qemu/exec.c
<<
>>
Prefs
   1/*
   2 *  Virtual page mapping
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu-common.h"
  22#include "qapi/error.h"
  23
  24#include "qemu/cutils.h"
  25#include "cpu.h"
  26#include "exec/exec-all.h"
  27#include "exec/target_page.h"
  28#include "tcg/tcg.h"
  29#include "hw/qdev-core.h"
  30#include "hw/qdev-properties.h"
  31#if !defined(CONFIG_USER_ONLY)
  32#include "hw/boards.h"
  33#include "hw/xen/xen.h"
  34#endif
  35#include "sysemu/kvm.h"
  36#include "sysemu/sysemu.h"
  37#include "sysemu/tcg.h"
  38#include "sysemu/qtest.h"
  39#include "qemu/timer.h"
  40#include "qemu/config-file.h"
  41#include "qemu/error-report.h"
  42#include "qemu/qemu-print.h"
  43#if defined(CONFIG_USER_ONLY)
  44#include "qemu.h"
  45#else /* !CONFIG_USER_ONLY */
  46#include "exec/memory.h"
  47#include "exec/ioport.h"
  48#include "sysemu/dma.h"
  49#include "sysemu/hostmem.h"
  50#include "sysemu/hw_accel.h"
  51#include "exec/address-spaces.h"
  52#include "sysemu/xen-mapcache.h"
  53#include "trace-root.h"
  54
  55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  56#include <linux/falloc.h>
  57#endif
  58
  59#endif
  60#include "qemu/rcu_queue.h"
  61#include "qemu/main-loop.h"
  62#include "translate-all.h"
  63#include "sysemu/replay.h"
  64
  65#include "exec/memory-internal.h"
  66#include "exec/ram_addr.h"
  67#include "exec/log.h"
  68
  69#include "qemu/pmem.h"
  70
  71#include "migration/vmstate.h"
  72
  73#include "qemu/range.h"
  74#ifndef _WIN32
  75#include "qemu/mmap-alloc.h"
  76#endif
  77
  78#include "monitor/monitor.h"
  79
  80//#define DEBUG_SUBPAGE
  81
  82#if !defined(CONFIG_USER_ONLY)
  83/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  84 * are protected by the ramlist lock.
  85 */
  86RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  87
  88static MemoryRegion *system_memory;
  89static MemoryRegion *system_io;
  90
  91AddressSpace address_space_io;
  92AddressSpace address_space_memory;
  93
  94static MemoryRegion io_mem_unassigned;
  95#endif
  96
  97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
  98
  99/* current CPU in the current thread. It is only valid inside
 100   cpu_exec() */
 101__thread CPUState *current_cpu;
 102
 103uintptr_t qemu_host_page_size;
 104intptr_t qemu_host_page_mask;
 105
 106#if !defined(CONFIG_USER_ONLY)
 107/* 0 = Do not count executed instructions.
 108   1 = Precise instruction counting.
 109   2 = Adaptive rate instruction counting.  */
 110int use_icount;
 111
 112typedef struct PhysPageEntry PhysPageEntry;
 113
 114struct PhysPageEntry {
 115    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 116    uint32_t skip : 6;
 117     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 118    uint32_t ptr : 26;
 119};
 120
 121#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 122
 123/* Size of the L2 (and L3, etc) page tables.  */
 124#define ADDR_SPACE_BITS 64
 125
 126#define P_L2_BITS 9
 127#define P_L2_SIZE (1 << P_L2_BITS)
 128
 129#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 130
 131typedef PhysPageEntry Node[P_L2_SIZE];
 132
 133typedef struct PhysPageMap {
 134    struct rcu_head rcu;
 135
 136    unsigned sections_nb;
 137    unsigned sections_nb_alloc;
 138    unsigned nodes_nb;
 139    unsigned nodes_nb_alloc;
 140    Node *nodes;
 141    MemoryRegionSection *sections;
 142} PhysPageMap;
 143
 144struct AddressSpaceDispatch {
 145    MemoryRegionSection *mru_section;
 146    /* This is a multi-level map on the physical address space.
 147     * The bottom level has pointers to MemoryRegionSections.
 148     */
 149    PhysPageEntry phys_map;
 150    PhysPageMap map;
 151};
 152
 153#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 154typedef struct subpage_t {
 155    MemoryRegion iomem;
 156    FlatView *fv;
 157    hwaddr base;
 158    uint16_t sub_section[];
 159} subpage_t;
 160
 161#define PHYS_SECTION_UNASSIGNED 0
 162
 163static void io_mem_init(void);
 164static void memory_map_init(void);
 165static void tcg_log_global_after_sync(MemoryListener *listener);
 166static void tcg_commit(MemoryListener *listener);
 167
 168/**
 169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 170 * @cpu: the CPU whose AddressSpace this is
 171 * @as: the AddressSpace itself
 172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 174 */
 175struct CPUAddressSpace {
 176    CPUState *cpu;
 177    AddressSpace *as;
 178    struct AddressSpaceDispatch *memory_dispatch;
 179    MemoryListener tcg_as_listener;
 180};
 181
 182struct DirtyBitmapSnapshot {
 183    ram_addr_t start;
 184    ram_addr_t end;
 185    unsigned long dirty[];
 186};
 187
 188#endif
 189
 190#if !defined(CONFIG_USER_ONLY)
 191
 192static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 193{
 194    static unsigned alloc_hint = 16;
 195    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 196        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
 197        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 198        alloc_hint = map->nodes_nb_alloc;
 199    }
 200}
 201
 202static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 203{
 204    unsigned i;
 205    uint32_t ret;
 206    PhysPageEntry e;
 207    PhysPageEntry *p;
 208
 209    ret = map->nodes_nb++;
 210    p = map->nodes[ret];
 211    assert(ret != PHYS_MAP_NODE_NIL);
 212    assert(ret != map->nodes_nb_alloc);
 213
 214    e.skip = leaf ? 0 : 1;
 215    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 216    for (i = 0; i < P_L2_SIZE; ++i) {
 217        memcpy(&p[i], &e, sizeof(e));
 218    }
 219    return ret;
 220}
 221
 222static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 223                                hwaddr *index, uint64_t *nb, uint16_t leaf,
 224                                int level)
 225{
 226    PhysPageEntry *p;
 227    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 228
 229    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 230        lp->ptr = phys_map_node_alloc(map, level == 0);
 231    }
 232    p = map->nodes[lp->ptr];
 233    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 234
 235    while (*nb && lp < &p[P_L2_SIZE]) {
 236        if ((*index & (step - 1)) == 0 && *nb >= step) {
 237            lp->skip = 0;
 238            lp->ptr = leaf;
 239            *index += step;
 240            *nb -= step;
 241        } else {
 242            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 243        }
 244        ++lp;
 245    }
 246}
 247
 248static void phys_page_set(AddressSpaceDispatch *d,
 249                          hwaddr index, uint64_t nb,
 250                          uint16_t leaf)
 251{
 252    /* Wildly overreserve - it doesn't matter much. */
 253    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 254
 255    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 256}
 257
 258/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 259 * and update our entry so we can skip it and go directly to the destination.
 260 */
 261static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 262{
 263    unsigned valid_ptr = P_L2_SIZE;
 264    int valid = 0;
 265    PhysPageEntry *p;
 266    int i;
 267
 268    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 269        return;
 270    }
 271
 272    p = nodes[lp->ptr];
 273    for (i = 0; i < P_L2_SIZE; i++) {
 274        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 275            continue;
 276        }
 277
 278        valid_ptr = i;
 279        valid++;
 280        if (p[i].skip) {
 281            phys_page_compact(&p[i], nodes);
 282        }
 283    }
 284
 285    /* We can only compress if there's only one child. */
 286    if (valid != 1) {
 287        return;
 288    }
 289
 290    assert(valid_ptr < P_L2_SIZE);
 291
 292    /* Don't compress if it won't fit in the # of bits we have. */
 293    if (P_L2_LEVELS >= (1 << 6) &&
 294        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
 295        return;
 296    }
 297
 298    lp->ptr = p[valid_ptr].ptr;
 299    if (!p[valid_ptr].skip) {
 300        /* If our only child is a leaf, make this a leaf. */
 301        /* By design, we should have made this node a leaf to begin with so we
 302         * should never reach here.
 303         * But since it's so simple to handle this, let's do it just in case we
 304         * change this rule.
 305         */
 306        lp->skip = 0;
 307    } else {
 308        lp->skip += p[valid_ptr].skip;
 309    }
 310}
 311
 312void address_space_dispatch_compact(AddressSpaceDispatch *d)
 313{
 314    if (d->phys_map.skip) {
 315        phys_page_compact(&d->phys_map, d->map.nodes);
 316    }
 317}
 318
 319static inline bool section_covers_addr(const MemoryRegionSection *section,
 320                                       hwaddr addr)
 321{
 322    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 323     * the section must cover the entire address space.
 324     */
 325    return int128_gethi(section->size) ||
 326           range_covers_byte(section->offset_within_address_space,
 327                             int128_getlo(section->size), addr);
 328}
 329
 330static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 331{
 332    PhysPageEntry lp = d->phys_map, *p;
 333    Node *nodes = d->map.nodes;
 334    MemoryRegionSection *sections = d->map.sections;
 335    hwaddr index = addr >> TARGET_PAGE_BITS;
 336    int i;
 337
 338    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 339        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 340            return &sections[PHYS_SECTION_UNASSIGNED];
 341        }
 342        p = nodes[lp.ptr];
 343        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 344    }
 345
 346    if (section_covers_addr(&sections[lp.ptr], addr)) {
 347        return &sections[lp.ptr];
 348    } else {
 349        return &sections[PHYS_SECTION_UNASSIGNED];
 350    }
 351}
 352
 353/* Called from RCU critical section */
 354static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 355                                                        hwaddr addr,
 356                                                        bool resolve_subpage)
 357{
 358    MemoryRegionSection *section = atomic_read(&d->mru_section);
 359    subpage_t *subpage;
 360
 361    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 362        !section_covers_addr(section, addr)) {
 363        section = phys_page_find(d, addr);
 364        atomic_set(&d->mru_section, section);
 365    }
 366    if (resolve_subpage && section->mr->subpage) {
 367        subpage = container_of(section->mr, subpage_t, iomem);
 368        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 369    }
 370    return section;
 371}
 372
 373/* Called from RCU critical section */
 374static MemoryRegionSection *
 375address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 376                                 hwaddr *plen, bool resolve_subpage)
 377{
 378    MemoryRegionSection *section;
 379    MemoryRegion *mr;
 380    Int128 diff;
 381
 382    section = address_space_lookup_region(d, addr, resolve_subpage);
 383    /* Compute offset within MemoryRegionSection */
 384    addr -= section->offset_within_address_space;
 385
 386    /* Compute offset within MemoryRegion */
 387    *xlat = addr + section->offset_within_region;
 388
 389    mr = section->mr;
 390
 391    /* MMIO registers can be expected to perform full-width accesses based only
 392     * on their address, without considering adjacent registers that could
 393     * decode to completely different MemoryRegions.  When such registers
 394     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 395     * regions overlap wildly.  For this reason we cannot clamp the accesses
 396     * here.
 397     *
 398     * If the length is small (as is the case for address_space_ldl/stl),
 399     * everything works fine.  If the incoming length is large, however,
 400     * the caller really has to do the clamping through memory_access_size.
 401     */
 402    if (memory_region_is_ram(mr)) {
 403        diff = int128_sub(section->size, int128_make64(addr));
 404        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 405    }
 406    return section;
 407}
 408
 409/**
 410 * address_space_translate_iommu - translate an address through an IOMMU
 411 * memory region and then through the target address space.
 412 *
 413 * @iommu_mr: the IOMMU memory region that we start the translation from
 414 * @addr: the address to be translated through the MMU
 415 * @xlat: the translated address offset within the destination memory region.
 416 *        It cannot be %NULL.
 417 * @plen_out: valid read/write length of the translated address. It
 418 *            cannot be %NULL.
 419 * @page_mask_out: page mask for the translated address. This
 420 *            should only be meaningful for IOMMU translated
 421 *            addresses, since there may be huge pages that this bit
 422 *            would tell. It can be %NULL if we don't care about it.
 423 * @is_write: whether the translation operation is for write
 424 * @is_mmio: whether this can be MMIO, set true if it can
 425 * @target_as: the address space targeted by the IOMMU
 426 * @attrs: transaction attributes
 427 *
 428 * This function is called from RCU critical section.  It is the common
 429 * part of flatview_do_translate and address_space_translate_cached.
 430 */
 431static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 432                                                         hwaddr *xlat,
 433                                                         hwaddr *plen_out,
 434                                                         hwaddr *page_mask_out,
 435                                                         bool is_write,
 436                                                         bool is_mmio,
 437                                                         AddressSpace **target_as,
 438                                                         MemTxAttrs attrs)
 439{
 440    MemoryRegionSection *section;
 441    hwaddr page_mask = (hwaddr)-1;
 442
 443    do {
 444        hwaddr addr = *xlat;
 445        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 446        int iommu_idx = 0;
 447        IOMMUTLBEntry iotlb;
 448
 449        if (imrc->attrs_to_index) {
 450            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 451        }
 452
 453        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 454                                IOMMU_WO : IOMMU_RO, iommu_idx);
 455
 456        if (!(iotlb.perm & (1 << is_write))) {
 457            goto unassigned;
 458        }
 459
 460        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 461                | (addr & iotlb.addr_mask));
 462        page_mask &= iotlb.addr_mask;
 463        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 464        *target_as = iotlb.target_as;
 465
 466        section = address_space_translate_internal(
 467                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 468                plen_out, is_mmio);
 469
 470        iommu_mr = memory_region_get_iommu(section->mr);
 471    } while (unlikely(iommu_mr));
 472
 473    if (page_mask_out) {
 474        *page_mask_out = page_mask;
 475    }
 476    return *section;
 477
 478unassigned:
 479    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 480}
 481
 482/**
 483 * flatview_do_translate - translate an address in FlatView
 484 *
 485 * @fv: the flat view that we want to translate on
 486 * @addr: the address to be translated in above address space
 487 * @xlat: the translated address offset within memory region. It
 488 *        cannot be @NULL.
 489 * @plen_out: valid read/write length of the translated address. It
 490 *            can be @NULL when we don't care about it.
 491 * @page_mask_out: page mask for the translated address. This
 492 *            should only be meaningful for IOMMU translated
 493 *            addresses, since there may be huge pages that this bit
 494 *            would tell. It can be @NULL if we don't care about it.
 495 * @is_write: whether the translation operation is for write
 496 * @is_mmio: whether this can be MMIO, set true if it can
 497 * @target_as: the address space targeted by the IOMMU
 498 * @attrs: memory transaction attributes
 499 *
 500 * This function is called from RCU critical section
 501 */
 502static MemoryRegionSection flatview_do_translate(FlatView *fv,
 503                                                 hwaddr addr,
 504                                                 hwaddr *xlat,
 505                                                 hwaddr *plen_out,
 506                                                 hwaddr *page_mask_out,
 507                                                 bool is_write,
 508                                                 bool is_mmio,
 509                                                 AddressSpace **target_as,
 510                                                 MemTxAttrs attrs)
 511{
 512    MemoryRegionSection *section;
 513    IOMMUMemoryRegion *iommu_mr;
 514    hwaddr plen = (hwaddr)(-1);
 515
 516    if (!plen_out) {
 517        plen_out = &plen;
 518    }
 519
 520    section = address_space_translate_internal(
 521            flatview_to_dispatch(fv), addr, xlat,
 522            plen_out, is_mmio);
 523
 524    iommu_mr = memory_region_get_iommu(section->mr);
 525    if (unlikely(iommu_mr)) {
 526        return address_space_translate_iommu(iommu_mr, xlat,
 527                                             plen_out, page_mask_out,
 528                                             is_write, is_mmio,
 529                                             target_as, attrs);
 530    }
 531    if (page_mask_out) {
 532        /* Not behind an IOMMU, use default page size. */
 533        *page_mask_out = ~TARGET_PAGE_MASK;
 534    }
 535
 536    return *section;
 537}
 538
 539/* Called from RCU critical section */
 540IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 541                                            bool is_write, MemTxAttrs attrs)
 542{
 543    MemoryRegionSection section;
 544    hwaddr xlat, page_mask;
 545
 546    /*
 547     * This can never be MMIO, and we don't really care about plen,
 548     * but page mask.
 549     */
 550    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 551                                    NULL, &page_mask, is_write, false, &as,
 552                                    attrs);
 553
 554    /* Illegal translation */
 555    if (section.mr == &io_mem_unassigned) {
 556        goto iotlb_fail;
 557    }
 558
 559    /* Convert memory region offset into address space offset */
 560    xlat += section.offset_within_address_space -
 561        section.offset_within_region;
 562
 563    return (IOMMUTLBEntry) {
 564        .target_as = as,
 565        .iova = addr & ~page_mask,
 566        .translated_addr = xlat & ~page_mask,
 567        .addr_mask = page_mask,
 568        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 569        .perm = IOMMU_RW,
 570    };
 571
 572iotlb_fail:
 573    return (IOMMUTLBEntry) {0};
 574}
 575
 576/* Called from RCU critical section */
 577MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 578                                 hwaddr *plen, bool is_write,
 579                                 MemTxAttrs attrs)
 580{
 581    MemoryRegion *mr;
 582    MemoryRegionSection section;
 583    AddressSpace *as = NULL;
 584
 585    /* This can be MMIO, so setup MMIO bit. */
 586    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 587                                    is_write, true, &as, attrs);
 588    mr = section.mr;
 589
 590    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 591        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 592        *plen = MIN(page, *plen);
 593    }
 594
 595    return mr;
 596}
 597
 598typedef struct TCGIOMMUNotifier {
 599    IOMMUNotifier n;
 600    MemoryRegion *mr;
 601    CPUState *cpu;
 602    int iommu_idx;
 603    bool active;
 604} TCGIOMMUNotifier;
 605
 606static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 607{
 608    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 609
 610    if (!notifier->active) {
 611        return;
 612    }
 613    tlb_flush(notifier->cpu);
 614    notifier->active = false;
 615    /* We leave the notifier struct on the list to avoid reallocating it later.
 616     * Generally the number of IOMMUs a CPU deals with will be small.
 617     * In any case we can't unregister the iommu notifier from a notify
 618     * callback.
 619     */
 620}
 621
 622static void tcg_register_iommu_notifier(CPUState *cpu,
 623                                        IOMMUMemoryRegion *iommu_mr,
 624                                        int iommu_idx)
 625{
 626    /* Make sure this CPU has an IOMMU notifier registered for this
 627     * IOMMU/IOMMU index combination, so that we can flush its TLB
 628     * when the IOMMU tells us the mappings we've cached have changed.
 629     */
 630    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 631    TCGIOMMUNotifier *notifier;
 632    Error *err = NULL;
 633    int i, ret;
 634
 635    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 636        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 637        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 638            break;
 639        }
 640    }
 641    if (i == cpu->iommu_notifiers->len) {
 642        /* Not found, add a new entry at the end of the array */
 643        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 644        notifier = g_new0(TCGIOMMUNotifier, 1);
 645        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
 646
 647        notifier->mr = mr;
 648        notifier->iommu_idx = iommu_idx;
 649        notifier->cpu = cpu;
 650        /* Rather than trying to register interest in the specific part
 651         * of the iommu's address space that we've accessed and then
 652         * expand it later as subsequent accesses touch more of it, we
 653         * just register interest in the whole thing, on the assumption
 654         * that iommu reconfiguration will be rare.
 655         */
 656        iommu_notifier_init(&notifier->n,
 657                            tcg_iommu_unmap_notify,
 658                            IOMMU_NOTIFIER_UNMAP,
 659                            0,
 660                            HWADDR_MAX,
 661                            iommu_idx);
 662        ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
 663                                                    &err);
 664        if (ret) {
 665            error_report_err(err);
 666            exit(1);
 667        }
 668    }
 669
 670    if (!notifier->active) {
 671        notifier->active = true;
 672    }
 673}
 674
 675static void tcg_iommu_free_notifier_list(CPUState *cpu)
 676{
 677    /* Destroy the CPU's notifier list */
 678    int i;
 679    TCGIOMMUNotifier *notifier;
 680
 681    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 682        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 683        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 684        g_free(notifier);
 685    }
 686    g_array_free(cpu->iommu_notifiers, true);
 687}
 688
 689/* Called from RCU critical section */
 690MemoryRegionSection *
 691address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 692                                  hwaddr *xlat, hwaddr *plen,
 693                                  MemTxAttrs attrs, int *prot)
 694{
 695    MemoryRegionSection *section;
 696    IOMMUMemoryRegion *iommu_mr;
 697    IOMMUMemoryRegionClass *imrc;
 698    IOMMUTLBEntry iotlb;
 699    int iommu_idx;
 700    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 701
 702    for (;;) {
 703        section = address_space_translate_internal(d, addr, &addr, plen, false);
 704
 705        iommu_mr = memory_region_get_iommu(section->mr);
 706        if (!iommu_mr) {
 707            break;
 708        }
 709
 710        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 711
 712        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 713        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 714        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 715         * doesn't short-cut its translation table walk.
 716         */
 717        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 718        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 719                | (addr & iotlb.addr_mask));
 720        /* Update the caller's prot bits to remove permissions the IOMMU
 721         * is giving us a failure response for. If we get down to no
 722         * permissions left at all we can give up now.
 723         */
 724        if (!(iotlb.perm & IOMMU_RO)) {
 725            *prot &= ~(PAGE_READ | PAGE_EXEC);
 726        }
 727        if (!(iotlb.perm & IOMMU_WO)) {
 728            *prot &= ~PAGE_WRITE;
 729        }
 730
 731        if (!*prot) {
 732            goto translate_fail;
 733        }
 734
 735        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 736    }
 737
 738    assert(!memory_region_is_iommu(section->mr));
 739    *xlat = addr;
 740    return section;
 741
 742translate_fail:
 743    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 744}
 745#endif
 746
 747#if !defined(CONFIG_USER_ONLY)
 748
 749static int cpu_common_post_load(void *opaque, int version_id)
 750{
 751    CPUState *cpu = opaque;
 752
 753    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 754       version_id is increased. */
 755    cpu->interrupt_request &= ~0x01;
 756    tlb_flush(cpu);
 757
 758    /* loadvm has just updated the content of RAM, bypassing the
 759     * usual mechanisms that ensure we flush TBs for writes to
 760     * memory we've translated code from. So we must flush all TBs,
 761     * which will now be stale.
 762     */
 763    tb_flush(cpu);
 764
 765    return 0;
 766}
 767
 768static int cpu_common_pre_load(void *opaque)
 769{
 770    CPUState *cpu = opaque;
 771
 772    cpu->exception_index = -1;
 773
 774    return 0;
 775}
 776
 777static bool cpu_common_exception_index_needed(void *opaque)
 778{
 779    CPUState *cpu = opaque;
 780
 781    return tcg_enabled() && cpu->exception_index != -1;
 782}
 783
 784static const VMStateDescription vmstate_cpu_common_exception_index = {
 785    .name = "cpu_common/exception_index",
 786    .version_id = 1,
 787    .minimum_version_id = 1,
 788    .needed = cpu_common_exception_index_needed,
 789    .fields = (VMStateField[]) {
 790        VMSTATE_INT32(exception_index, CPUState),
 791        VMSTATE_END_OF_LIST()
 792    }
 793};
 794
 795static bool cpu_common_crash_occurred_needed(void *opaque)
 796{
 797    CPUState *cpu = opaque;
 798
 799    return cpu->crash_occurred;
 800}
 801
 802static const VMStateDescription vmstate_cpu_common_crash_occurred = {
 803    .name = "cpu_common/crash_occurred",
 804    .version_id = 1,
 805    .minimum_version_id = 1,
 806    .needed = cpu_common_crash_occurred_needed,
 807    .fields = (VMStateField[]) {
 808        VMSTATE_BOOL(crash_occurred, CPUState),
 809        VMSTATE_END_OF_LIST()
 810    }
 811};
 812
 813const VMStateDescription vmstate_cpu_common = {
 814    .name = "cpu_common",
 815    .version_id = 1,
 816    .minimum_version_id = 1,
 817    .pre_load = cpu_common_pre_load,
 818    .post_load = cpu_common_post_load,
 819    .fields = (VMStateField[]) {
 820        VMSTATE_UINT32(halted, CPUState),
 821        VMSTATE_UINT32(interrupt_request, CPUState),
 822        VMSTATE_END_OF_LIST()
 823    },
 824    .subsections = (const VMStateDescription*[]) {
 825        &vmstate_cpu_common_exception_index,
 826        &vmstate_cpu_common_crash_occurred,
 827        NULL
 828    }
 829};
 830
 831#endif
 832
 833CPUState *qemu_get_cpu(int index)
 834{
 835    CPUState *cpu;
 836
 837    CPU_FOREACH(cpu) {
 838        if (cpu->cpu_index == index) {
 839            return cpu;
 840        }
 841    }
 842
 843    return NULL;
 844}
 845
 846#if !defined(CONFIG_USER_ONLY)
 847void cpu_address_space_init(CPUState *cpu, int asidx,
 848                            const char *prefix, MemoryRegion *mr)
 849{
 850    CPUAddressSpace *newas;
 851    AddressSpace *as = g_new0(AddressSpace, 1);
 852    char *as_name;
 853
 854    assert(mr);
 855    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 856    address_space_init(as, mr, as_name);
 857    g_free(as_name);
 858
 859    /* Target code should have set num_ases before calling us */
 860    assert(asidx < cpu->num_ases);
 861
 862    if (asidx == 0) {
 863        /* address space 0 gets the convenience alias */
 864        cpu->as = as;
 865    }
 866
 867    /* KVM cannot currently support multiple address spaces. */
 868    assert(asidx == 0 || !kvm_enabled());
 869
 870    if (!cpu->cpu_ases) {
 871        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 872    }
 873
 874    newas = &cpu->cpu_ases[asidx];
 875    newas->cpu = cpu;
 876    newas->as = as;
 877    if (tcg_enabled()) {
 878        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
 879        newas->tcg_as_listener.commit = tcg_commit;
 880        memory_listener_register(&newas->tcg_as_listener, as);
 881    }
 882}
 883
 884AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 885{
 886    /* Return the AddressSpace corresponding to the specified index */
 887    return cpu->cpu_ases[asidx].as;
 888}
 889#endif
 890
 891void cpu_exec_unrealizefn(CPUState *cpu)
 892{
 893    CPUClass *cc = CPU_GET_CLASS(cpu);
 894
 895    cpu_list_remove(cpu);
 896
 897    if (cc->vmsd != NULL) {
 898        vmstate_unregister(NULL, cc->vmsd, cpu);
 899    }
 900    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 901        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
 902    }
 903#ifndef CONFIG_USER_ONLY
 904    tcg_iommu_free_notifier_list(cpu);
 905#endif
 906}
 907
 908Property cpu_common_props[] = {
 909#ifndef CONFIG_USER_ONLY
 910    /* Create a memory property for softmmu CPU object,
 911     * so users can wire up its memory. (This can't go in hw/core/cpu.c
 912     * because that file is compiled only once for both user-mode
 913     * and system builds.) The default if no link is set up is to use
 914     * the system address space.
 915     */
 916    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
 917                     MemoryRegion *),
 918#endif
 919    DEFINE_PROP_END_OF_LIST(),
 920};
 921
 922void cpu_exec_initfn(CPUState *cpu)
 923{
 924    cpu->as = NULL;
 925    cpu->num_ases = 0;
 926
 927#ifndef CONFIG_USER_ONLY
 928    cpu->thread_id = qemu_get_thread_id();
 929    cpu->memory = system_memory;
 930    object_ref(OBJECT(cpu->memory));
 931#endif
 932}
 933
 934void cpu_exec_realizefn(CPUState *cpu, Error **errp)
 935{
 936    CPUClass *cc = CPU_GET_CLASS(cpu);
 937    static bool tcg_target_initialized;
 938
 939    cpu_list_add(cpu);
 940
 941    if (tcg_enabled() && !tcg_target_initialized) {
 942        tcg_target_initialized = true;
 943        cc->tcg_initialize();
 944    }
 945    tlb_init(cpu);
 946
 947    qemu_plugin_vcpu_init_hook(cpu);
 948
 949#ifndef CONFIG_USER_ONLY
 950    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 951        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
 952    }
 953    if (cc->vmsd != NULL) {
 954        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
 955    }
 956
 957    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
 958#endif
 959}
 960
 961const char *parse_cpu_option(const char *cpu_option)
 962{
 963    ObjectClass *oc;
 964    CPUClass *cc;
 965    gchar **model_pieces;
 966    const char *cpu_type;
 967
 968    model_pieces = g_strsplit(cpu_option, ",", 2);
 969    if (!model_pieces[0]) {
 970        error_report("-cpu option cannot be empty");
 971        exit(1);
 972    }
 973
 974    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
 975    if (oc == NULL) {
 976        error_report("unable to find CPU model '%s'", model_pieces[0]);
 977        g_strfreev(model_pieces);
 978        exit(EXIT_FAILURE);
 979    }
 980
 981    cpu_type = object_class_get_name(oc);
 982    cc = CPU_CLASS(oc);
 983    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
 984    g_strfreev(model_pieces);
 985    return cpu_type;
 986}
 987
 988#if defined(CONFIG_USER_ONLY)
 989void tb_invalidate_phys_addr(target_ulong addr)
 990{
 991    mmap_lock();
 992    tb_invalidate_phys_page_range(addr, addr + 1);
 993    mmap_unlock();
 994}
 995
 996static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 997{
 998    tb_invalidate_phys_addr(pc);
 999}
1000#else
1001void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1002{
1003    ram_addr_t ram_addr;
1004    MemoryRegion *mr;
1005    hwaddr l = 1;
1006
1007    if (!tcg_enabled()) {
1008        return;
1009    }
1010
1011    RCU_READ_LOCK_GUARD();
1012    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1013    if (!(memory_region_is_ram(mr)
1014          || memory_region_is_romd(mr))) {
1015        return;
1016    }
1017    ram_addr = memory_region_get_ram_addr(mr) + addr;
1018    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1019}
1020
1021static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1022{
1023    /*
1024     * There may not be a virtual to physical translation for the pc
1025     * right now, but there may exist cached TB for this pc.
1026     * Flush the whole TB cache to force re-translation of such TBs.
1027     * This is heavyweight, but we're debugging anyway.
1028     */
1029    tb_flush(cpu);
1030}
1031#endif
1032
1033#ifndef CONFIG_USER_ONLY
1034/* Add a watchpoint.  */
1035int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1036                          int flags, CPUWatchpoint **watchpoint)
1037{
1038    CPUWatchpoint *wp;
1039
1040    /* forbid ranges which are empty or run off the end of the address space */
1041    if (len == 0 || (addr + len - 1) < addr) {
1042        error_report("tried to set invalid watchpoint at %"
1043                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1044        return -EINVAL;
1045    }
1046    wp = g_malloc(sizeof(*wp));
1047
1048    wp->vaddr = addr;
1049    wp->len = len;
1050    wp->flags = flags;
1051
1052    /* keep all GDB-injected watchpoints in front */
1053    if (flags & BP_GDB) {
1054        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055    } else {
1056        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1057    }
1058
1059    tlb_flush_page(cpu, addr);
1060
1061    if (watchpoint)
1062        *watchpoint = wp;
1063    return 0;
1064}
1065
1066/* Remove a specific watchpoint.  */
1067int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1068                          int flags)
1069{
1070    CPUWatchpoint *wp;
1071
1072    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1073        if (addr == wp->vaddr && len == wp->len
1074                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1075            cpu_watchpoint_remove_by_ref(cpu, wp);
1076            return 0;
1077        }
1078    }
1079    return -ENOENT;
1080}
1081
1082/* Remove a specific watchpoint by reference.  */
1083void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1084{
1085    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1086
1087    tlb_flush_page(cpu, watchpoint->vaddr);
1088
1089    g_free(watchpoint);
1090}
1091
1092/* Remove all matching watchpoints.  */
1093void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1094{
1095    CPUWatchpoint *wp, *next;
1096
1097    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1098        if (wp->flags & mask) {
1099            cpu_watchpoint_remove_by_ref(cpu, wp);
1100        }
1101    }
1102}
1103
1104/* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1108 */
1109static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110                                              vaddr addr, vaddr len)
1111{
1112    /* We know the lengths are non-zero, but a little caution is
1113     * required to avoid errors in the case where the range ends
1114     * exactly at the top of the address space and so addr + len
1115     * wraps round to zero.
1116     */
1117    vaddr wpend = wp->vaddr + wp->len - 1;
1118    vaddr addrend = addr + len - 1;
1119
1120    return !(addr > wpend || wp->vaddr > addrend);
1121}
1122
1123/* Return flags for watchpoints that match addr + prot.  */
1124int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1125{
1126    CPUWatchpoint *wp;
1127    int ret = 0;
1128
1129    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130        if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1131            ret |= wp->flags;
1132        }
1133    }
1134    return ret;
1135}
1136#endif /* !CONFIG_USER_ONLY */
1137
1138/* Add a breakpoint.  */
1139int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1140                          CPUBreakpoint **breakpoint)
1141{
1142    CPUBreakpoint *bp;
1143
1144    bp = g_malloc(sizeof(*bp));
1145
1146    bp->pc = pc;
1147    bp->flags = flags;
1148
1149    /* keep all GDB-injected breakpoints in front */
1150    if (flags & BP_GDB) {
1151        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1152    } else {
1153        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1154    }
1155
1156    breakpoint_invalidate(cpu, pc);
1157
1158    if (breakpoint) {
1159        *breakpoint = bp;
1160    }
1161    return 0;
1162}
1163
1164/* Remove a specific breakpoint.  */
1165int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1166{
1167    CPUBreakpoint *bp;
1168
1169    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1170        if (bp->pc == pc && bp->flags == flags) {
1171            cpu_breakpoint_remove_by_ref(cpu, bp);
1172            return 0;
1173        }
1174    }
1175    return -ENOENT;
1176}
1177
1178/* Remove a specific breakpoint by reference.  */
1179void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1180{
1181    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1182
1183    breakpoint_invalidate(cpu, breakpoint->pc);
1184
1185    g_free(breakpoint);
1186}
1187
1188/* Remove all matching breakpoints. */
1189void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1190{
1191    CPUBreakpoint *bp, *next;
1192
1193    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1194        if (bp->flags & mask) {
1195            cpu_breakpoint_remove_by_ref(cpu, bp);
1196        }
1197    }
1198}
1199
1200/* enable or disable single step mode. EXCP_DEBUG is returned by the
1201   CPU loop after each instruction */
1202void cpu_single_step(CPUState *cpu, int enabled)
1203{
1204    if (cpu->singlestep_enabled != enabled) {
1205        cpu->singlestep_enabled = enabled;
1206        if (kvm_enabled()) {
1207            kvm_update_guest_debug(cpu, 0);
1208        } else {
1209            /* must flush all the translated code to avoid inconsistencies */
1210            /* XXX: only flush what is necessary */
1211            tb_flush(cpu);
1212        }
1213    }
1214}
1215
1216void cpu_abort(CPUState *cpu, const char *fmt, ...)
1217{
1218    va_list ap;
1219    va_list ap2;
1220
1221    va_start(ap, fmt);
1222    va_copy(ap2, ap);
1223    fprintf(stderr, "qemu: fatal: ");
1224    vfprintf(stderr, fmt, ap);
1225    fprintf(stderr, "\n");
1226    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1227    if (qemu_log_separate()) {
1228        FILE *logfile = qemu_log_lock();
1229        qemu_log("qemu: fatal: ");
1230        qemu_log_vprintf(fmt, ap2);
1231        qemu_log("\n");
1232        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1233        qemu_log_flush();
1234        qemu_log_unlock(logfile);
1235        qemu_log_close();
1236    }
1237    va_end(ap2);
1238    va_end(ap);
1239    replay_finish();
1240#if defined(CONFIG_USER_ONLY)
1241    {
1242        struct sigaction act;
1243        sigfillset(&act.sa_mask);
1244        act.sa_handler = SIG_DFL;
1245        act.sa_flags = 0;
1246        sigaction(SIGABRT, &act, NULL);
1247    }
1248#endif
1249    abort();
1250}
1251
1252#if !defined(CONFIG_USER_ONLY)
1253/* Called from RCU critical section */
1254static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1255{
1256    RAMBlock *block;
1257
1258    block = atomic_rcu_read(&ram_list.mru_block);
1259    if (block && addr - block->offset < block->max_length) {
1260        return block;
1261    }
1262    RAMBLOCK_FOREACH(block) {
1263        if (addr - block->offset < block->max_length) {
1264            goto found;
1265        }
1266    }
1267
1268    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269    abort();
1270
1271found:
1272    /* It is safe to write mru_block outside the iothread lock.  This
1273     * is what happens:
1274     *
1275     *     mru_block = xxx
1276     *     rcu_read_unlock()
1277     *                                        xxx removed from list
1278     *                  rcu_read_lock()
1279     *                  read mru_block
1280     *                                        mru_block = NULL;
1281     *                                        call_rcu(reclaim_ramblock, xxx);
1282     *                  rcu_read_unlock()
1283     *
1284     * atomic_rcu_set is not needed here.  The block was already published
1285     * when it was placed into the list.  Here we're just making an extra
1286     * copy of the pointer.
1287     */
1288    ram_list.mru_block = block;
1289    return block;
1290}
1291
1292static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1293{
1294    CPUState *cpu;
1295    ram_addr_t start1;
1296    RAMBlock *block;
1297    ram_addr_t end;
1298
1299    assert(tcg_enabled());
1300    end = TARGET_PAGE_ALIGN(start + length);
1301    start &= TARGET_PAGE_MASK;
1302
1303    RCU_READ_LOCK_GUARD();
1304    block = qemu_get_ram_block(start);
1305    assert(block == qemu_get_ram_block(end - 1));
1306    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1307    CPU_FOREACH(cpu) {
1308        tlb_reset_dirty(cpu, start1, length);
1309    }
1310}
1311
1312/* Note: start and end must be within the same ram block.  */
1313bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314                                              ram_addr_t length,
1315                                              unsigned client)
1316{
1317    DirtyMemoryBlocks *blocks;
1318    unsigned long end, page, start_page;
1319    bool dirty = false;
1320    RAMBlock *ramblock;
1321    uint64_t mr_offset, mr_size;
1322
1323    if (length == 0) {
1324        return false;
1325    }
1326
1327    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1328    start_page = start >> TARGET_PAGE_BITS;
1329    page = start_page;
1330
1331    WITH_RCU_READ_LOCK_GUARD() {
1332        blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1333        ramblock = qemu_get_ram_block(start);
1334        /* Range sanity check on the ramblock */
1335        assert(start >= ramblock->offset &&
1336               start + length <= ramblock->offset + ramblock->used_length);
1337
1338        while (page < end) {
1339            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1340            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1341            unsigned long num = MIN(end - page,
1342                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1343
1344            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1345                                                  offset, num);
1346            page += num;
1347        }
1348
1349        mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1350        mr_size = (end - start_page) << TARGET_PAGE_BITS;
1351        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1352    }
1353
1354    if (dirty && tcg_enabled()) {
1355        tlb_reset_dirty_range_all(start, length);
1356    }
1357
1358    return dirty;
1359}
1360
1361DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1362    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1363{
1364    DirtyMemoryBlocks *blocks;
1365    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1366    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1367    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1368    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1369    DirtyBitmapSnapshot *snap;
1370    unsigned long page, end, dest;
1371
1372    snap = g_malloc0(sizeof(*snap) +
1373                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1374    snap->start = first;
1375    snap->end   = last;
1376
1377    page = first >> TARGET_PAGE_BITS;
1378    end  = last  >> TARGET_PAGE_BITS;
1379    dest = 0;
1380
1381    WITH_RCU_READ_LOCK_GUARD() {
1382        blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1383
1384        while (page < end) {
1385            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1386            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1387            unsigned long num = MIN(end - page,
1388                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
1389
1390            assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1391            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1392            offset >>= BITS_PER_LEVEL;
1393
1394            bitmap_copy_and_clear_atomic(snap->dirty + dest,
1395                                         blocks->blocks[idx] + offset,
1396                                         num);
1397            page += num;
1398            dest += num >> BITS_PER_LEVEL;
1399        }
1400    }
1401
1402    if (tcg_enabled()) {
1403        tlb_reset_dirty_range_all(start, length);
1404    }
1405
1406    memory_region_clear_dirty_bitmap(mr, offset, length);
1407
1408    return snap;
1409}
1410
1411bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1412                                            ram_addr_t start,
1413                                            ram_addr_t length)
1414{
1415    unsigned long page, end;
1416
1417    assert(start >= snap->start);
1418    assert(start + length <= snap->end);
1419
1420    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1421    page = (start - snap->start) >> TARGET_PAGE_BITS;
1422
1423    while (page < end) {
1424        if (test_bit(page, snap->dirty)) {
1425            return true;
1426        }
1427        page++;
1428    }
1429    return false;
1430}
1431
1432/* Called from RCU critical section */
1433hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1434                                       MemoryRegionSection *section)
1435{
1436    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1437    return section - d->map.sections;
1438}
1439#endif /* defined(CONFIG_USER_ONLY) */
1440
1441#if !defined(CONFIG_USER_ONLY)
1442
1443static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1444                            uint16_t section);
1445static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1446
1447static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1448                               qemu_anon_ram_alloc;
1449
1450/*
1451 * Set a custom physical guest memory alloator.
1452 * Accelerators with unusual needs may need this.  Hopefully, we can
1453 * get rid of it eventually.
1454 */
1455void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1456{
1457    phys_mem_alloc = alloc;
1458}
1459
1460static uint16_t phys_section_add(PhysPageMap *map,
1461                                 MemoryRegionSection *section)
1462{
1463    /* The physical section number is ORed with a page-aligned
1464     * pointer to produce the iotlb entries.  Thus it should
1465     * never overflow into the page-aligned value.
1466     */
1467    assert(map->sections_nb < TARGET_PAGE_SIZE);
1468
1469    if (map->sections_nb == map->sections_nb_alloc) {
1470        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1471        map->sections = g_renew(MemoryRegionSection, map->sections,
1472                                map->sections_nb_alloc);
1473    }
1474    map->sections[map->sections_nb] = *section;
1475    memory_region_ref(section->mr);
1476    return map->sections_nb++;
1477}
1478
1479static void phys_section_destroy(MemoryRegion *mr)
1480{
1481    bool have_sub_page = mr->subpage;
1482
1483    memory_region_unref(mr);
1484
1485    if (have_sub_page) {
1486        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1487        object_unref(OBJECT(&subpage->iomem));
1488        g_free(subpage);
1489    }
1490}
1491
1492static void phys_sections_free(PhysPageMap *map)
1493{
1494    while (map->sections_nb > 0) {
1495        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1496        phys_section_destroy(section->mr);
1497    }
1498    g_free(map->sections);
1499    g_free(map->nodes);
1500}
1501
1502static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1503{
1504    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1505    subpage_t *subpage;
1506    hwaddr base = section->offset_within_address_space
1507        & TARGET_PAGE_MASK;
1508    MemoryRegionSection *existing = phys_page_find(d, base);
1509    MemoryRegionSection subsection = {
1510        .offset_within_address_space = base,
1511        .size = int128_make64(TARGET_PAGE_SIZE),
1512    };
1513    hwaddr start, end;
1514
1515    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1516
1517    if (!(existing->mr->subpage)) {
1518        subpage = subpage_init(fv, base);
1519        subsection.fv = fv;
1520        subsection.mr = &subpage->iomem;
1521        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1522                      phys_section_add(&d->map, &subsection));
1523    } else {
1524        subpage = container_of(existing->mr, subpage_t, iomem);
1525    }
1526    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1527    end = start + int128_get64(section->size) - 1;
1528    subpage_register(subpage, start, end,
1529                     phys_section_add(&d->map, section));
1530}
1531
1532
1533static void register_multipage(FlatView *fv,
1534                               MemoryRegionSection *section)
1535{
1536    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1537    hwaddr start_addr = section->offset_within_address_space;
1538    uint16_t section_index = phys_section_add(&d->map, section);
1539    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1540                                                    TARGET_PAGE_BITS));
1541
1542    assert(num_pages);
1543    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1544}
1545
1546/*
1547 * The range in *section* may look like this:
1548 *
1549 *      |s|PPPPPPP|s|
1550 *
1551 * where s stands for subpage and P for page.
1552 */
1553void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1554{
1555    MemoryRegionSection remain = *section;
1556    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1557
1558    /* register first subpage */
1559    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1560        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1561                        - remain.offset_within_address_space;
1562
1563        MemoryRegionSection now = remain;
1564        now.size = int128_min(int128_make64(left), now.size);
1565        register_subpage(fv, &now);
1566        if (int128_eq(remain.size, now.size)) {
1567            return;
1568        }
1569        remain.size = int128_sub(remain.size, now.size);
1570        remain.offset_within_address_space += int128_get64(now.size);
1571        remain.offset_within_region += int128_get64(now.size);
1572    }
1573
1574    /* register whole pages */
1575    if (int128_ge(remain.size, page_size)) {
1576        MemoryRegionSection now = remain;
1577        now.size = int128_and(now.size, int128_neg(page_size));
1578        register_multipage(fv, &now);
1579        if (int128_eq(remain.size, now.size)) {
1580            return;
1581        }
1582        remain.size = int128_sub(remain.size, now.size);
1583        remain.offset_within_address_space += int128_get64(now.size);
1584        remain.offset_within_region += int128_get64(now.size);
1585    }
1586
1587    /* register last subpage */
1588    register_subpage(fv, &remain);
1589}
1590
1591void qemu_flush_coalesced_mmio_buffer(void)
1592{
1593    if (kvm_enabled())
1594        kvm_flush_coalesced_mmio_buffer();
1595}
1596
1597void qemu_mutex_lock_ramlist(void)
1598{
1599    qemu_mutex_lock(&ram_list.mutex);
1600}
1601
1602void qemu_mutex_unlock_ramlist(void)
1603{
1604    qemu_mutex_unlock(&ram_list.mutex);
1605}
1606
1607void ram_block_dump(Monitor *mon)
1608{
1609    RAMBlock *block;
1610    char *psize;
1611
1612    RCU_READ_LOCK_GUARD();
1613    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
1614                   "Block Name", "PSize", "Offset", "Used", "Total");
1615    RAMBLOCK_FOREACH(block) {
1616        psize = size_to_str(block->page_size);
1617        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1618                       " 0x%016" PRIx64 "\n", block->idstr, psize,
1619                       (uint64_t)block->offset,
1620                       (uint64_t)block->used_length,
1621                       (uint64_t)block->max_length);
1622        g_free(psize);
1623    }
1624}
1625
1626#ifdef __linux__
1627/*
1628 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1629 * may or may not name the same files / on the same filesystem now as
1630 * when we actually open and map them.  Iterate over the file
1631 * descriptors instead, and use qemu_fd_getpagesize().
1632 */
1633static int find_min_backend_pagesize(Object *obj, void *opaque)
1634{
1635    long *hpsize_min = opaque;
1636
1637    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1638        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1639        long hpsize = host_memory_backend_pagesize(backend);
1640
1641        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1642            *hpsize_min = hpsize;
1643        }
1644    }
1645
1646    return 0;
1647}
1648
1649static int find_max_backend_pagesize(Object *obj, void *opaque)
1650{
1651    long *hpsize_max = opaque;
1652
1653    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1654        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1655        long hpsize = host_memory_backend_pagesize(backend);
1656
1657        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1658            *hpsize_max = hpsize;
1659        }
1660    }
1661
1662    return 0;
1663}
1664
1665/*
1666 * TODO: We assume right now that all mapped host memory backends are
1667 * used as RAM, however some might be used for different purposes.
1668 */
1669long qemu_minrampagesize(void)
1670{
1671    long hpsize = LONG_MAX;
1672    Object *memdev_root = object_resolve_path("/objects", NULL);
1673
1674    object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1675    return hpsize;
1676}
1677
1678long qemu_maxrampagesize(void)
1679{
1680    long pagesize = 0;
1681    Object *memdev_root = object_resolve_path("/objects", NULL);
1682
1683    object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1684    return pagesize;
1685}
1686#else
1687long qemu_minrampagesize(void)
1688{
1689    return qemu_real_host_page_size;
1690}
1691long qemu_maxrampagesize(void)
1692{
1693    return qemu_real_host_page_size;
1694}
1695#endif
1696
1697#ifdef CONFIG_POSIX
1698static int64_t get_file_size(int fd)
1699{
1700    int64_t size;
1701#if defined(__linux__)
1702    struct stat st;
1703
1704    if (fstat(fd, &st) < 0) {
1705        return -errno;
1706    }
1707
1708    /* Special handling for devdax character devices */
1709    if (S_ISCHR(st.st_mode)) {
1710        g_autofree char *subsystem_path = NULL;
1711        g_autofree char *subsystem = NULL;
1712
1713        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1714                                         major(st.st_rdev), minor(st.st_rdev));
1715        subsystem = g_file_read_link(subsystem_path, NULL);
1716
1717        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1718            g_autofree char *size_path = NULL;
1719            g_autofree char *size_str = NULL;
1720
1721            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1722                                    major(st.st_rdev), minor(st.st_rdev));
1723
1724            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1725                return g_ascii_strtoll(size_str, NULL, 0);
1726            }
1727        }
1728    }
1729#endif /* defined(__linux__) */
1730
1731    /* st.st_size may be zero for special files yet lseek(2) works */
1732    size = lseek(fd, 0, SEEK_END);
1733    if (size < 0) {
1734        return -errno;
1735    }
1736    return size;
1737}
1738
1739static int file_ram_open(const char *path,
1740                         const char *region_name,
1741                         bool *created,
1742                         Error **errp)
1743{
1744    char *filename;
1745    char *sanitized_name;
1746    char *c;
1747    int fd = -1;
1748
1749    *created = false;
1750    for (;;) {
1751        fd = open(path, O_RDWR);
1752        if (fd >= 0) {
1753            /* @path names an existing file, use it */
1754            break;
1755        }
1756        if (errno == ENOENT) {
1757            /* @path names a file that doesn't exist, create it */
1758            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1759            if (fd >= 0) {
1760                *created = true;
1761                break;
1762            }
1763        } else if (errno == EISDIR) {
1764            /* @path names a directory, create a file there */
1765            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1766            sanitized_name = g_strdup(region_name);
1767            for (c = sanitized_name; *c != '\0'; c++) {
1768                if (*c == '/') {
1769                    *c = '_';
1770                }
1771            }
1772
1773            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1774                                       sanitized_name);
1775            g_free(sanitized_name);
1776
1777            fd = mkstemp(filename);
1778            if (fd >= 0) {
1779                unlink(filename);
1780                g_free(filename);
1781                break;
1782            }
1783            g_free(filename);
1784        }
1785        if (errno != EEXIST && errno != EINTR) {
1786            error_setg_errno(errp, errno,
1787                             "can't open backing store %s for guest RAM",
1788                             path);
1789            return -1;
1790        }
1791        /*
1792         * Try again on EINTR and EEXIST.  The latter happens when
1793         * something else creates the file between our two open().
1794         */
1795    }
1796
1797    return fd;
1798}
1799
1800static void *file_ram_alloc(RAMBlock *block,
1801                            ram_addr_t memory,
1802                            int fd,
1803                            bool truncate,
1804                            Error **errp)
1805{
1806    void *area;
1807
1808    block->page_size = qemu_fd_getpagesize(fd);
1809    if (block->mr->align % block->page_size) {
1810        error_setg(errp, "alignment 0x%" PRIx64
1811                   " must be multiples of page size 0x%zx",
1812                   block->mr->align, block->page_size);
1813        return NULL;
1814    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1815        error_setg(errp, "alignment 0x%" PRIx64
1816                   " must be a power of two", block->mr->align);
1817        return NULL;
1818    }
1819    block->mr->align = MAX(block->page_size, block->mr->align);
1820#if defined(__s390x__)
1821    if (kvm_enabled()) {
1822        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1823    }
1824#endif
1825
1826    if (memory < block->page_size) {
1827        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1828                   "or larger than page size 0x%zx",
1829                   memory, block->page_size);
1830        return NULL;
1831    }
1832
1833    memory = ROUND_UP(memory, block->page_size);
1834
1835    /*
1836     * ftruncate is not supported by hugetlbfs in older
1837     * hosts, so don't bother bailing out on errors.
1838     * If anything goes wrong with it under other filesystems,
1839     * mmap will fail.
1840     *
1841     * Do not truncate the non-empty backend file to avoid corrupting
1842     * the existing data in the file. Disabling shrinking is not
1843     * enough. For example, the current vNVDIMM implementation stores
1844     * the guest NVDIMM labels at the end of the backend file. If the
1845     * backend file is later extended, QEMU will not be able to find
1846     * those labels. Therefore, extending the non-empty backend file
1847     * is disabled as well.
1848     */
1849    if (truncate && ftruncate(fd, memory)) {
1850        perror("ftruncate");
1851    }
1852
1853    area = qemu_ram_mmap(fd, memory, block->mr->align,
1854                         block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1855    if (area == MAP_FAILED) {
1856        error_setg_errno(errp, errno,
1857                         "unable to map backing store for guest RAM");
1858        return NULL;
1859    }
1860
1861    block->fd = fd;
1862    return area;
1863}
1864#endif
1865
1866/* Allocate space within the ram_addr_t space that governs the
1867 * dirty bitmaps.
1868 * Called with the ramlist lock held.
1869 */
1870static ram_addr_t find_ram_offset(ram_addr_t size)
1871{
1872    RAMBlock *block, *next_block;
1873    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1874
1875    assert(size != 0); /* it would hand out same offset multiple times */
1876
1877    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1878        return 0;
1879    }
1880
1881    RAMBLOCK_FOREACH(block) {
1882        ram_addr_t candidate, next = RAM_ADDR_MAX;
1883
1884        /* Align blocks to start on a 'long' in the bitmap
1885         * which makes the bitmap sync'ing take the fast path.
1886         */
1887        candidate = block->offset + block->max_length;
1888        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1889
1890        /* Search for the closest following block
1891         * and find the gap.
1892         */
1893        RAMBLOCK_FOREACH(next_block) {
1894            if (next_block->offset >= candidate) {
1895                next = MIN(next, next_block->offset);
1896            }
1897        }
1898
1899        /* If it fits remember our place and remember the size
1900         * of gap, but keep going so that we might find a smaller
1901         * gap to fill so avoiding fragmentation.
1902         */
1903        if (next - candidate >= size && next - candidate < mingap) {
1904            offset = candidate;
1905            mingap = next - candidate;
1906        }
1907
1908        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1909    }
1910
1911    if (offset == RAM_ADDR_MAX) {
1912        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1913                (uint64_t)size);
1914        abort();
1915    }
1916
1917    trace_find_ram_offset(size, offset);
1918
1919    return offset;
1920}
1921
1922static unsigned long last_ram_page(void)
1923{
1924    RAMBlock *block;
1925    ram_addr_t last = 0;
1926
1927    RCU_READ_LOCK_GUARD();
1928    RAMBLOCK_FOREACH(block) {
1929        last = MAX(last, block->offset + block->max_length);
1930    }
1931    return last >> TARGET_PAGE_BITS;
1932}
1933
1934static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1935{
1936    int ret;
1937
1938    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1939    if (!machine_dump_guest_core(current_machine)) {
1940        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1941        if (ret) {
1942            perror("qemu_madvise");
1943            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1944                            "but dump_guest_core=off specified\n");
1945        }
1946    }
1947}
1948
1949const char *qemu_ram_get_idstr(RAMBlock *rb)
1950{
1951    return rb->idstr;
1952}
1953
1954void *qemu_ram_get_host_addr(RAMBlock *rb)
1955{
1956    return rb->host;
1957}
1958
1959ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1960{
1961    return rb->offset;
1962}
1963
1964ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1965{
1966    return rb->used_length;
1967}
1968
1969bool qemu_ram_is_shared(RAMBlock *rb)
1970{
1971    return rb->flags & RAM_SHARED;
1972}
1973
1974/* Note: Only set at the start of postcopy */
1975bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1976{
1977    return rb->flags & RAM_UF_ZEROPAGE;
1978}
1979
1980void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1981{
1982    rb->flags |= RAM_UF_ZEROPAGE;
1983}
1984
1985bool qemu_ram_is_migratable(RAMBlock *rb)
1986{
1987    return rb->flags & RAM_MIGRATABLE;
1988}
1989
1990void qemu_ram_set_migratable(RAMBlock *rb)
1991{
1992    rb->flags |= RAM_MIGRATABLE;
1993}
1994
1995void qemu_ram_unset_migratable(RAMBlock *rb)
1996{
1997    rb->flags &= ~RAM_MIGRATABLE;
1998}
1999
2000/* Called with iothread lock held.  */
2001void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2002{
2003    RAMBlock *block;
2004
2005    assert(new_block);
2006    assert(!new_block->idstr[0]);
2007
2008    if (dev) {
2009        char *id = qdev_get_dev_path(dev);
2010        if (id) {
2011            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2012            g_free(id);
2013        }
2014    }
2015    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2016
2017    RCU_READ_LOCK_GUARD();
2018    RAMBLOCK_FOREACH(block) {
2019        if (block != new_block &&
2020            !strcmp(block->idstr, new_block->idstr)) {
2021            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2022                    new_block->idstr);
2023            abort();
2024        }
2025    }
2026}
2027
2028/* Called with iothread lock held.  */
2029void qemu_ram_unset_idstr(RAMBlock *block)
2030{
2031    /* FIXME: arch_init.c assumes that this is not called throughout
2032     * migration.  Ignore the problem since hot-unplug during migration
2033     * does not work anyway.
2034     */
2035    if (block) {
2036        memset(block->idstr, 0, sizeof(block->idstr));
2037    }
2038}
2039
2040size_t qemu_ram_pagesize(RAMBlock *rb)
2041{
2042    return rb->page_size;
2043}
2044
2045/* Returns the largest size of page in use */
2046size_t qemu_ram_pagesize_largest(void)
2047{
2048    RAMBlock *block;
2049    size_t largest = 0;
2050
2051    RAMBLOCK_FOREACH(block) {
2052        largest = MAX(largest, qemu_ram_pagesize(block));
2053    }
2054
2055    return largest;
2056}
2057
2058static int memory_try_enable_merging(void *addr, size_t len)
2059{
2060    if (!machine_mem_merge(current_machine)) {
2061        /* disabled by the user */
2062        return 0;
2063    }
2064
2065    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2066}
2067
2068/* Only legal before guest might have detected the memory size: e.g. on
2069 * incoming migration, or right after reset.
2070 *
2071 * As memory core doesn't know how is memory accessed, it is up to
2072 * resize callback to update device state and/or add assertions to detect
2073 * misuse, if necessary.
2074 */
2075int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2076{
2077    const ram_addr_t unaligned_size = newsize;
2078
2079    assert(block);
2080
2081    newsize = HOST_PAGE_ALIGN(newsize);
2082
2083    if (block->used_length == newsize) {
2084        /*
2085         * We don't have to resize the ram block (which only knows aligned
2086         * sizes), however, we have to notify if the unaligned size changed.
2087         */
2088        if (unaligned_size != memory_region_size(block->mr)) {
2089            memory_region_set_size(block->mr, unaligned_size);
2090            if (block->resized) {
2091                block->resized(block->idstr, unaligned_size, block->host);
2092            }
2093        }
2094        return 0;
2095    }
2096
2097    if (!(block->flags & RAM_RESIZEABLE)) {
2098        error_setg_errno(errp, EINVAL,
2099                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
2100                         " in != 0x" RAM_ADDR_FMT, block->idstr,
2101                         newsize, block->used_length);
2102        return -EINVAL;
2103    }
2104
2105    if (block->max_length < newsize) {
2106        error_setg_errno(errp, EINVAL,
2107                         "Length too large: %s: 0x" RAM_ADDR_FMT
2108                         " > 0x" RAM_ADDR_FMT, block->idstr,
2109                         newsize, block->max_length);
2110        return -EINVAL;
2111    }
2112
2113    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2114    block->used_length = newsize;
2115    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2116                                        DIRTY_CLIENTS_ALL);
2117    memory_region_set_size(block->mr, unaligned_size);
2118    if (block->resized) {
2119        block->resized(block->idstr, unaligned_size, block->host);
2120    }
2121    return 0;
2122}
2123
2124/*
2125 * Trigger sync on the given ram block for range [start, start + length]
2126 * with the backing store if one is available.
2127 * Otherwise no-op.
2128 * @Note: this is supposed to be a synchronous op.
2129 */
2130void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2131{
2132    /* The requested range should fit in within the block range */
2133    g_assert((start + length) <= block->used_length);
2134
2135#ifdef CONFIG_LIBPMEM
2136    /* The lack of support for pmem should not block the sync */
2137    if (ramblock_is_pmem(block)) {
2138        void *addr = ramblock_ptr(block, start);
2139        pmem_persist(addr, length);
2140        return;
2141    }
2142#endif
2143    if (block->fd >= 0) {
2144        /**
2145         * Case there is no support for PMEM or the memory has not been
2146         * specified as persistent (or is not one) - use the msync.
2147         * Less optimal but still achieves the same goal
2148         */
2149        void *addr = ramblock_ptr(block, start);
2150        if (qemu_msync(addr, length, block->fd)) {
2151            warn_report("%s: failed to sync memory range: start: "
2152                    RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2153                    __func__, start, length);
2154        }
2155    }
2156}
2157
2158/* Called with ram_list.mutex held */
2159static void dirty_memory_extend(ram_addr_t old_ram_size,
2160                                ram_addr_t new_ram_size)
2161{
2162    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2163                                             DIRTY_MEMORY_BLOCK_SIZE);
2164    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2165                                             DIRTY_MEMORY_BLOCK_SIZE);
2166    int i;
2167
2168    /* Only need to extend if block count increased */
2169    if (new_num_blocks <= old_num_blocks) {
2170        return;
2171    }
2172
2173    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2174        DirtyMemoryBlocks *old_blocks;
2175        DirtyMemoryBlocks *new_blocks;
2176        int j;
2177
2178        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2179        new_blocks = g_malloc(sizeof(*new_blocks) +
2180                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
2181
2182        if (old_num_blocks) {
2183            memcpy(new_blocks->blocks, old_blocks->blocks,
2184                   old_num_blocks * sizeof(old_blocks->blocks[0]));
2185        }
2186
2187        for (j = old_num_blocks; j < new_num_blocks; j++) {
2188            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2189        }
2190
2191        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2192
2193        if (old_blocks) {
2194            g_free_rcu(old_blocks, rcu);
2195        }
2196    }
2197}
2198
2199static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2200{
2201    RAMBlock *block;
2202    RAMBlock *last_block = NULL;
2203    ram_addr_t old_ram_size, new_ram_size;
2204    Error *err = NULL;
2205
2206    old_ram_size = last_ram_page();
2207
2208    qemu_mutex_lock_ramlist();
2209    new_block->offset = find_ram_offset(new_block->max_length);
2210
2211    if (!new_block->host) {
2212        if (xen_enabled()) {
2213            xen_ram_alloc(new_block->offset, new_block->max_length,
2214                          new_block->mr, &err);
2215            if (err) {
2216                error_propagate(errp, err);
2217                qemu_mutex_unlock_ramlist();
2218                return;
2219            }
2220        } else {
2221            new_block->host = phys_mem_alloc(new_block->max_length,
2222                                             &new_block->mr->align, shared);
2223            if (!new_block->host) {
2224                error_setg_errno(errp, errno,
2225                                 "cannot set up guest memory '%s'",
2226                                 memory_region_name(new_block->mr));
2227                qemu_mutex_unlock_ramlist();
2228                return;
2229            }
2230            memory_try_enable_merging(new_block->host, new_block->max_length);
2231        }
2232    }
2233
2234    new_ram_size = MAX(old_ram_size,
2235              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2236    if (new_ram_size > old_ram_size) {
2237        dirty_memory_extend(old_ram_size, new_ram_size);
2238    }
2239    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2240     * QLIST (which has an RCU-friendly variant) does not have insertion at
2241     * tail, so save the last element in last_block.
2242     */
2243    RAMBLOCK_FOREACH(block) {
2244        last_block = block;
2245        if (block->max_length < new_block->max_length) {
2246            break;
2247        }
2248    }
2249    if (block) {
2250        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2251    } else if (last_block) {
2252        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2253    } else { /* list is empty */
2254        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2255    }
2256    ram_list.mru_block = NULL;
2257
2258    /* Write list before version */
2259    smp_wmb();
2260    ram_list.version++;
2261    qemu_mutex_unlock_ramlist();
2262
2263    cpu_physical_memory_set_dirty_range(new_block->offset,
2264                                        new_block->used_length,
2265                                        DIRTY_CLIENTS_ALL);
2266
2267    if (new_block->host) {
2268        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2269        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2270        /*
2271         * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2272         * Configure it unless the machine is a qtest server, in which case
2273         * KVM is not used and it may be forked (eg for fuzzing purposes).
2274         */
2275        if (!qtest_enabled()) {
2276            qemu_madvise(new_block->host, new_block->max_length,
2277                         QEMU_MADV_DONTFORK);
2278        }
2279        ram_block_notify_add(new_block->host, new_block->max_length);
2280    }
2281}
2282
2283#ifdef CONFIG_POSIX
2284RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2285                                 uint32_t ram_flags, int fd,
2286                                 Error **errp)
2287{
2288    RAMBlock *new_block;
2289    Error *local_err = NULL;
2290    int64_t file_size;
2291
2292    /* Just support these ram flags by now. */
2293    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2294
2295    if (xen_enabled()) {
2296        error_setg(errp, "-mem-path not supported with Xen");
2297        return NULL;
2298    }
2299
2300    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2301        error_setg(errp,
2302                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2303        return NULL;
2304    }
2305
2306    if (phys_mem_alloc != qemu_anon_ram_alloc) {
2307        /*
2308         * file_ram_alloc() needs to allocate just like
2309         * phys_mem_alloc, but we haven't bothered to provide
2310         * a hook there.
2311         */
2312        error_setg(errp,
2313                   "-mem-path not supported with this accelerator");
2314        return NULL;
2315    }
2316
2317    size = HOST_PAGE_ALIGN(size);
2318    file_size = get_file_size(fd);
2319    if (file_size > 0 && file_size < size) {
2320        error_setg(errp, "backing store size 0x%" PRIx64
2321                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2322                   file_size, size);
2323        return NULL;
2324    }
2325
2326    new_block = g_malloc0(sizeof(*new_block));
2327    new_block->mr = mr;
2328    new_block->used_length = size;
2329    new_block->max_length = size;
2330    new_block->flags = ram_flags;
2331    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2332    if (!new_block->host) {
2333        g_free(new_block);
2334        return NULL;
2335    }
2336
2337    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2338    if (local_err) {
2339        g_free(new_block);
2340        error_propagate(errp, local_err);
2341        return NULL;
2342    }
2343    return new_block;
2344
2345}
2346
2347
2348RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2349                                   uint32_t ram_flags, const char *mem_path,
2350                                   Error **errp)
2351{
2352    int fd;
2353    bool created;
2354    RAMBlock *block;
2355
2356    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2357    if (fd < 0) {
2358        return NULL;
2359    }
2360
2361    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2362    if (!block) {
2363        if (created) {
2364            unlink(mem_path);
2365        }
2366        close(fd);
2367        return NULL;
2368    }
2369
2370    return block;
2371}
2372#endif
2373
2374static
2375RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2376                                  void (*resized)(const char*,
2377                                                  uint64_t length,
2378                                                  void *host),
2379                                  void *host, bool resizeable, bool share,
2380                                  MemoryRegion *mr, Error **errp)
2381{
2382    RAMBlock *new_block;
2383    Error *local_err = NULL;
2384
2385    size = HOST_PAGE_ALIGN(size);
2386    max_size = HOST_PAGE_ALIGN(max_size);
2387    new_block = g_malloc0(sizeof(*new_block));
2388    new_block->mr = mr;
2389    new_block->resized = resized;
2390    new_block->used_length = size;
2391    new_block->max_length = max_size;
2392    assert(max_size >= size);
2393    new_block->fd = -1;
2394    new_block->page_size = qemu_real_host_page_size;
2395    new_block->host = host;
2396    if (host) {
2397        new_block->flags |= RAM_PREALLOC;
2398    }
2399    if (resizeable) {
2400        new_block->flags |= RAM_RESIZEABLE;
2401    }
2402    ram_block_add(new_block, &local_err, share);
2403    if (local_err) {
2404        g_free(new_block);
2405        error_propagate(errp, local_err);
2406        return NULL;
2407    }
2408    return new_block;
2409}
2410
2411RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2412                                   MemoryRegion *mr, Error **errp)
2413{
2414    return qemu_ram_alloc_internal(size, size, NULL, host, false,
2415                                   false, mr, errp);
2416}
2417
2418RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2419                         MemoryRegion *mr, Error **errp)
2420{
2421    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2422                                   share, mr, errp);
2423}
2424
2425RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2426                                     void (*resized)(const char*,
2427                                                     uint64_t length,
2428                                                     void *host),
2429                                     MemoryRegion *mr, Error **errp)
2430{
2431    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2432                                   false, mr, errp);
2433}
2434
2435static void reclaim_ramblock(RAMBlock *block)
2436{
2437    if (block->flags & RAM_PREALLOC) {
2438        ;
2439    } else if (xen_enabled()) {
2440        xen_invalidate_map_cache_entry(block->host);
2441#ifndef _WIN32
2442    } else if (block->fd >= 0) {
2443        qemu_ram_munmap(block->fd, block->host, block->max_length);
2444        close(block->fd);
2445#endif
2446    } else {
2447        qemu_anon_ram_free(block->host, block->max_length);
2448    }
2449    g_free(block);
2450}
2451
2452void qemu_ram_free(RAMBlock *block)
2453{
2454    if (!block) {
2455        return;
2456    }
2457
2458    if (block->host) {
2459        ram_block_notify_remove(block->host, block->max_length);
2460    }
2461
2462    qemu_mutex_lock_ramlist();
2463    QLIST_REMOVE_RCU(block, next);
2464    ram_list.mru_block = NULL;
2465    /* Write list before version */
2466    smp_wmb();
2467    ram_list.version++;
2468    call_rcu(block, reclaim_ramblock, rcu);
2469    qemu_mutex_unlock_ramlist();
2470}
2471
2472#ifndef _WIN32
2473void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2474{
2475    RAMBlock *block;
2476    ram_addr_t offset;
2477    int flags;
2478    void *area, *vaddr;
2479
2480    RAMBLOCK_FOREACH(block) {
2481        offset = addr - block->offset;
2482        if (offset < block->max_length) {
2483            vaddr = ramblock_ptr(block, offset);
2484            if (block->flags & RAM_PREALLOC) {
2485                ;
2486            } else if (xen_enabled()) {
2487                abort();
2488            } else {
2489                flags = MAP_FIXED;
2490                if (block->fd >= 0) {
2491                    flags |= (block->flags & RAM_SHARED ?
2492                              MAP_SHARED : MAP_PRIVATE);
2493                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2494                                flags, block->fd, offset);
2495                } else {
2496                    /*
2497                     * Remap needs to match alloc.  Accelerators that
2498                     * set phys_mem_alloc never remap.  If they did,
2499                     * we'd need a remap hook here.
2500                     */
2501                    assert(phys_mem_alloc == qemu_anon_ram_alloc);
2502
2503                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2504                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2505                                flags, -1, 0);
2506                }
2507                if (area != vaddr) {
2508                    error_report("Could not remap addr: "
2509                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2510                                 length, addr);
2511                    exit(1);
2512                }
2513                memory_try_enable_merging(vaddr, length);
2514                qemu_ram_setup_dump(vaddr, length);
2515            }
2516        }
2517    }
2518}
2519#endif /* !_WIN32 */
2520
2521/* Return a host pointer to ram allocated with qemu_ram_alloc.
2522 * This should not be used for general purpose DMA.  Use address_space_map
2523 * or address_space_rw instead. For local memory (e.g. video ram) that the
2524 * device owns, use memory_region_get_ram_ptr.
2525 *
2526 * Called within RCU critical section.
2527 */
2528void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2529{
2530    RAMBlock *block = ram_block;
2531
2532    if (block == NULL) {
2533        block = qemu_get_ram_block(addr);
2534        addr -= block->offset;
2535    }
2536
2537    if (xen_enabled() && block->host == NULL) {
2538        /* We need to check if the requested address is in the RAM
2539         * because we don't want to map the entire memory in QEMU.
2540         * In that case just map until the end of the page.
2541         */
2542        if (block->offset == 0) {
2543            return xen_map_cache(addr, 0, 0, false);
2544        }
2545
2546        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2547    }
2548    return ramblock_ptr(block, addr);
2549}
2550
2551/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2552 * but takes a size argument.
2553 *
2554 * Called within RCU critical section.
2555 */
2556static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2557                                 hwaddr *size, bool lock)
2558{
2559    RAMBlock *block = ram_block;
2560    if (*size == 0) {
2561        return NULL;
2562    }
2563
2564    if (block == NULL) {
2565        block = qemu_get_ram_block(addr);
2566        addr -= block->offset;
2567    }
2568    *size = MIN(*size, block->max_length - addr);
2569
2570    if (xen_enabled() && block->host == NULL) {
2571        /* We need to check if the requested address is in the RAM
2572         * because we don't want to map the entire memory in QEMU.
2573         * In that case just map the requested area.
2574         */
2575        if (block->offset == 0) {
2576            return xen_map_cache(addr, *size, lock, lock);
2577        }
2578
2579        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2580    }
2581
2582    return ramblock_ptr(block, addr);
2583}
2584
2585/* Return the offset of a hostpointer within a ramblock */
2586ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2587{
2588    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2589    assert((uintptr_t)host >= (uintptr_t)rb->host);
2590    assert(res < rb->max_length);
2591
2592    return res;
2593}
2594
2595/*
2596 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2597 * in that RAMBlock.
2598 *
2599 * ptr: Host pointer to look up
2600 * round_offset: If true round the result offset down to a page boundary
2601 * *ram_addr: set to result ram_addr
2602 * *offset: set to result offset within the RAMBlock
2603 *
2604 * Returns: RAMBlock (or NULL if not found)
2605 *
2606 * By the time this function returns, the returned pointer is not protected
2607 * by RCU anymore.  If the caller is not within an RCU critical section and
2608 * does not hold the iothread lock, it must have other means of protecting the
2609 * pointer, such as a reference to the region that includes the incoming
2610 * ram_addr_t.
2611 */
2612RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2613                                   ram_addr_t *offset)
2614{
2615    RAMBlock *block;
2616    uint8_t *host = ptr;
2617
2618    if (xen_enabled()) {
2619        ram_addr_t ram_addr;
2620        RCU_READ_LOCK_GUARD();
2621        ram_addr = xen_ram_addr_from_mapcache(ptr);
2622        block = qemu_get_ram_block(ram_addr);
2623        if (block) {
2624            *offset = ram_addr - block->offset;
2625        }
2626        return block;
2627    }
2628
2629    RCU_READ_LOCK_GUARD();
2630    block = atomic_rcu_read(&ram_list.mru_block);
2631    if (block && block->host && host - block->host < block->max_length) {
2632        goto found;
2633    }
2634
2635    RAMBLOCK_FOREACH(block) {
2636        /* This case append when the block is not mapped. */
2637        if (block->host == NULL) {
2638            continue;
2639        }
2640        if (host - block->host < block->max_length) {
2641            goto found;
2642        }
2643    }
2644
2645    return NULL;
2646
2647found:
2648    *offset = (host - block->host);
2649    if (round_offset) {
2650        *offset &= TARGET_PAGE_MASK;
2651    }
2652    return block;
2653}
2654
2655/*
2656 * Finds the named RAMBlock
2657 *
2658 * name: The name of RAMBlock to find
2659 *
2660 * Returns: RAMBlock (or NULL if not found)
2661 */
2662RAMBlock *qemu_ram_block_by_name(const char *name)
2663{
2664    RAMBlock *block;
2665
2666    RAMBLOCK_FOREACH(block) {
2667        if (!strcmp(name, block->idstr)) {
2668            return block;
2669        }
2670    }
2671
2672    return NULL;
2673}
2674
2675/* Some of the softmmu routines need to translate from a host pointer
2676   (typically a TLB entry) back to a ram offset.  */
2677ram_addr_t qemu_ram_addr_from_host(void *ptr)
2678{
2679    RAMBlock *block;
2680    ram_addr_t offset;
2681
2682    block = qemu_ram_block_from_host(ptr, false, &offset);
2683    if (!block) {
2684        return RAM_ADDR_INVALID;
2685    }
2686
2687    return block->offset + offset;
2688}
2689
2690/* Generate a debug exception if a watchpoint has been hit.  */
2691void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2692                          MemTxAttrs attrs, int flags, uintptr_t ra)
2693{
2694    CPUClass *cc = CPU_GET_CLASS(cpu);
2695    CPUWatchpoint *wp;
2696
2697    assert(tcg_enabled());
2698    if (cpu->watchpoint_hit) {
2699        /*
2700         * We re-entered the check after replacing the TB.
2701         * Now raise the debug interrupt so that it will
2702         * trigger after the current instruction.
2703         */
2704        qemu_mutex_lock_iothread();
2705        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2706        qemu_mutex_unlock_iothread();
2707        return;
2708    }
2709
2710    addr = cc->adjust_watchpoint_address(cpu, addr, len);
2711    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2712        if (watchpoint_address_matches(wp, addr, len)
2713            && (wp->flags & flags)) {
2714            if (flags == BP_MEM_READ) {
2715                wp->flags |= BP_WATCHPOINT_HIT_READ;
2716            } else {
2717                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2718            }
2719            wp->hitaddr = MAX(addr, wp->vaddr);
2720            wp->hitattrs = attrs;
2721            if (!cpu->watchpoint_hit) {
2722                if (wp->flags & BP_CPU &&
2723                    !cc->debug_check_watchpoint(cpu, wp)) {
2724                    wp->flags &= ~BP_WATCHPOINT_HIT;
2725                    continue;
2726                }
2727                cpu->watchpoint_hit = wp;
2728
2729                mmap_lock();
2730                tb_check_watchpoint(cpu, ra);
2731                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2732                    cpu->exception_index = EXCP_DEBUG;
2733                    mmap_unlock();
2734                    cpu_loop_exit_restore(cpu, ra);
2735                } else {
2736                    /* Force execution of one insn next time.  */
2737                    cpu->cflags_next_tb = 1 | curr_cflags();
2738                    mmap_unlock();
2739                    if (ra) {
2740                        cpu_restore_state(cpu, ra, true);
2741                    }
2742                    cpu_loop_exit_noexc(cpu);
2743                }
2744            }
2745        } else {
2746            wp->flags &= ~BP_WATCHPOINT_HIT;
2747        }
2748    }
2749}
2750
2751static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2752                                 MemTxAttrs attrs, void *buf, hwaddr len);
2753static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2754                                  const void *buf, hwaddr len);
2755static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2756                                  bool is_write, MemTxAttrs attrs);
2757
2758static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2759                                unsigned len, MemTxAttrs attrs)
2760{
2761    subpage_t *subpage = opaque;
2762    uint8_t buf[8];
2763    MemTxResult res;
2764
2765#if defined(DEBUG_SUBPAGE)
2766    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2767           subpage, len, addr);
2768#endif
2769    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2770    if (res) {
2771        return res;
2772    }
2773    *data = ldn_p(buf, len);
2774    return MEMTX_OK;
2775}
2776
2777static MemTxResult subpage_write(void *opaque, hwaddr addr,
2778                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2779{
2780    subpage_t *subpage = opaque;
2781    uint8_t buf[8];
2782
2783#if defined(DEBUG_SUBPAGE)
2784    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2785           " value %"PRIx64"\n",
2786           __func__, subpage, len, addr, value);
2787#endif
2788    stn_p(buf, len, value);
2789    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2790}
2791
2792static bool subpage_accepts(void *opaque, hwaddr addr,
2793                            unsigned len, bool is_write,
2794                            MemTxAttrs attrs)
2795{
2796    subpage_t *subpage = opaque;
2797#if defined(DEBUG_SUBPAGE)
2798    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2799           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2800#endif
2801
2802    return flatview_access_valid(subpage->fv, addr + subpage->base,
2803                                 len, is_write, attrs);
2804}
2805
2806static const MemoryRegionOps subpage_ops = {
2807    .read_with_attrs = subpage_read,
2808    .write_with_attrs = subpage_write,
2809    .impl.min_access_size = 1,
2810    .impl.max_access_size = 8,
2811    .valid.min_access_size = 1,
2812    .valid.max_access_size = 8,
2813    .valid.accepts = subpage_accepts,
2814    .endianness = DEVICE_NATIVE_ENDIAN,
2815};
2816
2817static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2818                            uint16_t section)
2819{
2820    int idx, eidx;
2821
2822    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2823        return -1;
2824    idx = SUBPAGE_IDX(start);
2825    eidx = SUBPAGE_IDX(end);
2826#if defined(DEBUG_SUBPAGE)
2827    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2828           __func__, mmio, start, end, idx, eidx, section);
2829#endif
2830    for (; idx <= eidx; idx++) {
2831        mmio->sub_section[idx] = section;
2832    }
2833
2834    return 0;
2835}
2836
2837static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2838{
2839    subpage_t *mmio;
2840
2841    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2842    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2843    mmio->fv = fv;
2844    mmio->base = base;
2845    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2846                          NULL, TARGET_PAGE_SIZE);
2847    mmio->iomem.subpage = true;
2848#if defined(DEBUG_SUBPAGE)
2849    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2850           mmio, base, TARGET_PAGE_SIZE);
2851#endif
2852
2853    return mmio;
2854}
2855
2856static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2857{
2858    assert(fv);
2859    MemoryRegionSection section = {
2860        .fv = fv,
2861        .mr = mr,
2862        .offset_within_address_space = 0,
2863        .offset_within_region = 0,
2864        .size = int128_2_64(),
2865    };
2866
2867    return phys_section_add(map, &section);
2868}
2869
2870MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2871                                      hwaddr index, MemTxAttrs attrs)
2872{
2873    int asidx = cpu_asidx_from_attrs(cpu, attrs);
2874    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2875    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2876    MemoryRegionSection *sections = d->map.sections;
2877
2878    return &sections[index & ~TARGET_PAGE_MASK];
2879}
2880
2881static void io_mem_init(void)
2882{
2883    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2884                          NULL, UINT64_MAX);
2885}
2886
2887AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2888{
2889    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2890    uint16_t n;
2891
2892    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2893    assert(n == PHYS_SECTION_UNASSIGNED);
2894
2895    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2896
2897    return d;
2898}
2899
2900void address_space_dispatch_free(AddressSpaceDispatch *d)
2901{
2902    phys_sections_free(&d->map);
2903    g_free(d);
2904}
2905
2906static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2907{
2908}
2909
2910static void tcg_log_global_after_sync(MemoryListener *listener)
2911{
2912    CPUAddressSpace *cpuas;
2913
2914    /* Wait for the CPU to end the current TB.  This avoids the following
2915     * incorrect race:
2916     *
2917     *      vCPU                         migration
2918     *      ----------------------       -------------------------
2919     *      TLB check -> slow path
2920     *        notdirty_mem_write
2921     *          write to RAM
2922     *          mark dirty
2923     *                                   clear dirty flag
2924     *      TLB check -> fast path
2925     *                                   read memory
2926     *        write to RAM
2927     *
2928     * by pushing the migration thread's memory read after the vCPU thread has
2929     * written the memory.
2930     */
2931    if (replay_mode == REPLAY_MODE_NONE) {
2932        /*
2933         * VGA can make calls to this function while updating the screen.
2934         * In record/replay mode this causes a deadlock, because
2935         * run_on_cpu waits for rr mutex. Therefore no races are possible
2936         * in this case and no need for making run_on_cpu when
2937         * record/replay is not enabled.
2938         */
2939        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2940        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2941    }
2942}
2943
2944static void tcg_commit(MemoryListener *listener)
2945{
2946    CPUAddressSpace *cpuas;
2947    AddressSpaceDispatch *d;
2948
2949    assert(tcg_enabled());
2950    /* since each CPU stores ram addresses in its TLB cache, we must
2951       reset the modified entries */
2952    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2953    cpu_reloading_memory_map();
2954    /* The CPU and TLB are protected by the iothread lock.
2955     * We reload the dispatch pointer now because cpu_reloading_memory_map()
2956     * may have split the RCU critical section.
2957     */
2958    d = address_space_to_dispatch(cpuas->as);
2959    atomic_rcu_set(&cpuas->memory_dispatch, d);
2960    tlb_flush(cpuas->cpu);
2961}
2962
2963static void memory_map_init(void)
2964{
2965    system_memory = g_malloc(sizeof(*system_memory));
2966
2967    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2968    address_space_init(&address_space_memory, system_memory, "memory");
2969
2970    system_io = g_malloc(sizeof(*system_io));
2971    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2972                          65536);
2973    address_space_init(&address_space_io, system_io, "I/O");
2974}
2975
2976MemoryRegion *get_system_memory(void)
2977{
2978    return system_memory;
2979}
2980
2981MemoryRegion *get_system_io(void)
2982{
2983    return system_io;
2984}
2985
2986#endif /* !defined(CONFIG_USER_ONLY) */
2987
2988/* physical memory access (slow version, mainly for debug) */
2989#if defined(CONFIG_USER_ONLY)
2990int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2991                        void *ptr, target_ulong len, bool is_write)
2992{
2993    int flags;
2994    target_ulong l, page;
2995    void * p;
2996    uint8_t *buf = ptr;
2997
2998    while (len > 0) {
2999        page = addr & TARGET_PAGE_MASK;
3000        l = (page + TARGET_PAGE_SIZE) - addr;
3001        if (l > len)
3002            l = len;
3003        flags = page_get_flags(page);
3004        if (!(flags & PAGE_VALID))
3005            return -1;
3006        if (is_write) {
3007            if (!(flags & PAGE_WRITE))
3008                return -1;
3009            /* XXX: this code should not depend on lock_user */
3010            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3011                return -1;
3012            memcpy(p, buf, l);
3013            unlock_user(p, addr, l);
3014        } else {
3015            if (!(flags & PAGE_READ))
3016                return -1;
3017            /* XXX: this code should not depend on lock_user */
3018            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3019                return -1;
3020            memcpy(buf, p, l);
3021            unlock_user(p, addr, 0);
3022        }
3023        len -= l;
3024        buf += l;
3025        addr += l;
3026    }
3027    return 0;
3028}
3029
3030#else
3031
3032static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3033                                     hwaddr length)
3034{
3035    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3036    addr += memory_region_get_ram_addr(mr);
3037
3038    /* No early return if dirty_log_mask is or becomes 0, because
3039     * cpu_physical_memory_set_dirty_range will still call
3040     * xen_modified_memory.
3041     */
3042    if (dirty_log_mask) {
3043        dirty_log_mask =
3044            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3045    }
3046    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3047        assert(tcg_enabled());
3048        tb_invalidate_phys_range(addr, addr + length);
3049        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3050    }
3051    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3052}
3053
3054void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3055{
3056    /*
3057     * In principle this function would work on other memory region types too,
3058     * but the ROM device use case is the only one where this operation is
3059     * necessary.  Other memory regions should use the
3060     * address_space_read/write() APIs.
3061     */
3062    assert(memory_region_is_romd(mr));
3063
3064    invalidate_and_set_dirty(mr, addr, size);
3065}
3066
3067static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3068{
3069    unsigned access_size_max = mr->ops->valid.max_access_size;
3070
3071    /* Regions are assumed to support 1-4 byte accesses unless
3072       otherwise specified.  */
3073    if (access_size_max == 0) {
3074        access_size_max = 4;
3075    }
3076
3077    /* Bound the maximum access by the alignment of the address.  */
3078    if (!mr->ops->impl.unaligned) {
3079        unsigned align_size_max = addr & -addr;
3080        if (align_size_max != 0 && align_size_max < access_size_max) {
3081            access_size_max = align_size_max;
3082        }
3083    }
3084
3085    /* Don't attempt accesses larger than the maximum.  */
3086    if (l > access_size_max) {
3087        l = access_size_max;
3088    }
3089    l = pow2floor(l);
3090
3091    return l;
3092}
3093
3094static bool prepare_mmio_access(MemoryRegion *mr)
3095{
3096    bool unlocked = !qemu_mutex_iothread_locked();
3097    bool release_lock = false;
3098
3099    if (unlocked && mr->global_locking) {
3100        qemu_mutex_lock_iothread();
3101        unlocked = false;
3102        release_lock = true;
3103    }
3104    if (mr->flush_coalesced_mmio) {
3105        if (unlocked) {
3106            qemu_mutex_lock_iothread();
3107        }
3108        qemu_flush_coalesced_mmio_buffer();
3109        if (unlocked) {
3110            qemu_mutex_unlock_iothread();
3111        }
3112    }
3113
3114    return release_lock;
3115}
3116
3117/* Called within RCU critical section.  */
3118static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3119                                           MemTxAttrs attrs,
3120                                           const void *ptr,
3121                                           hwaddr len, hwaddr addr1,
3122                                           hwaddr l, MemoryRegion *mr)
3123{
3124    uint8_t *ram_ptr;
3125    uint64_t val;
3126    MemTxResult result = MEMTX_OK;
3127    bool release_lock = false;
3128    const uint8_t *buf = ptr;
3129
3130    for (;;) {
3131        if (!memory_access_is_direct(mr, true)) {
3132            release_lock |= prepare_mmio_access(mr);
3133            l = memory_access_size(mr, l, addr1);
3134            /* XXX: could force current_cpu to NULL to avoid
3135               potential bugs */
3136            val = ldn_he_p(buf, l);
3137            result |= memory_region_dispatch_write(mr, addr1, val,
3138                                                   size_memop(l), attrs);
3139        } else {
3140            /* RAM case */
3141            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3142            memcpy(ram_ptr, buf, l);
3143            invalidate_and_set_dirty(mr, addr1, l);
3144        }
3145
3146        if (release_lock) {
3147            qemu_mutex_unlock_iothread();
3148            release_lock = false;
3149        }
3150
3151        len -= l;
3152        buf += l;
3153        addr += l;
3154
3155        if (!len) {
3156            break;
3157        }
3158
3159        l = len;
3160        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3161    }
3162
3163    return result;
3164}
3165
3166/* Called from RCU critical section.  */
3167static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3168                                  const void *buf, hwaddr len)
3169{
3170    hwaddr l;
3171    hwaddr addr1;
3172    MemoryRegion *mr;
3173    MemTxResult result = MEMTX_OK;
3174
3175    l = len;
3176    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3177    result = flatview_write_continue(fv, addr, attrs, buf, len,
3178                                     addr1, l, mr);
3179
3180    return result;
3181}
3182
3183/* Called within RCU critical section.  */
3184MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3185                                   MemTxAttrs attrs, void *ptr,
3186                                   hwaddr len, hwaddr addr1, hwaddr l,
3187                                   MemoryRegion *mr)
3188{
3189    uint8_t *ram_ptr;
3190    uint64_t val;
3191    MemTxResult result = MEMTX_OK;
3192    bool release_lock = false;
3193    uint8_t *buf = ptr;
3194
3195    for (;;) {
3196        if (!memory_access_is_direct(mr, false)) {
3197            /* I/O case */
3198            release_lock |= prepare_mmio_access(mr);
3199            l = memory_access_size(mr, l, addr1);
3200            result |= memory_region_dispatch_read(mr, addr1, &val,
3201                                                  size_memop(l), attrs);
3202            stn_he_p(buf, l, val);
3203        } else {
3204            /* RAM case */
3205            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3206            memcpy(buf, ram_ptr, l);
3207        }
3208
3209        if (release_lock) {
3210            qemu_mutex_unlock_iothread();
3211            release_lock = false;
3212        }
3213
3214        len -= l;
3215        buf += l;
3216        addr += l;
3217
3218        if (!len) {
3219            break;
3220        }
3221
3222        l = len;
3223        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3224    }
3225
3226    return result;
3227}
3228
3229/* Called from RCU critical section.  */
3230static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3231                                 MemTxAttrs attrs, void *buf, hwaddr len)
3232{
3233    hwaddr l;
3234    hwaddr addr1;
3235    MemoryRegion *mr;
3236
3237    l = len;
3238    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3239    return flatview_read_continue(fv, addr, attrs, buf, len,
3240                                  addr1, l, mr);
3241}
3242
3243MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3244                                    MemTxAttrs attrs, void *buf, hwaddr len)
3245{
3246    MemTxResult result = MEMTX_OK;
3247    FlatView *fv;
3248
3249    if (len > 0) {
3250        RCU_READ_LOCK_GUARD();
3251        fv = address_space_to_flatview(as);
3252        result = flatview_read(fv, addr, attrs, buf, len);
3253    }
3254
3255    return result;
3256}
3257
3258MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3259                                MemTxAttrs attrs,
3260                                const void *buf, hwaddr len)
3261{
3262    MemTxResult result = MEMTX_OK;
3263    FlatView *fv;
3264
3265    if (len > 0) {
3266        RCU_READ_LOCK_GUARD();
3267        fv = address_space_to_flatview(as);
3268        result = flatview_write(fv, addr, attrs, buf, len);
3269    }
3270
3271    return result;
3272}
3273
3274MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3275                             void *buf, hwaddr len, bool is_write)
3276{
3277    if (is_write) {
3278        return address_space_write(as, addr, attrs, buf, len);
3279    } else {
3280        return address_space_read_full(as, addr, attrs, buf, len);
3281    }
3282}
3283
3284void cpu_physical_memory_rw(hwaddr addr, void *buf,
3285                            hwaddr len, bool is_write)
3286{
3287    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3288                     buf, len, is_write);
3289}
3290
3291enum write_rom_type {
3292    WRITE_DATA,
3293    FLUSH_CACHE,
3294};
3295
3296static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3297                                                           hwaddr addr,
3298                                                           MemTxAttrs attrs,
3299                                                           const void *ptr,
3300                                                           hwaddr len,
3301                                                           enum write_rom_type type)
3302{
3303    hwaddr l;
3304    uint8_t *ram_ptr;
3305    hwaddr addr1;
3306    MemoryRegion *mr;
3307    const uint8_t *buf = ptr;
3308
3309    RCU_READ_LOCK_GUARD();
3310    while (len > 0) {
3311        l = len;
3312        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3313
3314        if (!(memory_region_is_ram(mr) ||
3315              memory_region_is_romd(mr))) {
3316            l = memory_access_size(mr, l, addr1);
3317        } else {
3318            /* ROM/RAM case */
3319            ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3320            switch (type) {
3321            case WRITE_DATA:
3322                memcpy(ram_ptr, buf, l);
3323                invalidate_and_set_dirty(mr, addr1, l);
3324                break;
3325            case FLUSH_CACHE:
3326                flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
3327                break;
3328            }
3329        }
3330        len -= l;
3331        buf += l;
3332        addr += l;
3333    }
3334    return MEMTX_OK;
3335}
3336
3337/* used for ROM loading : can write in RAM and ROM */
3338MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3339                                    MemTxAttrs attrs,
3340                                    const void *buf, hwaddr len)
3341{
3342    return address_space_write_rom_internal(as, addr, attrs,
3343                                            buf, len, WRITE_DATA);
3344}
3345
3346void cpu_flush_icache_range(hwaddr start, hwaddr len)
3347{
3348    /*
3349     * This function should do the same thing as an icache flush that was
3350     * triggered from within the guest. For TCG we are always cache coherent,
3351     * so there is no need to flush anything. For KVM / Xen we need to flush
3352     * the host's instruction cache at least.
3353     */
3354    if (tcg_enabled()) {
3355        return;
3356    }
3357
3358    address_space_write_rom_internal(&address_space_memory,
3359                                     start, MEMTXATTRS_UNSPECIFIED,
3360                                     NULL, len, FLUSH_CACHE);
3361}
3362
3363typedef struct {
3364    MemoryRegion *mr;
3365    void *buffer;
3366    hwaddr addr;
3367    hwaddr len;
3368    bool in_use;
3369} BounceBuffer;
3370
3371static BounceBuffer bounce;
3372
3373typedef struct MapClient {
3374    QEMUBH *bh;
3375    QLIST_ENTRY(MapClient) link;
3376} MapClient;
3377
3378QemuMutex map_client_list_lock;
3379static QLIST_HEAD(, MapClient) map_client_list
3380    = QLIST_HEAD_INITIALIZER(map_client_list);
3381
3382static void cpu_unregister_map_client_do(MapClient *client)
3383{
3384    QLIST_REMOVE(client, link);
3385    g_free(client);
3386}
3387
3388static void cpu_notify_map_clients_locked(void)
3389{
3390    MapClient *client;
3391
3392    while (!QLIST_EMPTY(&map_client_list)) {
3393        client = QLIST_FIRST(&map_client_list);
3394        qemu_bh_schedule(client->bh);
3395        cpu_unregister_map_client_do(client);
3396    }
3397}
3398
3399void cpu_register_map_client(QEMUBH *bh)
3400{
3401    MapClient *client = g_malloc(sizeof(*client));
3402
3403    qemu_mutex_lock(&map_client_list_lock);
3404    client->bh = bh;
3405    QLIST_INSERT_HEAD(&map_client_list, client, link);
3406    if (!atomic_read(&bounce.in_use)) {
3407        cpu_notify_map_clients_locked();
3408    }
3409    qemu_mutex_unlock(&map_client_list_lock);
3410}
3411
3412void cpu_exec_init_all(void)
3413{
3414    qemu_mutex_init(&ram_list.mutex);
3415    /* The data structures we set up here depend on knowing the page size,
3416     * so no more changes can be made after this point.
3417     * In an ideal world, nothing we did before we had finished the
3418     * machine setup would care about the target page size, and we could
3419     * do this much later, rather than requiring board models to state
3420     * up front what their requirements are.
3421     */
3422    finalize_target_page_bits();
3423    io_mem_init();
3424    memory_map_init();
3425    qemu_mutex_init(&map_client_list_lock);
3426}
3427
3428void cpu_unregister_map_client(QEMUBH *bh)
3429{
3430    MapClient *client;
3431
3432    qemu_mutex_lock(&map_client_list_lock);
3433    QLIST_FOREACH(client, &map_client_list, link) {
3434        if (client->bh == bh) {
3435            cpu_unregister_map_client_do(client);
3436            break;
3437        }
3438    }
3439    qemu_mutex_unlock(&map_client_list_lock);
3440}
3441
3442static void cpu_notify_map_clients(void)
3443{
3444    qemu_mutex_lock(&map_client_list_lock);
3445    cpu_notify_map_clients_locked();
3446    qemu_mutex_unlock(&map_client_list_lock);
3447}
3448
3449static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3450                                  bool is_write, MemTxAttrs attrs)
3451{
3452    MemoryRegion *mr;
3453    hwaddr l, xlat;
3454
3455    while (len > 0) {
3456        l = len;
3457        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3458        if (!memory_access_is_direct(mr, is_write)) {
3459            l = memory_access_size(mr, l, addr);
3460            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3461                return false;
3462            }
3463        }
3464
3465        len -= l;
3466        addr += l;
3467    }
3468    return true;
3469}
3470
3471bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3472                                hwaddr len, bool is_write,
3473                                MemTxAttrs attrs)
3474{
3475    FlatView *fv;
3476    bool result;
3477
3478    RCU_READ_LOCK_GUARD();
3479    fv = address_space_to_flatview(as);
3480    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3481    return result;
3482}
3483
3484static hwaddr
3485flatview_extend_translation(FlatView *fv, hwaddr addr,
3486                            hwaddr target_len,
3487                            MemoryRegion *mr, hwaddr base, hwaddr len,
3488                            bool is_write, MemTxAttrs attrs)
3489{
3490    hwaddr done = 0;
3491    hwaddr xlat;
3492    MemoryRegion *this_mr;
3493
3494    for (;;) {
3495        target_len -= len;
3496        addr += len;
3497        done += len;
3498        if (target_len == 0) {
3499            return done;
3500        }
3501
3502        len = target_len;
3503        this_mr = flatview_translate(fv, addr, &xlat,
3504                                     &len, is_write, attrs);
3505        if (this_mr != mr || xlat != base + done) {
3506            return done;
3507        }
3508    }
3509}
3510
3511/* Map a physical memory region into a host virtual address.
3512 * May map a subset of the requested range, given by and returned in *plen.
3513 * May return NULL if resources needed to perform the mapping are exhausted.
3514 * Use only for reads OR writes - not for read-modify-write operations.
3515 * Use cpu_register_map_client() to know when retrying the map operation is
3516 * likely to succeed.
3517 */
3518void *address_space_map(AddressSpace *as,
3519                        hwaddr addr,
3520                        hwaddr *plen,
3521                        bool is_write,
3522                        MemTxAttrs attrs)
3523{
3524    hwaddr len = *plen;
3525    hwaddr l, xlat;
3526    MemoryRegion *mr;
3527    void *ptr;
3528    FlatView *fv;
3529
3530    if (len == 0) {
3531        return NULL;
3532    }
3533
3534    l = len;
3535    RCU_READ_LOCK_GUARD();
3536    fv = address_space_to_flatview(as);
3537    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3538
3539    if (!memory_access_is_direct(mr, is_write)) {
3540        if (atomic_xchg(&bounce.in_use, true)) {
3541            return NULL;
3542        }
3543        /* Avoid unbounded allocations */
3544        l = MIN(l, TARGET_PAGE_SIZE);
3545        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3546        bounce.addr = addr;
3547        bounce.len = l;
3548
3549        memory_region_ref(mr);
3550        bounce.mr = mr;
3551        if (!is_write) {
3552            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3553                               bounce.buffer, l);
3554        }
3555
3556        *plen = l;
3557        return bounce.buffer;
3558    }
3559
3560
3561    memory_region_ref(mr);
3562    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3563                                        l, is_write, attrs);
3564    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3565
3566    return ptr;
3567}
3568
3569/* Unmaps a memory region previously mapped by address_space_map().
3570 * Will also mark the memory as dirty if is_write is true.  access_len gives
3571 * the amount of memory that was actually read or written by the caller.
3572 */
3573void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3574                         bool is_write, hwaddr access_len)
3575{
3576    if (buffer != bounce.buffer) {
3577        MemoryRegion *mr;
3578        ram_addr_t addr1;
3579
3580        mr = memory_region_from_host(buffer, &addr1);
3581        assert(mr != NULL);
3582        if (is_write) {
3583            invalidate_and_set_dirty(mr, addr1, access_len);
3584        }
3585        if (xen_enabled()) {
3586            xen_invalidate_map_cache_entry(buffer);
3587        }
3588        memory_region_unref(mr);
3589        return;
3590    }
3591    if (is_write) {
3592        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3593                            bounce.buffer, access_len);
3594    }
3595    qemu_vfree(bounce.buffer);
3596    bounce.buffer = NULL;
3597    memory_region_unref(bounce.mr);
3598    atomic_mb_set(&bounce.in_use, false);
3599    cpu_notify_map_clients();
3600}
3601
3602void *cpu_physical_memory_map(hwaddr addr,
3603                              hwaddr *plen,
3604                              bool is_write)
3605{
3606    return address_space_map(&address_space_memory, addr, plen, is_write,
3607                             MEMTXATTRS_UNSPECIFIED);
3608}
3609
3610void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3611                               bool is_write, hwaddr access_len)
3612{
3613    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3614}
3615
3616#define ARG1_DECL                AddressSpace *as
3617#define ARG1                     as
3618#define SUFFIX
3619#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3620#define RCU_READ_LOCK(...)       rcu_read_lock()
3621#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3622#include "memory_ldst.inc.c"
3623
3624int64_t address_space_cache_init(MemoryRegionCache *cache,
3625                                 AddressSpace *as,
3626                                 hwaddr addr,
3627                                 hwaddr len,
3628                                 bool is_write)
3629{
3630    AddressSpaceDispatch *d;
3631    hwaddr l;
3632    MemoryRegion *mr;
3633
3634    assert(len > 0);
3635
3636    l = len;
3637    cache->fv = address_space_get_flatview(as);
3638    d = flatview_to_dispatch(cache->fv);
3639    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3640
3641    mr = cache->mrs.mr;
3642    memory_region_ref(mr);
3643    if (memory_access_is_direct(mr, is_write)) {
3644        /* We don't care about the memory attributes here as we're only
3645         * doing this if we found actual RAM, which behaves the same
3646         * regardless of attributes; so UNSPECIFIED is fine.
3647         */
3648        l = flatview_extend_translation(cache->fv, addr, len, mr,
3649                                        cache->xlat, l, is_write,
3650                                        MEMTXATTRS_UNSPECIFIED);
3651        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3652    } else {
3653        cache->ptr = NULL;
3654    }
3655
3656    cache->len = l;
3657    cache->is_write = is_write;
3658    return l;
3659}
3660
3661void address_space_cache_invalidate(MemoryRegionCache *cache,
3662                                    hwaddr addr,
3663                                    hwaddr access_len)
3664{
3665    assert(cache->is_write);
3666    if (likely(cache->ptr)) {
3667        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3668    }
3669}
3670
3671void address_space_cache_destroy(MemoryRegionCache *cache)
3672{
3673    if (!cache->mrs.mr) {
3674        return;
3675    }
3676
3677    if (xen_enabled()) {
3678        xen_invalidate_map_cache_entry(cache->ptr);
3679    }
3680    memory_region_unref(cache->mrs.mr);
3681    flatview_unref(cache->fv);
3682    cache->mrs.mr = NULL;
3683    cache->fv = NULL;
3684}
3685
3686/* Called from RCU critical section.  This function has the same
3687 * semantics as address_space_translate, but it only works on a
3688 * predefined range of a MemoryRegion that was mapped with
3689 * address_space_cache_init.
3690 */
3691static inline MemoryRegion *address_space_translate_cached(
3692    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3693    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3694{
3695    MemoryRegionSection section;
3696    MemoryRegion *mr;
3697    IOMMUMemoryRegion *iommu_mr;
3698    AddressSpace *target_as;
3699
3700    assert(!cache->ptr);
3701    *xlat = addr + cache->xlat;
3702
3703    mr = cache->mrs.mr;
3704    iommu_mr = memory_region_get_iommu(mr);
3705    if (!iommu_mr) {
3706        /* MMIO region.  */
3707        return mr;
3708    }
3709
3710    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3711                                            NULL, is_write, true,
3712                                            &target_as, attrs);
3713    return section.mr;
3714}
3715
3716/* Called from RCU critical section. address_space_read_cached uses this
3717 * out of line function when the target is an MMIO or IOMMU region.
3718 */
3719void
3720address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3721                                   void *buf, hwaddr len)
3722{
3723    hwaddr addr1, l;
3724    MemoryRegion *mr;
3725
3726    l = len;
3727    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3728                                        MEMTXATTRS_UNSPECIFIED);
3729    flatview_read_continue(cache->fv,
3730                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3731                           addr1, l, mr);
3732}
3733
3734/* Called from RCU critical section. address_space_write_cached uses this
3735 * out of line function when the target is an MMIO or IOMMU region.
3736 */
3737void
3738address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3739                                    const void *buf, hwaddr len)
3740{
3741    hwaddr addr1, l;
3742    MemoryRegion *mr;
3743
3744    l = len;
3745    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3746                                        MEMTXATTRS_UNSPECIFIED);
3747    flatview_write_continue(cache->fv,
3748                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3749                            addr1, l, mr);
3750}
3751
3752#define ARG1_DECL                MemoryRegionCache *cache
3753#define ARG1                     cache
3754#define SUFFIX                   _cached_slow
3755#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3756#define RCU_READ_LOCK()          ((void)0)
3757#define RCU_READ_UNLOCK()        ((void)0)
3758#include "memory_ldst.inc.c"
3759
3760/* virtual memory access for debug (includes writing to ROM) */
3761int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3762                        void *ptr, target_ulong len, bool is_write)
3763{
3764    hwaddr phys_addr;
3765    target_ulong l, page;
3766    uint8_t *buf = ptr;
3767
3768    cpu_synchronize_state(cpu);
3769    while (len > 0) {
3770        int asidx;
3771        MemTxAttrs attrs;
3772
3773        page = addr & TARGET_PAGE_MASK;
3774        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3775        asidx = cpu_asidx_from_attrs(cpu, attrs);
3776        /* if no physical page mapped, return an error */
3777        if (phys_addr == -1)
3778            return -1;
3779        l = (page + TARGET_PAGE_SIZE) - addr;
3780        if (l > len)
3781            l = len;
3782        phys_addr += (addr & ~TARGET_PAGE_MASK);
3783        if (is_write) {
3784            address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3785                                    attrs, buf, l);
3786        } else {
3787            address_space_read(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3788                               l);
3789        }
3790        len -= l;
3791        buf += l;
3792        addr += l;
3793    }
3794    return 0;
3795}
3796
3797/*
3798 * Allows code that needs to deal with migration bitmaps etc to still be built
3799 * target independent.
3800 */
3801size_t qemu_target_page_size(void)
3802{
3803    return TARGET_PAGE_SIZE;
3804}
3805
3806int qemu_target_page_bits(void)
3807{
3808    return TARGET_PAGE_BITS;
3809}
3810
3811int qemu_target_page_bits_min(void)
3812{
3813    return TARGET_PAGE_BITS_MIN;
3814}
3815#endif
3816
3817bool target_words_bigendian(void)
3818{
3819#if defined(TARGET_WORDS_BIGENDIAN)
3820    return true;
3821#else
3822    return false;
3823#endif
3824}
3825
3826#ifndef CONFIG_USER_ONLY
3827bool cpu_physical_memory_is_io(hwaddr phys_addr)
3828{
3829    MemoryRegion*mr;
3830    hwaddr l = 1;
3831    bool res;
3832
3833    RCU_READ_LOCK_GUARD();
3834    mr = address_space_translate(&address_space_memory,
3835                                 phys_addr, &phys_addr, &l, false,
3836                                 MEMTXATTRS_UNSPECIFIED);
3837
3838    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3839    return res;
3840}
3841
3842int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3843{
3844    RAMBlock *block;
3845    int ret = 0;
3846
3847    RCU_READ_LOCK_GUARD();
3848    RAMBLOCK_FOREACH(block) {
3849        ret = func(block, opaque);
3850        if (ret) {
3851            break;
3852        }
3853    }
3854    return ret;
3855}
3856
3857/*
3858 * Unmap pages of memory from start to start+length such that
3859 * they a) read as 0, b) Trigger whatever fault mechanism
3860 * the OS provides for postcopy.
3861 * The pages must be unmapped by the end of the function.
3862 * Returns: 0 on success, none-0 on failure
3863 *
3864 */
3865int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3866{
3867    int ret = -1;
3868
3869    uint8_t *host_startaddr = rb->host + start;
3870
3871    if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3872        error_report("ram_block_discard_range: Unaligned start address: %p",
3873                     host_startaddr);
3874        goto err;
3875    }
3876
3877    if ((start + length) <= rb->used_length) {
3878        bool need_madvise, need_fallocate;
3879        if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3880            error_report("ram_block_discard_range: Unaligned length: %zx",
3881                         length);
3882            goto err;
3883        }
3884
3885        errno = ENOTSUP; /* If we are missing MADVISE etc */
3886
3887        /* The logic here is messy;
3888         *    madvise DONTNEED fails for hugepages
3889         *    fallocate works on hugepages and shmem
3890         */
3891        need_madvise = (rb->page_size == qemu_host_page_size);
3892        need_fallocate = rb->fd != -1;
3893        if (need_fallocate) {
3894            /* For a file, this causes the area of the file to be zero'd
3895             * if read, and for hugetlbfs also causes it to be unmapped
3896             * so a userfault will trigger.
3897             */
3898#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3899            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3900                            start, length);
3901            if (ret) {
3902                ret = -errno;
3903                error_report("ram_block_discard_range: Failed to fallocate "
3904                             "%s:%" PRIx64 " +%zx (%d)",
3905                             rb->idstr, start, length, ret);
3906                goto err;
3907            }
3908#else
3909            ret = -ENOSYS;
3910            error_report("ram_block_discard_range: fallocate not available/file"
3911                         "%s:%" PRIx64 " +%zx (%d)",
3912                         rb->idstr, start, length, ret);
3913            goto err;
3914#endif
3915        }
3916        if (need_madvise) {
3917            /* For normal RAM this causes it to be unmapped,
3918             * for shared memory it causes the local mapping to disappear
3919             * and to fall back on the file contents (which we just
3920             * fallocate'd away).
3921             */
3922#if defined(CONFIG_MADVISE)
3923            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
3924            if (ret) {
3925                ret = -errno;
3926                error_report("ram_block_discard_range: Failed to discard range "
3927                             "%s:%" PRIx64 " +%zx (%d)",
3928                             rb->idstr, start, length, ret);
3929                goto err;
3930            }
3931#else
3932            ret = -ENOSYS;
3933            error_report("ram_block_discard_range: MADVISE not available"
3934                         "%s:%" PRIx64 " +%zx (%d)",
3935                         rb->idstr, start, length, ret);
3936            goto err;
3937#endif
3938        }
3939        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3940                                      need_madvise, need_fallocate, ret);
3941    } else {
3942        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3943                     "/%zx/" RAM_ADDR_FMT")",
3944                     rb->idstr, start, length, rb->used_length);
3945    }
3946
3947err:
3948    return ret;
3949}
3950
3951bool ramblock_is_pmem(RAMBlock *rb)
3952{
3953    return rb->flags & RAM_PMEM;
3954}
3955
3956#endif
3957
3958void page_size_init(void)
3959{
3960    /* NOTE: we can always suppose that qemu_host_page_size >=
3961       TARGET_PAGE_SIZE */
3962    if (qemu_host_page_size == 0) {
3963        qemu_host_page_size = qemu_real_host_page_size;
3964    }
3965    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3966        qemu_host_page_size = TARGET_PAGE_SIZE;
3967    }
3968    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3969}
3970
3971#if !defined(CONFIG_USER_ONLY)
3972
3973static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3974{
3975    if (start == end - 1) {
3976        qemu_printf("\t%3d      ", start);
3977    } else {
3978        qemu_printf("\t%3d..%-3d ", start, end - 1);
3979    }
3980    qemu_printf(" skip=%d ", skip);
3981    if (ptr == PHYS_MAP_NODE_NIL) {
3982        qemu_printf(" ptr=NIL");
3983    } else if (!skip) {
3984        qemu_printf(" ptr=#%d", ptr);
3985    } else {
3986        qemu_printf(" ptr=[%d]", ptr);
3987    }
3988    qemu_printf("\n");
3989}
3990
3991#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3992                           int128_sub((size), int128_one())) : 0)
3993
3994void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3995{
3996    int i;
3997
3998    qemu_printf("  Dispatch\n");
3999    qemu_printf("    Physical sections\n");
4000
4001    for (i = 0; i < d->map.sections_nb; ++i) {
4002        MemoryRegionSection *s = d->map.sections + i;
4003        const char *names[] = { " [unassigned]", " [not dirty]",
4004                                " [ROM]", " [watch]" };
4005
4006        qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4007                    " %s%s%s%s%s",
4008            i,
4009            s->offset_within_address_space,
4010            s->offset_within_address_space + MR_SIZE(s->mr->size),
4011            s->mr->name ? s->mr->name : "(noname)",
4012            i < ARRAY_SIZE(names) ? names[i] : "",
4013            s->mr == root ? " [ROOT]" : "",
4014            s == d->mru_section ? " [MRU]" : "",
4015            s->mr->is_iommu ? " [iommu]" : "");
4016
4017        if (s->mr->alias) {
4018            qemu_printf(" alias=%s", s->mr->alias->name ?
4019                    s->mr->alias->name : "noname");
4020        }
4021        qemu_printf("\n");
4022    }
4023
4024    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4025               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4026    for (i = 0; i < d->map.nodes_nb; ++i) {
4027        int j, jprev;
4028        PhysPageEntry prev;
4029        Node *n = d->map.nodes + i;
4030
4031        qemu_printf("      [%d]\n", i);
4032
4033        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4034            PhysPageEntry *pe = *n + j;
4035
4036            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4037                continue;
4038            }
4039
4040            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4041
4042            jprev = j;
4043            prev = *pe;
4044        }
4045
4046        if (jprev != ARRAY_SIZE(*n)) {
4047            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4048        }
4049    }
4050}
4051
4052#endif
4053