qemu/exec.c
<<
>>
Prefs
   1/*
   2 *  Virtual page mapping
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22#include "qapi/error.h"
  23
  24#include "qemu/cutils.h"
  25#include "cpu.h"
  26#include "exec/exec-all.h"
  27#include "exec/target_page.h"
  28#include "tcg.h"
  29#include "hw/qdev-core.h"
  30#include "hw/qdev-properties.h"
  31#if !defined(CONFIG_USER_ONLY)
  32#include "hw/boards.h"
  33#include "hw/xen/xen.h"
  34#endif
  35#include "sysemu/kvm.h"
  36#include "sysemu/sysemu.h"
  37#include "sysemu/tcg.h"
  38#include "qemu/timer.h"
  39#include "qemu/config-file.h"
  40#include "qemu/error-report.h"
  41#include "qemu/qemu-print.h"
  42#if defined(CONFIG_USER_ONLY)
  43#include "qemu.h"
  44#else /* !CONFIG_USER_ONLY */
  45#include "hw/hw.h"
  46#include "exec/memory.h"
  47#include "exec/ioport.h"
  48#include "sysemu/dma.h"
  49#include "sysemu/numa.h"
  50#include "sysemu/hw_accel.h"
  51#include "exec/address-spaces.h"
  52#include "sysemu/xen-mapcache.h"
  53#include "trace-root.h"
  54
  55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  56#include <linux/falloc.h>
  57#endif
  58
  59#endif
  60#include "qemu/rcu_queue.h"
  61#include "qemu/main-loop.h"
  62#include "translate-all.h"
  63#include "sysemu/replay.h"
  64
  65#include "exec/memory-internal.h"
  66#include "exec/ram_addr.h"
  67#include "exec/log.h"
  68
  69#include "migration/vmstate.h"
  70
  71#include "qemu/range.h"
  72#ifndef _WIN32
  73#include "qemu/mmap-alloc.h"
  74#endif
  75
  76#include "monitor/monitor.h"
  77
  78//#define DEBUG_SUBPAGE
  79
  80#if !defined(CONFIG_USER_ONLY)
  81/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  82 * are protected by the ramlist lock.
  83 */
  84RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  85
  86static MemoryRegion *system_memory;
  87static MemoryRegion *system_io;
  88
  89AddressSpace address_space_io;
  90AddressSpace address_space_memory;
  91
  92MemoryRegion io_mem_rom, io_mem_notdirty;
  93static MemoryRegion io_mem_unassigned;
  94#endif
  95
  96#ifdef TARGET_PAGE_BITS_VARY
  97int target_page_bits;
  98bool target_page_bits_decided;
  99#endif
 100
 101CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
 102
 103/* current CPU in the current thread. It is only valid inside
 104   cpu_exec() */
 105__thread CPUState *current_cpu;
 106/* 0 = Do not count executed instructions.
 107   1 = Precise instruction counting.
 108   2 = Adaptive rate instruction counting.  */
 109int use_icount;
 110
 111uintptr_t qemu_host_page_size;
 112intptr_t qemu_host_page_mask;
 113
 114bool set_preferred_target_page_bits(int bits)
 115{
 116    /* The target page size is the lowest common denominator for all
 117     * the CPUs in the system, so we can only make it smaller, never
 118     * larger. And we can't make it smaller once we've committed to
 119     * a particular size.
 120     */
 121#ifdef TARGET_PAGE_BITS_VARY
 122    assert(bits >= TARGET_PAGE_BITS_MIN);
 123    if (target_page_bits == 0 || target_page_bits > bits) {
 124        if (target_page_bits_decided) {
 125            return false;
 126        }
 127        target_page_bits = bits;
 128    }
 129#endif
 130    return true;
 131}
 132
 133#if !defined(CONFIG_USER_ONLY)
 134
 135static void finalize_target_page_bits(void)
 136{
 137#ifdef TARGET_PAGE_BITS_VARY
 138    if (target_page_bits == 0) {
 139        target_page_bits = TARGET_PAGE_BITS_MIN;
 140    }
 141    target_page_bits_decided = true;
 142#endif
 143}
 144
 145typedef struct PhysPageEntry PhysPageEntry;
 146
 147struct PhysPageEntry {
 148    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 149    uint32_t skip : 6;
 150     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 151    uint32_t ptr : 26;
 152};
 153
 154#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 155
 156/* Size of the L2 (and L3, etc) page tables.  */
 157#define ADDR_SPACE_BITS 64
 158
 159#define P_L2_BITS 9
 160#define P_L2_SIZE (1 << P_L2_BITS)
 161
 162#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 163
 164typedef PhysPageEntry Node[P_L2_SIZE];
 165
 166typedef struct PhysPageMap {
 167    struct rcu_head rcu;
 168
 169    unsigned sections_nb;
 170    unsigned sections_nb_alloc;
 171    unsigned nodes_nb;
 172    unsigned nodes_nb_alloc;
 173    Node *nodes;
 174    MemoryRegionSection *sections;
 175} PhysPageMap;
 176
 177struct AddressSpaceDispatch {
 178    MemoryRegionSection *mru_section;
 179    /* This is a multi-level map on the physical address space.
 180     * The bottom level has pointers to MemoryRegionSections.
 181     */
 182    PhysPageEntry phys_map;
 183    PhysPageMap map;
 184};
 185
 186#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 187typedef struct subpage_t {
 188    MemoryRegion iomem;
 189    FlatView *fv;
 190    hwaddr base;
 191    uint16_t sub_section[];
 192} subpage_t;
 193
 194#define PHYS_SECTION_UNASSIGNED 0
 195#define PHYS_SECTION_NOTDIRTY 1
 196#define PHYS_SECTION_ROM 2
 197#define PHYS_SECTION_WATCH 3
 198
 199static void io_mem_init(void);
 200static void memory_map_init(void);
 201static void tcg_commit(MemoryListener *listener);
 202
 203static MemoryRegion io_mem_watch;
 204
 205/**
 206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 207 * @cpu: the CPU whose AddressSpace this is
 208 * @as: the AddressSpace itself
 209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 211 */
 212struct CPUAddressSpace {
 213    CPUState *cpu;
 214    AddressSpace *as;
 215    struct AddressSpaceDispatch *memory_dispatch;
 216    MemoryListener tcg_as_listener;
 217};
 218
 219struct DirtyBitmapSnapshot {
 220    ram_addr_t start;
 221    ram_addr_t end;
 222    unsigned long dirty[];
 223};
 224
 225#endif
 226
 227#if !defined(CONFIG_USER_ONLY)
 228
 229static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 230{
 231    static unsigned alloc_hint = 16;
 232    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 233        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
 234        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
 235        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 236        alloc_hint = map->nodes_nb_alloc;
 237    }
 238}
 239
 240static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 241{
 242    unsigned i;
 243    uint32_t ret;
 244    PhysPageEntry e;
 245    PhysPageEntry *p;
 246
 247    ret = map->nodes_nb++;
 248    p = map->nodes[ret];
 249    assert(ret != PHYS_MAP_NODE_NIL);
 250    assert(ret != map->nodes_nb_alloc);
 251
 252    e.skip = leaf ? 0 : 1;
 253    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 254    for (i = 0; i < P_L2_SIZE; ++i) {
 255        memcpy(&p[i], &e, sizeof(e));
 256    }
 257    return ret;
 258}
 259
 260static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 261                                hwaddr *index, hwaddr *nb, uint16_t leaf,
 262                                int level)
 263{
 264    PhysPageEntry *p;
 265    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 266
 267    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 268        lp->ptr = phys_map_node_alloc(map, level == 0);
 269    }
 270    p = map->nodes[lp->ptr];
 271    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 272
 273    while (*nb && lp < &p[P_L2_SIZE]) {
 274        if ((*index & (step - 1)) == 0 && *nb >= step) {
 275            lp->skip = 0;
 276            lp->ptr = leaf;
 277            *index += step;
 278            *nb -= step;
 279        } else {
 280            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 281        }
 282        ++lp;
 283    }
 284}
 285
 286static void phys_page_set(AddressSpaceDispatch *d,
 287                          hwaddr index, hwaddr nb,
 288                          uint16_t leaf)
 289{
 290    /* Wildly overreserve - it doesn't matter much. */
 291    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 292
 293    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 294}
 295
 296/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 297 * and update our entry so we can skip it and go directly to the destination.
 298 */
 299static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 300{
 301    unsigned valid_ptr = P_L2_SIZE;
 302    int valid = 0;
 303    PhysPageEntry *p;
 304    int i;
 305
 306    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 307        return;
 308    }
 309
 310    p = nodes[lp->ptr];
 311    for (i = 0; i < P_L2_SIZE; i++) {
 312        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 313            continue;
 314        }
 315
 316        valid_ptr = i;
 317        valid++;
 318        if (p[i].skip) {
 319            phys_page_compact(&p[i], nodes);
 320        }
 321    }
 322
 323    /* We can only compress if there's only one child. */
 324    if (valid != 1) {
 325        return;
 326    }
 327
 328    assert(valid_ptr < P_L2_SIZE);
 329
 330    /* Don't compress if it won't fit in the # of bits we have. */
 331    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
 332        return;
 333    }
 334
 335    lp->ptr = p[valid_ptr].ptr;
 336    if (!p[valid_ptr].skip) {
 337        /* If our only child is a leaf, make this a leaf. */
 338        /* By design, we should have made this node a leaf to begin with so we
 339         * should never reach here.
 340         * But since it's so simple to handle this, let's do it just in case we
 341         * change this rule.
 342         */
 343        lp->skip = 0;
 344    } else {
 345        lp->skip += p[valid_ptr].skip;
 346    }
 347}
 348
 349void address_space_dispatch_compact(AddressSpaceDispatch *d)
 350{
 351    if (d->phys_map.skip) {
 352        phys_page_compact(&d->phys_map, d->map.nodes);
 353    }
 354}
 355
 356static inline bool section_covers_addr(const MemoryRegionSection *section,
 357                                       hwaddr addr)
 358{
 359    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 360     * the section must cover the entire address space.
 361     */
 362    return int128_gethi(section->size) ||
 363           range_covers_byte(section->offset_within_address_space,
 364                             int128_getlo(section->size), addr);
 365}
 366
 367static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 368{
 369    PhysPageEntry lp = d->phys_map, *p;
 370    Node *nodes = d->map.nodes;
 371    MemoryRegionSection *sections = d->map.sections;
 372    hwaddr index = addr >> TARGET_PAGE_BITS;
 373    int i;
 374
 375    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 376        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 377            return &sections[PHYS_SECTION_UNASSIGNED];
 378        }
 379        p = nodes[lp.ptr];
 380        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 381    }
 382
 383    if (section_covers_addr(&sections[lp.ptr], addr)) {
 384        return &sections[lp.ptr];
 385    } else {
 386        return &sections[PHYS_SECTION_UNASSIGNED];
 387    }
 388}
 389
 390/* Called from RCU critical section */
 391static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 392                                                        hwaddr addr,
 393                                                        bool resolve_subpage)
 394{
 395    MemoryRegionSection *section = atomic_read(&d->mru_section);
 396    subpage_t *subpage;
 397
 398    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 399        !section_covers_addr(section, addr)) {
 400        section = phys_page_find(d, addr);
 401        atomic_set(&d->mru_section, section);
 402    }
 403    if (resolve_subpage && section->mr->subpage) {
 404        subpage = container_of(section->mr, subpage_t, iomem);
 405        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 406    }
 407    return section;
 408}
 409
 410/* Called from RCU critical section */
 411static MemoryRegionSection *
 412address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 413                                 hwaddr *plen, bool resolve_subpage)
 414{
 415    MemoryRegionSection *section;
 416    MemoryRegion *mr;
 417    Int128 diff;
 418
 419    section = address_space_lookup_region(d, addr, resolve_subpage);
 420    /* Compute offset within MemoryRegionSection */
 421    addr -= section->offset_within_address_space;
 422
 423    /* Compute offset within MemoryRegion */
 424    *xlat = addr + section->offset_within_region;
 425
 426    mr = section->mr;
 427
 428    /* MMIO registers can be expected to perform full-width accesses based only
 429     * on their address, without considering adjacent registers that could
 430     * decode to completely different MemoryRegions.  When such registers
 431     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 432     * regions overlap wildly.  For this reason we cannot clamp the accesses
 433     * here.
 434     *
 435     * If the length is small (as is the case for address_space_ldl/stl),
 436     * everything works fine.  If the incoming length is large, however,
 437     * the caller really has to do the clamping through memory_access_size.
 438     */
 439    if (memory_region_is_ram(mr)) {
 440        diff = int128_sub(section->size, int128_make64(addr));
 441        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 442    }
 443    return section;
 444}
 445
 446/**
 447 * address_space_translate_iommu - translate an address through an IOMMU
 448 * memory region and then through the target address space.
 449 *
 450 * @iommu_mr: the IOMMU memory region that we start the translation from
 451 * @addr: the address to be translated through the MMU
 452 * @xlat: the translated address offset within the destination memory region.
 453 *        It cannot be %NULL.
 454 * @plen_out: valid read/write length of the translated address. It
 455 *            cannot be %NULL.
 456 * @page_mask_out: page mask for the translated address. This
 457 *            should only be meaningful for IOMMU translated
 458 *            addresses, since there may be huge pages that this bit
 459 *            would tell. It can be %NULL if we don't care about it.
 460 * @is_write: whether the translation operation is for write
 461 * @is_mmio: whether this can be MMIO, set true if it can
 462 * @target_as: the address space targeted by the IOMMU
 463 * @attrs: transaction attributes
 464 *
 465 * This function is called from RCU critical section.  It is the common
 466 * part of flatview_do_translate and address_space_translate_cached.
 467 */
 468static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 469                                                         hwaddr *xlat,
 470                                                         hwaddr *plen_out,
 471                                                         hwaddr *page_mask_out,
 472                                                         bool is_write,
 473                                                         bool is_mmio,
 474                                                         AddressSpace **target_as,
 475                                                         MemTxAttrs attrs)
 476{
 477    MemoryRegionSection *section;
 478    hwaddr page_mask = (hwaddr)-1;
 479
 480    do {
 481        hwaddr addr = *xlat;
 482        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 483        int iommu_idx = 0;
 484        IOMMUTLBEntry iotlb;
 485
 486        if (imrc->attrs_to_index) {
 487            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 488        }
 489
 490        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 491                                IOMMU_WO : IOMMU_RO, iommu_idx);
 492
 493        if (!(iotlb.perm & (1 << is_write))) {
 494            goto unassigned;
 495        }
 496
 497        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 498                | (addr & iotlb.addr_mask));
 499        page_mask &= iotlb.addr_mask;
 500        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 501        *target_as = iotlb.target_as;
 502
 503        section = address_space_translate_internal(
 504                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 505                plen_out, is_mmio);
 506
 507        iommu_mr = memory_region_get_iommu(section->mr);
 508    } while (unlikely(iommu_mr));
 509
 510    if (page_mask_out) {
 511        *page_mask_out = page_mask;
 512    }
 513    return *section;
 514
 515unassigned:
 516    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 517}
 518
 519/**
 520 * flatview_do_translate - translate an address in FlatView
 521 *
 522 * @fv: the flat view that we want to translate on
 523 * @addr: the address to be translated in above address space
 524 * @xlat: the translated address offset within memory region. It
 525 *        cannot be @NULL.
 526 * @plen_out: valid read/write length of the translated address. It
 527 *            can be @NULL when we don't care about it.
 528 * @page_mask_out: page mask for the translated address. This
 529 *            should only be meaningful for IOMMU translated
 530 *            addresses, since there may be huge pages that this bit
 531 *            would tell. It can be @NULL if we don't care about it.
 532 * @is_write: whether the translation operation is for write
 533 * @is_mmio: whether this can be MMIO, set true if it can
 534 * @target_as: the address space targeted by the IOMMU
 535 * @attrs: memory transaction attributes
 536 *
 537 * This function is called from RCU critical section
 538 */
 539static MemoryRegionSection flatview_do_translate(FlatView *fv,
 540                                                 hwaddr addr,
 541                                                 hwaddr *xlat,
 542                                                 hwaddr *plen_out,
 543                                                 hwaddr *page_mask_out,
 544                                                 bool is_write,
 545                                                 bool is_mmio,
 546                                                 AddressSpace **target_as,
 547                                                 MemTxAttrs attrs)
 548{
 549    MemoryRegionSection *section;
 550    IOMMUMemoryRegion *iommu_mr;
 551    hwaddr plen = (hwaddr)(-1);
 552
 553    if (!plen_out) {
 554        plen_out = &plen;
 555    }
 556
 557    section = address_space_translate_internal(
 558            flatview_to_dispatch(fv), addr, xlat,
 559            plen_out, is_mmio);
 560
 561    iommu_mr = memory_region_get_iommu(section->mr);
 562    if (unlikely(iommu_mr)) {
 563        return address_space_translate_iommu(iommu_mr, xlat,
 564                                             plen_out, page_mask_out,
 565                                             is_write, is_mmio,
 566                                             target_as, attrs);
 567    }
 568    if (page_mask_out) {
 569        /* Not behind an IOMMU, use default page size. */
 570        *page_mask_out = ~TARGET_PAGE_MASK;
 571    }
 572
 573    return *section;
 574}
 575
 576/* Called from RCU critical section */
 577IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 578                                            bool is_write, MemTxAttrs attrs)
 579{
 580    MemoryRegionSection section;
 581    hwaddr xlat, page_mask;
 582
 583    /*
 584     * This can never be MMIO, and we don't really care about plen,
 585     * but page mask.
 586     */
 587    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 588                                    NULL, &page_mask, is_write, false, &as,
 589                                    attrs);
 590
 591    /* Illegal translation */
 592    if (section.mr == &io_mem_unassigned) {
 593        goto iotlb_fail;
 594    }
 595
 596    /* Convert memory region offset into address space offset */
 597    xlat += section.offset_within_address_space -
 598        section.offset_within_region;
 599
 600    return (IOMMUTLBEntry) {
 601        .target_as = as,
 602        .iova = addr & ~page_mask,
 603        .translated_addr = xlat & ~page_mask,
 604        .addr_mask = page_mask,
 605        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 606        .perm = IOMMU_RW,
 607    };
 608
 609iotlb_fail:
 610    return (IOMMUTLBEntry) {0};
 611}
 612
 613/* Called from RCU critical section */
 614MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 615                                 hwaddr *plen, bool is_write,
 616                                 MemTxAttrs attrs)
 617{
 618    MemoryRegion *mr;
 619    MemoryRegionSection section;
 620    AddressSpace *as = NULL;
 621
 622    /* This can be MMIO, so setup MMIO bit. */
 623    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 624                                    is_write, true, &as, attrs);
 625    mr = section.mr;
 626
 627    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 628        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 629        *plen = MIN(page, *plen);
 630    }
 631
 632    return mr;
 633}
 634
 635typedef struct TCGIOMMUNotifier {
 636    IOMMUNotifier n;
 637    MemoryRegion *mr;
 638    CPUState *cpu;
 639    int iommu_idx;
 640    bool active;
 641} TCGIOMMUNotifier;
 642
 643static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 644{
 645    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 646
 647    if (!notifier->active) {
 648        return;
 649    }
 650    tlb_flush(notifier->cpu);
 651    notifier->active = false;
 652    /* We leave the notifier struct on the list to avoid reallocating it later.
 653     * Generally the number of IOMMUs a CPU deals with will be small.
 654     * In any case we can't unregister the iommu notifier from a notify
 655     * callback.
 656     */
 657}
 658
 659static void tcg_register_iommu_notifier(CPUState *cpu,
 660                                        IOMMUMemoryRegion *iommu_mr,
 661                                        int iommu_idx)
 662{
 663    /* Make sure this CPU has an IOMMU notifier registered for this
 664     * IOMMU/IOMMU index combination, so that we can flush its TLB
 665     * when the IOMMU tells us the mappings we've cached have changed.
 666     */
 667    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 668    TCGIOMMUNotifier *notifier;
 669    int i;
 670
 671    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 672        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 673        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 674            break;
 675        }
 676    }
 677    if (i == cpu->iommu_notifiers->len) {
 678        /* Not found, add a new entry at the end of the array */
 679        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 680        notifier = g_new0(TCGIOMMUNotifier, 1);
 681        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
 682
 683        notifier->mr = mr;
 684        notifier->iommu_idx = iommu_idx;
 685        notifier->cpu = cpu;
 686        /* Rather than trying to register interest in the specific part
 687         * of the iommu's address space that we've accessed and then
 688         * expand it later as subsequent accesses touch more of it, we
 689         * just register interest in the whole thing, on the assumption
 690         * that iommu reconfiguration will be rare.
 691         */
 692        iommu_notifier_init(&notifier->n,
 693                            tcg_iommu_unmap_notify,
 694                            IOMMU_NOTIFIER_UNMAP,
 695                            0,
 696                            HWADDR_MAX,
 697                            iommu_idx);
 698        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
 699    }
 700
 701    if (!notifier->active) {
 702        notifier->active = true;
 703    }
 704}
 705
 706static void tcg_iommu_free_notifier_list(CPUState *cpu)
 707{
 708    /* Destroy the CPU's notifier list */
 709    int i;
 710    TCGIOMMUNotifier *notifier;
 711
 712    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 713        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 714        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 715        g_free(notifier);
 716    }
 717    g_array_free(cpu->iommu_notifiers, true);
 718}
 719
 720/* Called from RCU critical section */
 721MemoryRegionSection *
 722address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 723                                  hwaddr *xlat, hwaddr *plen,
 724                                  MemTxAttrs attrs, int *prot)
 725{
 726    MemoryRegionSection *section;
 727    IOMMUMemoryRegion *iommu_mr;
 728    IOMMUMemoryRegionClass *imrc;
 729    IOMMUTLBEntry iotlb;
 730    int iommu_idx;
 731    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 732
 733    for (;;) {
 734        section = address_space_translate_internal(d, addr, &addr, plen, false);
 735
 736        iommu_mr = memory_region_get_iommu(section->mr);
 737        if (!iommu_mr) {
 738            break;
 739        }
 740
 741        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 742
 743        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 744        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 745        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 746         * doesn't short-cut its translation table walk.
 747         */
 748        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 749        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 750                | (addr & iotlb.addr_mask));
 751        /* Update the caller's prot bits to remove permissions the IOMMU
 752         * is giving us a failure response for. If we get down to no
 753         * permissions left at all we can give up now.
 754         */
 755        if (!(iotlb.perm & IOMMU_RO)) {
 756            *prot &= ~(PAGE_READ | PAGE_EXEC);
 757        }
 758        if (!(iotlb.perm & IOMMU_WO)) {
 759            *prot &= ~PAGE_WRITE;
 760        }
 761
 762        if (!*prot) {
 763            goto translate_fail;
 764        }
 765
 766        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 767    }
 768
 769    assert(!memory_region_is_iommu(section->mr));
 770    *xlat = addr;
 771    return section;
 772
 773translate_fail:
 774    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 775}
 776#endif
 777
 778#if !defined(CONFIG_USER_ONLY)
 779
 780static int cpu_common_post_load(void *opaque, int version_id)
 781{
 782    CPUState *cpu = opaque;
 783
 784    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 785       version_id is increased. */
 786    cpu->interrupt_request &= ~0x01;
 787    tlb_flush(cpu);
 788
 789    /* loadvm has just updated the content of RAM, bypassing the
 790     * usual mechanisms that ensure we flush TBs for writes to
 791     * memory we've translated code from. So we must flush all TBs,
 792     * which will now be stale.
 793     */
 794    tb_flush(cpu);
 795
 796    return 0;
 797}
 798
 799static int cpu_common_pre_load(void *opaque)
 800{
 801    CPUState *cpu = opaque;
 802
 803    cpu->exception_index = -1;
 804
 805    return 0;
 806}
 807
 808static bool cpu_common_exception_index_needed(void *opaque)
 809{
 810    CPUState *cpu = opaque;
 811
 812    return tcg_enabled() && cpu->exception_index != -1;
 813}
 814
 815static const VMStateDescription vmstate_cpu_common_exception_index = {
 816    .name = "cpu_common/exception_index",
 817    .version_id = 1,
 818    .minimum_version_id = 1,
 819    .needed = cpu_common_exception_index_needed,
 820    .fields = (VMStateField[]) {
 821        VMSTATE_INT32(exception_index, CPUState),
 822        VMSTATE_END_OF_LIST()
 823    }
 824};
 825
 826static bool cpu_common_crash_occurred_needed(void *opaque)
 827{
 828    CPUState *cpu = opaque;
 829
 830    return cpu->crash_occurred;
 831}
 832
 833static const VMStateDescription vmstate_cpu_common_crash_occurred = {
 834    .name = "cpu_common/crash_occurred",
 835    .version_id = 1,
 836    .minimum_version_id = 1,
 837    .needed = cpu_common_crash_occurred_needed,
 838    .fields = (VMStateField[]) {
 839        VMSTATE_BOOL(crash_occurred, CPUState),
 840        VMSTATE_END_OF_LIST()
 841    }
 842};
 843
 844const VMStateDescription vmstate_cpu_common = {
 845    .name = "cpu_common",
 846    .version_id = 1,
 847    .minimum_version_id = 1,
 848    .pre_load = cpu_common_pre_load,
 849    .post_load = cpu_common_post_load,
 850    .fields = (VMStateField[]) {
 851        VMSTATE_UINT32(halted, CPUState),
 852        VMSTATE_UINT32(interrupt_request, CPUState),
 853        VMSTATE_END_OF_LIST()
 854    },
 855    .subsections = (const VMStateDescription*[]) {
 856        &vmstate_cpu_common_exception_index,
 857        &vmstate_cpu_common_crash_occurred,
 858        NULL
 859    }
 860};
 861
 862#endif
 863
 864CPUState *qemu_get_cpu(int index)
 865{
 866    CPUState *cpu;
 867
 868    CPU_FOREACH(cpu) {
 869        if (cpu->cpu_index == index) {
 870            return cpu;
 871        }
 872    }
 873
 874    return NULL;
 875}
 876
 877#if !defined(CONFIG_USER_ONLY)
 878void cpu_address_space_init(CPUState *cpu, int asidx,
 879                            const char *prefix, MemoryRegion *mr)
 880{
 881    CPUAddressSpace *newas;
 882    AddressSpace *as = g_new0(AddressSpace, 1);
 883    char *as_name;
 884
 885    assert(mr);
 886    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 887    address_space_init(as, mr, as_name);
 888    g_free(as_name);
 889
 890    /* Target code should have set num_ases before calling us */
 891    assert(asidx < cpu->num_ases);
 892
 893    if (asidx == 0) {
 894        /* address space 0 gets the convenience alias */
 895        cpu->as = as;
 896    }
 897
 898    /* KVM cannot currently support multiple address spaces. */
 899    assert(asidx == 0 || !kvm_enabled());
 900
 901    if (!cpu->cpu_ases) {
 902        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 903    }
 904
 905    newas = &cpu->cpu_ases[asidx];
 906    newas->cpu = cpu;
 907    newas->as = as;
 908    if (tcg_enabled()) {
 909        newas->tcg_as_listener.commit = tcg_commit;
 910        memory_listener_register(&newas->tcg_as_listener, as);
 911    }
 912}
 913
 914AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 915{
 916    /* Return the AddressSpace corresponding to the specified index */
 917    return cpu->cpu_ases[asidx].as;
 918}
 919#endif
 920
 921void cpu_exec_unrealizefn(CPUState *cpu)
 922{
 923    CPUClass *cc = CPU_GET_CLASS(cpu);
 924
 925    cpu_list_remove(cpu);
 926
 927    if (cc->vmsd != NULL) {
 928        vmstate_unregister(NULL, cc->vmsd, cpu);
 929    }
 930    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 931        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
 932    }
 933#ifndef CONFIG_USER_ONLY
 934    tcg_iommu_free_notifier_list(cpu);
 935#endif
 936}
 937
 938Property cpu_common_props[] = {
 939#ifndef CONFIG_USER_ONLY
 940    /* Create a memory property for softmmu CPU object,
 941     * so users can wire up its memory. (This can't go in qom/cpu.c
 942     * because that file is compiled only once for both user-mode
 943     * and system builds.) The default if no link is set up is to use
 944     * the system address space.
 945     */
 946    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
 947                     MemoryRegion *),
 948#endif
 949    DEFINE_PROP_END_OF_LIST(),
 950};
 951
 952void cpu_exec_initfn(CPUState *cpu)
 953{
 954    cpu->as = NULL;
 955    cpu->num_ases = 0;
 956
 957#ifndef CONFIG_USER_ONLY
 958    cpu->thread_id = qemu_get_thread_id();
 959    cpu->memory = system_memory;
 960    object_ref(OBJECT(cpu->memory));
 961#endif
 962}
 963
 964void cpu_exec_realizefn(CPUState *cpu, Error **errp)
 965{
 966    CPUClass *cc = CPU_GET_CLASS(cpu);
 967    static bool tcg_target_initialized;
 968
 969    cpu_list_add(cpu);
 970
 971    if (tcg_enabled() && !tcg_target_initialized) {
 972        tcg_target_initialized = true;
 973        cc->tcg_initialize();
 974    }
 975    tlb_init(cpu);
 976
 977#ifndef CONFIG_USER_ONLY
 978    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 979        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
 980    }
 981    if (cc->vmsd != NULL) {
 982        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
 983    }
 984
 985    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
 986#endif
 987}
 988
 989const char *parse_cpu_option(const char *cpu_option)
 990{
 991    ObjectClass *oc;
 992    CPUClass *cc;
 993    gchar **model_pieces;
 994    const char *cpu_type;
 995
 996    model_pieces = g_strsplit(cpu_option, ",", 2);
 997    if (!model_pieces[0]) {
 998        error_report("-cpu option cannot be empty");
 999        exit(1);
1000    }
1001
1002    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1003    if (oc == NULL) {
1004        error_report("unable to find CPU model '%s'", model_pieces[0]);
1005        g_strfreev(model_pieces);
1006        exit(EXIT_FAILURE);
1007    }
1008
1009    cpu_type = object_class_get_name(oc);
1010    cc = CPU_CLASS(oc);
1011    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1012    g_strfreev(model_pieces);
1013    return cpu_type;
1014}
1015
1016#if defined(CONFIG_USER_ONLY)
1017void tb_invalidate_phys_addr(target_ulong addr)
1018{
1019    mmap_lock();
1020    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1021    mmap_unlock();
1022}
1023
1024static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1025{
1026    tb_invalidate_phys_addr(pc);
1027}
1028#else
1029void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1030{
1031    ram_addr_t ram_addr;
1032    MemoryRegion *mr;
1033    hwaddr l = 1;
1034
1035    if (!tcg_enabled()) {
1036        return;
1037    }
1038
1039    rcu_read_lock();
1040    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1041    if (!(memory_region_is_ram(mr)
1042          || memory_region_is_romd(mr))) {
1043        rcu_read_unlock();
1044        return;
1045    }
1046    ram_addr = memory_region_get_ram_addr(mr) + addr;
1047    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1048    rcu_read_unlock();
1049}
1050
1051static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1052{
1053    MemTxAttrs attrs;
1054    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1055    int asidx = cpu_asidx_from_attrs(cpu, attrs);
1056    if (phys != -1) {
1057        /* Locks grabbed by tb_invalidate_phys_addr */
1058        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1059                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1060    }
1061}
1062#endif
1063
1064#if defined(CONFIG_USER_ONLY)
1065void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1066
1067{
1068}
1069
1070int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1071                          int flags)
1072{
1073    return -ENOSYS;
1074}
1075
1076void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1077{
1078}
1079
1080int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1081                          int flags, CPUWatchpoint **watchpoint)
1082{
1083    return -ENOSYS;
1084}
1085#else
1086/* Add a watchpoint.  */
1087int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1088                          int flags, CPUWatchpoint **watchpoint)
1089{
1090    CPUWatchpoint *wp;
1091
1092    /* forbid ranges which are empty or run off the end of the address space */
1093    if (len == 0 || (addr + len - 1) < addr) {
1094        error_report("tried to set invalid watchpoint at %"
1095                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1096        return -EINVAL;
1097    }
1098    wp = g_malloc(sizeof(*wp));
1099
1100    wp->vaddr = addr;
1101    wp->len = len;
1102    wp->flags = flags;
1103
1104    /* keep all GDB-injected watchpoints in front */
1105    if (flags & BP_GDB) {
1106        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1107    } else {
1108        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1109    }
1110
1111    tlb_flush_page(cpu, addr);
1112
1113    if (watchpoint)
1114        *watchpoint = wp;
1115    return 0;
1116}
1117
1118/* Remove a specific watchpoint.  */
1119int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1120                          int flags)
1121{
1122    CPUWatchpoint *wp;
1123
1124    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1125        if (addr == wp->vaddr && len == wp->len
1126                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1127            cpu_watchpoint_remove_by_ref(cpu, wp);
1128            return 0;
1129        }
1130    }
1131    return -ENOENT;
1132}
1133
1134/* Remove a specific watchpoint by reference.  */
1135void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1136{
1137    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1138
1139    tlb_flush_page(cpu, watchpoint->vaddr);
1140
1141    g_free(watchpoint);
1142}
1143
1144/* Remove all matching watchpoints.  */
1145void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1146{
1147    CPUWatchpoint *wp, *next;
1148
1149    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1150        if (wp->flags & mask) {
1151            cpu_watchpoint_remove_by_ref(cpu, wp);
1152        }
1153    }
1154}
1155
1156/* Return true if this watchpoint address matches the specified
1157 * access (ie the address range covered by the watchpoint overlaps
1158 * partially or completely with the address range covered by the
1159 * access).
1160 */
1161static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1162                                                  vaddr addr,
1163                                                  vaddr len)
1164{
1165    /* We know the lengths are non-zero, but a little caution is
1166     * required to avoid errors in the case where the range ends
1167     * exactly at the top of the address space and so addr + len
1168     * wraps round to zero.
1169     */
1170    vaddr wpend = wp->vaddr + wp->len - 1;
1171    vaddr addrend = addr + len - 1;
1172
1173    return !(addr > wpend || wp->vaddr > addrend);
1174}
1175
1176#endif
1177
1178/* Add a breakpoint.  */
1179int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1180                          CPUBreakpoint **breakpoint)
1181{
1182    CPUBreakpoint *bp;
1183
1184    bp = g_malloc(sizeof(*bp));
1185
1186    bp->pc = pc;
1187    bp->flags = flags;
1188
1189    /* keep all GDB-injected breakpoints in front */
1190    if (flags & BP_GDB) {
1191        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1192    } else {
1193        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1194    }
1195
1196    breakpoint_invalidate(cpu, pc);
1197
1198    if (breakpoint) {
1199        *breakpoint = bp;
1200    }
1201    return 0;
1202}
1203
1204/* Remove a specific breakpoint.  */
1205int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1206{
1207    CPUBreakpoint *bp;
1208
1209    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1210        if (bp->pc == pc && bp->flags == flags) {
1211            cpu_breakpoint_remove_by_ref(cpu, bp);
1212            return 0;
1213        }
1214    }
1215    return -ENOENT;
1216}
1217
1218/* Remove a specific breakpoint by reference.  */
1219void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1220{
1221    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1222
1223    breakpoint_invalidate(cpu, breakpoint->pc);
1224
1225    g_free(breakpoint);
1226}
1227
1228/* Remove all matching breakpoints. */
1229void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1230{
1231    CPUBreakpoint *bp, *next;
1232
1233    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1234        if (bp->flags & mask) {
1235            cpu_breakpoint_remove_by_ref(cpu, bp);
1236        }
1237    }
1238}
1239
1240/* enable or disable single step mode. EXCP_DEBUG is returned by the
1241   CPU loop after each instruction */
1242void cpu_single_step(CPUState *cpu, int enabled)
1243{
1244    if (cpu->singlestep_enabled != enabled) {
1245        cpu->singlestep_enabled = enabled;
1246        if (kvm_enabled()) {
1247            kvm_update_guest_debug(cpu, 0);
1248        } else {
1249            /* must flush all the translated code to avoid inconsistencies */
1250            /* XXX: only flush what is necessary */
1251            tb_flush(cpu);
1252        }
1253    }
1254}
1255
1256void cpu_abort(CPUState *cpu, const char *fmt, ...)
1257{
1258    va_list ap;
1259    va_list ap2;
1260
1261    va_start(ap, fmt);
1262    va_copy(ap2, ap);
1263    fprintf(stderr, "qemu: fatal: ");
1264    vfprintf(stderr, fmt, ap);
1265    fprintf(stderr, "\n");
1266    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1267    if (qemu_log_separate()) {
1268        qemu_log_lock();
1269        qemu_log("qemu: fatal: ");
1270        qemu_log_vprintf(fmt, ap2);
1271        qemu_log("\n");
1272        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1273        qemu_log_flush();
1274        qemu_log_unlock();
1275        qemu_log_close();
1276    }
1277    va_end(ap2);
1278    va_end(ap);
1279    replay_finish();
1280#if defined(CONFIG_USER_ONLY)
1281    {
1282        struct sigaction act;
1283        sigfillset(&act.sa_mask);
1284        act.sa_handler = SIG_DFL;
1285        act.sa_flags = 0;
1286        sigaction(SIGABRT, &act, NULL);
1287    }
1288#endif
1289    abort();
1290}
1291
1292#if !defined(CONFIG_USER_ONLY)
1293/* Called from RCU critical section */
1294static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1295{
1296    RAMBlock *block;
1297
1298    block = atomic_rcu_read(&ram_list.mru_block);
1299    if (block && addr - block->offset < block->max_length) {
1300        return block;
1301    }
1302    RAMBLOCK_FOREACH(block) {
1303        if (addr - block->offset < block->max_length) {
1304            goto found;
1305        }
1306    }
1307
1308    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1309    abort();
1310
1311found:
1312    /* It is safe to write mru_block outside the iothread lock.  This
1313     * is what happens:
1314     *
1315     *     mru_block = xxx
1316     *     rcu_read_unlock()
1317     *                                        xxx removed from list
1318     *                  rcu_read_lock()
1319     *                  read mru_block
1320     *                                        mru_block = NULL;
1321     *                                        call_rcu(reclaim_ramblock, xxx);
1322     *                  rcu_read_unlock()
1323     *
1324     * atomic_rcu_set is not needed here.  The block was already published
1325     * when it was placed into the list.  Here we're just making an extra
1326     * copy of the pointer.
1327     */
1328    ram_list.mru_block = block;
1329    return block;
1330}
1331
1332static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1333{
1334    CPUState *cpu;
1335    ram_addr_t start1;
1336    RAMBlock *block;
1337    ram_addr_t end;
1338
1339    assert(tcg_enabled());
1340    end = TARGET_PAGE_ALIGN(start + length);
1341    start &= TARGET_PAGE_MASK;
1342
1343    rcu_read_lock();
1344    block = qemu_get_ram_block(start);
1345    assert(block == qemu_get_ram_block(end - 1));
1346    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1347    CPU_FOREACH(cpu) {
1348        tlb_reset_dirty(cpu, start1, length);
1349    }
1350    rcu_read_unlock();
1351}
1352
1353/* Note: start and end must be within the same ram block.  */
1354bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1355                                              ram_addr_t length,
1356                                              unsigned client)
1357{
1358    DirtyMemoryBlocks *blocks;
1359    unsigned long end, page;
1360    bool dirty = false;
1361    RAMBlock *ramblock;
1362    uint64_t mr_offset, mr_size;
1363
1364    if (length == 0) {
1365        return false;
1366    }
1367
1368    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1369    page = start >> TARGET_PAGE_BITS;
1370
1371    rcu_read_lock();
1372
1373    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1374    ramblock = qemu_get_ram_block(start);
1375    /* Range sanity check on the ramblock */
1376    assert(start >= ramblock->offset &&
1377           start + length <= ramblock->offset + ramblock->used_length);
1378
1379    while (page < end) {
1380        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1381        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1382        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1383
1384        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1385                                              offset, num);
1386        page += num;
1387    }
1388
1389    mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1390    mr_size = (end - page) << TARGET_PAGE_BITS;
1391    memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1392
1393    rcu_read_unlock();
1394
1395    if (dirty && tcg_enabled()) {
1396        tlb_reset_dirty_range_all(start, length);
1397    }
1398
1399    return dirty;
1400}
1401
1402DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1403    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1404{
1405    DirtyMemoryBlocks *blocks;
1406    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1407    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1408    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1409    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1410    DirtyBitmapSnapshot *snap;
1411    unsigned long page, end, dest;
1412
1413    snap = g_malloc0(sizeof(*snap) +
1414                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1415    snap->start = first;
1416    snap->end   = last;
1417
1418    page = first >> TARGET_PAGE_BITS;
1419    end  = last  >> TARGET_PAGE_BITS;
1420    dest = 0;
1421
1422    rcu_read_lock();
1423
1424    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1425
1426    while (page < end) {
1427        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1428        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1429        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1430
1431        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1432        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1433        offset >>= BITS_PER_LEVEL;
1434
1435        bitmap_copy_and_clear_atomic(snap->dirty + dest,
1436                                     blocks->blocks[idx] + offset,
1437                                     num);
1438        page += num;
1439        dest += num >> BITS_PER_LEVEL;
1440    }
1441
1442    rcu_read_unlock();
1443
1444    if (tcg_enabled()) {
1445        tlb_reset_dirty_range_all(start, length);
1446    }
1447
1448    memory_region_clear_dirty_bitmap(mr, offset, length);
1449
1450    return snap;
1451}
1452
1453bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1454                                            ram_addr_t start,
1455                                            ram_addr_t length)
1456{
1457    unsigned long page, end;
1458
1459    assert(start >= snap->start);
1460    assert(start + length <= snap->end);
1461
1462    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1463    page = (start - snap->start) >> TARGET_PAGE_BITS;
1464
1465    while (page < end) {
1466        if (test_bit(page, snap->dirty)) {
1467            return true;
1468        }
1469        page++;
1470    }
1471    return false;
1472}
1473
1474/* Called from RCU critical section */
1475hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1476                                       MemoryRegionSection *section,
1477                                       target_ulong vaddr,
1478                                       hwaddr paddr, hwaddr xlat,
1479                                       int prot,
1480                                       target_ulong *address)
1481{
1482    hwaddr iotlb;
1483    CPUWatchpoint *wp;
1484
1485    if (memory_region_is_ram(section->mr)) {
1486        /* Normal RAM.  */
1487        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1488        if (!section->readonly) {
1489            iotlb |= PHYS_SECTION_NOTDIRTY;
1490        } else {
1491            iotlb |= PHYS_SECTION_ROM;
1492        }
1493    } else {
1494        AddressSpaceDispatch *d;
1495
1496        d = flatview_to_dispatch(section->fv);
1497        iotlb = section - d->map.sections;
1498        iotlb += xlat;
1499    }
1500
1501    /* Make accesses to pages with watchpoints go via the
1502       watchpoint trap routines.  */
1503    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1504        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1505            /* Avoid trapping reads of pages with a write breakpoint. */
1506            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1507                iotlb = PHYS_SECTION_WATCH + paddr;
1508                *address |= TLB_MMIO;
1509                break;
1510            }
1511        }
1512    }
1513
1514    return iotlb;
1515}
1516#endif /* defined(CONFIG_USER_ONLY) */
1517
1518#if !defined(CONFIG_USER_ONLY)
1519
1520static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1521                             uint16_t section);
1522static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1523
1524static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1525                               qemu_anon_ram_alloc;
1526
1527/*
1528 * Set a custom physical guest memory alloator.
1529 * Accelerators with unusual needs may need this.  Hopefully, we can
1530 * get rid of it eventually.
1531 */
1532void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1533{
1534    phys_mem_alloc = alloc;
1535}
1536
1537static uint16_t phys_section_add(PhysPageMap *map,
1538                                 MemoryRegionSection *section)
1539{
1540    /* The physical section number is ORed with a page-aligned
1541     * pointer to produce the iotlb entries.  Thus it should
1542     * never overflow into the page-aligned value.
1543     */
1544    assert(map->sections_nb < TARGET_PAGE_SIZE);
1545
1546    if (map->sections_nb == map->sections_nb_alloc) {
1547        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1548        map->sections = g_renew(MemoryRegionSection, map->sections,
1549                                map->sections_nb_alloc);
1550    }
1551    map->sections[map->sections_nb] = *section;
1552    memory_region_ref(section->mr);
1553    return map->sections_nb++;
1554}
1555
1556static void phys_section_destroy(MemoryRegion *mr)
1557{
1558    bool have_sub_page = mr->subpage;
1559
1560    memory_region_unref(mr);
1561
1562    if (have_sub_page) {
1563        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1564        object_unref(OBJECT(&subpage->iomem));
1565        g_free(subpage);
1566    }
1567}
1568
1569static void phys_sections_free(PhysPageMap *map)
1570{
1571    while (map->sections_nb > 0) {
1572        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1573        phys_section_destroy(section->mr);
1574    }
1575    g_free(map->sections);
1576    g_free(map->nodes);
1577}
1578
1579static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1580{
1581    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1582    subpage_t *subpage;
1583    hwaddr base = section->offset_within_address_space
1584        & TARGET_PAGE_MASK;
1585    MemoryRegionSection *existing = phys_page_find(d, base);
1586    MemoryRegionSection subsection = {
1587        .offset_within_address_space = base,
1588        .size = int128_make64(TARGET_PAGE_SIZE),
1589    };
1590    hwaddr start, end;
1591
1592    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1593
1594    if (!(existing->mr->subpage)) {
1595        subpage = subpage_init(fv, base);
1596        subsection.fv = fv;
1597        subsection.mr = &subpage->iomem;
1598        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1599                      phys_section_add(&d->map, &subsection));
1600    } else {
1601        subpage = container_of(existing->mr, subpage_t, iomem);
1602    }
1603    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1604    end = start + int128_get64(section->size) - 1;
1605    subpage_register(subpage, start, end,
1606                     phys_section_add(&d->map, section));
1607}
1608
1609
1610static void register_multipage(FlatView *fv,
1611                               MemoryRegionSection *section)
1612{
1613    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1614    hwaddr start_addr = section->offset_within_address_space;
1615    uint16_t section_index = phys_section_add(&d->map, section);
1616    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1617                                                    TARGET_PAGE_BITS));
1618
1619    assert(num_pages);
1620    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1621}
1622
1623/*
1624 * The range in *section* may look like this:
1625 *
1626 *      |s|PPPPPPP|s|
1627 *
1628 * where s stands for subpage and P for page.
1629 */
1630void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1631{
1632    MemoryRegionSection remain = *section;
1633    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1634
1635    /* register first subpage */
1636    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1637        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1638                        - remain.offset_within_address_space;
1639
1640        MemoryRegionSection now = remain;
1641        now.size = int128_min(int128_make64(left), now.size);
1642        register_subpage(fv, &now);
1643        if (int128_eq(remain.size, now.size)) {
1644            return;
1645        }
1646        remain.size = int128_sub(remain.size, now.size);
1647        remain.offset_within_address_space += int128_get64(now.size);
1648        remain.offset_within_region += int128_get64(now.size);
1649    }
1650
1651    /* register whole pages */
1652    if (int128_ge(remain.size, page_size)) {
1653        MemoryRegionSection now = remain;
1654        now.size = int128_and(now.size, int128_neg(page_size));
1655        register_multipage(fv, &now);
1656        if (int128_eq(remain.size, now.size)) {
1657            return;
1658        }
1659        remain.size = int128_sub(remain.size, now.size);
1660        remain.offset_within_address_space += int128_get64(now.size);
1661        remain.offset_within_region += int128_get64(now.size);
1662    }
1663
1664    /* register last subpage */
1665    register_subpage(fv, &remain);
1666}
1667
1668void qemu_flush_coalesced_mmio_buffer(void)
1669{
1670    if (kvm_enabled())
1671        kvm_flush_coalesced_mmio_buffer();
1672}
1673
1674void qemu_mutex_lock_ramlist(void)
1675{
1676    qemu_mutex_lock(&ram_list.mutex);
1677}
1678
1679void qemu_mutex_unlock_ramlist(void)
1680{
1681    qemu_mutex_unlock(&ram_list.mutex);
1682}
1683
1684void ram_block_dump(Monitor *mon)
1685{
1686    RAMBlock *block;
1687    char *psize;
1688
1689    rcu_read_lock();
1690    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
1691                   "Block Name", "PSize", "Offset", "Used", "Total");
1692    RAMBLOCK_FOREACH(block) {
1693        psize = size_to_str(block->page_size);
1694        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1695                       " 0x%016" PRIx64 "\n", block->idstr, psize,
1696                       (uint64_t)block->offset,
1697                       (uint64_t)block->used_length,
1698                       (uint64_t)block->max_length);
1699        g_free(psize);
1700    }
1701    rcu_read_unlock();
1702}
1703
1704#ifdef __linux__
1705/*
1706 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1707 * may or may not name the same files / on the same filesystem now as
1708 * when we actually open and map them.  Iterate over the file
1709 * descriptors instead, and use qemu_fd_getpagesize().
1710 */
1711static int find_min_backend_pagesize(Object *obj, void *opaque)
1712{
1713    long *hpsize_min = opaque;
1714
1715    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1716        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1717        long hpsize = host_memory_backend_pagesize(backend);
1718
1719        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1720            *hpsize_min = hpsize;
1721        }
1722    }
1723
1724    return 0;
1725}
1726
1727static int find_max_backend_pagesize(Object *obj, void *opaque)
1728{
1729    long *hpsize_max = opaque;
1730
1731    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1732        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1733        long hpsize = host_memory_backend_pagesize(backend);
1734
1735        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1736            *hpsize_max = hpsize;
1737        }
1738    }
1739
1740    return 0;
1741}
1742
1743/*
1744 * TODO: We assume right now that all mapped host memory backends are
1745 * used as RAM, however some might be used for different purposes.
1746 */
1747long qemu_minrampagesize(void)
1748{
1749    long hpsize = LONG_MAX;
1750    long mainrampagesize;
1751    Object *memdev_root;
1752
1753    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1754
1755    /* it's possible we have memory-backend objects with
1756     * hugepage-backed RAM. these may get mapped into system
1757     * address space via -numa parameters or memory hotplug
1758     * hooks. we want to take these into account, but we
1759     * also want to make sure these supported hugepage
1760     * sizes are applicable across the entire range of memory
1761     * we may boot from, so we take the min across all
1762     * backends, and assume normal pages in cases where a
1763     * backend isn't backed by hugepages.
1764     */
1765    memdev_root = object_resolve_path("/objects", NULL);
1766    if (memdev_root) {
1767        object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1768    }
1769    if (hpsize == LONG_MAX) {
1770        /* No additional memory regions found ==> Report main RAM page size */
1771        return mainrampagesize;
1772    }
1773
1774    /* If NUMA is disabled or the NUMA nodes are not backed with a
1775     * memory-backend, then there is at least one node using "normal" RAM,
1776     * so if its page size is smaller we have got to report that size instead.
1777     */
1778    if (hpsize > mainrampagesize &&
1779        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1780        static bool warned;
1781        if (!warned) {
1782            error_report("Huge page support disabled (n/a for main memory).");
1783            warned = true;
1784        }
1785        return mainrampagesize;
1786    }
1787
1788    return hpsize;
1789}
1790
1791long qemu_maxrampagesize(void)
1792{
1793    long pagesize = qemu_mempath_getpagesize(mem_path);
1794    Object *memdev_root = object_resolve_path("/objects", NULL);
1795
1796    if (memdev_root) {
1797        object_child_foreach(memdev_root, find_max_backend_pagesize,
1798                             &pagesize);
1799    }
1800    return pagesize;
1801}
1802#else
1803long qemu_minrampagesize(void)
1804{
1805    return getpagesize();
1806}
1807long qemu_maxrampagesize(void)
1808{
1809    return getpagesize();
1810}
1811#endif
1812
1813#ifdef CONFIG_POSIX
1814static int64_t get_file_size(int fd)
1815{
1816    int64_t size = lseek(fd, 0, SEEK_END);
1817    if (size < 0) {
1818        return -errno;
1819    }
1820    return size;
1821}
1822
1823static int file_ram_open(const char *path,
1824                         const char *region_name,
1825                         bool *created,
1826                         Error **errp)
1827{
1828    char *filename;
1829    char *sanitized_name;
1830    char *c;
1831    int fd = -1;
1832
1833    *created = false;
1834    for (;;) {
1835        fd = open(path, O_RDWR);
1836        if (fd >= 0) {
1837            /* @path names an existing file, use it */
1838            break;
1839        }
1840        if (errno == ENOENT) {
1841            /* @path names a file that doesn't exist, create it */
1842            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1843            if (fd >= 0) {
1844                *created = true;
1845                break;
1846            }
1847        } else if (errno == EISDIR) {
1848            /* @path names a directory, create a file there */
1849            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1850            sanitized_name = g_strdup(region_name);
1851            for (c = sanitized_name; *c != '\0'; c++) {
1852                if (*c == '/') {
1853                    *c = '_';
1854                }
1855            }
1856
1857            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1858                                       sanitized_name);
1859            g_free(sanitized_name);
1860
1861            fd = mkstemp(filename);
1862            if (fd >= 0) {
1863                unlink(filename);
1864                g_free(filename);
1865                break;
1866            }
1867            g_free(filename);
1868        }
1869        if (errno != EEXIST && errno != EINTR) {
1870            error_setg_errno(errp, errno,
1871                             "can't open backing store %s for guest RAM",
1872                             path);
1873            return -1;
1874        }
1875        /*
1876         * Try again on EINTR and EEXIST.  The latter happens when
1877         * something else creates the file between our two open().
1878         */
1879    }
1880
1881    return fd;
1882}
1883
1884static void *file_ram_alloc(RAMBlock *block,
1885                            ram_addr_t memory,
1886                            int fd,
1887                            bool truncate,
1888                            Error **errp)
1889{
1890    MachineState *ms = MACHINE(qdev_get_machine());
1891    void *area;
1892
1893    block->page_size = qemu_fd_getpagesize(fd);
1894    if (block->mr->align % block->page_size) {
1895        error_setg(errp, "alignment 0x%" PRIx64
1896                   " must be multiples of page size 0x%zx",
1897                   block->mr->align, block->page_size);
1898        return NULL;
1899    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1900        error_setg(errp, "alignment 0x%" PRIx64
1901                   " must be a power of two", block->mr->align);
1902        return NULL;
1903    }
1904    block->mr->align = MAX(block->page_size, block->mr->align);
1905#if defined(__s390x__)
1906    if (kvm_enabled()) {
1907        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1908    }
1909#endif
1910
1911    if (memory < block->page_size) {
1912        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1913                   "or larger than page size 0x%zx",
1914                   memory, block->page_size);
1915        return NULL;
1916    }
1917
1918    memory = ROUND_UP(memory, block->page_size);
1919
1920    /*
1921     * ftruncate is not supported by hugetlbfs in older
1922     * hosts, so don't bother bailing out on errors.
1923     * If anything goes wrong with it under other filesystems,
1924     * mmap will fail.
1925     *
1926     * Do not truncate the non-empty backend file to avoid corrupting
1927     * the existing data in the file. Disabling shrinking is not
1928     * enough. For example, the current vNVDIMM implementation stores
1929     * the guest NVDIMM labels at the end of the backend file. If the
1930     * backend file is later extended, QEMU will not be able to find
1931     * those labels. Therefore, extending the non-empty backend file
1932     * is disabled as well.
1933     */
1934    if (truncate && ftruncate(fd, memory)) {
1935        perror("ftruncate");
1936    }
1937
1938    area = qemu_ram_mmap(fd, memory, block->mr->align,
1939                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1940    if (area == MAP_FAILED) {
1941        error_setg_errno(errp, errno,
1942                         "unable to map backing store for guest RAM");
1943        return NULL;
1944    }
1945
1946    if (mem_prealloc) {
1947        os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1948        if (errp && *errp) {
1949            qemu_ram_munmap(fd, area, memory);
1950            return NULL;
1951        }
1952    }
1953
1954    block->fd = fd;
1955    return area;
1956}
1957#endif
1958
1959/* Allocate space within the ram_addr_t space that governs the
1960 * dirty bitmaps.
1961 * Called with the ramlist lock held.
1962 */
1963static ram_addr_t find_ram_offset(ram_addr_t size)
1964{
1965    RAMBlock *block, *next_block;
1966    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1967
1968    assert(size != 0); /* it would hand out same offset multiple times */
1969
1970    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1971        return 0;
1972    }
1973
1974    RAMBLOCK_FOREACH(block) {
1975        ram_addr_t candidate, next = RAM_ADDR_MAX;
1976
1977        /* Align blocks to start on a 'long' in the bitmap
1978         * which makes the bitmap sync'ing take the fast path.
1979         */
1980        candidate = block->offset + block->max_length;
1981        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1982
1983        /* Search for the closest following block
1984         * and find the gap.
1985         */
1986        RAMBLOCK_FOREACH(next_block) {
1987            if (next_block->offset >= candidate) {
1988                next = MIN(next, next_block->offset);
1989            }
1990        }
1991
1992        /* If it fits remember our place and remember the size
1993         * of gap, but keep going so that we might find a smaller
1994         * gap to fill so avoiding fragmentation.
1995         */
1996        if (next - candidate >= size && next - candidate < mingap) {
1997            offset = candidate;
1998            mingap = next - candidate;
1999        }
2000
2001        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
2002    }
2003
2004    if (offset == RAM_ADDR_MAX) {
2005        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2006                (uint64_t)size);
2007        abort();
2008    }
2009
2010    trace_find_ram_offset(size, offset);
2011
2012    return offset;
2013}
2014
2015static unsigned long last_ram_page(void)
2016{
2017    RAMBlock *block;
2018    ram_addr_t last = 0;
2019
2020    rcu_read_lock();
2021    RAMBLOCK_FOREACH(block) {
2022        last = MAX(last, block->offset + block->max_length);
2023    }
2024    rcu_read_unlock();
2025    return last >> TARGET_PAGE_BITS;
2026}
2027
2028static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2029{
2030    int ret;
2031
2032    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2033    if (!machine_dump_guest_core(current_machine)) {
2034        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2035        if (ret) {
2036            perror("qemu_madvise");
2037            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2038                            "but dump_guest_core=off specified\n");
2039        }
2040    }
2041}
2042
2043const char *qemu_ram_get_idstr(RAMBlock *rb)
2044{
2045    return rb->idstr;
2046}
2047
2048void *qemu_ram_get_host_addr(RAMBlock *rb)
2049{
2050    return rb->host;
2051}
2052
2053ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2054{
2055    return rb->offset;
2056}
2057
2058ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2059{
2060    return rb->used_length;
2061}
2062
2063bool qemu_ram_is_shared(RAMBlock *rb)
2064{
2065    return rb->flags & RAM_SHARED;
2066}
2067
2068/* Note: Only set at the start of postcopy */
2069bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2070{
2071    return rb->flags & RAM_UF_ZEROPAGE;
2072}
2073
2074void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2075{
2076    rb->flags |= RAM_UF_ZEROPAGE;
2077}
2078
2079bool qemu_ram_is_migratable(RAMBlock *rb)
2080{
2081    return rb->flags & RAM_MIGRATABLE;
2082}
2083
2084void qemu_ram_set_migratable(RAMBlock *rb)
2085{
2086    rb->flags |= RAM_MIGRATABLE;
2087}
2088
2089void qemu_ram_unset_migratable(RAMBlock *rb)
2090{
2091    rb->flags &= ~RAM_MIGRATABLE;
2092}
2093
2094/* Called with iothread lock held.  */
2095void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2096{
2097    RAMBlock *block;
2098
2099    assert(new_block);
2100    assert(!new_block->idstr[0]);
2101
2102    if (dev) {
2103        char *id = qdev_get_dev_path(dev);
2104        if (id) {
2105            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2106            g_free(id);
2107        }
2108    }
2109    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2110
2111    rcu_read_lock();
2112    RAMBLOCK_FOREACH(block) {
2113        if (block != new_block &&
2114            !strcmp(block->idstr, new_block->idstr)) {
2115            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2116                    new_block->idstr);
2117            abort();
2118        }
2119    }
2120    rcu_read_unlock();
2121}
2122
2123/* Called with iothread lock held.  */
2124void qemu_ram_unset_idstr(RAMBlock *block)
2125{
2126    /* FIXME: arch_init.c assumes that this is not called throughout
2127     * migration.  Ignore the problem since hot-unplug during migration
2128     * does not work anyway.
2129     */
2130    if (block) {
2131        memset(block->idstr, 0, sizeof(block->idstr));
2132    }
2133}
2134
2135size_t qemu_ram_pagesize(RAMBlock *rb)
2136{
2137    return rb->page_size;
2138}
2139
2140/* Returns the largest size of page in use */
2141size_t qemu_ram_pagesize_largest(void)
2142{
2143    RAMBlock *block;
2144    size_t largest = 0;
2145
2146    RAMBLOCK_FOREACH(block) {
2147        largest = MAX(largest, qemu_ram_pagesize(block));
2148    }
2149
2150    return largest;
2151}
2152
2153static int memory_try_enable_merging(void *addr, size_t len)
2154{
2155    if (!machine_mem_merge(current_machine)) {
2156        /* disabled by the user */
2157        return 0;
2158    }
2159
2160    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2161}
2162
2163/* Only legal before guest might have detected the memory size: e.g. on
2164 * incoming migration, or right after reset.
2165 *
2166 * As memory core doesn't know how is memory accessed, it is up to
2167 * resize callback to update device state and/or add assertions to detect
2168 * misuse, if necessary.
2169 */
2170int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2171{
2172    assert(block);
2173
2174    newsize = HOST_PAGE_ALIGN(newsize);
2175
2176    if (block->used_length == newsize) {
2177        return 0;
2178    }
2179
2180    if (!(block->flags & RAM_RESIZEABLE)) {
2181        error_setg_errno(errp, EINVAL,
2182                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
2183                         " in != 0x" RAM_ADDR_FMT, block->idstr,
2184                         newsize, block->used_length);
2185        return -EINVAL;
2186    }
2187
2188    if (block->max_length < newsize) {
2189        error_setg_errno(errp, EINVAL,
2190                         "Length too large: %s: 0x" RAM_ADDR_FMT
2191                         " > 0x" RAM_ADDR_FMT, block->idstr,
2192                         newsize, block->max_length);
2193        return -EINVAL;
2194    }
2195
2196    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2197    block->used_length = newsize;
2198    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2199                                        DIRTY_CLIENTS_ALL);
2200    memory_region_set_size(block->mr, newsize);
2201    if (block->resized) {
2202        block->resized(block->idstr, newsize, block->host);
2203    }
2204    return 0;
2205}
2206
2207/* Called with ram_list.mutex held */
2208static void dirty_memory_extend(ram_addr_t old_ram_size,
2209                                ram_addr_t new_ram_size)
2210{
2211    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2212                                             DIRTY_MEMORY_BLOCK_SIZE);
2213    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2214                                             DIRTY_MEMORY_BLOCK_SIZE);
2215    int i;
2216
2217    /* Only need to extend if block count increased */
2218    if (new_num_blocks <= old_num_blocks) {
2219        return;
2220    }
2221
2222    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2223        DirtyMemoryBlocks *old_blocks;
2224        DirtyMemoryBlocks *new_blocks;
2225        int j;
2226
2227        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2228        new_blocks = g_malloc(sizeof(*new_blocks) +
2229                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
2230
2231        if (old_num_blocks) {
2232            memcpy(new_blocks->blocks, old_blocks->blocks,
2233                   old_num_blocks * sizeof(old_blocks->blocks[0]));
2234        }
2235
2236        for (j = old_num_blocks; j < new_num_blocks; j++) {
2237            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2238        }
2239
2240        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2241
2242        if (old_blocks) {
2243            g_free_rcu(old_blocks, rcu);
2244        }
2245    }
2246}
2247
2248static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2249{
2250    RAMBlock *block;
2251    RAMBlock *last_block = NULL;
2252    ram_addr_t old_ram_size, new_ram_size;
2253    Error *err = NULL;
2254
2255    old_ram_size = last_ram_page();
2256
2257    qemu_mutex_lock_ramlist();
2258    new_block->offset = find_ram_offset(new_block->max_length);
2259
2260    if (!new_block->host) {
2261        if (xen_enabled()) {
2262            xen_ram_alloc(new_block->offset, new_block->max_length,
2263                          new_block->mr, &err);
2264            if (err) {
2265                error_propagate(errp, err);
2266                qemu_mutex_unlock_ramlist();
2267                return;
2268            }
2269        } else {
2270            new_block->host = phys_mem_alloc(new_block->max_length,
2271                                             &new_block->mr->align, shared);
2272            if (!new_block->host) {
2273                error_setg_errno(errp, errno,
2274                                 "cannot set up guest memory '%s'",
2275                                 memory_region_name(new_block->mr));
2276                qemu_mutex_unlock_ramlist();
2277                return;
2278            }
2279            memory_try_enable_merging(new_block->host, new_block->max_length);
2280        }
2281    }
2282
2283    new_ram_size = MAX(old_ram_size,
2284              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2285    if (new_ram_size > old_ram_size) {
2286        dirty_memory_extend(old_ram_size, new_ram_size);
2287    }
2288    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2289     * QLIST (which has an RCU-friendly variant) does not have insertion at
2290     * tail, so save the last element in last_block.
2291     */
2292    RAMBLOCK_FOREACH(block) {
2293        last_block = block;
2294        if (block->max_length < new_block->max_length) {
2295            break;
2296        }
2297    }
2298    if (block) {
2299        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2300    } else if (last_block) {
2301        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2302    } else { /* list is empty */
2303        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2304    }
2305    ram_list.mru_block = NULL;
2306
2307    /* Write list before version */
2308    smp_wmb();
2309    ram_list.version++;
2310    qemu_mutex_unlock_ramlist();
2311
2312    cpu_physical_memory_set_dirty_range(new_block->offset,
2313                                        new_block->used_length,
2314                                        DIRTY_CLIENTS_ALL);
2315
2316    if (new_block->host) {
2317        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2318        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2319        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2320        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2321        ram_block_notify_add(new_block->host, new_block->max_length);
2322    }
2323}
2324
2325#ifdef CONFIG_POSIX
2326RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2327                                 uint32_t ram_flags, int fd,
2328                                 Error **errp)
2329{
2330    RAMBlock *new_block;
2331    Error *local_err = NULL;
2332    int64_t file_size;
2333
2334    /* Just support these ram flags by now. */
2335    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2336
2337    if (xen_enabled()) {
2338        error_setg(errp, "-mem-path not supported with Xen");
2339        return NULL;
2340    }
2341
2342    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2343        error_setg(errp,
2344                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2345        return NULL;
2346    }
2347
2348    if (phys_mem_alloc != qemu_anon_ram_alloc) {
2349        /*
2350         * file_ram_alloc() needs to allocate just like
2351         * phys_mem_alloc, but we haven't bothered to provide
2352         * a hook there.
2353         */
2354        error_setg(errp,
2355                   "-mem-path not supported with this accelerator");
2356        return NULL;
2357    }
2358
2359    size = HOST_PAGE_ALIGN(size);
2360    file_size = get_file_size(fd);
2361    if (file_size > 0 && file_size < size) {
2362        error_setg(errp, "backing store %s size 0x%" PRIx64
2363                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2364                   mem_path, file_size, size);
2365        return NULL;
2366    }
2367
2368    new_block = g_malloc0(sizeof(*new_block));
2369    new_block->mr = mr;
2370    new_block->used_length = size;
2371    new_block->max_length = size;
2372    new_block->flags = ram_flags;
2373    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2374    if (!new_block->host) {
2375        g_free(new_block);
2376        return NULL;
2377    }
2378
2379    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2380    if (local_err) {
2381        g_free(new_block);
2382        error_propagate(errp, local_err);
2383        return NULL;
2384    }
2385    return new_block;
2386
2387}
2388
2389
2390RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2391                                   uint32_t ram_flags, const char *mem_path,
2392                                   Error **errp)
2393{
2394    int fd;
2395    bool created;
2396    RAMBlock *block;
2397
2398    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2399    if (fd < 0) {
2400        return NULL;
2401    }
2402
2403    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2404    if (!block) {
2405        if (created) {
2406            unlink(mem_path);
2407        }
2408        close(fd);
2409        return NULL;
2410    }
2411
2412    return block;
2413}
2414#endif
2415
2416static
2417RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2418                                  void (*resized)(const char*,
2419                                                  uint64_t length,
2420                                                  void *host),
2421                                  void *host, bool resizeable, bool share,
2422                                  MemoryRegion *mr, Error **errp)
2423{
2424    RAMBlock *new_block;
2425    Error *local_err = NULL;
2426
2427    size = HOST_PAGE_ALIGN(size);
2428    max_size = HOST_PAGE_ALIGN(max_size);
2429    new_block = g_malloc0(sizeof(*new_block));
2430    new_block->mr = mr;
2431    new_block->resized = resized;
2432    new_block->used_length = size;
2433    new_block->max_length = max_size;
2434    assert(max_size >= size);
2435    new_block->fd = -1;
2436    new_block->page_size = getpagesize();
2437    new_block->host = host;
2438    if (host) {
2439        new_block->flags |= RAM_PREALLOC;
2440    }
2441    if (resizeable) {
2442        new_block->flags |= RAM_RESIZEABLE;
2443    }
2444    ram_block_add(new_block, &local_err, share);
2445    if (local_err) {
2446        g_free(new_block);
2447        error_propagate(errp, local_err);
2448        return NULL;
2449    }
2450    return new_block;
2451}
2452
2453RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2454                                   MemoryRegion *mr, Error **errp)
2455{
2456    return qemu_ram_alloc_internal(size, size, NULL, host, false,
2457                                   false, mr, errp);
2458}
2459
2460RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2461                         MemoryRegion *mr, Error **errp)
2462{
2463    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2464                                   share, mr, errp);
2465}
2466
2467RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2468                                     void (*resized)(const char*,
2469                                                     uint64_t length,
2470                                                     void *host),
2471                                     MemoryRegion *mr, Error **errp)
2472{
2473    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2474                                   false, mr, errp);
2475}
2476
2477static void reclaim_ramblock(RAMBlock *block)
2478{
2479    if (block->flags & RAM_PREALLOC) {
2480        ;
2481    } else if (xen_enabled()) {
2482        xen_invalidate_map_cache_entry(block->host);
2483#ifndef _WIN32
2484    } else if (block->fd >= 0) {
2485        qemu_ram_munmap(block->fd, block->host, block->max_length);
2486        close(block->fd);
2487#endif
2488    } else {
2489        qemu_anon_ram_free(block->host, block->max_length);
2490    }
2491    g_free(block);
2492}
2493
2494void qemu_ram_free(RAMBlock *block)
2495{
2496    if (!block) {
2497        return;
2498    }
2499
2500    if (block->host) {
2501        ram_block_notify_remove(block->host, block->max_length);
2502    }
2503
2504    qemu_mutex_lock_ramlist();
2505    QLIST_REMOVE_RCU(block, next);
2506    ram_list.mru_block = NULL;
2507    /* Write list before version */
2508    smp_wmb();
2509    ram_list.version++;
2510    call_rcu(block, reclaim_ramblock, rcu);
2511    qemu_mutex_unlock_ramlist();
2512}
2513
2514#ifndef _WIN32
2515void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2516{
2517    RAMBlock *block;
2518    ram_addr_t offset;
2519    int flags;
2520    void *area, *vaddr;
2521
2522    RAMBLOCK_FOREACH(block) {
2523        offset = addr - block->offset;
2524        if (offset < block->max_length) {
2525            vaddr = ramblock_ptr(block, offset);
2526            if (block->flags & RAM_PREALLOC) {
2527                ;
2528            } else if (xen_enabled()) {
2529                abort();
2530            } else {
2531                flags = MAP_FIXED;
2532                if (block->fd >= 0) {
2533                    flags |= (block->flags & RAM_SHARED ?
2534                              MAP_SHARED : MAP_PRIVATE);
2535                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2536                                flags, block->fd, offset);
2537                } else {
2538                    /*
2539                     * Remap needs to match alloc.  Accelerators that
2540                     * set phys_mem_alloc never remap.  If they did,
2541                     * we'd need a remap hook here.
2542                     */
2543                    assert(phys_mem_alloc == qemu_anon_ram_alloc);
2544
2545                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2546                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2547                                flags, -1, 0);
2548                }
2549                if (area != vaddr) {
2550                    error_report("Could not remap addr: "
2551                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2552                                 length, addr);
2553                    exit(1);
2554                }
2555                memory_try_enable_merging(vaddr, length);
2556                qemu_ram_setup_dump(vaddr, length);
2557            }
2558        }
2559    }
2560}
2561#endif /* !_WIN32 */
2562
2563/* Return a host pointer to ram allocated with qemu_ram_alloc.
2564 * This should not be used for general purpose DMA.  Use address_space_map
2565 * or address_space_rw instead. For local memory (e.g. video ram) that the
2566 * device owns, use memory_region_get_ram_ptr.
2567 *
2568 * Called within RCU critical section.
2569 */
2570void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2571{
2572    RAMBlock *block = ram_block;
2573
2574    if (block == NULL) {
2575        block = qemu_get_ram_block(addr);
2576        addr -= block->offset;
2577    }
2578
2579    if (xen_enabled() && block->host == NULL) {
2580        /* We need to check if the requested address is in the RAM
2581         * because we don't want to map the entire memory in QEMU.
2582         * In that case just map until the end of the page.
2583         */
2584        if (block->offset == 0) {
2585            return xen_map_cache(addr, 0, 0, false);
2586        }
2587
2588        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2589    }
2590    return ramblock_ptr(block, addr);
2591}
2592
2593/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2594 * but takes a size argument.
2595 *
2596 * Called within RCU critical section.
2597 */
2598static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2599                                 hwaddr *size, bool lock)
2600{
2601    RAMBlock *block = ram_block;
2602    if (*size == 0) {
2603        return NULL;
2604    }
2605
2606    if (block == NULL) {
2607        block = qemu_get_ram_block(addr);
2608        addr -= block->offset;
2609    }
2610    *size = MIN(*size, block->max_length - addr);
2611
2612    if (xen_enabled() && block->host == NULL) {
2613        /* We need to check if the requested address is in the RAM
2614         * because we don't want to map the entire memory in QEMU.
2615         * In that case just map the requested area.
2616         */
2617        if (block->offset == 0) {
2618            return xen_map_cache(addr, *size, lock, lock);
2619        }
2620
2621        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2622    }
2623
2624    return ramblock_ptr(block, addr);
2625}
2626
2627/* Return the offset of a hostpointer within a ramblock */
2628ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2629{
2630    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2631    assert((uintptr_t)host >= (uintptr_t)rb->host);
2632    assert(res < rb->max_length);
2633
2634    return res;
2635}
2636
2637/*
2638 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2639 * in that RAMBlock.
2640 *
2641 * ptr: Host pointer to look up
2642 * round_offset: If true round the result offset down to a page boundary
2643 * *ram_addr: set to result ram_addr
2644 * *offset: set to result offset within the RAMBlock
2645 *
2646 * Returns: RAMBlock (or NULL if not found)
2647 *
2648 * By the time this function returns, the returned pointer is not protected
2649 * by RCU anymore.  If the caller is not within an RCU critical section and
2650 * does not hold the iothread lock, it must have other means of protecting the
2651 * pointer, such as a reference to the region that includes the incoming
2652 * ram_addr_t.
2653 */
2654RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2655                                   ram_addr_t *offset)
2656{
2657    RAMBlock *block;
2658    uint8_t *host = ptr;
2659
2660    if (xen_enabled()) {
2661        ram_addr_t ram_addr;
2662        rcu_read_lock();
2663        ram_addr = xen_ram_addr_from_mapcache(ptr);
2664        block = qemu_get_ram_block(ram_addr);
2665        if (block) {
2666            *offset = ram_addr - block->offset;
2667        }
2668        rcu_read_unlock();
2669        return block;
2670    }
2671
2672    rcu_read_lock();
2673    block = atomic_rcu_read(&ram_list.mru_block);
2674    if (block && block->host && host - block->host < block->max_length) {
2675        goto found;
2676    }
2677
2678    RAMBLOCK_FOREACH(block) {
2679        /* This case append when the block is not mapped. */
2680        if (block->host == NULL) {
2681            continue;
2682        }
2683        if (host - block->host < block->max_length) {
2684            goto found;
2685        }
2686    }
2687
2688    rcu_read_unlock();
2689    return NULL;
2690
2691found:
2692    *offset = (host - block->host);
2693    if (round_offset) {
2694        *offset &= TARGET_PAGE_MASK;
2695    }
2696    rcu_read_unlock();
2697    return block;
2698}
2699
2700/*
2701 * Finds the named RAMBlock
2702 *
2703 * name: The name of RAMBlock to find
2704 *
2705 * Returns: RAMBlock (or NULL if not found)
2706 */
2707RAMBlock *qemu_ram_block_by_name(const char *name)
2708{
2709    RAMBlock *block;
2710
2711    RAMBLOCK_FOREACH(block) {
2712        if (!strcmp(name, block->idstr)) {
2713            return block;
2714        }
2715    }
2716
2717    return NULL;
2718}
2719
2720/* Some of the softmmu routines need to translate from a host pointer
2721   (typically a TLB entry) back to a ram offset.  */
2722ram_addr_t qemu_ram_addr_from_host(void *ptr)
2723{
2724    RAMBlock *block;
2725    ram_addr_t offset;
2726
2727    block = qemu_ram_block_from_host(ptr, false, &offset);
2728    if (!block) {
2729        return RAM_ADDR_INVALID;
2730    }
2731
2732    return block->offset + offset;
2733}
2734
2735/* Called within RCU critical section. */
2736void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2737                          CPUState *cpu,
2738                          vaddr mem_vaddr,
2739                          ram_addr_t ram_addr,
2740                          unsigned size)
2741{
2742    ndi->cpu = cpu;
2743    ndi->ram_addr = ram_addr;
2744    ndi->mem_vaddr = mem_vaddr;
2745    ndi->size = size;
2746    ndi->pages = NULL;
2747
2748    assert(tcg_enabled());
2749    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2750        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2751        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2752    }
2753}
2754
2755/* Called within RCU critical section. */
2756void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2757{
2758    if (ndi->pages) {
2759        assert(tcg_enabled());
2760        page_collection_unlock(ndi->pages);
2761        ndi->pages = NULL;
2762    }
2763
2764    /* Set both VGA and migration bits for simplicity and to remove
2765     * the notdirty callback faster.
2766     */
2767    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2768                                        DIRTY_CLIENTS_NOCODE);
2769    /* we remove the notdirty callback only if the code has been
2770       flushed */
2771    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2772        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2773    }
2774}
2775
2776/* Called within RCU critical section.  */
2777static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2778                               uint64_t val, unsigned size)
2779{
2780    NotDirtyInfo ndi;
2781
2782    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2783                         ram_addr, size);
2784
2785    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2786    memory_notdirty_write_complete(&ndi);
2787}
2788
2789static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2790                                 unsigned size, bool is_write,
2791                                 MemTxAttrs attrs)
2792{
2793    return is_write;
2794}
2795
2796static const MemoryRegionOps notdirty_mem_ops = {
2797    .write = notdirty_mem_write,
2798    .valid.accepts = notdirty_mem_accepts,
2799    .endianness = DEVICE_NATIVE_ENDIAN,
2800    .valid = {
2801        .min_access_size = 1,
2802        .max_access_size = 8,
2803        .unaligned = false,
2804    },
2805    .impl = {
2806        .min_access_size = 1,
2807        .max_access_size = 8,
2808        .unaligned = false,
2809    },
2810};
2811
2812/* Generate a debug exception if a watchpoint has been hit.  */
2813static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2814{
2815    CPUState *cpu = current_cpu;
2816    CPUClass *cc = CPU_GET_CLASS(cpu);
2817    target_ulong vaddr;
2818    CPUWatchpoint *wp;
2819
2820    assert(tcg_enabled());
2821    if (cpu->watchpoint_hit) {
2822        /* We re-entered the check after replacing the TB. Now raise
2823         * the debug interrupt so that is will trigger after the
2824         * current instruction. */
2825        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2826        return;
2827    }
2828    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2829    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2830    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2831        if (cpu_watchpoint_address_matches(wp, vaddr, len)
2832            && (wp->flags & flags)) {
2833            if (flags == BP_MEM_READ) {
2834                wp->flags |= BP_WATCHPOINT_HIT_READ;
2835            } else {
2836                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2837            }
2838            wp->hitaddr = vaddr;
2839            wp->hitattrs = attrs;
2840            if (!cpu->watchpoint_hit) {
2841                if (wp->flags & BP_CPU &&
2842                    !cc->debug_check_watchpoint(cpu, wp)) {
2843                    wp->flags &= ~BP_WATCHPOINT_HIT;
2844                    continue;
2845                }
2846                cpu->watchpoint_hit = wp;
2847
2848                mmap_lock();
2849                tb_check_watchpoint(cpu);
2850                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2851                    cpu->exception_index = EXCP_DEBUG;
2852                    mmap_unlock();
2853                    cpu_loop_exit(cpu);
2854                } else {
2855                    /* Force execution of one insn next time.  */
2856                    cpu->cflags_next_tb = 1 | curr_cflags();
2857                    mmap_unlock();
2858                    cpu_loop_exit_noexc(cpu);
2859                }
2860            }
2861        } else {
2862            wp->flags &= ~BP_WATCHPOINT_HIT;
2863        }
2864    }
2865}
2866
2867/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
2868   so these check for a hit then pass through to the normal out-of-line
2869   phys routines.  */
2870static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2871                                  unsigned size, MemTxAttrs attrs)
2872{
2873    MemTxResult res;
2874    uint64_t data;
2875    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2876    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2877
2878    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2879    switch (size) {
2880    case 1:
2881        data = address_space_ldub(as, addr, attrs, &res);
2882        break;
2883    case 2:
2884        data = address_space_lduw(as, addr, attrs, &res);
2885        break;
2886    case 4:
2887        data = address_space_ldl(as, addr, attrs, &res);
2888        break;
2889    case 8:
2890        data = address_space_ldq(as, addr, attrs, &res);
2891        break;
2892    default: abort();
2893    }
2894    *pdata = data;
2895    return res;
2896}
2897
2898static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2899                                   uint64_t val, unsigned size,
2900                                   MemTxAttrs attrs)
2901{
2902    MemTxResult res;
2903    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2904    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2905
2906    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2907    switch (size) {
2908    case 1:
2909        address_space_stb(as, addr, val, attrs, &res);
2910        break;
2911    case 2:
2912        address_space_stw(as, addr, val, attrs, &res);
2913        break;
2914    case 4:
2915        address_space_stl(as, addr, val, attrs, &res);
2916        break;
2917    case 8:
2918        address_space_stq(as, addr, val, attrs, &res);
2919        break;
2920    default: abort();
2921    }
2922    return res;
2923}
2924
2925static const MemoryRegionOps watch_mem_ops = {
2926    .read_with_attrs = watch_mem_read,
2927    .write_with_attrs = watch_mem_write,
2928    .endianness = DEVICE_NATIVE_ENDIAN,
2929    .valid = {
2930        .min_access_size = 1,
2931        .max_access_size = 8,
2932        .unaligned = false,
2933    },
2934    .impl = {
2935        .min_access_size = 1,
2936        .max_access_size = 8,
2937        .unaligned = false,
2938    },
2939};
2940
2941static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2942                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2943static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2944                                  const uint8_t *buf, hwaddr len);
2945static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2946                                  bool is_write, MemTxAttrs attrs);
2947
2948static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2949                                unsigned len, MemTxAttrs attrs)
2950{
2951    subpage_t *subpage = opaque;
2952    uint8_t buf[8];
2953    MemTxResult res;
2954
2955#if defined(DEBUG_SUBPAGE)
2956    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2957           subpage, len, addr);
2958#endif
2959    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2960    if (res) {
2961        return res;
2962    }
2963    *data = ldn_p(buf, len);
2964    return MEMTX_OK;
2965}
2966
2967static MemTxResult subpage_write(void *opaque, hwaddr addr,
2968                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2969{
2970    subpage_t *subpage = opaque;
2971    uint8_t buf[8];
2972
2973#if defined(DEBUG_SUBPAGE)
2974    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2975           " value %"PRIx64"\n",
2976           __func__, subpage, len, addr, value);
2977#endif
2978    stn_p(buf, len, value);
2979    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2980}
2981
2982static bool subpage_accepts(void *opaque, hwaddr addr,
2983                            unsigned len, bool is_write,
2984                            MemTxAttrs attrs)
2985{
2986    subpage_t *subpage = opaque;
2987#if defined(DEBUG_SUBPAGE)
2988    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2989           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2990#endif
2991
2992    return flatview_access_valid(subpage->fv, addr + subpage->base,
2993                                 len, is_write, attrs);
2994}
2995
2996static const MemoryRegionOps subpage_ops = {
2997    .read_with_attrs = subpage_read,
2998    .write_with_attrs = subpage_write,
2999    .impl.min_access_size = 1,
3000    .impl.max_access_size = 8,
3001    .valid.min_access_size = 1,
3002    .valid.max_access_size = 8,
3003    .valid.accepts = subpage_accepts,
3004    .endianness = DEVICE_NATIVE_ENDIAN,
3005};
3006
3007static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3008                             uint16_t section)
3009{
3010    int idx, eidx;
3011
3012    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3013        return -1;
3014    idx = SUBPAGE_IDX(start);
3015    eidx = SUBPAGE_IDX(end);
3016#if defined(DEBUG_SUBPAGE)
3017    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3018           __func__, mmio, start, end, idx, eidx, section);
3019#endif
3020    for (; idx <= eidx; idx++) {
3021        mmio->sub_section[idx] = section;
3022    }
3023
3024    return 0;
3025}
3026
3027static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3028{
3029    subpage_t *mmio;
3030
3031    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3032    mmio->fv = fv;
3033    mmio->base = base;
3034    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3035                          NULL, TARGET_PAGE_SIZE);
3036    mmio->iomem.subpage = true;
3037#if defined(DEBUG_SUBPAGE)
3038    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3039           mmio, base, TARGET_PAGE_SIZE);
3040#endif
3041    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3042
3043    return mmio;
3044}
3045
3046static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3047{
3048    assert(fv);
3049    MemoryRegionSection section = {
3050        .fv = fv,
3051        .mr = mr,
3052        .offset_within_address_space = 0,
3053        .offset_within_region = 0,
3054        .size = int128_2_64(),
3055    };
3056
3057    return phys_section_add(map, &section);
3058}
3059
3060static void readonly_mem_write(void *opaque, hwaddr addr,
3061                               uint64_t val, unsigned size)
3062{
3063    /* Ignore any write to ROM. */
3064}
3065
3066static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3067                                 unsigned size, bool is_write,
3068                                 MemTxAttrs attrs)
3069{
3070    return is_write;
3071}
3072
3073/* This will only be used for writes, because reads are special cased
3074 * to directly access the underlying host ram.
3075 */
3076static const MemoryRegionOps readonly_mem_ops = {
3077    .write = readonly_mem_write,
3078    .valid.accepts = readonly_mem_accepts,
3079    .endianness = DEVICE_NATIVE_ENDIAN,
3080    .valid = {
3081        .min_access_size = 1,
3082        .max_access_size = 8,
3083        .unaligned = false,
3084    },
3085    .impl = {
3086        .min_access_size = 1,
3087        .max_access_size = 8,
3088        .unaligned = false,
3089    },
3090};
3091
3092MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3093                                      hwaddr index, MemTxAttrs attrs)
3094{
3095    int asidx = cpu_asidx_from_attrs(cpu, attrs);
3096    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3097    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3098    MemoryRegionSection *sections = d->map.sections;
3099
3100    return &sections[index & ~TARGET_PAGE_MASK];
3101}
3102
3103static void io_mem_init(void)
3104{
3105    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3106                          NULL, NULL, UINT64_MAX);
3107    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3108                          NULL, UINT64_MAX);
3109
3110    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3111     * which can be called without the iothread mutex.
3112     */
3113    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3114                          NULL, UINT64_MAX);
3115    memory_region_clear_global_locking(&io_mem_notdirty);
3116
3117    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3118                          NULL, UINT64_MAX);
3119}
3120
3121AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3122{
3123    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3124    uint16_t n;
3125
3126    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3127    assert(n == PHYS_SECTION_UNASSIGNED);
3128    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3129    assert(n == PHYS_SECTION_NOTDIRTY);
3130    n = dummy_section(&d->map, fv, &io_mem_rom);
3131    assert(n == PHYS_SECTION_ROM);
3132    n = dummy_section(&d->map, fv, &io_mem_watch);
3133    assert(n == PHYS_SECTION_WATCH);
3134
3135    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3136
3137    return d;
3138}
3139
3140void address_space_dispatch_free(AddressSpaceDispatch *d)
3141{
3142    phys_sections_free(&d->map);
3143    g_free(d);
3144}
3145
3146static void tcg_commit(MemoryListener *listener)
3147{
3148    CPUAddressSpace *cpuas;
3149    AddressSpaceDispatch *d;
3150
3151    assert(tcg_enabled());
3152    /* since each CPU stores ram addresses in its TLB cache, we must
3153       reset the modified entries */
3154    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3155    cpu_reloading_memory_map();
3156    /* The CPU and TLB are protected by the iothread lock.
3157     * We reload the dispatch pointer now because cpu_reloading_memory_map()
3158     * may have split the RCU critical section.
3159     */
3160    d = address_space_to_dispatch(cpuas->as);
3161    atomic_rcu_set(&cpuas->memory_dispatch, d);
3162    tlb_flush(cpuas->cpu);
3163}
3164
3165static void memory_map_init(void)
3166{
3167    system_memory = g_malloc(sizeof(*system_memory));
3168
3169    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3170    address_space_init(&address_space_memory, system_memory, "memory");
3171
3172    system_io = g_malloc(sizeof(*system_io));
3173    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3174                          65536);
3175    address_space_init(&address_space_io, system_io, "I/O");
3176}
3177
3178MemoryRegion *get_system_memory(void)
3179{
3180    return system_memory;
3181}
3182
3183MemoryRegion *get_system_io(void)
3184{
3185    return system_io;
3186}
3187
3188#endif /* !defined(CONFIG_USER_ONLY) */
3189
3190/* physical memory access (slow version, mainly for debug) */
3191#if defined(CONFIG_USER_ONLY)
3192int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3193                        uint8_t *buf, target_ulong len, int is_write)
3194{
3195    int flags;
3196    target_ulong l, page;
3197    void * p;
3198
3199    while (len > 0) {
3200        page = addr & TARGET_PAGE_MASK;
3201        l = (page + TARGET_PAGE_SIZE) - addr;
3202        if (l > len)
3203            l = len;
3204        flags = page_get_flags(page);
3205        if (!(flags & PAGE_VALID))
3206            return -1;
3207        if (is_write) {
3208            if (!(flags & PAGE_WRITE))
3209                return -1;
3210            /* XXX: this code should not depend on lock_user */
3211            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3212                return -1;
3213            memcpy(p, buf, l);
3214            unlock_user(p, addr, l);
3215        } else {
3216            if (!(flags & PAGE_READ))
3217                return -1;
3218            /* XXX: this code should not depend on lock_user */
3219            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3220                return -1;
3221            memcpy(buf, p, l);
3222            unlock_user(p, addr, 0);
3223        }
3224        len -= l;
3225        buf += l;
3226        addr += l;
3227    }
3228    return 0;
3229}
3230
3231#else
3232
3233static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3234                                     hwaddr length)
3235{
3236    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3237    addr += memory_region_get_ram_addr(mr);
3238
3239    /* No early return if dirty_log_mask is or becomes 0, because
3240     * cpu_physical_memory_set_dirty_range will still call
3241     * xen_modified_memory.
3242     */
3243    if (dirty_log_mask) {
3244        dirty_log_mask =
3245            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3246    }
3247    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3248        assert(tcg_enabled());
3249        tb_invalidate_phys_range(addr, addr + length);
3250        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3251    }
3252    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3253}
3254
3255void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3256{
3257    /*
3258     * In principle this function would work on other memory region types too,
3259     * but the ROM device use case is the only one where this operation is
3260     * necessary.  Other memory regions should use the
3261     * address_space_read/write() APIs.
3262     */
3263    assert(memory_region_is_romd(mr));
3264
3265    invalidate_and_set_dirty(mr, addr, size);
3266}
3267
3268static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3269{
3270    unsigned access_size_max = mr->ops->valid.max_access_size;
3271
3272    /* Regions are assumed to support 1-4 byte accesses unless
3273       otherwise specified.  */
3274    if (access_size_max == 0) {
3275        access_size_max = 4;
3276    }
3277
3278    /* Bound the maximum access by the alignment of the address.  */
3279    if (!mr->ops->impl.unaligned) {
3280        unsigned align_size_max = addr & -addr;
3281        if (align_size_max != 0 && align_size_max < access_size_max) {
3282            access_size_max = align_size_max;
3283        }
3284    }
3285
3286    /* Don't attempt accesses larger than the maximum.  */
3287    if (l > access_size_max) {
3288        l = access_size_max;
3289    }
3290    l = pow2floor(l);
3291
3292    return l;
3293}
3294
3295static bool prepare_mmio_access(MemoryRegion *mr)
3296{
3297    bool unlocked = !qemu_mutex_iothread_locked();
3298    bool release_lock = false;
3299
3300    if (unlocked && mr->global_locking) {
3301        qemu_mutex_lock_iothread();
3302        unlocked = false;
3303        release_lock = true;
3304    }
3305    if (mr->flush_coalesced_mmio) {
3306        if (unlocked) {
3307            qemu_mutex_lock_iothread();
3308        }
3309        qemu_flush_coalesced_mmio_buffer();
3310        if (unlocked) {
3311            qemu_mutex_unlock_iothread();
3312        }
3313    }
3314
3315    return release_lock;
3316}
3317
3318/* Called within RCU critical section.  */
3319static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3320                                           MemTxAttrs attrs,
3321                                           const uint8_t *buf,
3322                                           hwaddr len, hwaddr addr1,
3323                                           hwaddr l, MemoryRegion *mr)
3324{
3325    uint8_t *ptr;
3326    uint64_t val;
3327    MemTxResult result = MEMTX_OK;
3328    bool release_lock = false;
3329
3330    for (;;) {
3331        if (!memory_access_is_direct(mr, true)) {
3332            release_lock |= prepare_mmio_access(mr);
3333            l = memory_access_size(mr, l, addr1);
3334            /* XXX: could force current_cpu to NULL to avoid
3335               potential bugs */
3336            val = ldn_p(buf, l);
3337            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3338        } else {
3339            /* RAM case */
3340            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3341            memcpy(ptr, buf, l);
3342            invalidate_and_set_dirty(mr, addr1, l);
3343        }
3344
3345        if (release_lock) {
3346            qemu_mutex_unlock_iothread();
3347            release_lock = false;
3348        }
3349
3350        len -= l;
3351        buf += l;
3352        addr += l;
3353
3354        if (!len) {
3355            break;
3356        }
3357
3358        l = len;
3359        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3360    }
3361
3362    return result;
3363}
3364
3365/* Called from RCU critical section.  */
3366static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3367                                  const uint8_t *buf, hwaddr len)
3368{
3369    hwaddr l;
3370    hwaddr addr1;
3371    MemoryRegion *mr;
3372    MemTxResult result = MEMTX_OK;
3373
3374    l = len;
3375    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3376    result = flatview_write_continue(fv, addr, attrs, buf, len,
3377                                     addr1, l, mr);
3378
3379    return result;
3380}
3381
3382/* Called within RCU critical section.  */
3383MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3384                                   MemTxAttrs attrs, uint8_t *buf,
3385                                   hwaddr len, hwaddr addr1, hwaddr l,
3386                                   MemoryRegion *mr)
3387{
3388    uint8_t *ptr;
3389    uint64_t val;
3390    MemTxResult result = MEMTX_OK;
3391    bool release_lock = false;
3392
3393    for (;;) {
3394        if (!memory_access_is_direct(mr, false)) {
3395            /* I/O case */
3396            release_lock |= prepare_mmio_access(mr);
3397            l = memory_access_size(mr, l, addr1);
3398            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3399            stn_p(buf, l, val);
3400        } else {
3401            /* RAM case */
3402            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3403            memcpy(buf, ptr, l);
3404        }
3405
3406        if (release_lock) {
3407            qemu_mutex_unlock_iothread();
3408            release_lock = false;
3409        }
3410
3411        len -= l;
3412        buf += l;
3413        addr += l;
3414
3415        if (!len) {
3416            break;
3417        }
3418
3419        l = len;
3420        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3421    }
3422
3423    return result;
3424}
3425
3426/* Called from RCU critical section.  */
3427static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3428                                 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3429{
3430    hwaddr l;
3431    hwaddr addr1;
3432    MemoryRegion *mr;
3433
3434    l = len;
3435    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3436    return flatview_read_continue(fv, addr, attrs, buf, len,
3437                                  addr1, l, mr);
3438}
3439
3440MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3441                                    MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3442{
3443    MemTxResult result = MEMTX_OK;
3444    FlatView *fv;
3445
3446    if (len > 0) {
3447        rcu_read_lock();
3448        fv = address_space_to_flatview(as);
3449        result = flatview_read(fv, addr, attrs, buf, len);
3450        rcu_read_unlock();
3451    }
3452
3453    return result;
3454}
3455
3456MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3457                                MemTxAttrs attrs,
3458                                const uint8_t *buf, hwaddr len)
3459{
3460    MemTxResult result = MEMTX_OK;
3461    FlatView *fv;
3462
3463    if (len > 0) {
3464        rcu_read_lock();
3465        fv = address_space_to_flatview(as);
3466        result = flatview_write(fv, addr, attrs, buf, len);
3467        rcu_read_unlock();
3468    }
3469
3470    return result;
3471}
3472
3473MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3474                             uint8_t *buf, hwaddr len, bool is_write)
3475{
3476    if (is_write) {
3477        return address_space_write(as, addr, attrs, buf, len);
3478    } else {
3479        return address_space_read_full(as, addr, attrs, buf, len);
3480    }
3481}
3482
3483void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3484                            hwaddr len, int is_write)
3485{
3486    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3487                     buf, len, is_write);
3488}
3489
3490enum write_rom_type {
3491    WRITE_DATA,
3492    FLUSH_CACHE,
3493};
3494
3495static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3496                                                           hwaddr addr,
3497                                                           MemTxAttrs attrs,
3498                                                           const uint8_t *buf,
3499                                                           hwaddr len,
3500                                                           enum write_rom_type type)
3501{
3502    hwaddr l;
3503    uint8_t *ptr;
3504    hwaddr addr1;
3505    MemoryRegion *mr;
3506
3507    rcu_read_lock();
3508    while (len > 0) {
3509        l = len;
3510        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3511
3512        if (!(memory_region_is_ram(mr) ||
3513              memory_region_is_romd(mr))) {
3514            l = memory_access_size(mr, l, addr1);
3515        } else {
3516            /* ROM/RAM case */
3517            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3518            switch (type) {
3519            case WRITE_DATA:
3520                memcpy(ptr, buf, l);
3521                invalidate_and_set_dirty(mr, addr1, l);
3522                break;
3523            case FLUSH_CACHE:
3524                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3525                break;
3526            }
3527        }
3528        len -= l;
3529        buf += l;
3530        addr += l;
3531    }
3532    rcu_read_unlock();
3533    return MEMTX_OK;
3534}
3535
3536/* used for ROM loading : can write in RAM and ROM */
3537MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3538                                    MemTxAttrs attrs,
3539                                    const uint8_t *buf, hwaddr len)
3540{
3541    return address_space_write_rom_internal(as, addr, attrs,
3542                                            buf, len, WRITE_DATA);
3543}
3544
3545void cpu_flush_icache_range(hwaddr start, hwaddr len)
3546{
3547    /*
3548     * This function should do the same thing as an icache flush that was
3549     * triggered from within the guest. For TCG we are always cache coherent,
3550     * so there is no need to flush anything. For KVM / Xen we need to flush
3551     * the host's instruction cache at least.
3552     */
3553    if (tcg_enabled()) {
3554        return;
3555    }
3556
3557    address_space_write_rom_internal(&address_space_memory,
3558                                     start, MEMTXATTRS_UNSPECIFIED,
3559                                     NULL, len, FLUSH_CACHE);
3560}
3561
3562typedef struct {
3563    MemoryRegion *mr;
3564    void *buffer;
3565    hwaddr addr;
3566    hwaddr len;
3567    bool in_use;
3568} BounceBuffer;
3569
3570static BounceBuffer bounce;
3571
3572typedef struct MapClient {
3573    QEMUBH *bh;
3574    QLIST_ENTRY(MapClient) link;
3575} MapClient;
3576
3577QemuMutex map_client_list_lock;
3578static QLIST_HEAD(, MapClient) map_client_list
3579    = QLIST_HEAD_INITIALIZER(map_client_list);
3580
3581static void cpu_unregister_map_client_do(MapClient *client)
3582{
3583    QLIST_REMOVE(client, link);
3584    g_free(client);
3585}
3586
3587static void cpu_notify_map_clients_locked(void)
3588{
3589    MapClient *client;
3590
3591    while (!QLIST_EMPTY(&map_client_list)) {
3592        client = QLIST_FIRST(&map_client_list);
3593        qemu_bh_schedule(client->bh);
3594        cpu_unregister_map_client_do(client);
3595    }
3596}
3597
3598void cpu_register_map_client(QEMUBH *bh)
3599{
3600    MapClient *client = g_malloc(sizeof(*client));
3601
3602    qemu_mutex_lock(&map_client_list_lock);
3603    client->bh = bh;
3604    QLIST_INSERT_HEAD(&map_client_list, client, link);
3605    if (!atomic_read(&bounce.in_use)) {
3606        cpu_notify_map_clients_locked();
3607    }
3608    qemu_mutex_unlock(&map_client_list_lock);
3609}
3610
3611void cpu_exec_init_all(void)
3612{
3613    qemu_mutex_init(&ram_list.mutex);
3614    /* The data structures we set up here depend on knowing the page size,
3615     * so no more changes can be made after this point.
3616     * In an ideal world, nothing we did before we had finished the
3617     * machine setup would care about the target page size, and we could
3618     * do this much later, rather than requiring board models to state
3619     * up front what their requirements are.
3620     */
3621    finalize_target_page_bits();
3622    io_mem_init();
3623    memory_map_init();
3624    qemu_mutex_init(&map_client_list_lock);
3625}
3626
3627void cpu_unregister_map_client(QEMUBH *bh)
3628{
3629    MapClient *client;
3630
3631    qemu_mutex_lock(&map_client_list_lock);
3632    QLIST_FOREACH(client, &map_client_list, link) {
3633        if (client->bh == bh) {
3634            cpu_unregister_map_client_do(client);
3635            break;
3636        }
3637    }
3638    qemu_mutex_unlock(&map_client_list_lock);
3639}
3640
3641static void cpu_notify_map_clients(void)
3642{
3643    qemu_mutex_lock(&map_client_list_lock);
3644    cpu_notify_map_clients_locked();
3645    qemu_mutex_unlock(&map_client_list_lock);
3646}
3647
3648static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3649                                  bool is_write, MemTxAttrs attrs)
3650{
3651    MemoryRegion *mr;
3652    hwaddr l, xlat;
3653
3654    while (len > 0) {
3655        l = len;
3656        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3657        if (!memory_access_is_direct(mr, is_write)) {
3658            l = memory_access_size(mr, l, addr);
3659            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3660                return false;
3661            }
3662        }
3663
3664        len -= l;
3665        addr += l;
3666    }
3667    return true;
3668}
3669
3670bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3671                                hwaddr len, bool is_write,
3672                                MemTxAttrs attrs)
3673{
3674    FlatView *fv;
3675    bool result;
3676
3677    rcu_read_lock();
3678    fv = address_space_to_flatview(as);
3679    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3680    rcu_read_unlock();
3681    return result;
3682}
3683
3684static hwaddr
3685flatview_extend_translation(FlatView *fv, hwaddr addr,
3686                            hwaddr target_len,
3687                            MemoryRegion *mr, hwaddr base, hwaddr len,
3688                            bool is_write, MemTxAttrs attrs)
3689{
3690    hwaddr done = 0;
3691    hwaddr xlat;
3692    MemoryRegion *this_mr;
3693
3694    for (;;) {
3695        target_len -= len;
3696        addr += len;
3697        done += len;
3698        if (target_len == 0) {
3699            return done;
3700        }
3701
3702        len = target_len;
3703        this_mr = flatview_translate(fv, addr, &xlat,
3704                                     &len, is_write, attrs);
3705        if (this_mr != mr || xlat != base + done) {
3706            return done;
3707        }
3708    }
3709}
3710
3711/* Map a physical memory region into a host virtual address.
3712 * May map a subset of the requested range, given by and returned in *plen.
3713 * May return NULL if resources needed to perform the mapping are exhausted.
3714 * Use only for reads OR writes - not for read-modify-write operations.
3715 * Use cpu_register_map_client() to know when retrying the map operation is
3716 * likely to succeed.
3717 */
3718void *address_space_map(AddressSpace *as,
3719                        hwaddr addr,
3720                        hwaddr *plen,
3721                        bool is_write,
3722                        MemTxAttrs attrs)
3723{
3724    hwaddr len = *plen;
3725    hwaddr l, xlat;
3726    MemoryRegion *mr;
3727    void *ptr;
3728    FlatView *fv;
3729
3730    if (len == 0) {
3731        return NULL;
3732    }
3733
3734    l = len;
3735    rcu_read_lock();
3736    fv = address_space_to_flatview(as);
3737    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3738
3739    if (!memory_access_is_direct(mr, is_write)) {
3740        if (atomic_xchg(&bounce.in_use, true)) {
3741            rcu_read_unlock();
3742            return NULL;
3743        }
3744        /* Avoid unbounded allocations */
3745        l = MIN(l, TARGET_PAGE_SIZE);
3746        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3747        bounce.addr = addr;
3748        bounce.len = l;
3749
3750        memory_region_ref(mr);
3751        bounce.mr = mr;
3752        if (!is_write) {
3753            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3754                               bounce.buffer, l);
3755        }
3756
3757        rcu_read_unlock();
3758        *plen = l;
3759        return bounce.buffer;
3760    }
3761
3762
3763    memory_region_ref(mr);
3764    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3765                                        l, is_write, attrs);
3766    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3767    rcu_read_unlock();
3768
3769    return ptr;
3770}
3771
3772/* Unmaps a memory region previously mapped by address_space_map().
3773 * Will also mark the memory as dirty if is_write == 1.  access_len gives
3774 * the amount of memory that was actually read or written by the caller.
3775 */
3776void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3777                         int is_write, hwaddr access_len)
3778{
3779    if (buffer != bounce.buffer) {
3780        MemoryRegion *mr;
3781        ram_addr_t addr1;
3782
3783        mr = memory_region_from_host(buffer, &addr1);
3784        assert(mr != NULL);
3785        if (is_write) {
3786            invalidate_and_set_dirty(mr, addr1, access_len);
3787        }
3788        if (xen_enabled()) {
3789            xen_invalidate_map_cache_entry(buffer);
3790        }
3791        memory_region_unref(mr);
3792        return;
3793    }
3794    if (is_write) {
3795        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3796                            bounce.buffer, access_len);
3797    }
3798    qemu_vfree(bounce.buffer);
3799    bounce.buffer = NULL;
3800    memory_region_unref(bounce.mr);
3801    atomic_mb_set(&bounce.in_use, false);
3802    cpu_notify_map_clients();
3803}
3804
3805void *cpu_physical_memory_map(hwaddr addr,
3806                              hwaddr *plen,
3807                              int is_write)
3808{
3809    return address_space_map(&address_space_memory, addr, plen, is_write,
3810                             MEMTXATTRS_UNSPECIFIED);
3811}
3812
3813void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3814                               int is_write, hwaddr access_len)
3815{
3816    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3817}
3818
3819#define ARG1_DECL                AddressSpace *as
3820#define ARG1                     as
3821#define SUFFIX
3822#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3823#define RCU_READ_LOCK(...)       rcu_read_lock()
3824#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3825#include "memory_ldst.inc.c"
3826
3827int64_t address_space_cache_init(MemoryRegionCache *cache,
3828                                 AddressSpace *as,
3829                                 hwaddr addr,
3830                                 hwaddr len,
3831                                 bool is_write)
3832{
3833    AddressSpaceDispatch *d;
3834    hwaddr l;
3835    MemoryRegion *mr;
3836
3837    assert(len > 0);
3838
3839    l = len;
3840    cache->fv = address_space_get_flatview(as);
3841    d = flatview_to_dispatch(cache->fv);
3842    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3843
3844    mr = cache->mrs.mr;
3845    memory_region_ref(mr);
3846    if (memory_access_is_direct(mr, is_write)) {
3847        /* We don't care about the memory attributes here as we're only
3848         * doing this if we found actual RAM, which behaves the same
3849         * regardless of attributes; so UNSPECIFIED is fine.
3850         */
3851        l = flatview_extend_translation(cache->fv, addr, len, mr,
3852                                        cache->xlat, l, is_write,
3853                                        MEMTXATTRS_UNSPECIFIED);
3854        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3855    } else {
3856        cache->ptr = NULL;
3857    }
3858
3859    cache->len = l;
3860    cache->is_write = is_write;
3861    return l;
3862}
3863
3864void address_space_cache_invalidate(MemoryRegionCache *cache,
3865                                    hwaddr addr,
3866                                    hwaddr access_len)
3867{
3868    assert(cache->is_write);
3869    if (likely(cache->ptr)) {
3870        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3871    }
3872}
3873
3874void address_space_cache_destroy(MemoryRegionCache *cache)
3875{
3876    if (!cache->mrs.mr) {
3877        return;
3878    }
3879
3880    if (xen_enabled()) {
3881        xen_invalidate_map_cache_entry(cache->ptr);
3882    }
3883    memory_region_unref(cache->mrs.mr);
3884    flatview_unref(cache->fv);
3885    cache->mrs.mr = NULL;
3886    cache->fv = NULL;
3887}
3888
3889/* Called from RCU critical section.  This function has the same
3890 * semantics as address_space_translate, but it only works on a
3891 * predefined range of a MemoryRegion that was mapped with
3892 * address_space_cache_init.
3893 */
3894static inline MemoryRegion *address_space_translate_cached(
3895    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3896    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3897{
3898    MemoryRegionSection section;
3899    MemoryRegion *mr;
3900    IOMMUMemoryRegion *iommu_mr;
3901    AddressSpace *target_as;
3902
3903    assert(!cache->ptr);
3904    *xlat = addr + cache->xlat;
3905
3906    mr = cache->mrs.mr;
3907    iommu_mr = memory_region_get_iommu(mr);
3908    if (!iommu_mr) {
3909        /* MMIO region.  */
3910        return mr;
3911    }
3912
3913    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3914                                            NULL, is_write, true,
3915                                            &target_as, attrs);
3916    return section.mr;
3917}
3918
3919/* Called from RCU critical section. address_space_read_cached uses this
3920 * out of line function when the target is an MMIO or IOMMU region.
3921 */
3922void
3923address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3924                                   void *buf, hwaddr len)
3925{
3926    hwaddr addr1, l;
3927    MemoryRegion *mr;
3928
3929    l = len;
3930    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3931                                        MEMTXATTRS_UNSPECIFIED);
3932    flatview_read_continue(cache->fv,
3933                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3934                           addr1, l, mr);
3935}
3936
3937/* Called from RCU critical section. address_space_write_cached uses this
3938 * out of line function when the target is an MMIO or IOMMU region.
3939 */
3940void
3941address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3942                                    const void *buf, hwaddr len)
3943{
3944    hwaddr addr1, l;
3945    MemoryRegion *mr;
3946
3947    l = len;
3948    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3949                                        MEMTXATTRS_UNSPECIFIED);
3950    flatview_write_continue(cache->fv,
3951                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3952                            addr1, l, mr);
3953}
3954
3955#define ARG1_DECL                MemoryRegionCache *cache
3956#define ARG1                     cache
3957#define SUFFIX                   _cached_slow
3958#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3959#define RCU_READ_LOCK()          ((void)0)
3960#define RCU_READ_UNLOCK()        ((void)0)
3961#include "memory_ldst.inc.c"
3962
3963/* virtual memory access for debug (includes writing to ROM) */
3964int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3965                        uint8_t *buf, target_ulong len, int is_write)
3966{
3967    hwaddr phys_addr;
3968    target_ulong l, page;
3969
3970    cpu_synchronize_state(cpu);
3971    while (len > 0) {
3972        int asidx;
3973        MemTxAttrs attrs;
3974
3975        page = addr & TARGET_PAGE_MASK;
3976        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3977        asidx = cpu_asidx_from_attrs(cpu, attrs);
3978        /* if no physical page mapped, return an error */
3979        if (phys_addr == -1)
3980            return -1;
3981        l = (page + TARGET_PAGE_SIZE) - addr;
3982        if (l > len)
3983            l = len;
3984        phys_addr += (addr & ~TARGET_PAGE_MASK);
3985        if (is_write) {
3986            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3987                                    attrs, buf, l);
3988        } else {
3989            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3990                             attrs, buf, l, 0);
3991        }
3992        len -= l;
3993        buf += l;
3994        addr += l;
3995    }
3996    return 0;
3997}
3998
3999/*
4000 * Allows code that needs to deal with migration bitmaps etc to still be built
4001 * target independent.
4002 */
4003size_t qemu_target_page_size(void)
4004{
4005    return TARGET_PAGE_SIZE;
4006}
4007
4008int qemu_target_page_bits(void)
4009{
4010    return TARGET_PAGE_BITS;
4011}
4012
4013int qemu_target_page_bits_min(void)
4014{
4015    return TARGET_PAGE_BITS_MIN;
4016}
4017#endif
4018
4019bool target_words_bigendian(void)
4020{
4021#if defined(TARGET_WORDS_BIGENDIAN)
4022    return true;
4023#else
4024    return false;
4025#endif
4026}
4027
4028#ifndef CONFIG_USER_ONLY
4029bool cpu_physical_memory_is_io(hwaddr phys_addr)
4030{
4031    MemoryRegion*mr;
4032    hwaddr l = 1;
4033    bool res;
4034
4035    rcu_read_lock();
4036    mr = address_space_translate(&address_space_memory,
4037                                 phys_addr, &phys_addr, &l, false,
4038                                 MEMTXATTRS_UNSPECIFIED);
4039
4040    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4041    rcu_read_unlock();
4042    return res;
4043}
4044
4045int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4046{
4047    RAMBlock *block;
4048    int ret = 0;
4049
4050    rcu_read_lock();
4051    RAMBLOCK_FOREACH(block) {
4052        ret = func(block, opaque);
4053        if (ret) {
4054            break;
4055        }
4056    }
4057    rcu_read_unlock();
4058    return ret;
4059}
4060
4061/*
4062 * Unmap pages of memory from start to start+length such that
4063 * they a) read as 0, b) Trigger whatever fault mechanism
4064 * the OS provides for postcopy.
4065 * The pages must be unmapped by the end of the function.
4066 * Returns: 0 on success, none-0 on failure
4067 *
4068 */
4069int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4070{
4071    int ret = -1;
4072
4073    uint8_t *host_startaddr = rb->host + start;
4074
4075    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4076        error_report("ram_block_discard_range: Unaligned start address: %p",
4077                     host_startaddr);
4078        goto err;
4079    }
4080
4081    if ((start + length) <= rb->used_length) {
4082        bool need_madvise, need_fallocate;
4083        uint8_t *host_endaddr = host_startaddr + length;
4084        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4085            error_report("ram_block_discard_range: Unaligned end address: %p",
4086                         host_endaddr);
4087            goto err;
4088        }
4089
4090        errno = ENOTSUP; /* If we are missing MADVISE etc */
4091
4092        /* The logic here is messy;
4093         *    madvise DONTNEED fails for hugepages
4094         *    fallocate works on hugepages and shmem
4095         */
4096        need_madvise = (rb->page_size == qemu_host_page_size);
4097        need_fallocate = rb->fd != -1;
4098        if (need_fallocate) {
4099            /* For a file, this causes the area of the file to be zero'd
4100             * if read, and for hugetlbfs also causes it to be unmapped
4101             * so a userfault will trigger.
4102             */
4103#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4104            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4105                            start, length);
4106            if (ret) {
4107                ret = -errno;
4108                error_report("ram_block_discard_range: Failed to fallocate "
4109                             "%s:%" PRIx64 " +%zx (%d)",
4110                             rb->idstr, start, length, ret);
4111                goto err;
4112            }
4113#else
4114            ret = -ENOSYS;
4115            error_report("ram_block_discard_range: fallocate not available/file"
4116                         "%s:%" PRIx64 " +%zx (%d)",
4117                         rb->idstr, start, length, ret);
4118            goto err;
4119#endif
4120        }
4121        if (need_madvise) {
4122            /* For normal RAM this causes it to be unmapped,
4123             * for shared memory it causes the local mapping to disappear
4124             * and to fall back on the file contents (which we just
4125             * fallocate'd away).
4126             */
4127#if defined(CONFIG_MADVISE)
4128            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
4129            if (ret) {
4130                ret = -errno;
4131                error_report("ram_block_discard_range: Failed to discard range "
4132                             "%s:%" PRIx64 " +%zx (%d)",
4133                             rb->idstr, start, length, ret);
4134                goto err;
4135            }
4136#else
4137            ret = -ENOSYS;
4138            error_report("ram_block_discard_range: MADVISE not available"
4139                         "%s:%" PRIx64 " +%zx (%d)",
4140                         rb->idstr, start, length, ret);
4141            goto err;
4142#endif
4143        }
4144        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4145                                      need_madvise, need_fallocate, ret);
4146    } else {
4147        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4148                     "/%zx/" RAM_ADDR_FMT")",
4149                     rb->idstr, start, length, rb->used_length);
4150    }
4151
4152err:
4153    return ret;
4154}
4155
4156bool ramblock_is_pmem(RAMBlock *rb)
4157{
4158    return rb->flags & RAM_PMEM;
4159}
4160
4161#endif
4162
4163void page_size_init(void)
4164{
4165    /* NOTE: we can always suppose that qemu_host_page_size >=
4166       TARGET_PAGE_SIZE */
4167    if (qemu_host_page_size == 0) {
4168        qemu_host_page_size = qemu_real_host_page_size;
4169    }
4170    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4171        qemu_host_page_size = TARGET_PAGE_SIZE;
4172    }
4173    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4174}
4175
4176#if !defined(CONFIG_USER_ONLY)
4177
4178static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4179{
4180    if (start == end - 1) {
4181        qemu_printf("\t%3d      ", start);
4182    } else {
4183        qemu_printf("\t%3d..%-3d ", start, end - 1);
4184    }
4185    qemu_printf(" skip=%d ", skip);
4186    if (ptr == PHYS_MAP_NODE_NIL) {
4187        qemu_printf(" ptr=NIL");
4188    } else if (!skip) {
4189        qemu_printf(" ptr=#%d", ptr);
4190    } else {
4191        qemu_printf(" ptr=[%d]", ptr);
4192    }
4193    qemu_printf("\n");
4194}
4195
4196#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4197                           int128_sub((size), int128_one())) : 0)
4198
4199void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4200{
4201    int i;
4202
4203    qemu_printf("  Dispatch\n");
4204    qemu_printf("    Physical sections\n");
4205
4206    for (i = 0; i < d->map.sections_nb; ++i) {
4207        MemoryRegionSection *s = d->map.sections + i;
4208        const char *names[] = { " [unassigned]", " [not dirty]",
4209                                " [ROM]", " [watch]" };
4210
4211        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4212                    " %s%s%s%s%s",
4213            i,
4214            s->offset_within_address_space,
4215            s->offset_within_address_space + MR_SIZE(s->mr->size),
4216            s->mr->name ? s->mr->name : "(noname)",
4217            i < ARRAY_SIZE(names) ? names[i] : "",
4218            s->mr == root ? " [ROOT]" : "",
4219            s == d->mru_section ? " [MRU]" : "",
4220            s->mr->is_iommu ? " [iommu]" : "");
4221
4222        if (s->mr->alias) {
4223            qemu_printf(" alias=%s", s->mr->alias->name ?
4224                    s->mr->alias->name : "noname");
4225        }
4226        qemu_printf("\n");
4227    }
4228
4229    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4230               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4231    for (i = 0; i < d->map.nodes_nb; ++i) {
4232        int j, jprev;
4233        PhysPageEntry prev;
4234        Node *n = d->map.nodes + i;
4235
4236        qemu_printf("      [%d]\n", i);
4237
4238        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4239            PhysPageEntry *pe = *n + j;
4240
4241            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4242                continue;
4243            }
4244
4245            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4246
4247            jprev = j;
4248            prev = *pe;
4249        }
4250
4251        if (jprev != ARRAY_SIZE(*n)) {
4252            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4253        }
4254    }
4255}
4256
4257#endif
4258