qemu/cpus-common.c
<<
>>
Prefs
   1/*
   2 * CPU thread main loop - common bits for user and system mode emulation
   3 *
   4 *  Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/main-loop.h"
  22#include "exec/cpu-common.h"
  23#include "hw/core/cpu.h"
  24#include "sysemu/cpus.h"
  25#include "qemu/lockable.h"
  26
  27static QemuMutex qemu_cpu_list_lock;
  28static QemuCond exclusive_cond;
  29static QemuCond exclusive_resume;
  30static QemuCond qemu_work_cond;
  31
  32/* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written
  33 * under qemu_cpu_list_lock, read with atomic operations.
  34 */
  35static int pending_cpus;
  36
  37void qemu_init_cpu_list(void)
  38{
  39    /* This is needed because qemu_init_cpu_list is also called by the
  40     * child process in a fork.  */
  41    pending_cpus = 0;
  42
  43    qemu_mutex_init(&qemu_cpu_list_lock);
  44    qemu_cond_init(&exclusive_cond);
  45    qemu_cond_init(&exclusive_resume);
  46    qemu_cond_init(&qemu_work_cond);
  47}
  48
  49void cpu_list_lock(void)
  50{
  51    qemu_mutex_lock(&qemu_cpu_list_lock);
  52}
  53
  54void cpu_list_unlock(void)
  55{
  56    qemu_mutex_unlock(&qemu_cpu_list_lock);
  57}
  58
  59static bool cpu_index_auto_assigned;
  60
  61static int cpu_get_free_index(void)
  62{
  63    CPUState *some_cpu;
  64    int max_cpu_index = 0;
  65
  66    cpu_index_auto_assigned = true;
  67    CPU_FOREACH(some_cpu) {
  68        if (some_cpu->cpu_index >= max_cpu_index) {
  69            max_cpu_index = some_cpu->cpu_index + 1;
  70        }
  71    }
  72    return max_cpu_index;
  73}
  74
  75CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
  76
  77void cpu_list_add(CPUState *cpu)
  78{
  79    QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
  80    if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
  81        cpu->cpu_index = cpu_get_free_index();
  82        assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
  83    } else {
  84        assert(!cpu_index_auto_assigned);
  85    }
  86    QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node);
  87}
  88
  89void cpu_list_remove(CPUState *cpu)
  90{
  91    QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
  92    if (!QTAILQ_IN_USE(cpu, node)) {
  93        /* there is nothing to undo since cpu_exec_init() hasn't been called */
  94        return;
  95    }
  96
  97    QTAILQ_REMOVE_RCU(&cpus, cpu, node);
  98    cpu->cpu_index = UNASSIGNED_CPU_INDEX;
  99}
 100
 101CPUState *qemu_get_cpu(int index)
 102{
 103    CPUState *cpu;
 104
 105    CPU_FOREACH(cpu) {
 106        if (cpu->cpu_index == index) {
 107            return cpu;
 108        }
 109    }
 110
 111    return NULL;
 112}
 113
 114/* current CPU in the current thread. It is only valid inside cpu_exec() */
 115__thread CPUState *current_cpu;
 116
 117struct qemu_work_item {
 118    QSIMPLEQ_ENTRY(qemu_work_item) node;
 119    run_on_cpu_func func;
 120    run_on_cpu_data data;
 121    bool free, exclusive, done;
 122};
 123
 124static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
 125{
 126    qemu_mutex_lock(&cpu->work_mutex);
 127    QSIMPLEQ_INSERT_TAIL(&cpu->work_list, wi, node);
 128    wi->done = false;
 129    qemu_mutex_unlock(&cpu->work_mutex);
 130
 131    qemu_cpu_kick(cpu);
 132}
 133
 134void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
 135                   QemuMutex *mutex)
 136{
 137    struct qemu_work_item wi;
 138
 139    if (qemu_cpu_is_self(cpu)) {
 140        func(cpu, data);
 141        return;
 142    }
 143
 144    wi.func = func;
 145    wi.data = data;
 146    wi.done = false;
 147    wi.free = false;
 148    wi.exclusive = false;
 149
 150    queue_work_on_cpu(cpu, &wi);
 151    while (!qatomic_mb_read(&wi.done)) {
 152        CPUState *self_cpu = current_cpu;
 153
 154        qemu_cond_wait(&qemu_work_cond, mutex);
 155        current_cpu = self_cpu;
 156    }
 157}
 158
 159void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
 160{
 161    struct qemu_work_item *wi;
 162
 163    wi = g_malloc0(sizeof(struct qemu_work_item));
 164    wi->func = func;
 165    wi->data = data;
 166    wi->free = true;
 167
 168    queue_work_on_cpu(cpu, wi);
 169}
 170
 171/* Wait for pending exclusive operations to complete.  The CPU list lock
 172   must be held.  */
 173static inline void exclusive_idle(void)
 174{
 175    while (pending_cpus) {
 176        qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
 177    }
 178}
 179
 180/* Start an exclusive operation.
 181   Must only be called from outside cpu_exec.  */
 182void start_exclusive(void)
 183{
 184    CPUState *other_cpu;
 185    int running_cpus;
 186
 187    qemu_mutex_lock(&qemu_cpu_list_lock);
 188    exclusive_idle();
 189
 190    /* Make all other cpus stop executing.  */
 191    qatomic_set(&pending_cpus, 1);
 192
 193    /* Write pending_cpus before reading other_cpu->running.  */
 194    smp_mb();
 195    running_cpus = 0;
 196    CPU_FOREACH(other_cpu) {
 197        if (qatomic_read(&other_cpu->running)) {
 198            other_cpu->has_waiter = true;
 199            running_cpus++;
 200            qemu_cpu_kick(other_cpu);
 201        }
 202    }
 203
 204    qatomic_set(&pending_cpus, running_cpus + 1);
 205    while (pending_cpus > 1) {
 206        qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
 207    }
 208
 209    /* Can release mutex, no one will enter another exclusive
 210     * section until end_exclusive resets pending_cpus to 0.
 211     */
 212    qemu_mutex_unlock(&qemu_cpu_list_lock);
 213
 214    current_cpu->in_exclusive_context = true;
 215}
 216
 217/* Finish an exclusive operation.  */
 218void end_exclusive(void)
 219{
 220    current_cpu->in_exclusive_context = false;
 221
 222    qemu_mutex_lock(&qemu_cpu_list_lock);
 223    qatomic_set(&pending_cpus, 0);
 224    qemu_cond_broadcast(&exclusive_resume);
 225    qemu_mutex_unlock(&qemu_cpu_list_lock);
 226}
 227
 228/* Wait for exclusive ops to finish, and begin cpu execution.  */
 229void cpu_exec_start(CPUState *cpu)
 230{
 231    qatomic_set(&cpu->running, true);
 232
 233    /* Write cpu->running before reading pending_cpus.  */
 234    smp_mb();
 235
 236    /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
 237     * After taking the lock we'll see cpu->has_waiter == true and run---not
 238     * for long because start_exclusive kicked us.  cpu_exec_end will
 239     * decrement pending_cpus and signal the waiter.
 240     *
 241     * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
 242     * This includes the case when an exclusive item is running now.
 243     * Then we'll see cpu->has_waiter == false and wait for the item to
 244     * complete.
 245     *
 246     * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
 247     * see cpu->running == true, and it will kick the CPU.
 248     */
 249    if (unlikely(qatomic_read(&pending_cpus))) {
 250        QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
 251        if (!cpu->has_waiter) {
 252            /* Not counted in pending_cpus, let the exclusive item
 253             * run.  Since we have the lock, just set cpu->running to true
 254             * while holding it; no need to check pending_cpus again.
 255             */
 256            qatomic_set(&cpu->running, false);
 257            exclusive_idle();
 258            /* Now pending_cpus is zero.  */
 259            qatomic_set(&cpu->running, true);
 260        } else {
 261            /* Counted in pending_cpus, go ahead and release the
 262             * waiter at cpu_exec_end.
 263             */
 264        }
 265    }
 266}
 267
 268/* Mark cpu as not executing, and release pending exclusive ops.  */
 269void cpu_exec_end(CPUState *cpu)
 270{
 271    qatomic_set(&cpu->running, false);
 272
 273    /* Write cpu->running before reading pending_cpus.  */
 274    smp_mb();
 275
 276    /* 1. start_exclusive saw cpu->running == true.  Then it will increment
 277     * pending_cpus and wait for exclusive_cond.  After taking the lock
 278     * we'll see cpu->has_waiter == true.
 279     *
 280     * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
 281     * This includes the case when an exclusive item started after setting
 282     * cpu->running to false and before we read pending_cpus.  Then we'll see
 283     * cpu->has_waiter == false and not touch pending_cpus.  The next call to
 284     * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
 285     * for the item to complete.
 286     *
 287     * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
 288     * see cpu->running == false, and it can ignore this CPU until the
 289     * next cpu_exec_start.
 290     */
 291    if (unlikely(qatomic_read(&pending_cpus))) {
 292        QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
 293        if (cpu->has_waiter) {
 294            cpu->has_waiter = false;
 295            qatomic_set(&pending_cpus, pending_cpus - 1);
 296            if (pending_cpus == 1) {
 297                qemu_cond_signal(&exclusive_cond);
 298            }
 299        }
 300    }
 301}
 302
 303void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
 304                           run_on_cpu_data data)
 305{
 306    struct qemu_work_item *wi;
 307
 308    wi = g_malloc0(sizeof(struct qemu_work_item));
 309    wi->func = func;
 310    wi->data = data;
 311    wi->free = true;
 312    wi->exclusive = true;
 313
 314    queue_work_on_cpu(cpu, wi);
 315}
 316
 317void process_queued_cpu_work(CPUState *cpu)
 318{
 319    struct qemu_work_item *wi;
 320
 321    qemu_mutex_lock(&cpu->work_mutex);
 322    if (QSIMPLEQ_EMPTY(&cpu->work_list)) {
 323        qemu_mutex_unlock(&cpu->work_mutex);
 324        return;
 325    }
 326    while (!QSIMPLEQ_EMPTY(&cpu->work_list)) {
 327        wi = QSIMPLEQ_FIRST(&cpu->work_list);
 328        QSIMPLEQ_REMOVE_HEAD(&cpu->work_list, node);
 329        qemu_mutex_unlock(&cpu->work_mutex);
 330        if (wi->exclusive) {
 331            /* Running work items outside the BQL avoids the following deadlock:
 332             * 1) start_exclusive() is called with the BQL taken while another
 333             * CPU is running; 2) cpu_exec in the other CPU tries to takes the
 334             * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
 335             * neither CPU can proceed.
 336             */
 337            qemu_mutex_unlock_iothread();
 338            start_exclusive();
 339            wi->func(cpu, wi->data);
 340            end_exclusive();
 341            qemu_mutex_lock_iothread();
 342        } else {
 343            wi->func(cpu, wi->data);
 344        }
 345        qemu_mutex_lock(&cpu->work_mutex);
 346        if (wi->free) {
 347            g_free(wi);
 348        } else {
 349            qatomic_mb_set(&wi->done, true);
 350        }
 351    }
 352    qemu_mutex_unlock(&cpu->work_mutex);
 353    qemu_cond_broadcast(&qemu_work_cond);
 354}
 355