qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4
   5@documentlanguage en
   6@documentencoding UTF-8
   7
   8@settitle QEMU Emulator User Documentation
   9@exampleindent 0
  10@paragraphindent 0
  11@c %**end of header
  12
  13@ifinfo
  14@direntry
  15* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  16@end direntry
  17@end ifinfo
  18
  19@iftex
  20@titlepage
  21@sp 7
  22@center @titlefont{QEMU Emulator}
  23@sp 1
  24@center @titlefont{User Documentation}
  25@sp 3
  26@end titlepage
  27@end iftex
  28
  29@ifnottex
  30@node Top
  31@top
  32
  33@menu
  34* Introduction::
  35* QEMU PC System emulator::
  36* QEMU System emulator for non PC targets::
  37* QEMU User space emulator::
  38* Implementation notes::
  39* License::
  40* Index::
  41@end menu
  42@end ifnottex
  43
  44@contents
  45
  46@node Introduction
  47@chapter Introduction
  48
  49@menu
  50* intro_features:: Features
  51@end menu
  52
  53@node intro_features
  54@section Features
  55
  56QEMU is a FAST! processor emulator using dynamic translation to
  57achieve good emulation speed.
  58
  59@cindex operating modes
  60QEMU has two operating modes:
  61
  62@itemize
  63@cindex system emulation
  64@item Full system emulation. In this mode, QEMU emulates a full system (for
  65example a PC), including one or several processors and various
  66peripherals. It can be used to launch different Operating Systems
  67without rebooting the PC or to debug system code.
  68
  69@cindex user mode emulation
  70@item User mode emulation. In this mode, QEMU can launch
  71processes compiled for one CPU on another CPU. It can be used to
  72launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
  73to ease cross-compilation and cross-debugging.
  74
  75@end itemize
  76
  77QEMU has the following features:
  78
  79@itemize
  80@item QEMU can run without a host kernel driver and yet gives acceptable
  81performance.  It uses dynamic translation to native code for reasonable speed,
  82with support for self-modifying code and precise exceptions.
  83
  84@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
  85Windows) and architectures.
  86
  87@item It performs accurate software emulation of the FPU.
  88@end itemize
  89
  90QEMU user mode emulation has the following features:
  91@itemize
  92@item Generic Linux system call converter, including most ioctls.
  93
  94@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
  95
  96@item Accurate signal handling by remapping host signals to target signals.
  97@end itemize
  98
  99QEMU full system emulation has the following features:
 100@itemize
 101@item
 102QEMU uses a full software MMU for maximum portability.
 103
 104@item
 105QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators 
 106execute most of the guest code natively, while
 107continuing to emulate the rest of the machine.
 108
 109@item
 110Various hardware devices can be emulated and in some cases, host
 111devices (e.g. serial and parallel ports, USB, drives) can be used
 112transparently by the guest Operating System. Host device passthrough
 113can be used for talking to external physical peripherals (e.g. a
 114webcam, modem or tape drive).
 115
 116@item
 117Symmetric multiprocessing (SMP) support.  Currently, an in-kernel
 118accelerator is required to use more than one host CPU for emulation.
 119
 120@end itemize
 121
 122
 123@node QEMU PC System emulator
 124@chapter QEMU PC System emulator
 125@cindex system emulation (PC)
 126
 127@menu
 128* pcsys_introduction:: Introduction
 129* pcsys_quickstart::   Quick Start
 130* sec_invocation::     Invocation
 131* pcsys_keys::         Keys in the graphical frontends
 132* mux_keys::           Keys in the character backend multiplexer
 133* pcsys_monitor::      QEMU Monitor
 134* disk_images::        Disk Images
 135* pcsys_network::      Network emulation
 136* pcsys_other_devs::   Other Devices
 137* direct_linux_boot::  Direct Linux Boot
 138* pcsys_usb::          USB emulation
 139* vnc_security::       VNC security
 140* gdb_usage::          GDB usage
 141* pcsys_os_specific::  Target OS specific information
 142@end menu
 143
 144@node pcsys_introduction
 145@section Introduction
 146
 147@c man begin DESCRIPTION
 148
 149The QEMU PC System emulator simulates the
 150following peripherals:
 151
 152@itemize @minus
 153@item
 154i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 155@item
 156Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 157extensions (hardware level, including all non standard modes).
 158@item
 159PS/2 mouse and keyboard
 160@item
 1612 PCI IDE interfaces with hard disk and CD-ROM support
 162@item
 163Floppy disk
 164@item
 165PCI and ISA network adapters
 166@item
 167Serial ports
 168@item
 169IPMI BMC, either and internal or external one
 170@item
 171Creative SoundBlaster 16 sound card
 172@item
 173ENSONIQ AudioPCI ES1370 sound card
 174@item
 175Intel 82801AA AC97 Audio compatible sound card
 176@item
 177Intel HD Audio Controller and HDA codec
 178@item
 179Adlib (OPL2) - Yamaha YM3812 compatible chip
 180@item
 181Gravis Ultrasound GF1 sound card
 182@item
 183CS4231A compatible sound card
 184@item
 185PCI UHCI USB controller and a virtual USB hub.
 186@end itemize
 187
 188SMP is supported with up to 255 CPUs.
 189
 190QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
 191VGA BIOS.
 192
 193QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 194
 195QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 196by Tibor "TS" Schütz.
 197
 198Note that, by default, GUS shares IRQ(7) with parallel ports and so
 199QEMU must be told to not have parallel ports to have working GUS.
 200
 201@example
 202qemu-system-i386 dos.img -soundhw gus -parallel none
 203@end example
 204
 205Alternatively:
 206@example
 207qemu-system-i386 dos.img -device gus,irq=5
 208@end example
 209
 210Or some other unclaimed IRQ.
 211
 212CS4231A is the chip used in Windows Sound System and GUSMAX products
 213
 214@c man end
 215
 216@node pcsys_quickstart
 217@section Quick Start
 218@cindex quick start
 219
 220Download and uncompress the linux image (@file{linux.img}) and type:
 221
 222@example
 223qemu-system-i386 linux.img
 224@end example
 225
 226Linux should boot and give you a prompt.
 227
 228@node sec_invocation
 229@section Invocation
 230
 231@example
 232@c man begin SYNOPSIS
 233@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
 234@c man end
 235@end example
 236
 237@c man begin OPTIONS
 238@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 239targets do not need a disk image.
 240
 241@include qemu-options.texi
 242
 243@c man end
 244
 245@node pcsys_keys
 246@section Keys in the graphical frontends
 247
 248@c man begin OPTIONS
 249
 250During the graphical emulation, you can use special key combinations to change
 251modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 252then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 253@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 254
 255@table @key
 256@item Ctrl-Alt-f
 257@kindex Ctrl-Alt-f
 258Toggle full screen
 259
 260@item Ctrl-Alt-+
 261@kindex Ctrl-Alt-+
 262Enlarge the screen
 263
 264@item Ctrl-Alt--
 265@kindex Ctrl-Alt--
 266Shrink the screen
 267
 268@item Ctrl-Alt-u
 269@kindex Ctrl-Alt-u
 270Restore the screen's un-scaled dimensions
 271
 272@item Ctrl-Alt-n
 273@kindex Ctrl-Alt-n
 274Switch to virtual console 'n'. Standard console mappings are:
 275@table @emph
 276@item 1
 277Target system display
 278@item 2
 279Monitor
 280@item 3
 281Serial port
 282@end table
 283
 284@item Ctrl-Alt
 285@kindex Ctrl-Alt
 286Toggle mouse and keyboard grab.
 287@end table
 288
 289@kindex Ctrl-Up
 290@kindex Ctrl-Down
 291@kindex Ctrl-PageUp
 292@kindex Ctrl-PageDown
 293In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 294@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 295
 296@c man end
 297
 298@node mux_keys
 299@section Keys in the character backend multiplexer
 300
 301@c man begin OPTIONS
 302
 303During emulation, if you are using a character backend multiplexer
 304(which is the default if you are using @option{-nographic}) then
 305several commands are available via an escape sequence. These
 306key sequences all start with an escape character, which is @key{Ctrl-a}
 307by default, but can be changed with @option{-echr}. The list below assumes
 308you're using the default.
 309
 310@table @key
 311@item Ctrl-a h
 312@kindex Ctrl-a h
 313Print this help
 314@item Ctrl-a x
 315@kindex Ctrl-a x
 316Exit emulator
 317@item Ctrl-a s
 318@kindex Ctrl-a s
 319Save disk data back to file (if -snapshot)
 320@item Ctrl-a t
 321@kindex Ctrl-a t
 322Toggle console timestamps
 323@item Ctrl-a b
 324@kindex Ctrl-a b
 325Send break (magic sysrq in Linux)
 326@item Ctrl-a c
 327@kindex Ctrl-a c
 328Rotate between the frontends connected to the multiplexer (usually
 329this switches between the monitor and the console)
 330@item Ctrl-a Ctrl-a
 331@kindex Ctrl-a Ctrl-a
 332Send the escape character to the frontend
 333@end table
 334@c man end
 335
 336@ignore
 337
 338@c man begin SEEALSO
 339The HTML documentation of QEMU for more precise information and Linux
 340user mode emulator invocation.
 341@c man end
 342
 343@c man begin AUTHOR
 344Fabrice Bellard
 345@c man end
 346
 347@end ignore
 348
 349@node pcsys_monitor
 350@section QEMU Monitor
 351@cindex QEMU monitor
 352
 353The QEMU monitor is used to give complex commands to the QEMU
 354emulator. You can use it to:
 355
 356@itemize @minus
 357
 358@item
 359Remove or insert removable media images
 360(such as CD-ROM or floppies).
 361
 362@item
 363Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 364from a disk file.
 365
 366@item Inspect the VM state without an external debugger.
 367
 368@end itemize
 369
 370@subsection Commands
 371
 372The following commands are available:
 373
 374@include qemu-monitor.texi
 375
 376@include qemu-monitor-info.texi
 377
 378@subsection Integer expressions
 379
 380The monitor understands integers expressions for every integer
 381argument. You can use register names to get the value of specifics
 382CPU registers by prefixing them with @emph{$}.
 383
 384@node disk_images
 385@section Disk Images
 386
 387Since version 0.6.1, QEMU supports many disk image formats, including
 388growable disk images (their size increase as non empty sectors are
 389written), compressed and encrypted disk images. Version 0.8.3 added
 390the new qcow2 disk image format which is essential to support VM
 391snapshots.
 392
 393@menu
 394* disk_images_quickstart::    Quick start for disk image creation
 395* disk_images_snapshot_mode:: Snapshot mode
 396* vm_snapshots::              VM snapshots
 397* qemu_img_invocation::       qemu-img Invocation
 398* qemu_nbd_invocation::       qemu-nbd Invocation
 399* qemu_ga_invocation::        qemu-ga Invocation
 400* disk_images_formats::       Disk image file formats
 401* host_drives::               Using host drives
 402* disk_images_fat_images::    Virtual FAT disk images
 403* disk_images_nbd::           NBD access
 404* disk_images_sheepdog::      Sheepdog disk images
 405* disk_images_iscsi::         iSCSI LUNs
 406* disk_images_gluster::       GlusterFS disk images
 407* disk_images_ssh::           Secure Shell (ssh) disk images
 408@end menu
 409
 410@node disk_images_quickstart
 411@subsection Quick start for disk image creation
 412
 413You can create a disk image with the command:
 414@example
 415qemu-img create myimage.img mysize
 416@end example
 417where @var{myimage.img} is the disk image filename and @var{mysize} is its
 418size in kilobytes. You can add an @code{M} suffix to give the size in
 419megabytes and a @code{G} suffix for gigabytes.
 420
 421See @ref{qemu_img_invocation} for more information.
 422
 423@node disk_images_snapshot_mode
 424@subsection Snapshot mode
 425
 426If you use the option @option{-snapshot}, all disk images are
 427considered as read only. When sectors in written, they are written in
 428a temporary file created in @file{/tmp}. You can however force the
 429write back to the raw disk images by using the @code{commit} monitor
 430command (or @key{C-a s} in the serial console).
 431
 432@node vm_snapshots
 433@subsection VM snapshots
 434
 435VM snapshots are snapshots of the complete virtual machine including
 436CPU state, RAM, device state and the content of all the writable
 437disks. In order to use VM snapshots, you must have at least one non
 438removable and writable block device using the @code{qcow2} disk image
 439format. Normally this device is the first virtual hard drive.
 440
 441Use the monitor command @code{savevm} to create a new VM snapshot or
 442replace an existing one. A human readable name can be assigned to each
 443snapshot in addition to its numerical ID.
 444
 445Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 446a VM snapshot. @code{info snapshots} lists the available snapshots
 447with their associated information:
 448
 449@example
 450(qemu) info snapshots
 451Snapshot devices: hda
 452Snapshot list (from hda):
 453ID        TAG                 VM SIZE                DATE       VM CLOCK
 4541         start                   41M 2006-08-06 12:38:02   00:00:14.954
 4552                                 40M 2006-08-06 12:43:29   00:00:18.633
 4563         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 457@end example
 458
 459A VM snapshot is made of a VM state info (its size is shown in
 460@code{info snapshots}) and a snapshot of every writable disk image.
 461The VM state info is stored in the first @code{qcow2} non removable
 462and writable block device. The disk image snapshots are stored in
 463every disk image. The size of a snapshot in a disk image is difficult
 464to evaluate and is not shown by @code{info snapshots} because the
 465associated disk sectors are shared among all the snapshots to save
 466disk space (otherwise each snapshot would need a full copy of all the
 467disk images).
 468
 469When using the (unrelated) @code{-snapshot} option
 470(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 471but they are deleted as soon as you exit QEMU.
 472
 473VM snapshots currently have the following known limitations:
 474@itemize
 475@item
 476They cannot cope with removable devices if they are removed or
 477inserted after a snapshot is done.
 478@item
 479A few device drivers still have incomplete snapshot support so their
 480state is not saved or restored properly (in particular USB).
 481@end itemize
 482
 483@node qemu_img_invocation
 484@subsection @code{qemu-img} Invocation
 485
 486@include qemu-img.texi
 487
 488@node qemu_nbd_invocation
 489@subsection @code{qemu-nbd} Invocation
 490
 491@include qemu-nbd.texi
 492
 493@node qemu_ga_invocation
 494@subsection @code{qemu-ga} Invocation
 495
 496@include qemu-ga.texi
 497
 498@node disk_images_formats
 499@subsection Disk image file formats
 500
 501QEMU supports many image file formats that can be used with VMs as well as with
 502any of the tools (like @code{qemu-img}). This includes the preferred formats
 503raw and qcow2 as well as formats that are supported for compatibility with
 504older QEMU versions or other hypervisors.
 505
 506Depending on the image format, different options can be passed to
 507@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
 508This section describes each format and the options that are supported for it.
 509
 510@table @option
 511@item raw
 512
 513Raw disk image format. This format has the advantage of
 514being simple and easily exportable to all other emulators. If your
 515file system supports @emph{holes} (for example in ext2 or ext3 on
 516Linux or NTFS on Windows), then only the written sectors will reserve
 517space. Use @code{qemu-img info} to know the real size used by the
 518image or @code{ls -ls} on Unix/Linux.
 519
 520Supported options:
 521@table @code
 522@item preallocation
 523Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
 524@code{falloc} mode preallocates space for image by calling posix_fallocate().
 525@code{full} mode preallocates space for image by writing zeros to underlying
 526storage.
 527@end table
 528
 529@item qcow2
 530QEMU image format, the most versatile format. Use it to have smaller
 531images (useful if your filesystem does not supports holes, for example
 532on Windows), zlib based compression and support of multiple VM
 533snapshots.
 534
 535Supported options:
 536@table @code
 537@item compat
 538Determines the qcow2 version to use. @code{compat=0.10} uses the
 539traditional image format that can be read by any QEMU since 0.10.
 540@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
 541newer understand (this is the default). Amongst others, this includes
 542zero clusters, which allow efficient copy-on-read for sparse images.
 543
 544@item backing_file
 545File name of a base image (see @option{create} subcommand)
 546@item backing_fmt
 547Image format of the base image
 548@item encryption
 549If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
 550
 551The use of encryption in qcow and qcow2 images is considered to be flawed by
 552modern cryptography standards, suffering from a number of design problems:
 553
 554@itemize @minus
 555@item The AES-CBC cipher is used with predictable initialization vectors based
 556on the sector number. This makes it vulnerable to chosen plaintext attacks
 557which can reveal the existence of encrypted data.
 558@item The user passphrase is directly used as the encryption key. A poorly
 559chosen or short passphrase will compromise the security of the encryption.
 560@item In the event of the passphrase being compromised there is no way to
 561change the passphrase to protect data in any qcow images. The files must
 562be cloned, using a different encryption passphrase in the new file. The
 563original file must then be securely erased using a program like shred,
 564though even this is ineffective with many modern storage technologies.
 565@end itemize
 566
 567Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
 568it will go away in a future release.  Users are recommended to use an
 569alternative encryption technology such as the Linux dm-crypt / LUKS
 570system.
 571
 572@item cluster_size
 573Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
 574sizes can improve the image file size whereas larger cluster sizes generally
 575provide better performance.
 576
 577@item preallocation
 578Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
 579@code{full}). An image with preallocated metadata is initially larger but can
 580improve performance when the image needs to grow. @code{falloc} and @code{full}
 581preallocations are like the same options of @code{raw} format, but sets up
 582metadata also.
 583
 584@item lazy_refcounts
 585If this option is set to @code{on}, reference count updates are postponed with
 586the goal of avoiding metadata I/O and improving performance. This is
 587particularly interesting with @option{cache=writethrough} which doesn't batch
 588metadata updates. The tradeoff is that after a host crash, the reference count
 589tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
 590check -r all} is required, which may take some time.
 591
 592This option can only be enabled if @code{compat=1.1} is specified.
 593
 594@item nocow
 595If this option is set to @code{on}, it will turn off COW of the file. It's only
 596valid on btrfs, no effect on other file systems.
 597
 598Btrfs has low performance when hosting a VM image file, even more when the guest
 599on the VM also using btrfs as file system. Turning off COW is a way to mitigate
 600this bad performance. Generally there are two ways to turn off COW on btrfs:
 601a) Disable it by mounting with nodatacow, then all newly created files will be
 602NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
 603does.
 604
 605Note: this option is only valid to new or empty files. If there is an existing
 606file which is COW and has data blocks already, it couldn't be changed to NOCOW
 607by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
 608the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
 609
 610@end table
 611
 612@item qed
 613Old QEMU image format with support for backing files and compact image files
 614(when your filesystem or transport medium does not support holes).
 615
 616When converting QED images to qcow2, you might want to consider using the
 617@code{lazy_refcounts=on} option to get a more QED-like behaviour.
 618
 619Supported options:
 620@table @code
 621@item backing_file
 622File name of a base image (see @option{create} subcommand).
 623@item backing_fmt
 624Image file format of backing file (optional).  Useful if the format cannot be
 625autodetected because it has no header, like some vhd/vpc files.
 626@item cluster_size
 627Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
 628cluster sizes can improve the image file size whereas larger cluster sizes
 629generally provide better performance.
 630@item table_size
 631Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
 632and 16).  There is normally no need to change this value but this option can be
 633used for performance benchmarking.
 634@end table
 635
 636@item qcow
 637Old QEMU image format with support for backing files, compact image files,
 638encryption and compression.
 639
 640Supported options:
 641@table @code
 642@item backing_file
 643File name of a base image (see @option{create} subcommand)
 644@item encryption
 645If this option is set to @code{on}, the image is encrypted.
 646@end table
 647
 648@item vdi
 649VirtualBox 1.1 compatible image format.
 650Supported options:
 651@table @code
 652@item static
 653If this option is set to @code{on}, the image is created with metadata
 654preallocation.
 655@end table
 656
 657@item vmdk
 658VMware 3 and 4 compatible image format.
 659
 660Supported options:
 661@table @code
 662@item backing_file
 663File name of a base image (see @option{create} subcommand).
 664@item compat6
 665Create a VMDK version 6 image (instead of version 4)
 666@item hwversion
 667Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
 668if hwversion is specified.
 669@item subformat
 670Specifies which VMDK subformat to use. Valid options are
 671@code{monolithicSparse} (default),
 672@code{monolithicFlat},
 673@code{twoGbMaxExtentSparse},
 674@code{twoGbMaxExtentFlat} and
 675@code{streamOptimized}.
 676@end table
 677
 678@item vpc
 679VirtualPC compatible image format (VHD).
 680Supported options:
 681@table @code
 682@item subformat
 683Specifies which VHD subformat to use. Valid options are
 684@code{dynamic} (default) and @code{fixed}.
 685@end table
 686
 687@item VHDX
 688Hyper-V compatible image format (VHDX).
 689Supported options:
 690@table @code
 691@item subformat
 692Specifies which VHDX subformat to use. Valid options are
 693@code{dynamic} (default) and @code{fixed}.
 694@item block_state_zero
 695Force use of payload blocks of type 'ZERO'.  Can be set to @code{on} (default)
 696or @code{off}.  When set to @code{off}, new blocks will be created as
 697@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
 698arbitrary data for those blocks.  Do not set to @code{off} when using
 699@code{qemu-img convert} with @code{subformat=dynamic}.
 700@item block_size
 701Block size; min 1 MB, max 256 MB.  0 means auto-calculate based on image size.
 702@item log_size
 703Log size; min 1 MB.
 704@end table
 705@end table
 706
 707@subsubsection Read-only formats
 708More disk image file formats are supported in a read-only mode.
 709@table @option
 710@item bochs
 711Bochs images of @code{growing} type.
 712@item cloop
 713Linux Compressed Loop image, useful only to reuse directly compressed
 714CD-ROM images present for example in the Knoppix CD-ROMs.
 715@item dmg
 716Apple disk image.
 717@item parallels
 718Parallels disk image format.
 719@end table
 720
 721
 722@node host_drives
 723@subsection Using host drives
 724
 725In addition to disk image files, QEMU can directly access host
 726devices. We describe here the usage for QEMU version >= 0.8.3.
 727
 728@subsubsection Linux
 729
 730On Linux, you can directly use the host device filename instead of a
 731disk image filename provided you have enough privileges to access
 732it. For example, use @file{/dev/cdrom} to access to the CDROM.
 733
 734@table @code
 735@item CD
 736You can specify a CDROM device even if no CDROM is loaded. QEMU has
 737specific code to detect CDROM insertion or removal. CDROM ejection by
 738the guest OS is supported. Currently only data CDs are supported.
 739@item Floppy
 740You can specify a floppy device even if no floppy is loaded. Floppy
 741removal is currently not detected accurately (if you change floppy
 742without doing floppy access while the floppy is not loaded, the guest
 743OS will think that the same floppy is loaded).
 744Use of the host's floppy device is deprecated, and support for it will
 745be removed in a future release.
 746@item Hard disks
 747Hard disks can be used. Normally you must specify the whole disk
 748(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
 749see it as a partitioned disk. WARNING: unless you know what you do, it
 750is better to only make READ-ONLY accesses to the hard disk otherwise
 751you may corrupt your host data (use the @option{-snapshot} command
 752line option or modify the device permissions accordingly).
 753@end table
 754
 755@subsubsection Windows
 756
 757@table @code
 758@item CD
 759The preferred syntax is the drive letter (e.g. @file{d:}). The
 760alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
 761supported as an alias to the first CDROM drive.
 762
 763Currently there is no specific code to handle removable media, so it
 764is better to use the @code{change} or @code{eject} monitor commands to
 765change or eject media.
 766@item Hard disks
 767Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
 768where @var{N} is the drive number (0 is the first hard disk).
 769
 770WARNING: unless you know what you do, it is better to only make
 771READ-ONLY accesses to the hard disk otherwise you may corrupt your
 772host data (use the @option{-snapshot} command line so that the
 773modifications are written in a temporary file).
 774@end table
 775
 776
 777@subsubsection Mac OS X
 778
 779@file{/dev/cdrom} is an alias to the first CDROM.
 780
 781Currently there is no specific code to handle removable media, so it
 782is better to use the @code{change} or @code{eject} monitor commands to
 783change or eject media.
 784
 785@node disk_images_fat_images
 786@subsection Virtual FAT disk images
 787
 788QEMU can automatically create a virtual FAT disk image from a
 789directory tree. In order to use it, just type:
 790
 791@example
 792qemu-system-i386 linux.img -hdb fat:/my_directory
 793@end example
 794
 795Then you access access to all the files in the @file{/my_directory}
 796directory without having to copy them in a disk image or to export
 797them via SAMBA or NFS. The default access is @emph{read-only}.
 798
 799Floppies can be emulated with the @code{:floppy:} option:
 800
 801@example
 802qemu-system-i386 linux.img -fda fat:floppy:/my_directory
 803@end example
 804
 805A read/write support is available for testing (beta stage) with the
 806@code{:rw:} option:
 807
 808@example
 809qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
 810@end example
 811
 812What you should @emph{never} do:
 813@itemize
 814@item use non-ASCII filenames ;
 815@item use "-snapshot" together with ":rw:" ;
 816@item expect it to work when loadvm'ing ;
 817@item write to the FAT directory on the host system while accessing it with the guest system.
 818@end itemize
 819
 820@node disk_images_nbd
 821@subsection NBD access
 822
 823QEMU can access directly to block device exported using the Network Block Device
 824protocol.
 825
 826@example
 827qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
 828@end example
 829
 830If the NBD server is located on the same host, you can use an unix socket instead
 831of an inet socket:
 832
 833@example
 834qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
 835@end example
 836
 837In this case, the block device must be exported using qemu-nbd:
 838
 839@example
 840qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
 841@end example
 842
 843The use of qemu-nbd allows sharing of a disk between several guests:
 844@example
 845qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
 846@end example
 847
 848@noindent
 849and then you can use it with two guests:
 850@example
 851qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
 852qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
 853@end example
 854
 855If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
 856own embedded NBD server), you must specify an export name in the URI:
 857@example
 858qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
 859qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
 860@end example
 861
 862The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
 863also available.  Here are some example of the older syntax:
 864@example
 865qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
 866qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
 867qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
 868@end example
 869
 870@node disk_images_sheepdog
 871@subsection Sheepdog disk images
 872
 873Sheepdog is a distributed storage system for QEMU.  It provides highly
 874available block level storage volumes that can be attached to
 875QEMU-based virtual machines.
 876
 877You can create a Sheepdog disk image with the command:
 878@example
 879qemu-img create sheepdog:///@var{image} @var{size}
 880@end example
 881where @var{image} is the Sheepdog image name and @var{size} is its
 882size.
 883
 884To import the existing @var{filename} to Sheepdog, you can use a
 885convert command.
 886@example
 887qemu-img convert @var{filename} sheepdog:///@var{image}
 888@end example
 889
 890You can boot from the Sheepdog disk image with the command:
 891@example
 892qemu-system-i386 sheepdog:///@var{image}
 893@end example
 894
 895You can also create a snapshot of the Sheepdog image like qcow2.
 896@example
 897qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
 898@end example
 899where @var{tag} is a tag name of the newly created snapshot.
 900
 901To boot from the Sheepdog snapshot, specify the tag name of the
 902snapshot.
 903@example
 904qemu-system-i386 sheepdog:///@var{image}#@var{tag}
 905@end example
 906
 907You can create a cloned image from the existing snapshot.
 908@example
 909qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
 910@end example
 911where @var{base} is a image name of the source snapshot and @var{tag}
 912is its tag name.
 913
 914You can use an unix socket instead of an inet socket:
 915
 916@example
 917qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
 918@end example
 919
 920If the Sheepdog daemon doesn't run on the local host, you need to
 921specify one of the Sheepdog servers to connect to.
 922@example
 923qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
 924qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
 925@end example
 926
 927@node disk_images_iscsi
 928@subsection iSCSI LUNs
 929
 930iSCSI is a popular protocol used to access SCSI devices across a computer
 931network.
 932
 933There are two different ways iSCSI devices can be used by QEMU.
 934
 935The first method is to mount the iSCSI LUN on the host, and make it appear as
 936any other ordinary SCSI device on the host and then to access this device as a
 937/dev/sd device from QEMU. How to do this differs between host OSes.
 938
 939The second method involves using the iSCSI initiator that is built into
 940QEMU. This provides a mechanism that works the same way regardless of which
 941host OS you are running QEMU on. This section will describe this second method
 942of using iSCSI together with QEMU.
 943
 944In QEMU, iSCSI devices are described using special iSCSI URLs
 945
 946@example
 947URL syntax:
 948iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
 949@end example
 950
 951Username and password are optional and only used if your target is set up
 952using CHAP authentication for access control.
 953Alternatively the username and password can also be set via environment
 954variables to have these not show up in the process list
 955
 956@example
 957export LIBISCSI_CHAP_USERNAME=<username>
 958export LIBISCSI_CHAP_PASSWORD=<password>
 959iscsi://<host>/<target-iqn-name>/<lun>
 960@end example
 961
 962Various session related parameters can be set via special options, either
 963in a configuration file provided via '-readconfig' or directly on the
 964command line.
 965
 966If the initiator-name is not specified qemu will use a default name
 967of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
 968virtual machine.
 969
 970
 971@example
 972Setting a specific initiator name to use when logging in to the target
 973-iscsi initiator-name=iqn.qemu.test:my-initiator
 974@end example
 975
 976@example
 977Controlling which type of header digest to negotiate with the target
 978-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 979@end example
 980
 981These can also be set via a configuration file
 982@example
 983[iscsi]
 984  user = "CHAP username"
 985  password = "CHAP password"
 986  initiator-name = "iqn.qemu.test:my-initiator"
 987  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 988  header-digest = "CRC32C"
 989@end example
 990
 991
 992Setting the target name allows different options for different targets
 993@example
 994[iscsi "iqn.target.name"]
 995  user = "CHAP username"
 996  password = "CHAP password"
 997  initiator-name = "iqn.qemu.test:my-initiator"
 998  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
 999  header-digest = "CRC32C"
1000@end example
1001
1002
1003Howto use a configuration file to set iSCSI configuration options:
1004@example
1005cat >iscsi.conf <<EOF
1006[iscsi]
1007  user = "me"
1008  password = "my password"
1009  initiator-name = "iqn.qemu.test:my-initiator"
1010  header-digest = "CRC32C"
1011EOF
1012
1013qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1014    -readconfig iscsi.conf
1015@end example
1016
1017
1018Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1019@example
1020This example shows how to set up an iSCSI target with one CDROM and one DISK
1021using the Linux STGT software target. This target is available on Red Hat based
1022systems as the package 'scsi-target-utils'.
1023
1024tgtd --iscsi portal=127.0.0.1:3260
1025tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1026tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1027    -b /IMAGES/disk.img --device-type=disk
1028tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1029    -b /IMAGES/cd.iso --device-type=cd
1030tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1031
1032qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1033    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1034    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1035@end example
1036
1037@node disk_images_gluster
1038@subsection GlusterFS disk images
1039
1040GlusterFS is an user space distributed file system.
1041
1042You can boot from the GlusterFS disk image with the command:
1043@example
1044URI:
1045qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
1046                               [?socket=...][,file.debug=9][,file.logfile=...]
1047
1048JSON:
1049qemu-system-x86_64 'json:@{"driver":"qcow2",
1050                           "file":@{"driver":"gluster",
1051                                    "volume":"testvol","path":"a.img","debug":9,"logfile":"...",
1052                                    "server":[@{"type":"tcp","host":"...","port":"..."@},
1053                                              @{"type":"unix","socket":"..."@}]@}@}'
1054@end example
1055
1056@var{gluster} is the protocol.
1057
1058@var{type} specifies the transport type used to connect to gluster
1059management daemon (glusterd). Valid transport types are
1060tcp and unix. In the URI form, if a transport type isn't specified,
1061then tcp type is assumed.
1062
1063@var{host} specifies the server where the volume file specification for
1064the given volume resides. This can be either a hostname or an ipv4 address.
1065If transport type is unix, then @var{host} field should not be specified.
1066Instead @var{socket} field needs to be populated with the path to unix domain
1067socket.
1068
1069@var{port} is the port number on which glusterd is listening. This is optional
1070and if not specified, it defaults to port 24007. If the transport type is unix,
1071then @var{port} should not be specified.
1072
1073@var{volume} is the name of the gluster volume which contains the disk image.
1074
1075@var{path} is the path to the actual disk image that resides on gluster volume.
1076
1077@var{debug} is the logging level of the gluster protocol driver. Debug levels
1078are 0-9, with 9 being the most verbose, and 0 representing no debugging output.
1079The default level is 4. The current logging levels defined in the gluster source
1080are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning,
10816 - Notice, 7 - Info, 8 - Debug, 9 - Trace
1082
1083@var{logfile} is a commandline option to mention log file path which helps in
1084logging to the specified file and also help in persisting the gfapi logs. The
1085default is stderr.
1086
1087
1088
1089
1090You can create a GlusterFS disk image with the command:
1091@example
1092qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
1093@end example
1094
1095Examples
1096@example
1097qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1098qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1099qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1100qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1101qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1102qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1103qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1104qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1105qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
1106qemu-system-x86_64 'json:@{"driver":"qcow2",
1107                           "file":@{"driver":"gluster",
1108                                    "volume":"testvol","path":"a.img",
1109                                    "debug":9,"logfile":"/var/log/qemu-gluster.log",
1110                                    "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
1111                                              @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
1112qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
1113                                       file.debug=9,file.logfile=/var/log/qemu-gluster.log,
1114                                       file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
1115                                       file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
1116@end example
1117
1118@node disk_images_ssh
1119@subsection Secure Shell (ssh) disk images
1120
1121You can access disk images located on a remote ssh server
1122by using the ssh protocol:
1123
1124@example
1125qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1126@end example
1127
1128Alternative syntax using properties:
1129
1130@example
1131qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1132@end example
1133
1134@var{ssh} is the protocol.
1135
1136@var{user} is the remote user.  If not specified, then the local
1137username is tried.
1138
1139@var{server} specifies the remote ssh server.  Any ssh server can be
1140used, but it must implement the sftp-server protocol.  Most Unix/Linux
1141systems should work without requiring any extra configuration.
1142
1143@var{port} is the port number on which sshd is listening.  By default
1144the standard ssh port (22) is used.
1145
1146@var{path} is the path to the disk image.
1147
1148The optional @var{host_key_check} parameter controls how the remote
1149host's key is checked.  The default is @code{yes} which means to use
1150the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
1151turns off known-hosts checking.  Or you can check that the host key
1152matches a specific fingerprint:
1153@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1154(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1155tools only use MD5 to print fingerprints).
1156
1157Currently authentication must be done using ssh-agent.  Other
1158authentication methods may be supported in future.
1159
1160Note: Many ssh servers do not support an @code{fsync}-style operation.
1161The ssh driver cannot guarantee that disk flush requests are
1162obeyed, and this causes a risk of disk corruption if the remote
1163server or network goes down during writes.  The driver will
1164print a warning when @code{fsync} is not supported:
1165
1166warning: ssh server @code{ssh.example.com:22} does not support fsync
1167
1168With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1169supported.
1170
1171@node pcsys_network
1172@section Network emulation
1173
1174QEMU can simulate several network cards (PCI or ISA cards on the PC
1175target) and can connect them to an arbitrary number of Virtual Local
1176Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1177VLAN. VLAN can be connected between separate instances of QEMU to
1178simulate large networks. For simpler usage, a non privileged user mode
1179network stack can replace the TAP device to have a basic network
1180connection.
1181
1182@subsection VLANs
1183
1184QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1185connection between several network devices. These devices can be for
1186example QEMU virtual Ethernet cards or virtual Host ethernet devices
1187(TAP devices).
1188
1189@subsection Using TAP network interfaces
1190
1191This is the standard way to connect QEMU to a real network. QEMU adds
1192a virtual network device on your host (called @code{tapN}), and you
1193can then configure it as if it was a real ethernet card.
1194
1195@subsubsection Linux host
1196
1197As an example, you can download the @file{linux-test-xxx.tar.gz}
1198archive and copy the script @file{qemu-ifup} in @file{/etc} and
1199configure properly @code{sudo} so that the command @code{ifconfig}
1200contained in @file{qemu-ifup} can be executed as root. You must verify
1201that your host kernel supports the TAP network interfaces: the
1202device @file{/dev/net/tun} must be present.
1203
1204See @ref{sec_invocation} to have examples of command lines using the
1205TAP network interfaces.
1206
1207@subsubsection Windows host
1208
1209There is a virtual ethernet driver for Windows 2000/XP systems, called
1210TAP-Win32. But it is not included in standard QEMU for Windows,
1211so you will need to get it separately. It is part of OpenVPN package,
1212so download OpenVPN from : @url{http://openvpn.net/}.
1213
1214@subsection Using the user mode network stack
1215
1216By using the option @option{-net user} (default configuration if no
1217@option{-net} option is specified), QEMU uses a completely user mode
1218network stack (you don't need root privilege to use the virtual
1219network). The virtual network configuration is the following:
1220
1221@example
1222
1223         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1224                           |          (10.0.2.2)
1225                           |
1226                           ---->  DNS server (10.0.2.3)
1227                           |
1228                           ---->  SMB server (10.0.2.4)
1229@end example
1230
1231The QEMU VM behaves as if it was behind a firewall which blocks all
1232incoming connections. You can use a DHCP client to automatically
1233configure the network in the QEMU VM. The DHCP server assign addresses
1234to the hosts starting from 10.0.2.15.
1235
1236In order to check that the user mode network is working, you can ping
1237the address 10.0.2.2 and verify that you got an address in the range
123810.0.2.x from the QEMU virtual DHCP server.
1239
1240Note that ICMP traffic in general does not work with user mode networking.
1241@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1242however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1243ping sockets to allow @code{ping} to the Internet. The host admin has to set
1244the ping_group_range in order to grant access to those sockets. To allow ping
1245for GID 100 (usually users group):
1246
1247@example
1248echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1249@end example
1250
1251When using the built-in TFTP server, the router is also the TFTP
1252server.
1253
1254When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1255connections can be redirected from the host to the guest. It allows for
1256example to redirect X11, telnet or SSH connections.
1257
1258@subsection Connecting VLANs between QEMU instances
1259
1260Using the @option{-net socket} option, it is possible to make VLANs
1261that span several QEMU instances. See @ref{sec_invocation} to have a
1262basic example.
1263
1264@node pcsys_other_devs
1265@section Other Devices
1266
1267@subsection Inter-VM Shared Memory device
1268
1269On Linux hosts, a shared memory device is available.  The basic syntax
1270is:
1271
1272@example
1273qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1274@end example
1275
1276where @var{hostmem} names a host memory backend.  For a POSIX shared
1277memory backend, use something like
1278
1279@example
1280-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
1281@end example
1282
1283If desired, interrupts can be sent between guest VMs accessing the same shared
1284memory region.  Interrupt support requires using a shared memory server and
1285using a chardev socket to connect to it.  The code for the shared memory server
1286is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
1287memory server is:
1288
1289@example
1290# First start the ivshmem server once and for all
1291ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
1292
1293# Then start your qemu instances with matching arguments
1294qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
1295                 -chardev socket,path=@var{path},id=@var{id}
1296@end example
1297
1298When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1299using the same server to communicate via interrupts.  Guests can read their
1300VM ID from a device register (see ivshmem-spec.txt).
1301
1302@subsubsection Migration with ivshmem
1303
1304With device property @option{master=on}, the guest will copy the shared
1305memory on migration to the destination host.  With @option{master=off},
1306the guest will not be able to migrate with the device attached.  In the
1307latter case, the device should be detached and then reattached after
1308migration using the PCI hotplug support.
1309
1310At most one of the devices sharing the same memory can be master.  The
1311master must complete migration before you plug back the other devices.
1312
1313@subsubsection ivshmem and hugepages
1314
1315Instead of specifying the <shm size> using POSIX shm, you may specify
1316a memory backend that has hugepage support:
1317
1318@example
1319qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1320                 -device ivshmem-plain,memdev=mb1
1321@end example
1322
1323ivshmem-server also supports hugepages mount points with the
1324@option{-m} memory path argument.
1325
1326@node direct_linux_boot
1327@section Direct Linux Boot
1328
1329This section explains how to launch a Linux kernel inside QEMU without
1330having to make a full bootable image. It is very useful for fast Linux
1331kernel testing.
1332
1333The syntax is:
1334@example
1335qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1336@end example
1337
1338Use @option{-kernel} to provide the Linux kernel image and
1339@option{-append} to give the kernel command line arguments. The
1340@option{-initrd} option can be used to provide an INITRD image.
1341
1342When using the direct Linux boot, a disk image for the first hard disk
1343@file{hda} is required because its boot sector is used to launch the
1344Linux kernel.
1345
1346If you do not need graphical output, you can disable it and redirect
1347the virtual serial port and the QEMU monitor to the console with the
1348@option{-nographic} option. The typical command line is:
1349@example
1350qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1351                 -append "root=/dev/hda console=ttyS0" -nographic
1352@end example
1353
1354Use @key{Ctrl-a c} to switch between the serial console and the
1355monitor (@pxref{pcsys_keys}).
1356
1357@node pcsys_usb
1358@section USB emulation
1359
1360QEMU emulates a PCI UHCI USB controller. You can virtually plug
1361virtual USB devices or real host USB devices (experimental, works only
1362on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
1363as necessary to connect multiple USB devices.
1364
1365@menu
1366* usb_devices::
1367* host_usb_devices::
1368@end menu
1369@node usb_devices
1370@subsection Connecting USB devices
1371
1372USB devices can be connected with the @option{-usbdevice} commandline option
1373or the @code{usb_add} monitor command.  Available devices are:
1374
1375@table @code
1376@item mouse
1377Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1378@item tablet
1379Pointer device that uses absolute coordinates (like a touchscreen).
1380This means QEMU is able to report the mouse position without having
1381to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1382@item disk:@var{file}
1383Mass storage device based on @var{file} (@pxref{disk_images})
1384@item host:@var{bus.addr}
1385Pass through the host device identified by @var{bus.addr}
1386(Linux only)
1387@item host:@var{vendor_id:product_id}
1388Pass through the host device identified by @var{vendor_id:product_id}
1389(Linux only)
1390@item wacom-tablet
1391Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1392above but it can be used with the tslib library because in addition to touch
1393coordinates it reports touch pressure.
1394@item keyboard
1395Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1396@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1397Serial converter. This emulates an FTDI FT232BM chip connected to host character
1398device @var{dev}. The available character devices are the same as for the
1399@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1400used to override the default 0403:6001. For instance,
1401@example
1402usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1403@end example
1404will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1405serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1406@item braille
1407Braille device.  This will use BrlAPI to display the braille output on a real
1408or fake device.
1409@item net:@var{options}
1410Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1411specifies NIC options as with @code{-net nic,}@var{options} (see description).
1412For instance, user-mode networking can be used with
1413@example
1414qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1415@end example
1416Currently this cannot be used in machines that support PCI NICs.
1417@item bt[:@var{hci-type}]
1418Bluetooth dongle whose type is specified in the same format as with
1419the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1420no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1421This USB device implements the USB Transport Layer of HCI.  Example
1422usage:
1423@example
1424@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
1425@end example
1426@end table
1427
1428@node host_usb_devices
1429@subsection Using host USB devices on a Linux host
1430
1431WARNING: this is an experimental feature. QEMU will slow down when
1432using it. USB devices requiring real time streaming (i.e. USB Video
1433Cameras) are not supported yet.
1434
1435@enumerate
1436@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1437is actually using the USB device. A simple way to do that is simply to
1438disable the corresponding kernel module by renaming it from @file{mydriver.o}
1439to @file{mydriver.o.disabled}.
1440
1441@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1442@example
1443ls /proc/bus/usb
1444001  devices  drivers
1445@end example
1446
1447@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1448@example
1449chown -R myuid /proc/bus/usb
1450@end example
1451
1452@item Launch QEMU and do in the monitor:
1453@example
1454info usbhost
1455  Device 1.2, speed 480 Mb/s
1456    Class 00: USB device 1234:5678, USB DISK
1457@end example
1458You should see the list of the devices you can use (Never try to use
1459hubs, it won't work).
1460
1461@item Add the device in QEMU by using:
1462@example
1463usb_add host:1234:5678
1464@end example
1465
1466Normally the guest OS should report that a new USB device is
1467plugged. You can use the option @option{-usbdevice} to do the same.
1468
1469@item Now you can try to use the host USB device in QEMU.
1470
1471@end enumerate
1472
1473When relaunching QEMU, you may have to unplug and plug again the USB
1474device to make it work again (this is a bug).
1475
1476@node vnc_security
1477@section VNC security
1478
1479The VNC server capability provides access to the graphical console
1480of the guest VM across the network. This has a number of security
1481considerations depending on the deployment scenarios.
1482
1483@menu
1484* vnc_sec_none::
1485* vnc_sec_password::
1486* vnc_sec_certificate::
1487* vnc_sec_certificate_verify::
1488* vnc_sec_certificate_pw::
1489* vnc_sec_sasl::
1490* vnc_sec_certificate_sasl::
1491* vnc_generate_cert::
1492* vnc_setup_sasl::
1493@end menu
1494@node vnc_sec_none
1495@subsection Without passwords
1496
1497The simplest VNC server setup does not include any form of authentication.
1498For this setup it is recommended to restrict it to listen on a UNIX domain
1499socket only. For example
1500
1501@example
1502qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1503@end example
1504
1505This ensures that only users on local box with read/write access to that
1506path can access the VNC server. To securely access the VNC server from a
1507remote machine, a combination of netcat+ssh can be used to provide a secure
1508tunnel.
1509
1510@node vnc_sec_password
1511@subsection With passwords
1512
1513The VNC protocol has limited support for password based authentication. Since
1514the protocol limits passwords to 8 characters it should not be considered
1515to provide high security. The password can be fairly easily brute-forced by
1516a client making repeat connections. For this reason, a VNC server using password
1517authentication should be restricted to only listen on the loopback interface
1518or UNIX domain sockets. Password authentication is not supported when operating
1519in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1520authentication is requested with the @code{password} option, and then once QEMU
1521is running the password is set with the monitor. Until the monitor is used to
1522set the password all clients will be rejected.
1523
1524@example
1525qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1526(qemu) change vnc password
1527Password: ********
1528(qemu)
1529@end example
1530
1531@node vnc_sec_certificate
1532@subsection With x509 certificates
1533
1534The QEMU VNC server also implements the VeNCrypt extension allowing use of
1535TLS for encryption of the session, and x509 certificates for authentication.
1536The use of x509 certificates is strongly recommended, because TLS on its
1537own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1538support provides a secure session, but no authentication. This allows any
1539client to connect, and provides an encrypted session.
1540
1541@example
1542qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1543@end example
1544
1545In the above example @code{/etc/pki/qemu} should contain at least three files,
1546@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1547users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1548NB the @code{server-key.pem} file should be protected with file mode 0600 to
1549only be readable by the user owning it.
1550
1551@node vnc_sec_certificate_verify
1552@subsection With x509 certificates and client verification
1553
1554Certificates can also provide a means to authenticate the client connecting.
1555The server will request that the client provide a certificate, which it will
1556then validate against the CA certificate. This is a good choice if deploying
1557in an environment with a private internal certificate authority.
1558
1559@example
1560qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1561@end example
1562
1563
1564@node vnc_sec_certificate_pw
1565@subsection With x509 certificates, client verification and passwords
1566
1567Finally, the previous method can be combined with VNC password authentication
1568to provide two layers of authentication for clients.
1569
1570@example
1571qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1572(qemu) change vnc password
1573Password: ********
1574(qemu)
1575@end example
1576
1577
1578@node vnc_sec_sasl
1579@subsection With SASL authentication
1580
1581The SASL authentication method is a VNC extension, that provides an
1582easily extendable, pluggable authentication method. This allows for
1583integration with a wide range of authentication mechanisms, such as
1584PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1585The strength of the authentication depends on the exact mechanism
1586configured. If the chosen mechanism also provides a SSF layer, then
1587it will encrypt the datastream as well.
1588
1589Refer to the later docs on how to choose the exact SASL mechanism
1590used for authentication, but assuming use of one supporting SSF,
1591then QEMU can be launched with:
1592
1593@example
1594qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1595@end example
1596
1597@node vnc_sec_certificate_sasl
1598@subsection With x509 certificates and SASL authentication
1599
1600If the desired SASL authentication mechanism does not supported
1601SSF layers, then it is strongly advised to run it in combination
1602with TLS and x509 certificates. This provides securely encrypted
1603data stream, avoiding risk of compromising of the security
1604credentials. This can be enabled, by combining the 'sasl' option
1605with the aforementioned TLS + x509 options:
1606
1607@example
1608qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1609@end example
1610
1611
1612@node vnc_generate_cert
1613@subsection Generating certificates for VNC
1614
1615The GNU TLS packages provides a command called @code{certtool} which can
1616be used to generate certificates and keys in PEM format. At a minimum it
1617is necessary to setup a certificate authority, and issue certificates to
1618each server. If using certificates for authentication, then each client
1619will also need to be issued a certificate. The recommendation is for the
1620server to keep its certificates in either @code{/etc/pki/qemu} or for
1621unprivileged users in @code{$HOME/.pki/qemu}.
1622
1623@menu
1624* vnc_generate_ca::
1625* vnc_generate_server::
1626* vnc_generate_client::
1627@end menu
1628@node vnc_generate_ca
1629@subsubsection Setup the Certificate Authority
1630
1631This step only needs to be performed once per organization / organizational
1632unit. First the CA needs a private key. This key must be kept VERY secret
1633and secure. If this key is compromised the entire trust chain of the certificates
1634issued with it is lost.
1635
1636@example
1637# certtool --generate-privkey > ca-key.pem
1638@end example
1639
1640A CA needs to have a public certificate. For simplicity it can be a self-signed
1641certificate, or one issue by a commercial certificate issuing authority. To
1642generate a self-signed certificate requires one core piece of information, the
1643name of the organization.
1644
1645@example
1646# cat > ca.info <<EOF
1647cn = Name of your organization
1648ca
1649cert_signing_key
1650EOF
1651# certtool --generate-self-signed \
1652           --load-privkey ca-key.pem
1653           --template ca.info \
1654           --outfile ca-cert.pem
1655@end example
1656
1657The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1658TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1659
1660@node vnc_generate_server
1661@subsubsection Issuing server certificates
1662
1663Each server (or host) needs to be issued with a key and certificate. When connecting
1664the certificate is sent to the client which validates it against the CA certificate.
1665The core piece of information for a server certificate is the hostname. This should
1666be the fully qualified hostname that the client will connect with, since the client
1667will typically also verify the hostname in the certificate. On the host holding the
1668secure CA private key:
1669
1670@example
1671# cat > server.info <<EOF
1672organization = Name  of your organization
1673cn = server.foo.example.com
1674tls_www_server
1675encryption_key
1676signing_key
1677EOF
1678# certtool --generate-privkey > server-key.pem
1679# certtool --generate-certificate \
1680           --load-ca-certificate ca-cert.pem \
1681           --load-ca-privkey ca-key.pem \
1682           --load-privkey server-key.pem \
1683           --template server.info \
1684           --outfile server-cert.pem
1685@end example
1686
1687The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1688to the server for which they were generated. The @code{server-key.pem} is security
1689sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1690
1691@node vnc_generate_client
1692@subsubsection Issuing client certificates
1693
1694If the QEMU VNC server is to use the @code{x509verify} option to validate client
1695certificates as its authentication mechanism, each client also needs to be issued
1696a certificate. The client certificate contains enough metadata to uniquely identify
1697the client, typically organization, state, city, building, etc. On the host holding
1698the secure CA private key:
1699
1700@example
1701# cat > client.info <<EOF
1702country = GB
1703state = London
1704locality = London
1705organization = Name of your organization
1706cn = client.foo.example.com
1707tls_www_client
1708encryption_key
1709signing_key
1710EOF
1711# certtool --generate-privkey > client-key.pem
1712# certtool --generate-certificate \
1713           --load-ca-certificate ca-cert.pem \
1714           --load-ca-privkey ca-key.pem \
1715           --load-privkey client-key.pem \
1716           --template client.info \
1717           --outfile client-cert.pem
1718@end example
1719
1720The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1721copied to the client for which they were generated.
1722
1723
1724@node vnc_setup_sasl
1725
1726@subsection Configuring SASL mechanisms
1727
1728The following documentation assumes use of the Cyrus SASL implementation on a
1729Linux host, but the principals should apply to any other SASL impl. When SASL
1730is enabled, the mechanism configuration will be loaded from system default
1731SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1732unprivileged user, an environment variable SASL_CONF_PATH can be used
1733to make it search alternate locations for the service config.
1734
1735The default configuration might contain
1736
1737@example
1738mech_list: digest-md5
1739sasldb_path: /etc/qemu/passwd.db
1740@end example
1741
1742This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1743Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1744in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1745command. While this mechanism is easy to configure and use, it is not
1746considered secure by modern standards, so only suitable for developers /
1747ad-hoc testing.
1748
1749A more serious deployment might use Kerberos, which is done with the 'gssapi'
1750mechanism
1751
1752@example
1753mech_list: gssapi
1754keytab: /etc/qemu/krb5.tab
1755@end example
1756
1757For this to work the administrator of your KDC must generate a Kerberos
1758principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1759replacing 'somehost.example.com' with the fully qualified host name of the
1760machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1761
1762Other configurations will be left as an exercise for the reader. It should
1763be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1764encryption. For all other mechanisms, VNC should always be configured to
1765use TLS and x509 certificates to protect security credentials from snooping.
1766
1767@node gdb_usage
1768@section GDB usage
1769
1770QEMU has a primitive support to work with gdb, so that you can do
1771'Ctrl-C' while the virtual machine is running and inspect its state.
1772
1773In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1774gdb connection:
1775@example
1776qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1777                    -append "root=/dev/hda"
1778Connected to host network interface: tun0
1779Waiting gdb connection on port 1234
1780@end example
1781
1782Then launch gdb on the 'vmlinux' executable:
1783@example
1784> gdb vmlinux
1785@end example
1786
1787In gdb, connect to QEMU:
1788@example
1789(gdb) target remote localhost:1234
1790@end example
1791
1792Then you can use gdb normally. For example, type 'c' to launch the kernel:
1793@example
1794(gdb) c
1795@end example
1796
1797Here are some useful tips in order to use gdb on system code:
1798
1799@enumerate
1800@item
1801Use @code{info reg} to display all the CPU registers.
1802@item
1803Use @code{x/10i $eip} to display the code at the PC position.
1804@item
1805Use @code{set architecture i8086} to dump 16 bit code. Then use
1806@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1807@end enumerate
1808
1809Advanced debugging options:
1810
1811The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1812@table @code
1813@item maintenance packet qqemu.sstepbits
1814
1815This will display the MASK bits used to control the single stepping IE:
1816@example
1817(gdb) maintenance packet qqemu.sstepbits
1818sending: "qqemu.sstepbits"
1819received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1820@end example
1821@item maintenance packet qqemu.sstep
1822
1823This will display the current value of the mask used when single stepping IE:
1824@example
1825(gdb) maintenance packet qqemu.sstep
1826sending: "qqemu.sstep"
1827received: "0x7"
1828@end example
1829@item maintenance packet Qqemu.sstep=HEX_VALUE
1830
1831This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1832@example
1833(gdb) maintenance packet Qqemu.sstep=0x5
1834sending: "qemu.sstep=0x5"
1835received: "OK"
1836@end example
1837@end table
1838
1839@node pcsys_os_specific
1840@section Target OS specific information
1841
1842@subsection Linux
1843
1844To have access to SVGA graphic modes under X11, use the @code{vesa} or
1845the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1846color depth in the guest and the host OS.
1847
1848When using a 2.6 guest Linux kernel, you should add the option
1849@code{clock=pit} on the kernel command line because the 2.6 Linux
1850kernels make very strict real time clock checks by default that QEMU
1851cannot simulate exactly.
1852
1853When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1854not activated because QEMU is slower with this patch. The QEMU
1855Accelerator Module is also much slower in this case. Earlier Fedora
1856Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1857patch by default. Newer kernels don't have it.
1858
1859@subsection Windows
1860
1861If you have a slow host, using Windows 95 is better as it gives the
1862best speed. Windows 2000 is also a good choice.
1863
1864@subsubsection SVGA graphic modes support
1865
1866QEMU emulates a Cirrus Logic GD5446 Video
1867card. All Windows versions starting from Windows 95 should recognize
1868and use this graphic card. For optimal performances, use 16 bit color
1869depth in the guest and the host OS.
1870
1871If you are using Windows XP as guest OS and if you want to use high
1872resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18731280x1024x16), then you should use the VESA VBE virtual graphic card
1874(option @option{-std-vga}).
1875
1876@subsubsection CPU usage reduction
1877
1878Windows 9x does not correctly use the CPU HLT
1879instruction. The result is that it takes host CPU cycles even when
1880idle. You can install the utility from
1881@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1882problem. Note that no such tool is needed for NT, 2000 or XP.
1883
1884@subsubsection Windows 2000 disk full problem
1885
1886Windows 2000 has a bug which gives a disk full problem during its
1887installation. When installing it, use the @option{-win2k-hack} QEMU
1888option to enable a specific workaround. After Windows 2000 is
1889installed, you no longer need this option (this option slows down the
1890IDE transfers).
1891
1892@subsubsection Windows 2000 shutdown
1893
1894Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1895can. It comes from the fact that Windows 2000 does not automatically
1896use the APM driver provided by the BIOS.
1897
1898In order to correct that, do the following (thanks to Struan
1899Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1900Add/Troubleshoot a device => Add a new device & Next => No, select the
1901hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1902(again) a few times. Now the driver is installed and Windows 2000 now
1903correctly instructs QEMU to shutdown at the appropriate moment.
1904
1905@subsubsection Share a directory between Unix and Windows
1906
1907See @ref{sec_invocation} about the help of the option
1908@option{'-netdev user,smb=...'}.
1909
1910@subsubsection Windows XP security problem
1911
1912Some releases of Windows XP install correctly but give a security
1913error when booting:
1914@example
1915A problem is preventing Windows from accurately checking the
1916license for this computer. Error code: 0x800703e6.
1917@end example
1918
1919The workaround is to install a service pack for XP after a boot in safe
1920mode. Then reboot, and the problem should go away. Since there is no
1921network while in safe mode, its recommended to download the full
1922installation of SP1 or SP2 and transfer that via an ISO or using the
1923vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1924
1925@subsection MS-DOS and FreeDOS
1926
1927@subsubsection CPU usage reduction
1928
1929DOS does not correctly use the CPU HLT instruction. The result is that
1930it takes host CPU cycles even when idle. You can install the utility
1931from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1932problem.
1933
1934@node QEMU System emulator for non PC targets
1935@chapter QEMU System emulator for non PC targets
1936
1937QEMU is a generic emulator and it emulates many non PC
1938machines. Most of the options are similar to the PC emulator. The
1939differences are mentioned in the following sections.
1940
1941@menu
1942* PowerPC System emulator::
1943* Sparc32 System emulator::
1944* Sparc64 System emulator::
1945* MIPS System emulator::
1946* ARM System emulator::
1947* ColdFire System emulator::
1948* Cris System emulator::
1949* Microblaze System emulator::
1950* SH4 System emulator::
1951* Xtensa System emulator::
1952@end menu
1953
1954@node PowerPC System emulator
1955@section PowerPC System emulator
1956@cindex system emulation (PowerPC)
1957
1958Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1959or PowerMac PowerPC system.
1960
1961QEMU emulates the following PowerMac peripherals:
1962
1963@itemize @minus
1964@item
1965UniNorth or Grackle PCI Bridge
1966@item
1967PCI VGA compatible card with VESA Bochs Extensions
1968@item
19692 PMAC IDE interfaces with hard disk and CD-ROM support
1970@item
1971NE2000 PCI adapters
1972@item
1973Non Volatile RAM
1974@item
1975VIA-CUDA with ADB keyboard and mouse.
1976@end itemize
1977
1978QEMU emulates the following PREP peripherals:
1979
1980@itemize @minus
1981@item
1982PCI Bridge
1983@item
1984PCI VGA compatible card with VESA Bochs Extensions
1985@item
19862 IDE interfaces with hard disk and CD-ROM support
1987@item
1988Floppy disk
1989@item
1990NE2000 network adapters
1991@item
1992Serial port
1993@item
1994PREP Non Volatile RAM
1995@item
1996PC compatible keyboard and mouse.
1997@end itemize
1998
1999QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2000@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2001
2002Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2003for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2004v2) portable firmware implementation. The goal is to implement a 100%
2005IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2006
2007@c man begin OPTIONS
2008
2009The following options are specific to the PowerPC emulation:
2010
2011@table @option
2012
2013@item -g @var{W}x@var{H}[x@var{DEPTH}]
2014
2015Set the initial VGA graphic mode. The default is 800x600x32.
2016
2017@item -prom-env @var{string}
2018
2019Set OpenBIOS variables in NVRAM, for example:
2020
2021@example
2022qemu-system-ppc -prom-env 'auto-boot?=false' \
2023 -prom-env 'boot-device=hd:2,\yaboot' \
2024 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2025@end example
2026
2027These variables are not used by Open Hack'Ware.
2028
2029@end table
2030
2031@c man end
2032
2033
2034More information is available at
2035@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2036
2037@node Sparc32 System emulator
2038@section Sparc32 System emulator
2039@cindex system emulation (Sparc32)
2040
2041Use the executable @file{qemu-system-sparc} to simulate the following
2042Sun4m architecture machines:
2043@itemize @minus
2044@item
2045SPARCstation 4
2046@item
2047SPARCstation 5
2048@item
2049SPARCstation 10
2050@item
2051SPARCstation 20
2052@item
2053SPARCserver 600MP
2054@item
2055SPARCstation LX
2056@item
2057SPARCstation Voyager
2058@item
2059SPARCclassic
2060@item
2061SPARCbook
2062@end itemize
2063
2064The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2065but Linux limits the number of usable CPUs to 4.
2066
2067QEMU emulates the following sun4m peripherals:
2068
2069@itemize @minus
2070@item
2071IOMMU
2072@item
2073TCX or cgthree Frame buffer
2074@item
2075Lance (Am7990) Ethernet
2076@item
2077Non Volatile RAM M48T02/M48T08
2078@item
2079Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2080and power/reset logic
2081@item
2082ESP SCSI controller with hard disk and CD-ROM support
2083@item
2084Floppy drive (not on SS-600MP)
2085@item
2086CS4231 sound device (only on SS-5, not working yet)
2087@end itemize
2088
2089The number of peripherals is fixed in the architecture.  Maximum
2090memory size depends on the machine type, for SS-5 it is 256MB and for
2091others 2047MB.
2092
2093Since version 0.8.2, QEMU uses OpenBIOS
2094@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2095firmware implementation. The goal is to implement a 100% IEEE
20961275-1994 (referred to as Open Firmware) compliant firmware.
2097
2098A sample Linux 2.6 series kernel and ram disk image are available on
2099the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2100most kernel versions work. Please note that currently older Solaris kernels
2101don't work probably due to interface issues between OpenBIOS and
2102Solaris.
2103
2104@c man begin OPTIONS
2105
2106The following options are specific to the Sparc32 emulation:
2107
2108@table @option
2109
2110@item -g @var{W}x@var{H}x[x@var{DEPTH}]
2111
2112Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2113option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2114of 1152x900x8 for people who wish to use OBP.
2115
2116@item -prom-env @var{string}
2117
2118Set OpenBIOS variables in NVRAM, for example:
2119
2120@example
2121qemu-system-sparc -prom-env 'auto-boot?=false' \
2122 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2123@end example
2124
2125@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2126
2127Set the emulated machine type. Default is SS-5.
2128
2129@end table
2130
2131@c man end
2132
2133@node Sparc64 System emulator
2134@section Sparc64 System emulator
2135@cindex system emulation (Sparc64)
2136
2137Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2138(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2139Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2140able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2141Sun4v and Niagara emulators are still a work in progress.
2142
2143QEMU emulates the following peripherals:
2144
2145@itemize @minus
2146@item
2147UltraSparc IIi APB PCI Bridge
2148@item
2149PCI VGA compatible card with VESA Bochs Extensions
2150@item
2151PS/2 mouse and keyboard
2152@item
2153Non Volatile RAM M48T59
2154@item
2155PC-compatible serial ports
2156@item
21572 PCI IDE interfaces with hard disk and CD-ROM support
2158@item
2159Floppy disk
2160@end itemize
2161
2162@c man begin OPTIONS
2163
2164The following options are specific to the Sparc64 emulation:
2165
2166@table @option
2167
2168@item -prom-env @var{string}
2169
2170Set OpenBIOS variables in NVRAM, for example:
2171
2172@example
2173qemu-system-sparc64 -prom-env 'auto-boot?=false'
2174@end example
2175
2176@item -M [sun4u|sun4v|Niagara]
2177
2178Set the emulated machine type. The default is sun4u.
2179
2180@end table
2181
2182@c man end
2183
2184@node MIPS System emulator
2185@section MIPS System emulator
2186@cindex system emulation (MIPS)
2187
2188Four executables cover simulation of 32 and 64-bit MIPS systems in
2189both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2190@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2191Five different machine types are emulated:
2192
2193@itemize @minus
2194@item
2195A generic ISA PC-like machine "mips"
2196@item
2197The MIPS Malta prototype board "malta"
2198@item
2199An ACER Pica "pica61". This machine needs the 64-bit emulator.
2200@item
2201MIPS emulator pseudo board "mipssim"
2202@item
2203A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2204@end itemize
2205
2206The generic emulation is supported by Debian 'Etch' and is able to
2207install Debian into a virtual disk image. The following devices are
2208emulated:
2209
2210@itemize @minus
2211@item
2212A range of MIPS CPUs, default is the 24Kf
2213@item
2214PC style serial port
2215@item
2216PC style IDE disk
2217@item
2218NE2000 network card
2219@end itemize
2220
2221The Malta emulation supports the following devices:
2222
2223@itemize @minus
2224@item
2225Core board with MIPS 24Kf CPU and Galileo system controller
2226@item
2227PIIX4 PCI/USB/SMbus controller
2228@item
2229The Multi-I/O chip's serial device
2230@item
2231PCI network cards (PCnet32 and others)
2232@item
2233Malta FPGA serial device
2234@item
2235Cirrus (default) or any other PCI VGA graphics card
2236@end itemize
2237
2238The ACER Pica emulation supports:
2239
2240@itemize @minus
2241@item
2242MIPS R4000 CPU
2243@item
2244PC-style IRQ and DMA controllers
2245@item
2246PC Keyboard
2247@item
2248IDE controller
2249@end itemize
2250
2251The mipssim pseudo board emulation provides an environment similar
2252to what the proprietary MIPS emulator uses for running Linux.
2253It supports:
2254
2255@itemize @minus
2256@item
2257A range of MIPS CPUs, default is the 24Kf
2258@item
2259PC style serial port
2260@item
2261MIPSnet network emulation
2262@end itemize
2263
2264The MIPS Magnum R4000 emulation supports:
2265
2266@itemize @minus
2267@item
2268MIPS R4000 CPU
2269@item
2270PC-style IRQ controller
2271@item
2272PC Keyboard
2273@item
2274SCSI controller
2275@item
2276G364 framebuffer
2277@end itemize
2278
2279
2280@node ARM System emulator
2281@section ARM System emulator
2282@cindex system emulation (ARM)
2283
2284Use the executable @file{qemu-system-arm} to simulate a ARM
2285machine. The ARM Integrator/CP board is emulated with the following
2286devices:
2287
2288@itemize @minus
2289@item
2290ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2291@item
2292Two PL011 UARTs
2293@item
2294SMC 91c111 Ethernet adapter
2295@item
2296PL110 LCD controller
2297@item
2298PL050 KMI with PS/2 keyboard and mouse.
2299@item
2300PL181 MultiMedia Card Interface with SD card.
2301@end itemize
2302
2303The ARM Versatile baseboard is emulated with the following devices:
2304
2305@itemize @minus
2306@item
2307ARM926E, ARM1136 or Cortex-A8 CPU
2308@item
2309PL190 Vectored Interrupt Controller
2310@item
2311Four PL011 UARTs
2312@item
2313SMC 91c111 Ethernet adapter
2314@item
2315PL110 LCD controller
2316@item
2317PL050 KMI with PS/2 keyboard and mouse.
2318@item
2319PCI host bridge.  Note the emulated PCI bridge only provides access to
2320PCI memory space.  It does not provide access to PCI IO space.
2321This means some devices (eg. ne2k_pci NIC) are not usable, and others
2322(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2323mapped control registers.
2324@item
2325PCI OHCI USB controller.
2326@item
2327LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2328@item
2329PL181 MultiMedia Card Interface with SD card.
2330@end itemize
2331
2332Several variants of the ARM RealView baseboard are emulated,
2333including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2334bootloader, only certain Linux kernel configurations work out
2335of the box on these boards.
2336
2337Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2338enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2339should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2340disabled and expect 1024M RAM.
2341
2342The following devices are emulated:
2343
2344@itemize @minus
2345@item
2346ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2347@item
2348ARM AMBA Generic/Distributed Interrupt Controller
2349@item
2350Four PL011 UARTs
2351@item
2352SMC 91c111 or SMSC LAN9118 Ethernet adapter
2353@item
2354PL110 LCD controller
2355@item
2356PL050 KMI with PS/2 keyboard and mouse
2357@item
2358PCI host bridge
2359@item
2360PCI OHCI USB controller
2361@item
2362LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2363@item
2364PL181 MultiMedia Card Interface with SD card.
2365@end itemize
2366
2367The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2368and "Terrier") emulation includes the following peripherals:
2369
2370@itemize @minus
2371@item
2372Intel PXA270 System-on-chip (ARM V5TE core)
2373@item
2374NAND Flash memory
2375@item
2376IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2377@item
2378On-chip OHCI USB controller
2379@item
2380On-chip LCD controller
2381@item
2382On-chip Real Time Clock
2383@item
2384TI ADS7846 touchscreen controller on SSP bus
2385@item
2386Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2387@item
2388GPIO-connected keyboard controller and LEDs
2389@item
2390Secure Digital card connected to PXA MMC/SD host
2391@item
2392Three on-chip UARTs
2393@item
2394WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2395@end itemize
2396
2397The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2398following elements:
2399
2400@itemize @minus
2401@item
2402Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2403@item
2404ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2405@item
2406On-chip LCD controller
2407@item
2408On-chip Real Time Clock
2409@item
2410TI TSC2102i touchscreen controller / analog-digital converter / Audio
2411CODEC, connected through MicroWire and I@math{^2}S busses
2412@item
2413GPIO-connected matrix keypad
2414@item
2415Secure Digital card connected to OMAP MMC/SD host
2416@item
2417Three on-chip UARTs
2418@end itemize
2419
2420Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2421emulation supports the following elements:
2422
2423@itemize @minus
2424@item
2425Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2426@item
2427RAM and non-volatile OneNAND Flash memories
2428@item
2429Display connected to EPSON remote framebuffer chip and OMAP on-chip
2430display controller and a LS041y3 MIPI DBI-C controller
2431@item
2432TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2433driven through SPI bus
2434@item
2435National Semiconductor LM8323-controlled qwerty keyboard driven
2436through I@math{^2}C bus
2437@item
2438Secure Digital card connected to OMAP MMC/SD host
2439@item
2440Three OMAP on-chip UARTs and on-chip STI debugging console
2441@item
2442A Bluetooth(R) transceiver and HCI connected to an UART
2443@item
2444Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2445TUSB6010 chip - only USB host mode is supported
2446@item
2447TI TMP105 temperature sensor driven through I@math{^2}C bus
2448@item
2449TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2450@item
2451Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2452through CBUS
2453@end itemize
2454
2455The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2456devices:
2457
2458@itemize @minus
2459@item
2460Cortex-M3 CPU core.
2461@item
246264k Flash and 8k SRAM.
2463@item
2464Timers, UARTs, ADC and I@math{^2}C interface.
2465@item
2466OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2467@end itemize
2468
2469The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2470devices:
2471
2472@itemize @minus
2473@item
2474Cortex-M3 CPU core.
2475@item
2476256k Flash and 64k SRAM.
2477@item
2478Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2479@item
2480OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2481@end itemize
2482
2483The Freecom MusicPal internet radio emulation includes the following
2484elements:
2485
2486@itemize @minus
2487@item
2488Marvell MV88W8618 ARM core.
2489@item
249032 MB RAM, 256 KB SRAM, 8 MB flash.
2491@item
2492Up to 2 16550 UARTs
2493@item
2494MV88W8xx8 Ethernet controller
2495@item
2496MV88W8618 audio controller, WM8750 CODEC and mixer
2497@item
2498128×64 display with brightness control
2499@item
25002 buttons, 2 navigation wheels with button function
2501@end itemize
2502
2503The Siemens SX1 models v1 and v2 (default) basic emulation.
2504The emulation includes the following elements:
2505
2506@itemize @minus
2507@item
2508Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2509@item
2510ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2511V1
25121 Flash of 16MB and 1 Flash of 8MB
2513V2
25141 Flash of 32MB
2515@item
2516On-chip LCD controller
2517@item
2518On-chip Real Time Clock
2519@item
2520Secure Digital card connected to OMAP MMC/SD host
2521@item
2522Three on-chip UARTs
2523@end itemize
2524
2525A Linux 2.6 test image is available on the QEMU web site. More
2526information is available in the QEMU mailing-list archive.
2527
2528@c man begin OPTIONS
2529
2530The following options are specific to the ARM emulation:
2531
2532@table @option
2533
2534@item -semihosting
2535Enable semihosting syscall emulation.
2536
2537On ARM this implements the "Angel" interface.
2538
2539Note that this allows guest direct access to the host filesystem,
2540so should only be used with trusted guest OS.
2541
2542@end table
2543
2544@node ColdFire System emulator
2545@section ColdFire System emulator
2546@cindex system emulation (ColdFire)
2547@cindex system emulation (M68K)
2548
2549Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2550The emulator is able to boot a uClinux kernel.
2551
2552The M5208EVB emulation includes the following devices:
2553
2554@itemize @minus
2555@item
2556MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2557@item
2558Three Two on-chip UARTs.
2559@item
2560Fast Ethernet Controller (FEC)
2561@end itemize
2562
2563The AN5206 emulation includes the following devices:
2564
2565@itemize @minus
2566@item
2567MCF5206 ColdFire V2 Microprocessor.
2568@item
2569Two on-chip UARTs.
2570@end itemize
2571
2572@c man begin OPTIONS
2573
2574The following options are specific to the ColdFire emulation:
2575
2576@table @option
2577
2578@item -semihosting
2579Enable semihosting syscall emulation.
2580
2581On M68K this implements the "ColdFire GDB" interface used by libgloss.
2582
2583Note that this allows guest direct access to the host filesystem,
2584so should only be used with trusted guest OS.
2585
2586@end table
2587
2588@node Cris System emulator
2589@section Cris System emulator
2590@cindex system emulation (Cris)
2591
2592TODO
2593
2594@node Microblaze System emulator
2595@section Microblaze System emulator
2596@cindex system emulation (Microblaze)
2597
2598TODO
2599
2600@node SH4 System emulator
2601@section SH4 System emulator
2602@cindex system emulation (SH4)
2603
2604TODO
2605
2606@node Xtensa System emulator
2607@section Xtensa System emulator
2608@cindex system emulation (Xtensa)
2609
2610Two executables cover simulation of both Xtensa endian options,
2611@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2612Two different machine types are emulated:
2613
2614@itemize @minus
2615@item
2616Xtensa emulator pseudo board "sim"
2617@item
2618Avnet LX60/LX110/LX200 board
2619@end itemize
2620
2621The sim pseudo board emulation provides an environment similar
2622to one provided by the proprietary Tensilica ISS.
2623It supports:
2624
2625@itemize @minus
2626@item
2627A range of Xtensa CPUs, default is the DC232B
2628@item
2629Console and filesystem access via semihosting calls
2630@end itemize
2631
2632The Avnet LX60/LX110/LX200 emulation supports:
2633
2634@itemize @minus
2635@item
2636A range of Xtensa CPUs, default is the DC232B
2637@item
263816550 UART
2639@item
2640OpenCores 10/100 Mbps Ethernet MAC
2641@end itemize
2642
2643@c man begin OPTIONS
2644
2645The following options are specific to the Xtensa emulation:
2646
2647@table @option
2648
2649@item -semihosting
2650Enable semihosting syscall emulation.
2651
2652Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2653Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2654
2655Note that this allows guest direct access to the host filesystem,
2656so should only be used with trusted guest OS.
2657
2658@end table
2659@node QEMU User space emulator
2660@chapter QEMU User space emulator
2661
2662@menu
2663* Supported Operating Systems ::
2664* Features::
2665* Linux User space emulator::
2666* BSD User space emulator ::
2667@end menu
2668
2669@node Supported Operating Systems
2670@section Supported Operating Systems
2671
2672The following OS are supported in user space emulation:
2673
2674@itemize @minus
2675@item
2676Linux (referred as qemu-linux-user)
2677@item
2678BSD (referred as qemu-bsd-user)
2679@end itemize
2680
2681@node Features
2682@section Features
2683
2684QEMU user space emulation has the following notable features:
2685
2686@table @strong
2687@item System call translation:
2688QEMU includes a generic system call translator.  This means that
2689the parameters of the system calls can be converted to fix
2690endianness and 32/64-bit mismatches between hosts and targets.
2691IOCTLs can be converted too.
2692
2693@item POSIX signal handling:
2694QEMU can redirect to the running program all signals coming from
2695the host (such as @code{SIGALRM}), as well as synthesize signals from
2696virtual CPU exceptions (for example @code{SIGFPE} when the program
2697executes a division by zero).
2698
2699QEMU relies on the host kernel to emulate most signal system
2700calls, for example to emulate the signal mask.  On Linux, QEMU
2701supports both normal and real-time signals.
2702
2703@item Threading:
2704On Linux, QEMU can emulate the @code{clone} syscall and create a real
2705host thread (with a separate virtual CPU) for each emulated thread.
2706Note that not all targets currently emulate atomic operations correctly.
2707x86 and ARM use a global lock in order to preserve their semantics.
2708@end table
2709
2710QEMU was conceived so that ultimately it can emulate itself. Although
2711it is not very useful, it is an important test to show the power of the
2712emulator.
2713
2714@node Linux User space emulator
2715@section Linux User space emulator
2716
2717@menu
2718* Quick Start::
2719* Wine launch::
2720* Command line options::
2721* Other binaries::
2722@end menu
2723
2724@node Quick Start
2725@subsection Quick Start
2726
2727In order to launch a Linux process, QEMU needs the process executable
2728itself and all the target (x86) dynamic libraries used by it.
2729
2730@itemize
2731
2732@item On x86, you can just try to launch any process by using the native
2733libraries:
2734
2735@example
2736qemu-i386 -L / /bin/ls
2737@end example
2738
2739@code{-L /} tells that the x86 dynamic linker must be searched with a
2740@file{/} prefix.
2741
2742@item Since QEMU is also a linux process, you can launch QEMU with
2743QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2744
2745@example
2746qemu-i386 -L / qemu-i386 -L / /bin/ls
2747@end example
2748
2749@item On non x86 CPUs, you need first to download at least an x86 glibc
2750(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2751@code{LD_LIBRARY_PATH} is not set:
2752
2753@example
2754unset LD_LIBRARY_PATH
2755@end example
2756
2757Then you can launch the precompiled @file{ls} x86 executable:
2758
2759@example
2760qemu-i386 tests/i386/ls
2761@end example
2762You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2763QEMU is automatically launched by the Linux kernel when you try to
2764launch x86 executables. It requires the @code{binfmt_misc} module in the
2765Linux kernel.
2766
2767@item The x86 version of QEMU is also included. You can try weird things such as:
2768@example
2769qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2770          /usr/local/qemu-i386/bin/ls-i386
2771@end example
2772
2773@end itemize
2774
2775@node Wine launch
2776@subsection Wine launch
2777
2778@itemize
2779
2780@item Ensure that you have a working QEMU with the x86 glibc
2781distribution (see previous section). In order to verify it, you must be
2782able to do:
2783
2784@example
2785qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2786@end example
2787
2788@item Download the binary x86 Wine install
2789(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2790
2791@item Configure Wine on your account. Look at the provided script
2792@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2793@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2794
2795@item Then you can try the example @file{putty.exe}:
2796
2797@example
2798qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2799          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2800@end example
2801
2802@end itemize
2803
2804@node Command line options
2805@subsection Command line options
2806
2807@example
2808@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2809@end example
2810
2811@table @option
2812@item -h
2813Print the help
2814@item -L path
2815Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2816@item -s size
2817Set the x86 stack size in bytes (default=524288)
2818@item -cpu model
2819Select CPU model (-cpu help for list and additional feature selection)
2820@item -E @var{var}=@var{value}
2821Set environment @var{var} to @var{value}.
2822@item -U @var{var}
2823Remove @var{var} from the environment.
2824@item -B offset
2825Offset guest address by the specified number of bytes.  This is useful when
2826the address region required by guest applications is reserved on the host.
2827This option is currently only supported on some hosts.
2828@item -R size
2829Pre-allocate a guest virtual address space of the given size (in bytes).
2830"G", "M", and "k" suffixes may be used when specifying the size.
2831@end table
2832
2833Debug options:
2834
2835@table @option
2836@item -d item1,...
2837Activate logging of the specified items (use '-d help' for a list of log items)
2838@item -p pagesize
2839Act as if the host page size was 'pagesize' bytes
2840@item -g port
2841Wait gdb connection to port
2842@item -singlestep
2843Run the emulation in single step mode.
2844@end table
2845
2846Environment variables:
2847
2848@table @env
2849@item QEMU_STRACE
2850Print system calls and arguments similar to the 'strace' program
2851(NOTE: the actual 'strace' program will not work because the user
2852space emulator hasn't implemented ptrace).  At the moment this is
2853incomplete.  All system calls that don't have a specific argument
2854format are printed with information for six arguments.  Many
2855flag-style arguments don't have decoders and will show up as numbers.
2856@end table
2857
2858@node Other binaries
2859@subsection Other binaries
2860
2861@cindex user mode (Alpha)
2862@command{qemu-alpha} TODO.
2863
2864@cindex user mode (ARM)
2865@command{qemu-armeb} TODO.
2866
2867@cindex user mode (ARM)
2868@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2869binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2870configurations), and arm-uclinux bFLT format binaries.
2871
2872@cindex user mode (ColdFire)
2873@cindex user mode (M68K)
2874@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2875(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2876coldfire uClinux bFLT format binaries.
2877
2878The binary format is detected automatically.
2879
2880@cindex user mode (Cris)
2881@command{qemu-cris} TODO.
2882
2883@cindex user mode (i386)
2884@command{qemu-i386} TODO.
2885@command{qemu-x86_64} TODO.
2886
2887@cindex user mode (Microblaze)
2888@command{qemu-microblaze} TODO.
2889
2890@cindex user mode (MIPS)
2891@command{qemu-mips} TODO.
2892@command{qemu-mipsel} TODO.
2893
2894@cindex user mode (PowerPC)
2895@command{qemu-ppc64abi32} TODO.
2896@command{qemu-ppc64} TODO.
2897@command{qemu-ppc} TODO.
2898
2899@cindex user mode (SH4)
2900@command{qemu-sh4eb} TODO.
2901@command{qemu-sh4} TODO.
2902
2903@cindex user mode (SPARC)
2904@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2905
2906@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2907(Sparc64 CPU, 32 bit ABI).
2908
2909@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2910SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2911
2912@node BSD User space emulator
2913@section BSD User space emulator
2914
2915@menu
2916* BSD Status::
2917* BSD Quick Start::
2918* BSD Command line options::
2919@end menu
2920
2921@node BSD Status
2922@subsection BSD Status
2923
2924@itemize @minus
2925@item
2926target Sparc64 on Sparc64: Some trivial programs work.
2927@end itemize
2928
2929@node BSD Quick Start
2930@subsection Quick Start
2931
2932In order to launch a BSD process, QEMU needs the process executable
2933itself and all the target dynamic libraries used by it.
2934
2935@itemize
2936
2937@item On Sparc64, you can just try to launch any process by using the native
2938libraries:
2939
2940@example
2941qemu-sparc64 /bin/ls
2942@end example
2943
2944@end itemize
2945
2946@node BSD Command line options
2947@subsection Command line options
2948
2949@example
2950@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2951@end example
2952
2953@table @option
2954@item -h
2955Print the help
2956@item -L path
2957Set the library root path (default=/)
2958@item -s size
2959Set the stack size in bytes (default=524288)
2960@item -ignore-environment
2961Start with an empty environment. Without this option,
2962the initial environment is a copy of the caller's environment.
2963@item -E @var{var}=@var{value}
2964Set environment @var{var} to @var{value}.
2965@item -U @var{var}
2966Remove @var{var} from the environment.
2967@item -bsd type
2968Set the type of the emulated BSD Operating system. Valid values are
2969FreeBSD, NetBSD and OpenBSD (default).
2970@end table
2971
2972Debug options:
2973
2974@table @option
2975@item -d item1,...
2976Activate logging of the specified items (use '-d help' for a list of log items)
2977@item -p pagesize
2978Act as if the host page size was 'pagesize' bytes
2979@item -singlestep
2980Run the emulation in single step mode.
2981@end table
2982
2983
2984@include qemu-tech.texi
2985
2986@node License
2987@appendix License
2988
2989QEMU is a trademark of Fabrice Bellard.
2990
2991QEMU is released under the GNU General Public License (TODO: add link).
2992Parts of QEMU have specific licenses, see file LICENSE.
2993
2994TODO (refer to file LICENSE, include it, include the GPL?)
2995
2996@node Index
2997@appendix Index
2998@menu
2999* Concept Index::
3000* Function Index::
3001* Keystroke Index::
3002* Program Index::
3003* Data Type Index::
3004* Variable Index::
3005@end menu
3006
3007@node Concept Index
3008@section Concept Index
3009This is the main index. Should we combine all keywords in one index? TODO
3010@printindex cp
3011
3012@node Function Index
3013@section Function Index
3014This index could be used for command line options and monitor functions.
3015@printindex fn
3016
3017@node Keystroke Index
3018@section Keystroke Index
3019
3020This is a list of all keystrokes which have a special function
3021in system emulation.
3022
3023@printindex ky
3024
3025@node Program Index
3026@section Program Index
3027@printindex pg
3028
3029@node Data Type Index
3030@section Data Type Index
3031
3032This index could be used for qdev device names and options.
3033
3034@printindex tp
3035
3036@node Variable Index
3037@section Variable Index
3038@printindex vr
3039
3040@bye
3041