425* disk_images_snapshot_mode:: Snapshot mode
 426* vm_snapshots::              VM snapshots
 427* qemu_img_invocation::       qemu-img Invocation
 428* qemu_nbd_invocation::       qemu-nbd Invocation
 429* qemu_ga_invocation::        qemu-ga Invocation
 430* disk_images_formats::       Disk image file formats
 431* host_drives::               Using host drives
 432* disk_images_fat_images::    Virtual FAT disk images
 433* disk_images_nbd::           NBD access
 434* disk_images_sheepdog::      Sheepdog disk images
 435* disk_images_iscsi::         iSCSI LUNs
 436* disk_images_gluster::       GlusterFS disk images
 437* disk_images_ssh::           Secure Shell (ssh) disk images
 438@end menu
 439
 440@node disk_images_quickstart
 441@subsection Quick start for disk image creation
 442
 443You can create a disk image with the command:
 444@example
 445qemu-img create myimage.img mysize
 446@end example
 447where @var{myimage.img} is the disk image filename and @var{mysize} is its
 448size in kilobytes. You can add an @code{M} suffix to give the size in
 449megabytes and a @code{G} suffix for gigabytes.
 450
 451See @ref{qemu_img_invocation} for more information.
 452
 453@node disk_images_snapshot_mode
 454@subsection Snapshot mode
 455
 456If you use the option @option{-snapshot}, all disk images are
 457considered as read only. When sectors in written, they are written in
 458a temporary file created in @file{/tmp}. You can however force the
 459write back to the raw disk images by using the @code{commit} monitor
 460command (or @key{C-a s} in the serial console).
 461
 462@node vm_snapshots
 463@subsection VM snapshots
 464
 465VM snapshots are snapshots of the complete virtual machine including
 466CPU state, RAM, device state and the content of all the writable
 467disks. In order to use VM snapshots, you must have at least one non
 468removable and writable block device using the @code{qcow2} disk image
 469format. Normally this device is the first virtual hard drive.
 470
 471Use the monitor command @code{savevm} to create a new VM snapshot or
 472replace an existing one. A human readable name can be assigned to each
 473snapshot in addition to its numerical ID.
 474
 475Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 476a VM snapshot. @code{info snapshots} lists the available snapshots
 477with their associated information:
 478
 479@example
 480(qemu) info snapshots
 481Snapshot devices: hda
 482Snapshot list (from hda):
 483ID        TAG                 VM SIZE                DATE       VM CLOCK
 4841         start                   41M 2006-08-06 12:38:02   00:00:14.954
 4852                                 40M 2006-08-06 12:43:29   00:00:18.633
 4863         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 487@end example
 488
 489A VM snapshot is made of a VM state info (its size is shown in
 490@code{info snapshots}) and a snapshot of every writable disk image.
 491The VM state info is stored in the first @code{qcow2} non removable
 492and writable block device. The disk image snapshots are stored in
 493every disk image. The size of a snapshot in a disk image is difficult
 494to evaluate and is not shown by @code{info snapshots} because the
 495associated disk sectors are shared among all the snapshots to save
 496disk space (otherwise each snapshot would need a full copy of all the
 497disk images).
 498
 499When using the (unrelated) @code{-snapshot} option
 500(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 501but they are deleted as soon as you exit QEMU.
 502
 503VM snapshots currently have the following known limitations:
 504@itemize
 505@item
 506They cannot cope with removable devices if they are removed or
 507inserted after a snapshot is done.
 508@item
 509A few device drivers still have incomplete snapshot support so their
 510state is not saved or restored properly (in particular USB).
 511@end itemize
 512
 513@node qemu_img_invocation
 514@subsection @code{qemu-img} Invocation
 515
 516@include qemu-img.texi
 517
 518@node qemu_nbd_invocation
 519@subsection @code{qemu-nbd} Invocation
 520
 521@include qemu-nbd.texi
 522
 523@node qemu_ga_invocation
 524@subsection @code{qemu-ga} Invocation
 525
 526@include qemu-ga.texi
 527
 528@node disk_images_formats
 529@subsection Disk image file formats
 530
 531QEMU supports many image file formats that can be used with VMs as well as with
 532any of the tools (like @code{qemu-img}). This includes the preferred formats
 533raw and qcow2 as well as formats that are supported for compatibility with
 534older QEMU versions or other hypervisors.
 535
 536Depending on the image format, different options can be passed to
 537@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
 538This section describes each format and the options that are supported for it.
 539
 540@table @option
 541@item raw
 542
 543Raw disk image format. This format has the advantage of
 544being simple and easily exportable to all other emulators. If your
 545file system supports @emph{holes} (for example in ext2 or ext3 on
 546Linux or NTFS on Windows), then only the written sectors will reserve
 547space. Use @code{qemu-img info} to know the real size used by the
 548image or @code{ls -ls} on Unix/Linux.
 549
 550Supported options:
 551@table @code
 552@item preallocation
 553Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
 554@code{falloc} mode preallocates space for image by calling posix_fallocate().
 555@code{full} mode preallocates space for image by writing zeros to underlying
 556storage.
 557@end table
 558
 559@item qcow2
 560QEMU image format, the most versatile format. Use it to have smaller
 561images (useful if your filesystem does not supports holes, for example
 562on Windows), zlib based compression and support of multiple VM
 563snapshots.
 564
 565Supported options:
 566@table @code
 567@item compat
 568Determines the qcow2 version to use. @code{compat=0.10} uses the
 569traditional image format that can be read by any QEMU since 0.10.
 570@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
 571newer understand (this is the default). Amongst others, this includes
 572zero clusters, which allow efficient copy-on-read for sparse images.
 573
 574@item backing_file
 575File name of a base image (see @option{create} subcommand)
 576@item backing_fmt
 577Image format of the base image
 578@item encryption
 579If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
 580
 581The use of encryption in qcow and qcow2 images is considered to be flawed by
 582modern cryptography standards, suffering from a number of design problems:
 583
 584@itemize @minus
 585@item The AES-CBC cipher is used with predictable initialization vectors based
 586on the sector number. This makes it vulnerable to chosen plaintext attacks
 587which can reveal the existence of encrypted data.
 588@item The user passphrase is directly used as the encryption key. A poorly
 589chosen or short passphrase will compromise the security of the encryption.
 590@item In the event of the passphrase being compromised there is no way to
 591change the passphrase to protect data in any qcow images. The files must
 592be cloned, using a different encryption passphrase in the new file. The
 593original file must then be securely erased using a program like shred,
 594though even this is ineffective with many modern storage technologies.
 595@end itemize
 596
 597Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
 598it will go away in a future release.  Users are recommended to use an
 599alternative encryption technology such as the Linux dm-crypt / LUKS
 600system.
 601
 602@item cluster_size
 603Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
 604sizes can improve the image file size whereas larger cluster sizes generally
 605provide better performance.
 606
 607@item preallocation
 608Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
 609@code{full}). An image with preallocated metadata is initially larger but can
 610improve performance when the image needs to grow. @code{falloc} and @code{full}
 611preallocations are like the same options of @code{raw} format, but sets up
 612metadata also.
 613
 614@item lazy_refcounts
 615If this option is set to @code{on}, reference count updates are postponed with
 616the goal of avoiding metadata I/O and improving performance. This is
 617particularly interesting with @option{cache=writethrough} which doesn't batch
 618metadata updates. The tradeoff is that after a host crash, the reference count
 619tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
 620check -r all} is required, which may take some time.
 621
 622This option can only be enabled if @code{compat=1.1} is specified.
 623
 624@item nocow
 625If this option is set to @code{on}, it will turn off COW of the file. It's only
 626valid on btrfs, no effect on other file systems.
 627
 628Btrfs has low performance when hosting a VM image file, even more when the guest
 629on the VM also using btrfs as file system. Turning off COW is a way to mitigate
 630this bad performance. Generally there are two ways to turn off COW on btrfs:
 631a) Disable it by mounting with nodatacow, then all newly created files will be
 632NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
 633does.
 634
 635Note: this option is only valid to new or empty files. If there is an existing
 636file which is COW and has data blocks already, it couldn't be changed to NOCOW
 637by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
 638the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
 639
 640@end table
 641
 642@item qed
 643Old QEMU image format with support for backing files and compact image files
 644(when your filesystem or transport medium does not support holes).
 645
 646When converting QED images to qcow2, you might want to consider using the
 647@code{lazy_refcounts=on} option to get a more QED-like behaviour.
 648
 649Supported options:
 650@table @code
 651@item backing_file
 652File name of a base image (see @option{create} subcommand).
 653@item backing_fmt
 654Image file format of backing file (optional).  Useful if the format cannot be
 655autodetected because it has no header, like some vhd/vpc files.
 656@item cluster_size
 657Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
 658cluster sizes can improve the image file size whereas larger cluster sizes
 659generally provide better performance.
 660@item table_size
 661Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
 662and 16).  There is normally no need to change this value but this option can be
 663used for performance benchmarking.
 664@end table
 665
 666@item qcow
 667Old QEMU image format with support for backing files, compact image files,
 668encryption and compression.
 669
 670Supported options:
 671@table @code
 672@item backing_file
 673File name of a base image (see @option{create} subcommand)
 674@item encryption
 675If this option is set to @code{on}, the image is encrypted.
 676@end table
 677
 678@item vdi
 679VirtualBox 1.1 compatible image format.
 680Supported options:
 681@table @code
 682@item static
 683If this option is set to @code{on}, the image is created with metadata
 684preallocation.
 685@end table
 686
 687@item vmdk
 688VMware 3 and 4 compatible image format.
 689
 690Supported options:
 691@table @code
 692@item backing_file
 693File name of a base image (see @option{create} subcommand).
 694@item compat6
 695Create a VMDK version 6 image (instead of version 4)
 696@item subformat
 697Specifies which VMDK subformat to use. Valid options are
 698@code{monolithicSparse} (default),
 699@code{monolithicFlat},
 700@code{twoGbMaxExtentSparse},
 701@code{twoGbMaxExtentFlat} and
 702@code{streamOptimized}.
 703@end table
 704
 705@item vpc
 706VirtualPC compatible image format (VHD).
 707Supported options:
 708@table @code
 709@item subformat
 710Specifies which VHD subformat to use. Valid options are
 711@code{dynamic} (default) and @code{fixed}.
 712@end table
 713
 714@item VHDX
 715Hyper-V compatible image format (VHDX).
 716Supported options:
 717@table @code
 718@item subformat
 719Specifies which VHDX subformat to use. Valid options are
 720@code{dynamic} (default) and @code{fixed}.
 721@item block_state_zero
 722Force use of payload blocks of type 'ZERO'.  Can be set to @code{on} (default)
 723or @code{off}.  When set to @code{off}, new blocks will be created as
 724@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
 725arbitrary data for those blocks.  Do not set to @code{off} when using
 726@code{qemu-img convert} with @code{subformat=dynamic}.
 727@item block_size
 728Block size; min 1 MB, max 256 MB.  0 means auto-calculate based on image size.
 729@item log_size
 730Log size; min 1 MB.
 731@end table
 732@end table
 733
 734@subsubsection Read-only formats
 735More disk image file formats are supported in a read-only mode.
 736@table @option
 737@item bochs
 738Bochs images of @code{growing} type.
 739@item cloop
 740Linux Compressed Loop image, useful only to reuse directly compressed
 741CD-ROM images present for example in the Knoppix CD-ROMs.
 742@item dmg
 743Apple disk image.
 744@item parallels
 745Parallels disk image format.
 746@end table
 747
 748
 749@node host_drives
 750@subsection Using host drives
 751
 752In addition to disk image files, QEMU can directly access host
 753devices. We describe here the usage for QEMU version >= 0.8.3.
 754
 755@subsubsection Linux
 756
 757On Linux, you can directly use the host device filename instead of a
 758disk image filename provided you have enough privileges to access
 759it. For example, use @file{/dev/cdrom} to access to the CDROM.
 760
 761@table @code
 762@item CD
 763You can specify a CDROM device even if no CDROM is loaded. QEMU has
 764specific code to detect CDROM insertion or removal. CDROM ejection by
 765the guest OS is supported. Currently only data CDs are supported.
 766@item Floppy
 767You can specify a floppy device even if no floppy is loaded. Floppy
 768removal is currently not detected accurately (if you change floppy
 769without doing floppy access while the floppy is not loaded, the guest
 770OS will think that the same floppy is loaded).
 771Use of the host's floppy device is deprecated, and support for it will
 772be removed in a future release.
 773@item Hard disks
 774Hard disks can be used. Normally you must specify the whole disk
 775(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
 776see it as a partitioned disk. WARNING: unless you know what you do, it
 777is better to only make READ-ONLY accesses to the hard disk otherwise
 778you may corrupt your host data (use the @option{-snapshot} command
 779line option or modify the device permissions accordingly).
 780@end table
 781
 782@subsubsection Windows
 783
 784@table @code
 785@item CD
 786The preferred syntax is the drive letter (e.g. @file{d:}). The
 787alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
 788supported as an alias to the first CDROM drive.
 789
 790Currently there is no specific code to handle removable media, so it
 791is better to use the @code{change} or @code{eject} monitor commands to
 792change or eject media.
 793@item Hard disks
 794Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
 795where @var{N} is the drive number (0 is the first hard disk).
 796
 797WARNING: unless you know what you do, it is better to only make
 798READ-ONLY accesses to the hard disk otherwise you may corrupt your
 799host data (use the @option{-snapshot} command line so that the
 800modifications are written in a temporary file).
 801@end table
 802
 803
 804@subsubsection Mac OS X
 805
 806@file{/dev/cdrom} is an alias to the first CDROM.
 807
 808Currently there is no specific code to handle removable media, so it
 809is better to use the @code{change} or @code{eject} monitor commands to
 810change or eject media.
 811
 812@node disk_images_fat_images
 813@subsection Virtual FAT disk images
 814
 815QEMU can automatically create a virtual FAT disk image from a
 816directory tree. In order to use it, just type:
 817
 818@example
 819qemu-system-i386 linux.img -hdb fat:/my_directory
 820@end example
 821
 822Then you access access to all the files in the @file{/my_directory}
 823directory without having to copy them in a disk image or to export
 824them via SAMBA or NFS. The default access is @emph{read-only}.
 825
 826Floppies can be emulated with the @code{:floppy:} option:
 827
 828@example
 829qemu-system-i386 linux.img -fda fat:floppy:/my_directory
 830@end example
 831
 832A read/write support is available for testing (beta stage) with the
 833@code{:rw:} option:
 834
 835@example
 836qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
 837@end example
 838
 839What you should @emph{never} do:
 840@itemize
 841@item use non-ASCII filenames ;
 842@item use "-snapshot" together with ":rw:" ;
 843@item expect it to work when loadvm'ing ;
 844@item write to the FAT directory on the host system while accessing it with the guest system.
 845@end itemize
 846
 847@node disk_images_nbd
 848@subsection NBD access
 849
 850QEMU can access directly to block device exported using the Network Block Device
 851protocol.
 852
 853@example
 854qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
 855@end example
 856
 857If the NBD server is located on the same host, you can use an unix socket instead
 858of an inet socket:
 859
 860@example
 861qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
 862@end example
 863
 864In this case, the block device must be exported using qemu-nbd:
 865
 866@example
 867qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
 868@end example
 869
 870The use of qemu-nbd allows sharing of a disk between several guests:
 871@example
 872qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
 873@end example
 874
 875@noindent
 876and then you can use it with two guests:
 877@example
 878qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
 879qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
 880@end example
 881
 882If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
 883own embedded NBD server), you must specify an export name in the URI:
 884@example
 885qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
 886qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
 887@end example
 888
 889The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
 890also available.  Here are some example of the older syntax:
 891@example
 892qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
 893qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
 894qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
 895@end example
 896
 897@node disk_images_sheepdog
 898@subsection Sheepdog disk images
 899
 900Sheepdog is a distributed storage system for QEMU.  It provides highly
 901available block level storage volumes that can be attached to
 902QEMU-based virtual machines.
 903
 904You can create a Sheepdog disk image with the command:
 905@example
 906qemu-img create sheepdog:///@var{image} @var{size}
 907@end example
 908where @var{image} is the Sheepdog image name and @var{size} is its
 909size.
 910
 911To import the existing @var{filename} to Sheepdog, you can use a
 912convert command.
 913@example
 914qemu-img convert @var{filename} sheepdog:///@var{image}
 915@end example
 916
 917You can boot from the Sheepdog disk image with the command:
 918@example
 919qemu-system-i386 sheepdog:///@var{image}
 920@end example
 921
 922You can also create a snapshot of the Sheepdog image like qcow2.
 923@example
 924qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
 925@end example
 926where @var{tag} is a tag name of the newly created snapshot.
 927
 928To boot from the Sheepdog snapshot, specify the tag name of the
 929snapshot.
 930@example
 931qemu-system-i386 sheepdog:///@var{image}#@var{tag}
 932@end example
 933
 934You can create a cloned image from the existing snapshot.
 935@example
 936qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
 937@end example
 938where @var{base} is a image name of the source snapshot and @var{tag}
 939is its tag name.
 940
 941You can use an unix socket instead of an inet socket:
 942
 943@example
 944qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
 945@end example
 946
 947If the Sheepdog daemon doesn't run on the local host, you need to
 948specify one of the Sheepdog servers to connect to.
 949@example
 950qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
 951qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
 952@end example
 953
 954@node disk_images_iscsi
 955@subsection iSCSI LUNs
 956
 957iSCSI is a popular protocol used to access SCSI devices across a computer
 958network.
 959
 960There are two different ways iSCSI devices can be used by QEMU.
 961
 962The first method is to mount the iSCSI LUN on the host, and make it appear as
 963any other ordinary SCSI device on the host and then to access this device as a
 964/dev/sd device from QEMU. How to do this differs between host OSes.
 965
 966The second method involves using the iSCSI initiator that is built into
 967QEMU. This provides a mechanism that works the same way regardless of which
 968host OS you are running QEMU on. This section will describe this second method
 969of using iSCSI together with QEMU.
 970
 971In QEMU, iSCSI devices are described using special iSCSI URLs
 972
 973@example
 974URL syntax:
 975iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
 976@end example
 977
 978Username and password are optional and only used if your target is set up
 979using CHAP authentication for access control.
 980Alternatively the username and password can also be set via environment
 981variables to have these not show up in the process list
 982
 983@example
 984export LIBISCSI_CHAP_USERNAME=<username>
 985export LIBISCSI_CHAP_PASSWORD=<password>
 986iscsi://<host>/<target-iqn-name>/<lun>
 987@end example
 988
 989Various session related parameters can be set via special options, either
 990in a configuration file provided via '-readconfig' or directly on the
 991command line.
 992
 993If the initiator-name is not specified qemu will use a default name
 994of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
 995virtual machine.
 996
 997
 998@example
 999Setting a specific initiator name to use when logging in to the target
1000-iscsi initiator-name=iqn.qemu.test:my-initiator
1001@end example
1002
1003@example
1004Controlling which type of header digest to negotiate with the target
1005-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1006@end example
1007
1008These can also be set via a configuration file
1009@example
1010[iscsi]
1011  user = "CHAP username"
1012  password = "CHAP password"
1013  initiator-name = "iqn.qemu.test:my-initiator"
1014  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1015  header-digest = "CRC32C"
1016@end example
1017
1018
1019Setting the target name allows different options for different targets
1020@example
1021[iscsi "iqn.target.name"]
1022  user = "CHAP username"
1023  password = "CHAP password"
1024  initiator-name = "iqn.qemu.test:my-initiator"
1025  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1026  header-digest = "CRC32C"
1027@end example
1028
1029
1030Howto use a configuration file to set iSCSI configuration options:
1031@example
1032cat >iscsi.conf <<EOF
1033[iscsi]
1034  user = "me"
1035  password = "my password"
1036  initiator-name = "iqn.qemu.test:my-initiator"
1037  header-digest = "CRC32C"
1038EOF
1039
1040qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1041    -readconfig iscsi.conf
1042@end example
1043
1044
1045Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1046@example
1047This example shows how to set up an iSCSI target with one CDROM and one DISK
1048using the Linux STGT software target. This target is available on Red Hat based
1049systems as the package 'scsi-target-utils'.
1050
1051tgtd --iscsi portal=127.0.0.1:3260
1052tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1053tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1054    -b /IMAGES/disk.img --device-type=disk
1055tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1056    -b /IMAGES/cd.iso --device-type=cd
1057tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1058
1059qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1060    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1061    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1062@end example
1063
1064@node disk_images_gluster
1065@subsection GlusterFS disk images
1066
1067GlusterFS is an user space distributed file system.
1068
1069You can boot from the GlusterFS disk image with the command:
1070@example
1071qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1072@end example
1073
1074@var{gluster} is the protocol.
1075
1076@var{transport} specifies the transport type used to connect to gluster
1077management daemon (glusterd). Valid transport types are
1078tcp, unix and rdma. If a transport type isn't specified, then tcp
1079type is assumed.
1080
1081@var{server} specifies the server where the volume file specification for
1082the given volume resides. This can be either hostname, ipv4 address
1083or ipv6 address. ipv6 address needs to be within square brackets [ ].
1084If transport type is unix, then @var{server} field should not be specified.
1085Instead @var{socket} field needs to be populated with the path to unix domain
1086socket.
1087
1088@var{port} is the port number on which glusterd is listening. This is optional
1089and if not specified, QEMU will send 0 which will make gluster to use the
1090default port. If the transport type is unix, then @var{port} should not be
1091specified.
1092
1093@var{volname} is the name of the gluster volume which contains the disk image.
1094
1095@var{image} is the path to the actual disk image that resides on gluster volume.
1096
1097You can create a GlusterFS disk image with the command:
1098@example
1099qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1100@end example
1101
1102Examples
1103@example
1104qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1105qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1106qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1107qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1108qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1109qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1110qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1111qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1112@end example
1113
1114@node disk_images_ssh
1115@subsection Secure Shell (ssh) disk images
1116
1117You can access disk images located on a remote ssh server
1118by using the ssh protocol:
1119
1120@example
1121qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1122@end example
1123
1124Alternative syntax using properties:
1125
1126@example
1127qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1128@end example
1129
1130@var{ssh} is the protocol.
1131
1132@var{user} is the remote user.  If not specified, then the local
1133username is tried.
1134
1135@var{server} specifies the remote ssh server.  Any ssh server can be
1136used, but it must implement the sftp-server protocol.  Most Unix/Linux
1137systems should work without requiring any extra configuration.
1138
1139@var{port} is the port number on which sshd is listening.  By default
1140the standard ssh port (22) is used.
1141
1142@var{path} is the path to the disk image.
1143
1144The optional @var{host_key_check} parameter controls how the remote
1145host's key is checked.  The default is @code{yes} which means to use
1146the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
1147turns off known-hosts checking.  Or you can check that the host key
1148matches a specific fingerprint:
1149@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1150(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1151tools only use MD5 to print fingerprints).
1152
1153Currently authentication must be done using ssh-agent.  Other
1154authentication methods may be supported in future.
1155
1156Note: Many ssh servers do not support an @code{fsync}-style operation.
1157The ssh driver cannot guarantee that disk flush requests are
1158obeyed, and this causes a risk of disk corruption if the remote
1159server or network goes down during writes.  The driver will
1160print a warning when @code{fsync} is not supported:
1161
1162warning: ssh server @code{ssh.example.com:22} does not support fsync
1163
1164With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1165supported.
1166
1167@node pcsys_network
1168@section Network emulation
1169
1170QEMU can simulate several network cards (PCI or ISA cards on the PC
1171target) and can connect them to an arbitrary number of Virtual Local
1172Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1173VLAN. VLAN can be connected between separate instances of QEMU to
1174simulate large networks. For simpler usage, a non privileged user mode
1175network stack can replace the TAP device to have a basic network
1176connection.
1177
1178@subsection VLANs
1179
1180QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1181connection between several network devices. These devices can be for
1182example QEMU virtual Ethernet cards or virtual Host ethernet devices
1183(TAP devices).
1184
1185@subsection Using TAP network interfaces
1186
1187This is the standard way to connect QEMU to a real network. QEMU adds
1188a virtual network device on your host (called @code{tapN}), and you
1189can then configure it as if it was a real ethernet card.
1190
1191@subsubsection Linux host
1192
1193As an example, you can download the @file{linux-test-xxx.tar.gz}
1194archive and copy the script @file{qemu-ifup} in @file{/etc} and
1195configure properly @code{sudo} so that the command @code{ifconfig}
1196contained in @file{qemu-ifup} can be executed as root. You must verify
1197that your host kernel supports the TAP network interfaces: the
1198device @file{/dev/net/tun} must be present.
1199
1200See @ref{sec_invocation} to have examples of command lines using the
1201TAP network interfaces.
1202
1203@subsubsection Windows host
1204
1205There is a virtual ethernet driver for Windows 2000/XP systems, called
1206TAP-Win32. But it is not included in standard QEMU for Windows,
1207so you will need to get it separately. It is part of OpenVPN package,
1208so download OpenVPN from : @url{http://openvpn.net/}.
1209
1210@subsection Using the user mode network stack
1211
1212By using the option @option{-net user} (default configuration if no
1213@option{-net} option is specified), QEMU uses a completely user mode
1214network stack (you don't need root privilege to use the virtual
1215network). The virtual network configuration is the following:
1216
1217@example
1218
1219         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1220                           |          (10.0.2.2)
1221                           |
1222                           ---->  DNS server (10.0.2.3)
1223                           |
1224                           ---->  SMB server (10.0.2.4)
1225@end example
1226
1227The QEMU VM behaves as if it was behind a firewall which blocks all
1228incoming connections. You can use a DHCP client to automatically
1229configure the network in the QEMU VM. The DHCP server assign addresses
1230to the hosts starting from 10.0.2.15.
1231
1232In order to check that the user mode network is working, you can ping
1233the address 10.0.2.2 and verify that you got an address in the range
123410.0.2.x from the QEMU virtual DHCP server.
1235
1236Note that ICMP traffic in general does not work with user mode networking.
1237@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1238however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1239ping sockets to allow @code{ping} to the Internet. The host admin has to set
1240the ping_group_range in order to grant access to those sockets. To allow ping
1241for GID 100 (usually users group):
1242
1243@example
1244echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1245@end example
1246
1247When using the built-in TFTP server, the router is also the TFTP
1248server.
1249
1250When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1251connections can be redirected from the host to the guest. It allows for
1252example to redirect X11, telnet or SSH connections.
1253
1254@subsection Connecting VLANs between QEMU instances
1255
1256Using the @option{-net socket} option, it is possible to make VLANs
1257that span several QEMU instances. See @ref{sec_invocation} to have a
1258basic example.
1259
1260@node pcsys_other_devs
1261@section Other Devices
1262
1263@subsection Inter-VM Shared Memory device
1264
1265On Linux hosts, a shared memory device is available.  The basic syntax
1266is:
1267
1268@example
1269qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1270@end example
1271
1272where @var{hostmem} names a host memory backend.  For a POSIX shared
1273memory backend, use something like
1274
1275@example
1276-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
1277@end example
1278
1279If desired, interrupts can be sent between guest VMs accessing the same shared
1280memory region.  Interrupt support requires using a shared memory server and
1281using a chardev socket to connect to it.  The code for the shared memory server
1282is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
1283memory server is:
1284
1285@example
1286# First start the ivshmem server once and for all
1287ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1288
1289# Then start your qemu instances with matching arguments
1290qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
1291                 -chardev socket,path=@var{path},id=@var{id}
1292@end example
1293
1294When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1295using the same server to communicate via interrupts.  Guests can read their
1296VM ID from a device register (see ivshmem-spec.txt).
1297
1298@subsubsection Migration with ivshmem
1299
1300With device property @option{master=on}, the guest will copy the shared
1301memory on migration to the destination host.  With @option{master=off},
1302the guest will not be able to migrate with the device attached.  In the
1303latter case, the device should be detached and then reattached after
1304migration using the PCI hotplug support.
1305
1306At most one of the devices sharing the same memory can be master.  The
1307master must complete migration before you plug back the other devices.
1308
1309@subsubsection ivshmem and hugepages
1310
1311Instead of specifying the <shm size> using POSIX shm, you may specify
1312a memory backend that has hugepage support:
1313
1314@example
1315qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1316                 -device ivshmem-plain,memdev=mb1
1317@end example
1318
1319ivshmem-server also supports hugepages mount points with the
1320@option{-m} memory path argument.
1321
1322@node direct_linux_boot
1323@section Direct Linux Boot
1324
1325This section explains how to launch a Linux kernel inside QEMU without
1326having to make a full bootable image. It is very useful for fast Linux
1327kernel testing.
1328
1329The syntax is:
1330@example
1331qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1332@end example
1333
1334Use @option{-kernel} to provide the Linux kernel image and
1335@option{-append} to give the kernel command line arguments. The
1336@option{-initrd} option can be used to provide an INITRD image.
1337
1338When using the direct Linux boot, a disk image for the first hard disk
1339@file{hda} is required because its boot sector is used to launch the
1340Linux kernel.
1341
1342If you do not need graphical output, you can disable it and redirect
1343the virtual serial port and the QEMU monitor to the console with the
1344@option{-nographic} option. The typical command line is:
1345@example
1346qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1347                 -append "root=/dev/hda console=ttyS0" -nographic
1348@end example
1349
1350Use @key{Ctrl-a c} to switch between the serial console and the
1351monitor (@pxref{pcsys_keys}).
1352
1353@node pcsys_usb
1354@section USB emulation
1355
1356QEMU emulates a PCI UHCI USB controller. You can virtually plug
1357virtual USB devices or real host USB devices (experimental, works only
1358on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
1359as necessary to connect multiple USB devices.
1360
1361@menu
1362* usb_devices::
1363* host_usb_devices::
1364@end menu
1365@node usb_devices
1366@subsection Connecting USB devices
1367
1368USB devices can be connected with the @option{-usbdevice} commandline option
1369or the @code{usb_add} monitor command.  Available devices are:
1370
1371@table @code
1372@item mouse
1373Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1374@item tablet
1375Pointer device that uses absolute coordinates (like a touchscreen).
1376This means QEMU is able to report the mouse position without having
1377to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1378@item disk:@var{file}
1379Mass storage device based on @var{file} (@pxref{disk_images})
1380@item host:@var{bus.addr}
1381Pass through the host device identified by @var{bus.addr}
1382(Linux only)
1383@item host:@var{vendor_id:product_id}
1384Pass through the host device identified by @var{vendor_id:product_id}
1385(Linux only)
1386@item wacom-tablet
1387Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1388above but it can be used with the tslib library because in addition to touch
1389coordinates it reports touch pressure.
1390@item keyboard
1391Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1392@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1393Serial converter. This emulates an FTDI FT232BM chip connected to host character
1394device @var{dev}. The available character devices are the same as for the
1395@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1396used to override the default 0403:6001. For instance,
1397@example
1398usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1399@end example
1400will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1401serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1402@item braille
1403Braille device.  This will use BrlAPI to display the braille output on a real
1404or fake device.
1405@item net:@var{options}
1406Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1407specifies NIC options as with @code{-net nic,}@var{options} (see description).
1408For instance, user-mode networking can be used with
1409@example
1410qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1411@end example
1412Currently this cannot be used in machines that support PCI NICs.
1413@item bt[:@var{hci-type}]
1414Bluetooth dongle whose type is specified in the same format as with
1415the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1416no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1417This USB device implements the USB Transport Layer of HCI.  Example
1418usage:
1419@example
1420@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
1421@end example
1422@end table
1423
1424@node host_usb_devices
1425@subsection Using host USB devices on a Linux host
1426
1427WARNING: this is an experimental feature. QEMU will slow down when
1428using it. USB devices requiring real time streaming (i.e. USB Video
1429Cameras) are not supported yet.
1430
1431@enumerate
1432@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1433is actually using the USB device. A simple way to do that is simply to
1434disable the corresponding kernel module by renaming it from @file{mydriver.o}
1435to @file{mydriver.o.disabled}.
1436
1437@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1438@example
1439ls /proc/bus/usb
1440001  devices  drivers
1441@end example
1442
1443@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1444@example
1445chown -R myuid /proc/bus/usb
1446@end example
1447
1448@item Launch QEMU and do in the monitor:
1449@example
1450info usbhost
1451  Device 1.2, speed 480 Mb/s
1452    Class 00: USB device 1234:5678, USB DISK
1453@end example
1454You should see the list of the devices you can use (Never try to use
1455hubs, it won't work).
1456
1457@item Add the device in QEMU by using:
1458@example
1459usb_add host:1234:5678
1460@end example
1461
1462Normally the guest OS should report that a new USB device is
1463plugged. You can use the option @option{-usbdevice} to do the same.
1464
1465@item Now you can try to use the host USB device in QEMU.
1466
1467@end enumerate
1468
1469When relaunching QEMU, you may have to unplug and plug again the USB
1470device to make it work again (this is a bug).
1471
1472@node vnc_security
1473@section VNC security
1474
1475The VNC server capability provides access to the graphical console
1476of the guest VM across the network. This has a number of security
1477considerations depending on the deployment scenarios.
1478
1479@menu
1480* vnc_sec_none::
1481* vnc_sec_password::
1482* vnc_sec_certificate::
1483* vnc_sec_certificate_verify::
1484* vnc_sec_certificate_pw::
1485* vnc_sec_sasl::
1486* vnc_sec_certificate_sasl::
1487* vnc_generate_cert::
1488* vnc_setup_sasl::
1489@end menu
1490@node vnc_sec_none
1491@subsection Without passwords
1492
1493The simplest VNC server setup does not include any form of authentication.
1494For this setup it is recommended to restrict it to listen on a UNIX domain
1495socket only. For example
1496
1497@example
1498qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1499@end example
1500
1501This ensures that only users on local box with read/write access to that
1502path can access the VNC server. To securely access the VNC server from a
1503remote machine, a combination of netcat+ssh can be used to provide a secure
1504tunnel.
1505
1506@node vnc_sec_password
1507@subsection With passwords
1508
1509The VNC protocol has limited support for password based authentication. Since
1510the protocol limits passwords to 8 characters it should not be considered
1511to provide high security. The password can be fairly easily brute-forced by
1512a client making repeat connections. For this reason, a VNC server using password
1513authentication should be restricted to only listen on the loopback interface
1514or UNIX domain sockets. Password authentication is not supported when operating
1515in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1516authentication is requested with the @code{password} option, and then once QEMU
1517is running the password is set with the monitor. Until the monitor is used to
1518set the password all clients will be rejected.
1519
1520@example
1521qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1522(qemu) change vnc password
1523Password: ********
1524(qemu)
1525@end example
1526
1527@node vnc_sec_certificate
1528@subsection With x509 certificates
1529
1530The QEMU VNC server also implements the VeNCrypt extension allowing use of
1531TLS for encryption of the session, and x509 certificates for authentication.
1532The use of x509 certificates is strongly recommended, because TLS on its
1533own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1534support provides a secure session, but no authentication. This allows any
1535client to connect, and provides an encrypted session.
1536
1537@example
1538qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1539@end example
1540
1541In the above example @code{/etc/pki/qemu} should contain at least three files,
1542@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1543users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1544NB the @code{server-key.pem} file should be protected with file mode 0600 to
1545only be readable by the user owning it.
1546
1547@node vnc_sec_certificate_verify
1548@subsection With x509 certificates and client verification
1549
1550Certificates can also provide a means to authenticate the client connecting.
1551The server will request that the client provide a certificate, which it will
1552then validate against the CA certificate. This is a good choice if deploying
1553in an environment with a private internal certificate authority.
1554
1555@example
1556qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1557@end example
1558
1559
1560@node vnc_sec_certificate_pw
1561@subsection With x509 certificates, client verification and passwords
1562
1563Finally, the previous method can be combined with VNC password authentication
1564to provide two layers of authentication for clients.
1565
1566@example
1567qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1568(qemu) change vnc password
1569Password: ********
1570(qemu)
1571@end example
1572
1573
1574@node vnc_sec_sasl
1575@subsection With SASL authentication
1576
1577The SASL authentication method is a VNC extension, that provides an
1578easily extendable, pluggable authentication method. This allows for
1579integration with a wide range of authentication mechanisms, such as
1580PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1581The strength of the authentication depends on the exact mechanism
1582configured. If the chosen mechanism also provides a SSF layer, then
1583it will encrypt the datastream as well.
1584
1585Refer to the later docs on how to choose the exact SASL mechanism
1586used for authentication, but assuming use of one supporting SSF,
1587then QEMU can be launched with:
1588
1589@example
1590qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1591@end example
1592
1593@node vnc_sec_certificate_sasl
1594@subsection With x509 certificates and SASL authentication
1595
1596If the desired SASL authentication mechanism does not supported
1597SSF layers, then it is strongly advised to run it in combination
1598with TLS and x509 certificates. This provides securely encrypted
1599data stream, avoiding risk of compromising of the security
1600credentials. This can be enabled, by combining the 'sasl' option
1601with the aforementioned TLS + x509 options:
1602
1603@example
1604qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1605@end example
1606
1607
1608@node vnc_generate_cert
1609@subsection Generating certificates for VNC
1610
1611The GNU TLS packages provides a command called @code{certtool} which can
1612be used to generate certificates and keys in PEM format. At a minimum it
1613is necessary to setup a certificate authority, and issue certificates to
1614each server. If using certificates for authentication, then each client
1615will also need to be issued a certificate. The recommendation is for the
1616server to keep its certificates in either @code{/etc/pki/qemu} or for
1617unprivileged users in @code{$HOME/.pki/qemu}.
1618
1619@menu
1620* vnc_generate_ca::
1621* vnc_generate_server::
1622* vnc_generate_client::
1623@end menu
1624@node vnc_generate_ca
1625@subsubsection Setup the Certificate Authority
1626
1627This step only needs to be performed once per organization / organizational
1628unit. First the CA needs a private key. This key must be kept VERY secret
1629and secure. If this key is compromised the entire trust chain of the certificates
1630issued with it is lost.
1631
1632@example
1633# certtool --generate-privkey > ca-key.pem
1634@end example
1635
1636A CA needs to have a public certificate. For simplicity it can be a self-signed
1637certificate, or one issue by a commercial certificate issuing authority. To
1638generate a self-signed certificate requires one core piece of information, the
1639name of the organization.
1640
1641@example
1642# cat > ca.info <<EOF
1643cn = Name of your organization
1644ca
1645cert_signing_key
1646EOF
1647# certtool --generate-self-signed \
1648           --load-privkey ca-key.pem
1649           --template ca.info \
1650           --outfile ca-cert.pem
1651@end example
1652
1653The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1654TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1655
1656@node vnc_generate_server
1657@subsubsection Issuing server certificates
1658
1659Each server (or host) needs to be issued with a key and certificate. When connecting
1660the certificate is sent to the client which validates it against the CA certificate.
1661The core piece of information for a server certificate is the hostname. This should
1662be the fully qualified hostname that the client will connect with, since the client
1663will typically also verify the hostname in the certificate. On the host holding the
1664secure CA private key:
1665
1666@example
1667# cat > server.info <<EOF
1668organization = Name  of your organization
1669cn = server.foo.example.com
1670tls_www_server
1671encryption_key
1672signing_key
1673EOF
1674# certtool --generate-privkey > server-key.pem
1675# certtool --generate-certificate \
1676           --load-ca-certificate ca-cert.pem \
1677           --load-ca-privkey ca-key.pem \
1678           --load-privkey server-key.pem \
1679           --template server.info \
1680           --outfile server-cert.pem
1681@end example
1682
1683The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1684to the server for which they were generated. The @code{server-key.pem} is security
1685sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1686
1687@node vnc_generate_client
1688@subsubsection Issuing client certificates
1689
1690If the QEMU VNC server is to use the @code{x509verify} option to validate client
1691certificates as its authentication mechanism, each client also needs to be issued
1692a certificate. The client certificate contains enough metadata to uniquely identify
1693the client, typically organization, state, city, building, etc. On the host holding
1694the secure CA private key:
1695
1696@example
1697# cat > client.info <<EOF
1698country = GB
1699state = London
1700locality = London
1701organization = Name of your organization
1702cn = client.foo.example.com
1703tls_www_client
1704encryption_key
1705signing_key
1706EOF
1707# certtool --generate-privkey > client-key.pem
1708# certtool --generate-certificate \
1709           --load-ca-certificate ca-cert.pem \
1710           --load-ca-privkey ca-key.pem \
1711           --load-privkey client-key.pem \
1712           --template client.info \
1713           --outfile client-cert.pem
1714@end example
1715
1716The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1717copied to the client for which they were generated.
1718
1719
1720@node vnc_setup_sasl
1721
1722@subsection Configuring SASL mechanisms
1723
1724The following documentation assumes use of the Cyrus SASL implementation on a
1725Linux host, but the principals should apply to any other SASL impl. When SASL
1726is enabled, the mechanism configuration will be loaded from system default
1727SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1728unprivileged user, an environment variable SASL_CONF_PATH can be used
1729to make it search alternate locations for the service config.
1730
1731The default configuration might contain
1732
1733@example
1734mech_list: digest-md5
1735sasldb_path: /etc/qemu/passwd.db
1736@end example
1737
1738This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1739Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1740in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1741command. While this mechanism is easy to configure and use, it is not
1742considered secure by modern standards, so only suitable for developers /
1743ad-hoc testing.
1744
1745A more serious deployment might use Kerberos, which is done with the 'gssapi'
1746mechanism
1747
1748@example
1749mech_list: gssapi
1750keytab: /etc/qemu/krb5.tab
1751@end example
1752
1753For this to work the administrator of your KDC must generate a Kerberos
1754principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1755replacing 'somehost.example.com' with the fully qualified host name of the
1756machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1757
1758Other configurations will be left as an exercise for the reader. It should
1759be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1760encryption. For all other mechanisms, VNC should always be configured to
1761use TLS and x509 certificates to protect security credentials from snooping.
1762
1763@node gdb_usage
1764@section GDB usage
1765
1766QEMU has a primitive support to work with gdb, so that you can do
1767'Ctrl-C' while the virtual machine is running and inspect its state.
1768
1769In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1770gdb connection:
1771@example
1772qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1773                    -append "root=/dev/hda"
1774Connected to host network interface: tun0
1775Waiting gdb connection on port 1234
1776@end example
1777
1778Then launch gdb on the 'vmlinux' executable:
1779@example
1780> gdb vmlinux
1781@end example
1782
1783In gdb, connect to QEMU:
1784@example
1785(gdb) target remote localhost:1234
1786@end example
1787
1788Then you can use gdb normally. For example, type 'c' to launch the kernel:
1789@example
1790(gdb) c
1791@end example
1792
1793Here are some useful tips in order to use gdb on system code:
1794
1795@enumerate
1796@item
1797Use @code{info reg} to display all the CPU registers.
1798@item
1799Use @code{x/10i $eip} to display the code at the PC position.
1800@item
1801Use @code{set architecture i8086} to dump 16 bit code. Then use
1802@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1803@end enumerate
1804
1805Advanced debugging options:
1806
1807The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1808@table @code
1809@item maintenance packet qqemu.sstepbits
1810
1811This will display the MASK bits used to control the single stepping IE:
1812@example
1813(gdb) maintenance packet qqemu.sstepbits
1814sending: "qqemu.sstepbits"
1815received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1816@end example
1817@item maintenance packet qqemu.sstep
1818
1819This will display the current value of the mask used when single stepping IE:
1820@example
1821(gdb) maintenance packet qqemu.sstep
1822sending: "qqemu.sstep"
1823received: "0x7"
1824@end example
1825@item maintenance packet Qqemu.sstep=HEX_VALUE
1826
1827This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1828@example
1829(gdb) maintenance packet Qqemu.sstep=0x5
1830sending: "qemu.sstep=0x5"
1831received: "OK"
1832@end example
1833@end table
1834
1835@node pcsys_os_specific
1836@section Target OS specific information
1837
1838@subsection Linux
1839
1840To have access to SVGA graphic modes under X11, use the @code{vesa} or
1841the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1842color depth in the guest and the host OS.
1843
1844When using a 2.6 guest Linux kernel, you should add the option
1845@code{clock=pit} on the kernel command line because the 2.6 Linux
1846kernels make very strict real time clock checks by default that QEMU
1847cannot simulate exactly.
1848
1849When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1850not activated because QEMU is slower with this patch. The QEMU
1851Accelerator Module is also much slower in this case. Earlier Fedora
1852Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1853patch by default. Newer kernels don't have it.
1854
1855@subsection Windows
1856
1857If you have a slow host, using Windows 95 is better as it gives the
1858best speed. Windows 2000 is also a good choice.
1859
1860@subsubsection SVGA graphic modes support
1861
1862QEMU emulates a Cirrus Logic GD5446 Video
1863card. All Windows versions starting from Windows 95 should recognize
1864and use this graphic card. For optimal performances, use 16 bit color
1865depth in the guest and the host OS.
1866
1867If you are using Windows XP as guest OS and if you want to use high
1868resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18691280x1024x16), then you should use the VESA VBE virtual graphic card
1870(option @option{-std-vga}).
1871
1872@subsubsection CPU usage reduction
1873
1874Windows 9x does not correctly use the CPU HLT
1875instruction. The result is that it takes host CPU cycles even when
1876idle. You can install the utility from
1877@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1878problem. Note that no such tool is needed for NT, 2000 or XP.
1879
1880@subsubsection Windows 2000 disk full problem
1881
1882Windows 2000 has a bug which gives a disk full problem during its
1883installation. When installing it, use the @option{-win2k-hack} QEMU
1884option to enable a specific workaround. After Windows 2000 is
1885installed, you no longer need this option (this option slows down the
1886IDE transfers).
1887
1888@subsubsection Windows 2000 shutdown
1889
1890Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1891can. It comes from the fact that Windows 2000 does not automatically
1892use the APM driver provided by the BIOS.
1893
1894In order to correct that, do the following (thanks to Struan
1895Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1896Add/Troubleshoot a device => Add a new device & Next => No, select the
1897hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1898(again) a few times. Now the driver is installed and Windows 2000 now
1899correctly instructs QEMU to shutdown at the appropriate moment.
1900
1901@subsubsection Share a directory between Unix and Windows
1902
1903See @ref{sec_invocation} about the help of the option
1904@option{'-netdev user,smb=...'}.
1905
1906@subsubsection Windows XP security problem
1907
1908Some releases of Windows XP install correctly but give a security
1909error when booting:
1910@example
1911A problem is preventing Windows from accurately checking the
1912license for this computer. Error code: 0x800703e6.
1913@end example
1914
1915The workaround is to install a service pack for XP after a boot in safe
1916mode. Then reboot, and the problem should go away. Since there is no
1917network while in safe mode, its recommended to download the full
1918installation of SP1 or SP2 and transfer that via an ISO or using the
1919vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1920
1921@subsection MS-DOS and FreeDOS
1922
1923@subsubsection CPU usage reduction
1924
1925DOS does not correctly use the CPU HLT instruction. The result is that
1926it takes host CPU cycles even when idle. You can install the utility
1927from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1928problem.
1929
1930@node QEMU System emulator for non PC targets
1931@chapter QEMU System emulator for non PC targets
1932
1933QEMU is a generic emulator and it emulates many non PC
1934machines. Most of the options are similar to the PC emulator. The
1935differences are mentioned in the following sections.
1936
1937@menu
1938* PowerPC System emulator::
1939* Sparc32 System emulator::
1940* Sparc64 System emulator::
1941* MIPS System emulator::
1942* ARM System emulator::
1943* ColdFire System emulator::
1944* Cris System emulator::
1945* Microblaze System emulator::
1946* SH4 System emulator::
1947* Xtensa System emulator::
1948@end menu
1949
1950@node PowerPC System emulator
1951@section PowerPC System emulator
1952@cindex system emulation (PowerPC)
1953
1954Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1955or PowerMac PowerPC system.
1956
1957QEMU emulates the following PowerMac peripherals:
1958
1959@itemize @minus
1960@item
1961UniNorth or Grackle PCI Bridge
1962@item
1963PCI VGA compatible card with VESA Bochs Extensions
1964@item
19652 PMAC IDE interfaces with hard disk and CD-ROM support
1966@item
1967NE2000 PCI adapters
1968@item
1969Non Volatile RAM
1970@item
1971VIA-CUDA with ADB keyboard and mouse.
1972@end itemize
1973
1974QEMU emulates the following PREP peripherals:
1975
1976@itemize @minus
1977@item
1978PCI Bridge
1979@item
1980PCI VGA compatible card with VESA Bochs Extensions
1981@item
19822 IDE interfaces with hard disk and CD-ROM support
1983@item
1984Floppy disk
1985@item
1986NE2000 network adapters
1987@item
1988Serial port
1989@item
1990PREP Non Volatile RAM
1991@item
1992PC compatible keyboard and mouse.
1993@end itemize
1994
1995QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1996@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1997
1998Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1999for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2000v2) portable firmware implementation. The goal is to implement a 100%
2001IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2002
2003@c man begin OPTIONS
2004
2005The following options are specific to the PowerPC emulation:
2006
2007@table @option
2008
2009@item -g @var{W}x@var{H}[x@var{DEPTH}]
2010
2011Set the initial VGA graphic mode. The default is 800x600x32.
2012
2013@item -prom-env @var{string}
2014
2015Set OpenBIOS variables in NVRAM, for example:
2016
2017@example
2018qemu-system-ppc -prom-env 'auto-boot?=false' \
2019 -prom-env 'boot-device=hd:2,\yaboot' \
2020 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2021@end example
2022
2023These variables are not used by Open Hack'Ware.
2024
2025@end table
2026
2027@c man end
2028
2029
2030More information is available at
2031@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2032
2033@node Sparc32 System emulator
2034@section Sparc32 System emulator
2035@cindex system emulation (Sparc32)
2036
2037Use the executable @file{qemu-system-sparc} to simulate the following
2038Sun4m architecture machines:
2039@itemize @minus
2040@item
2041SPARCstation 4
2042@item
2043SPARCstation 5
2044@item
2045SPARCstation 10
2046@item
2047SPARCstation 20
2048@item
2049SPARCserver 600MP
2050@item
2051SPARCstation LX
2052@item
2053SPARCstation Voyager
2054@item
2055SPARCclassic
2056@item
2057SPARCbook
2058@end itemize
2059
2060The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2061but Linux limits the number of usable CPUs to 4.
2062
2063QEMU emulates the following sun4m peripherals:
2064
2065@itemize @minus
2066@item
2067IOMMU
2068@item
2069TCX or cgthree Frame buffer
2070@item
2071Lance (Am7990) Ethernet
2072@item
2073Non Volatile RAM M48T02/M48T08
2074@item
2075Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2076and power/reset logic
2077@item
2078ESP SCSI controller with hard disk and CD-ROM support
2079@item
2080Floppy drive (not on SS-600MP)
2081@item
2082CS4231 sound device (only on SS-5, not working yet)
2083@end itemize
2084
2085The number of peripherals is fixed in the architecture.  Maximum
2086memory size depends on the machine type, for SS-5 it is 256MB and for
2087others 2047MB.
2088
2089Since version 0.8.2, QEMU uses OpenBIOS
2090@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2091firmware implementation. The goal is to implement a 100% IEEE
20921275-1994 (referred to as Open Firmware) compliant firmware.
2093
2094A sample Linux 2.6 series kernel and ram disk image are available on
2095the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2096most kernel versions work. Please note that currently older Solaris kernels
2097don't work probably due to interface issues between OpenBIOS and
2098Solaris.
2099
2100@c man begin OPTIONS
2101
2102The following options are specific to the Sparc32 emulation:
2103
2104@table @option
2105
2106@item -g @var{W}x@var{H}x[x@var{DEPTH}]
2107
2108Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2109option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2110of 1152x900x8 for people who wish to use OBP.
2111
2112@item -prom-env @var{string}
2113
2114Set OpenBIOS variables in NVRAM, for example:
2115
2116@example
2117qemu-system-sparc -prom-env 'auto-boot?=false' \
2118 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2119@end example
2120
2121@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2122
2123Set the emulated machine type. Default is SS-5.
2124
2125@end table
2126
2127@c man end
2128
2129@node Sparc64 System emulator
2130@section Sparc64 System emulator
2131@cindex system emulation (Sparc64)
2132
2133Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2134(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2135Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2136able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2137Sun4v and Niagara emulators are still a work in progress.
2138
2139QEMU emulates the following peripherals:
2140
2141@itemize @minus
2142@item
2143UltraSparc IIi APB PCI Bridge
2144@item
2145PCI VGA compatible card with VESA Bochs Extensions
2146@item
2147PS/2 mouse and keyboard
2148@item
2149Non Volatile RAM M48T59
2150@item
2151PC-compatible serial ports
2152@item
21532 PCI IDE interfaces with hard disk and CD-ROM support
2154@item
2155Floppy disk
2156@end itemize
2157
2158@c man begin OPTIONS
2159
2160The following options are specific to the Sparc64 emulation:
2161
2162@table @option
2163
2164@item -prom-env @var{string}
2165
2166Set OpenBIOS variables in NVRAM, for example:
2167
2168@example
2169qemu-system-sparc64 -prom-env 'auto-boot?=false'
2170@end example
2171
2172@item -M [sun4u|sun4v|Niagara]
2173
2174Set the emulated machine type. The default is sun4u.
2175
2176@end table
2177
2178@c man end
2179
2180@node MIPS System emulator
2181@section MIPS System emulator
2182@cindex system emulation (MIPS)
2183
2184Four executables cover simulation of 32 and 64-bit MIPS systems in
2185both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2186@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2187Five different machine types are emulated:
2188
2189@itemize @minus
2190@item
2191A generic ISA PC-like machine "mips"
2192@item
2193The MIPS Malta prototype board "malta"
2194@item
2195An ACER Pica "pica61". This machine needs the 64-bit emulator.
2196@item
2197MIPS emulator pseudo board "mipssim"
2198@item
2199A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2200@end itemize
2201
2202The generic emulation is supported by Debian 'Etch' and is able to
2203install Debian into a virtual disk image. The following devices are
2204emulated:
2205
2206@itemize @minus
2207@item
2208A range of MIPS CPUs, default is the 24Kf
2209@item
2210PC style serial port
2211@item
2212PC style IDE disk
2213@item
2214NE2000 network card
2215@end itemize
2216
2217The Malta emulation supports the following devices:
2218
2219@itemize @minus
2220@item
2221Core board with MIPS 24Kf CPU and Galileo system controller
2222@item
2223PIIX4 PCI/USB/SMbus controller
2224@item
2225The Multi-I/O chip's serial device
2226@item
2227PCI network cards (PCnet32 and others)
2228@item
2229Malta FPGA serial device
2230@item
2231Cirrus (default) or any other PCI VGA graphics card
2232@end itemize
2233
2234The ACER Pica emulation supports:
2235
2236@itemize @minus
2237@item
2238MIPS R4000 CPU
2239@item
2240PC-style IRQ and DMA controllers
2241@item
2242PC Keyboard
2243@item
2244IDE controller
2245@end itemize
2246
2247The mipssim pseudo board emulation provides an environment similar
2248to what the proprietary MIPS emulator uses for running Linux.
2249It supports:
2250
2251@itemize @minus
2252@item
2253A range of MIPS CPUs, default is the 24Kf
2254@item
2255PC style serial port
2256@item
2257MIPSnet network emulation
2258@end itemize
2259
2260The MIPS Magnum R4000 emulation supports:
2261
2262@itemize @minus
2263@item
2264MIPS R4000 CPU
2265@item
2266PC-style IRQ controller
2267@item
2268PC Keyboard
2269@item
2270SCSI controller
2271@item
2272G364 framebuffer
2273@end itemize
2274
2275
2276@node ARM System emulator
2277@section ARM System emulator
2278@cindex system emulation (ARM)
2279
2280Use the executable @file{qemu-system-arm} to simulate a ARM
2281machine. The ARM Integrator/CP board is emulated with the following
2282devices:
2283
2284@itemize @minus
2285@item
2286ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2287@item
2288Two PL011 UARTs
2289@item
2290SMC 91c111 Ethernet adapter
2291@item
2292PL110 LCD controller
2293@item
2294PL050 KMI with PS/2 keyboard and mouse.
2295@item
2296PL181 MultiMedia Card Interface with SD card.
2297@end itemize
2298
2299The ARM Versatile baseboard is emulated with the following devices:
2300
2301@itemize @minus
2302@item
2303ARM926E, ARM1136 or Cortex-A8 CPU
2304@item
2305PL190 Vectored Interrupt Controller
2306@item
2307Four PL011 UARTs
2308@item
2309SMC 91c111 Ethernet adapter
2310@item
2311PL110 LCD controller
2312@item
2313PL050 KMI with PS/2 keyboard and mouse.
2314@item
2315PCI host bridge.  Note the emulated PCI bridge only provides access to
2316PCI memory space.  It does not provide access to PCI IO space.
2317This means some devices (eg. ne2k_pci NIC) are not usable, and others
2318(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2319mapped control registers.
2320@item
2321PCI OHCI USB controller.
2322@item
2323LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2324@item
2325PL181 MultiMedia Card Interface with SD card.
2326@end itemize
2327
2328Several variants of the ARM RealView baseboard are emulated,
2329including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2330bootloader, only certain Linux kernel configurations work out
2331of the box on these boards.
2332
2333Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2334enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2335should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2336disabled and expect 1024M RAM.
2337
2338The following devices are emulated:
2339
2340@itemize @minus
2341@item
2342ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2343@item
2344ARM AMBA Generic/Distributed Interrupt Controller
2345@item
2346Four PL011 UARTs
2347@item
2348SMC 91c111 or SMSC LAN9118 Ethernet adapter
2349@item
2350PL110 LCD controller
2351@item
2352PL050 KMI with PS/2 keyboard and mouse
2353@item
2354PCI host bridge
2355@item
2356PCI OHCI USB controller
2357@item
2358LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2359@item
2360PL181 MultiMedia Card Interface with SD card.
2361@end itemize
2362
2363The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2364and "Terrier") emulation includes the following peripherals:
2365
2366@itemize @minus
2367@item
2368Intel PXA270 System-on-chip (ARM V5TE core)
2369@item
2370NAND Flash memory
2371@item
2372IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2373@item
2374On-chip OHCI USB controller
2375@item
2376On-chip LCD controller
2377@item
2378On-chip Real Time Clock
2379@item
2380TI ADS7846 touchscreen controller on SSP bus
2381@item
2382Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2383@item
2384GPIO-connected keyboard controller and LEDs
2385@item
2386Secure Digital card connected to PXA MMC/SD host
2387@item
2388Three on-chip UARTs
2389@item
2390WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2391@end itemize
2392
2393The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2394following elements:
2395
2396@itemize @minus
2397@item
2398Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2399@item
2400ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2401@item
2402On-chip LCD controller
2403@item
2404On-chip Real Time Clock
2405@item
2406TI TSC2102i touchscreen controller / analog-digital converter / Audio
2407CODEC, connected through MicroWire and I@math{^2}S busses
2408@item
2409GPIO-connected matrix keypad
2410@item
2411Secure Digital card connected to OMAP MMC/SD host
2412@item
2413Three on-chip UARTs
2414@end itemize
2415
2416Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2417emulation supports the following elements:
2418
2419@itemize @minus
2420@item
2421Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2422@item
2423RAM and non-volatile OneNAND Flash memories
2424@item
2425Display connected to EPSON remote framebuffer chip and OMAP on-chip
2426display controller and a LS041y3 MIPI DBI-C controller
2427@item
2428TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2429driven through SPI bus
2430@item
2431National Semiconductor LM8323-controlled qwerty keyboard driven
2432through I@math{^2}C bus
2433@item
2434Secure Digital card connected to OMAP MMC/SD host
2435@item
2436Three OMAP on-chip UARTs and on-chip STI debugging console
2437@item
2438A Bluetooth(R) transceiver and HCI connected to an UART
2439@item
2440Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2441TUSB6010 chip - only USB host mode is supported
2442@item
2443TI TMP105 temperature sensor driven through I@math{^2}C bus
2444@item
2445TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2446@item
2447Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2448through CBUS
2449@end itemize
2450
2451The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2452devices:
2453
2454@itemize @minus
2455@item
2456Cortex-M3 CPU core.
2457@item
245864k Flash and 8k SRAM.
2459@item
2460Timers, UARTs, ADC and I@math{^2}C interface.
2461@item
2462OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2463@end itemize
2464
2465The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2466devices:
2467
2468@itemize @minus
2469@item
2470Cortex-M3 CPU core.
2471@item
2472256k Flash and 64k SRAM.
2473@item
2474Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2475@item
2476OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2477@end itemize
2478
2479The Freecom MusicPal internet radio emulation includes the following
2480elements:
2481
2482@itemize @minus
2483@item
2484Marvell MV88W8618 ARM core.
2485@item
248632 MB RAM, 256 KB SRAM, 8 MB flash.
2487@item
2488Up to 2 16550 UARTs
2489@item
2490MV88W8xx8 Ethernet controller
2491@item
2492MV88W8618 audio controller, WM8750 CODEC and mixer
2493@item
2494128×64 display with brightness control
2495@item
24962 buttons, 2 navigation wheels with button function
2497@end itemize
2498
2499The Siemens SX1 models v1 and v2 (default) basic emulation.
2500The emulation includes the following elements:
2501
2502@itemize @minus
2503@item
2504Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2505@item
2506ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2507V1
25081 Flash of 16MB and 1 Flash of 8MB
2509V2
25101 Flash of 32MB
2511@item
2512On-chip LCD controller
2513@item
2514On-chip Real Time Clock
2515@item
2516Secure Digital card connected to OMAP MMC/SD host
2517@item
2518Three on-chip UARTs
2519@end itemize
2520
2521A Linux 2.6 test image is available on the QEMU web site. More
2522information is available in the QEMU mailing-list archive.
2523
2524@c man begin OPTIONS
2525
2526The following options are specific to the ARM emulation:
2527
2528@table @option
2529
2530@item -semihosting
2531Enable semihosting syscall emulation.
2532
2533On ARM this implements the "Angel" interface.
2534
2535Note that this allows guest direct access to the host filesystem,
2536so should only be used with trusted guest OS.
2537
2538@end table
2539
2540@node ColdFire System emulator
2541@section ColdFire System emulator
2542@cindex system emulation (ColdFire)
2543@cindex system emulation (M68K)
2544
2545Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2546The emulator is able to boot a uClinux kernel.
2547
2548The M5208EVB emulation includes the following devices:
2549
2550@itemize @minus
2551@item
2552MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2553@item
2554Three Two on-chip UARTs.
2555@item
2556Fast Ethernet Controller (FEC)
2557@end itemize
2558
2559The AN5206 emulation includes the following devices:
2560
2561@itemize @minus
2562@item
2563MCF5206 ColdFire V2 Microprocessor.
2564@item
2565Two on-chip UARTs.
2566@end itemize
2567
2568@c man begin OPTIONS
2569
2570The following options are specific to the ColdFire emulation:
2571
2572@table @option
2573
2574@item -semihosting
2575Enable semihosting syscall emulation.
2576
2577On M68K this implements the "ColdFire GDB" interface used by libgloss.
2578
2579Note that this allows guest direct access to the host filesystem,
2580so should only be used with trusted guest OS.
2581
2582@end table
2583
2584@node Cris System emulator
2585@section Cris System emulator
2586@cindex system emulation (Cris)
2587
2588TODO
2589
2590@node Microblaze System emulator
2591@section Microblaze System emulator
2592@cindex system emulation (Microblaze)
2593
2594TODO
2595
2596@node SH4 System emulator
2597@section SH4 System emulator
2598@cindex system emulation (SH4)
2599
2600TODO
2601
2602@node Xtensa System emulator
2603@section Xtensa System emulator
2604@cindex system emulation (Xtensa)
2605
2606Two executables cover simulation of both Xtensa endian options,
2607@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2608Two different machine types are emulated:
2609
2610@itemize @minus
2611@item
2612Xtensa emulator pseudo board "sim"
2613@item
2614Avnet LX60/LX110/LX200 board
2615@end itemize
2616
2617The sim pseudo board emulation provides an environment similar
2618to one provided by the proprietary Tensilica ISS.
2619It supports:
2620
2621@itemize @minus
2622@item
2623A range of Xtensa CPUs, default is the DC232B
2624@item
2625Console and filesystem access via semihosting calls
2626@end itemize
2627
2628The Avnet LX60/LX110/LX200 emulation supports:
2629
2630@itemize @minus
2631@item
2632A range of Xtensa CPUs, default is the DC232B
2633@item
263416550 UART
2635@item
2636OpenCores 10/100 Mbps Ethernet MAC
2637@end itemize
2638
2639@c man begin OPTIONS
2640
2641The following options are specific to the Xtensa emulation:
2642
2643@table @option
2644
2645@item -semihosting
2646Enable semihosting syscall emulation.
2647
2648Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2649Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2650
2651Note that this allows guest direct access to the host filesystem,
2652so should only be used with trusted guest OS.
2653
2654@end table
2655@node QEMU User space emulator
2656@chapter QEMU User space emulator
2657
2658@menu
2659* Supported Operating Systems ::
2660* Linux User space emulator::
2661* BSD User space emulator ::
2662@end menu
2663
2664@node Supported Operating Systems
2665@section Supported Operating Systems
2666
2667The following OS are supported in user space emulation:
2668
2669@itemize @minus
2670@item
2671Linux (referred as qemu-linux-user)
2672@item
2673BSD (referred as qemu-bsd-user)
2674@end itemize
2675
2676@node Linux User space emulator
2677@section Linux User space emulator
2678
2679@menu
2680* Quick Start::
2681* Wine launch::
2682* Command line options::
2683* Other binaries::
2684@end menu
2685
2686@node Quick Start
2687@subsection Quick Start
2688
2689In order to launch a Linux process, QEMU needs the process executable
2690itself and all the target (x86) dynamic libraries used by it.
2691
2692@itemize
2693
2694@item On x86, you can just try to launch any process by using the native
2695libraries:
2696
2697@example
2698qemu-i386 -L / /bin/ls
2699@end example
2700
2701@code{-L /} tells that the x86 dynamic linker must be searched with a
2702@file{/} prefix.
2703
2704@item Since QEMU is also a linux process, you can launch QEMU with
2705QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2706
2707@example
2708qemu-i386 -L / qemu-i386 -L / /bin/ls
2709@end example
2710
2711@item On non x86 CPUs, you need first to download at least an x86 glibc
2712(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2713@code{LD_LIBRARY_PATH} is not set:
2714
2715@example
2716unset LD_LIBRARY_PATH
2717@end example
2718
2719Then you can launch the precompiled @file{ls} x86 executable:
2720
2721@example
2722qemu-i386 tests/i386/ls
2723@end example
2724You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2725QEMU is automatically launched by the Linux kernel when you try to
2726launch x86 executables. It requires the @code{binfmt_misc} module in the
2727Linux kernel.
2728
2729@item The x86 version of QEMU is also included. You can try weird things such as:
2730@example
2731qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2732          /usr/local/qemu-i386/bin/ls-i386
2733@end example
2734
2735@end itemize
2736
2737@node Wine launch
2738@subsection Wine launch
2739
2740@itemize
2741
2742@item Ensure that you have a working QEMU with the x86 glibc
2743distribution (see previous section). In order to verify it, you must be
2744able to do:
2745
2746@example
2747qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2748@end example
2749
2750@item Download the binary x86 Wine install
2751(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2752
2753@item Configure Wine on your account. Look at the provided script
2754@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2755@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2756
2757@item Then you can try the example @file{putty.exe}:
2758
2759@example
2760qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2761          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2762@end example
2763
2764@end itemize
2765
2766@node Command line options
2767@subsection Command line options
2768
2769@example
2770@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2771@end example
2772
2773@table @option
2774@item -h
2775Print the help
2776@item -L path
2777Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2778@item -s size
2779Set the x86 stack size in bytes (default=524288)
2780@item -cpu model
2781Select CPU model (-cpu help for list and additional feature selection)
2782@item -E @var{var}=@var{value}
2783Set environment @var{var} to @var{value}.
2784@item -U @var{var}
2785Remove @var{var} from the environment.
2786@item -B offset
2787Offset guest address by the specified number of bytes.  This is useful when
2788the address region required by guest applications is reserved on the host.
2789This option is currently only supported on some hosts.
2790@item -R size
2791Pre-allocate a guest virtual address space of the given size (in bytes).
2792"G", "M", and "k" suffixes may be used when specifying the size.
2793@end table
2794
2795Debug options:
2796
2797@table @option
2798@item -d item1,...
2799Activate logging of the specified items (use '-d help' for a list of log items)
2800@item -p pagesize
2801Act as if the host page size was 'pagesize' bytes
2802@item -g port
2803Wait gdb connection to port
2804@item -singlestep
2805Run the emulation in single step mode.
2806@end table
2807
2808Environment variables:
2809
2810@table @env
2811@item QEMU_STRACE
2812Print system calls and arguments similar to the 'strace' program
2813(NOTE: the actual 'strace' program will not work because the user
2814space emulator hasn't implemented ptrace).  At the moment this is
2815incomplete.  All system calls that don't have a specific argument
2816format are printed with information for six arguments.  Many
2817flag-style arguments don't have decoders and will show up as numbers.
2818@end table
2819
2820@node Other binaries
2821@subsection Other binaries
2822
2823@cindex user mode (Alpha)
2824@command{qemu-alpha} TODO.
2825
2826@cindex user mode (ARM)
2827@command{qemu-armeb} TODO.
2828
2829@cindex user mode (ARM)
2830@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2831binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2832configurations), and arm-uclinux bFLT format binaries.
2833
2834@cindex user mode (ColdFire)
2835@cindex user mode (M68K)
2836@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2837(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2838coldfire uClinux bFLT format binaries.
2839
2840The binary format is detected automatically.
2841
2842@cindex user mode (Cris)
2843@command{qemu-cris} TODO.
2844
2845@cindex user mode (i386)
2846@command{qemu-i386} TODO.
2847@command{qemu-x86_64} TODO.
2848
2849@cindex user mode (Microblaze)
2850@command{qemu-microblaze} TODO.
2851
2852@cindex user mode (MIPS)
2853@command{qemu-mips} TODO.
2854@command{qemu-mipsel} TODO.
2855
2856@cindex user mode (PowerPC)
2857@command{qemu-ppc64abi32} TODO.
2858@command{qemu-ppc64} TODO.
2859@command{qemu-ppc} TODO.
2860
2861@cindex user mode (SH4)
2862@command{qemu-sh4eb} TODO.
2863@command{qemu-sh4} TODO.
2864
2865@cindex user mode (SPARC)
2866@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2867
2868@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2869(Sparc64 CPU, 32 bit ABI).
2870
2871@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2872SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2873
2874@node BSD User space emulator
2875@section BSD User space emulator
2876
2877@menu
2878* BSD Status::
2879* BSD Quick Start::
2880* BSD Command line options::
2881@end menu
2882
2883@node BSD Status
2884@subsection BSD Status
2885
2886@itemize @minus
2887@item
2888target Sparc64 on Sparc64: Some trivial programs work.
2889@end itemize
2890
2891@node BSD Quick Start
2892@subsection Quick Start
2893
2894In order to launch a BSD process, QEMU needs the process executable
2895itself and all the target dynamic libraries used by it.
2896
2897@itemize
2898
2899@item On Sparc64, you can just try to launch any process by using the native
2900libraries:
2901
2902@example
2903qemu-sparc64 /bin/ls
2904@end example
2905
2906@end itemize
2907
2908@node BSD Command line options
2909@subsection Command line options
2910
2911@example
2912@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2913@end example
2914
2915@table @option
2916@item -h
2917Print the help
2918@item -L path
2919Set the library root path (default=/)
2920@item -s size
2921Set the stack size in bytes (default=524288)
2922@item -ignore-environment
2923Start with an empty environment. Without this option,
2924the initial environment is a copy of the caller's environment.
2925@item -E @var{var}=@var{value}
2926Set environment @var{var} to @var{value}.
2927@item -U @var{var}
2928Remove @var{var} from the environment.
2929@item -bsd type
2930Set the type of the emulated BSD Operating system. Valid values are
2931FreeBSD, NetBSD and OpenBSD (default).
2932@end table
2933
2934Debug options:
2935
2936@table @option
2937@item -d item1,...
2938Activate logging of the specified items (use '-d help' for a list of log items)
2939@item -p pagesize
2940Act as if the host page size was 'pagesize' bytes
2941@item -singlestep
2942Run the emulation in single step mode.
2943@end table
2944
2945@node compilation
2946@chapter Compilation from the sources
2947
2948@menu
2949* Linux/Unix::
2950* Windows::
2951* Cross compilation for Windows with Linux::
2952* Mac OS X::
2953* Make targets::
2954@end menu
2955
2956@node Linux/Unix
2957@section Linux/Unix
2958
2959@subsection Compilation
2960
2961First you must decompress the sources:
2962@example
2963cd /tmp
2964tar zxvf qemu-x.y.z.tar.gz
2965cd qemu-x.y.z
2966@end example
2967
2968Then you configure QEMU and build it (usually no options are needed):
2969@example
2970./configure
2971make
2972@end example
2973
2974Then type as root user:
2975@example
2976make install
2977@end example
2978to install QEMU in @file{/usr/local}.
2979
2980@node Windows
2981@section Windows
2982
2983@itemize
2984@item Install the current versions of MSYS and MinGW from
2985@url{http://www.mingw.org/}. You can find detailed installation
2986instructions in the download section and the FAQ.
2987
2988@item Download
2989the MinGW development library of SDL 1.2.x
2990(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2991@url{http://www.libsdl.org}. Unpack it in a temporary place and
2992edit the @file{sdl-config} script so that it gives the
2993correct SDL directory when invoked.
2994
2995@item Install the MinGW version of zlib and make sure
2996@file{zlib.h} and @file{libz.dll.a} are in
2997MinGW's default header and linker search paths.
2998
2999@item Extract the current version of QEMU.
3000
3001@item Start the MSYS shell (file @file{msys.bat}).
3002
3003@item Change to the QEMU directory. Launch @file{./configure} and
3004@file{make}.  If you have problems using SDL, verify that
3005@file{sdl-config} can be launched from the MSYS command line.
3006
3007@item You can install QEMU in @file{Program Files/QEMU} by typing
3008@file{make install}. Don't forget to copy @file{SDL.dll} in
3009@file{Program Files/QEMU}.
3010
3011@end itemize
3012
3013@node Cross compilation for Windows with Linux
3014@section Cross compilation for Windows with Linux
3015
3016@itemize
3017@item
3018Install the MinGW cross compilation tools available at
3019@url{http://www.mingw.org/}.
3020
3021@item Download
3022the MinGW development library of SDL 1.2.x
3023(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3024@url{http://www.libsdl.org}. Unpack it in a temporary place and
3025edit the @file{sdl-config} script so that it gives the
3026correct SDL directory when invoked.  Set up the @code{PATH} environment
3027variable so that @file{sdl-config} can be launched by
3028the QEMU configuration script.
3029
3030@item Install the MinGW version of zlib and make sure
3031@file{zlib.h} and @file{libz.dll.a} are in
3032MinGW's default header and linker search paths.
3033
3034@item
3035Configure QEMU for Windows cross compilation:
3036@example
3037PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3038@end example
3039The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3040MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
3041We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
3042use --cross-prefix to specify the name of the cross compiler.
3043You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
3044
3045Under Fedora Linux, you can run:
3046@example
3047yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
3048@end example
3049to get a suitable cross compilation environment.
3050
3051@item You can install QEMU in the installation directory by typing
3052@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
3053installation directory.
3054
3055@end itemize
3056
3057Wine can be used to launch the resulting qemu-system-i386.exe
3058and all other qemu-system-@var{target}.exe compiled for Win32.
3059
3060@node Mac OS X
3061@section Mac OS X
3062
3063System Requirements:
3064@itemize
3065@item Mac OS 10.5 or higher
3066@item The clang compiler shipped with Xcode 4.2 or higher,
3067or GCC 4.3 or higher
3068@end itemize
3069
3070Additional Requirements (install in order):
3071@enumerate
3072@item libffi: @uref{https://sourceware.org/libffi/}
3073@item gettext: @uref{http://www.gnu.org/software/gettext/}
3074@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3075@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3076@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3077@item automake: @uref{http://www.gnu.org/software/automake/}
3078@item pixman: @uref{http://www.pixman.org/}
3079@end enumerate
3080
3081* You may find it easiest to get these from a third-party packager
3082such as Homebrew, Macports, or Fink.
3083
3084After downloading the QEMU source code, double-click it to expand it.
3085
3086Then configure and make QEMU:
3087@example
3088./configure
3089make
3090@end example
3091
3092If you have a recent version of Mac OS X (OSX 10.7 or better
3093with Xcode 4.2 or better) we recommend building QEMU with the
3094default compiler provided by Apple, for your version of Mac OS X
3095(which will be 'clang'). The configure script will
3096automatically pick this.
3097
3098Note: If after the configure step you see a message like this:
3099@example
3100ERROR: Your compiler does not support the __thread specifier for
3101       Thread-Local Storage (TLS). Please upgrade to a version that does.
3102@end example
3103you may have to build your own version of gcc from source. Expect that to take
3104several hours. More information can be found here:
3105@uref{https://gcc.gnu.org/install/} @*
3106
3107These are some of the third party binaries of gcc available for download:
3108@itemize
3109@item Homebrew: @uref{http://brew.sh/}
3110@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3111@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3112@end itemize
3113
3114You can have several versions of GCC on your system. To specify a certain version,
3115use the --cc and --cxx options.
3116@example
3117./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3118@end example
3119
3120@node Make targets
3121@section Make targets
3122
3123@table @code
3124
3125@item make
3126@item make all
3127Make everything which is typically needed.
3128
3129@item install
3130TODO
3131
3132@item install-doc
3133TODO
3134
3135@item make clean
3136Remove most files which were built during make.
3137
3138@item make distclean
3139Remove everything which was built during make.
3140
3141@item make dvi
3142@item make html
3143@item make info
3144@item make pdf
3145Create documentation in dvi, html, info or pdf format.
3146
3147@item make cscope
3148TODO
3149
3150@item make defconfig
3151(Re-)create some build configuration files.
3152User made changes will be overwritten.
3153
3154@item tar
3155@item tarbin
3156TODO
3157
3158@end table
3159
3160@node License
3161@appendix License
3162
3163QEMU is a trademark of Fabrice Bellard.
3164
3165QEMU is released under the GNU General Public License (TODO: add link).
3166Parts of QEMU have specific licenses, see file LICENSE.
3167
3168TODO (refer to file LICENSE, include it, include the GPL?)
3169
3170@node Index
3171@appendix Index
3172@menu
3173* Concept Index::
3174* Function Index::
3175* Keystroke Index::
3176* Program Index::
3177* Data Type Index::
3178* Variable Index::
3179@end menu
3180
3181@node Concept Index
3182@section Concept Index
3183This is the main index. Should we combine all keywords in one index? TODO
3184@printindex cp
3185
3186@node Function Index
3187@section Function Index
3188This index could be used for command line options and monitor functions.
3189@printindex fn
3190
3191@node Keystroke Index
3192@section Keystroke Index
3193
3194This is a list of all keystrokes which have a special function
3195in system emulation.
3196
3197@printindex ky
3198
3199@node Program Index
3200@section Program Index
3201@printindex pg
3202
3203@node Data Type Index
3204@section Data Type Index
3205
3206This index could be used for qdev device names and options.
3207
3208@printindex tp
3209
3210@node Variable Index
3211@section Variable Index
3212@printindex vr
3213
3214@bye
3215