qemu/kvm-all.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright IBM, Corp. 2008
   5 *           Red Hat, Inc. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *  Glauber Costa     <gcosta@redhat.com>
  10 *
  11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  12 * See the COPYING file in the top-level directory.
  13 *
  14 */
  15
  16#include "qemu/osdep.h"
  17#include <sys/ioctl.h>
  18#include <sys/mman.h>
  19
  20#include <linux/kvm.h>
  21
  22#include "qemu-common.h"
  23#include "qemu/atomic.h"
  24#include "qemu/option.h"
  25#include "qemu/config-file.h"
  26#include "qemu/error-report.h"
  27#include "hw/hw.h"
  28#include "hw/pci/msi.h"
  29#include "hw/s390x/adapter.h"
  30#include "exec/gdbstub.h"
  31#include "sysemu/kvm_int.h"
  32#include "qemu/bswap.h"
  33#include "exec/memory.h"
  34#include "exec/ram_addr.h"
  35#include "exec/address-spaces.h"
  36#include "qemu/event_notifier.h"
  37#include "trace.h"
  38#include "hw/irq.h"
  39
  40#include "hw/boards.h"
  41
  42/* This check must be after config-host.h is included */
  43#ifdef CONFIG_EVENTFD
  44#include <sys/eventfd.h>
  45#endif
  46
  47/* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
  48 * need to use the real host PAGE_SIZE, as that's what KVM will use.
  49 */
  50#define PAGE_SIZE getpagesize()
  51
  52//#define DEBUG_KVM
  53
  54#ifdef DEBUG_KVM
  55#define DPRINTF(fmt, ...) \
  56    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  57#else
  58#define DPRINTF(fmt, ...) \
  59    do { } while (0)
  60#endif
  61
  62#define KVM_MSI_HASHTAB_SIZE    256
  63
  64struct KVMState
  65{
  66    AccelState parent_obj;
  67
  68    int nr_slots;
  69    int fd;
  70    int vmfd;
  71    int coalesced_mmio;
  72    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
  73    bool coalesced_flush_in_progress;
  74    int broken_set_mem_region;
  75    int vcpu_events;
  76    int robust_singlestep;
  77    int debugregs;
  78#ifdef KVM_CAP_SET_GUEST_DEBUG
  79    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
  80#endif
  81    int many_ioeventfds;
  82    int intx_set_mask;
  83    /* The man page (and posix) say ioctl numbers are signed int, but
  84     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
  85     * unsigned, and treating them as signed here can break things */
  86    unsigned irq_set_ioctl;
  87    unsigned int sigmask_len;
  88    GHashTable *gsimap;
  89#ifdef KVM_CAP_IRQ_ROUTING
  90    struct kvm_irq_routing *irq_routes;
  91    int nr_allocated_irq_routes;
  92    unsigned long *used_gsi_bitmap;
  93    unsigned int gsi_count;
  94    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
  95#endif
  96    KVMMemoryListener memory_listener;
  97};
  98
  99KVMState *kvm_state;
 100bool kvm_kernel_irqchip;
 101bool kvm_split_irqchip;
 102bool kvm_async_interrupts_allowed;
 103bool kvm_halt_in_kernel_allowed;
 104bool kvm_eventfds_allowed;
 105bool kvm_irqfds_allowed;
 106bool kvm_resamplefds_allowed;
 107bool kvm_msi_via_irqfd_allowed;
 108bool kvm_gsi_routing_allowed;
 109bool kvm_gsi_direct_mapping;
 110bool kvm_allowed;
 111bool kvm_readonly_mem_allowed;
 112bool kvm_vm_attributes_allowed;
 113bool kvm_direct_msi_allowed;
 114bool kvm_ioeventfd_any_length_allowed;
 115
 116static const KVMCapabilityInfo kvm_required_capabilites[] = {
 117    KVM_CAP_INFO(USER_MEMORY),
 118    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 119    KVM_CAP_LAST_INFO
 120};
 121
 122static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
 123{
 124    KVMState *s = kvm_state;
 125    int i;
 126
 127    for (i = 0; i < s->nr_slots; i++) {
 128        if (kml->slots[i].memory_size == 0) {
 129            return &kml->slots[i];
 130        }
 131    }
 132
 133    return NULL;
 134}
 135
 136bool kvm_has_free_slot(MachineState *ms)
 137{
 138    KVMState *s = KVM_STATE(ms->accelerator);
 139
 140    return kvm_get_free_slot(&s->memory_listener);
 141}
 142
 143static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
 144{
 145    KVMSlot *slot = kvm_get_free_slot(kml);
 146
 147    if (slot) {
 148        return slot;
 149    }
 150
 151    fprintf(stderr, "%s: no free slot available\n", __func__);
 152    abort();
 153}
 154
 155static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
 156                                         hwaddr start_addr,
 157                                         hwaddr end_addr)
 158{
 159    KVMState *s = kvm_state;
 160    int i;
 161
 162    for (i = 0; i < s->nr_slots; i++) {
 163        KVMSlot *mem = &kml->slots[i];
 164
 165        if (start_addr == mem->start_addr &&
 166            end_addr == mem->start_addr + mem->memory_size) {
 167            return mem;
 168        }
 169    }
 170
 171    return NULL;
 172}
 173
 174/*
 175 * Find overlapping slot with lowest start address
 176 */
 177static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
 178                                            hwaddr start_addr,
 179                                            hwaddr end_addr)
 180{
 181    KVMState *s = kvm_state;
 182    KVMSlot *found = NULL;
 183    int i;
 184
 185    for (i = 0; i < s->nr_slots; i++) {
 186        KVMSlot *mem = &kml->slots[i];
 187
 188        if (mem->memory_size == 0 ||
 189            (found && found->start_addr < mem->start_addr)) {
 190            continue;
 191        }
 192
 193        if (end_addr > mem->start_addr &&
 194            start_addr < mem->start_addr + mem->memory_size) {
 195            found = mem;
 196        }
 197    }
 198
 199    return found;
 200}
 201
 202int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 203                                       hwaddr *phys_addr)
 204{
 205    KVMMemoryListener *kml = &s->memory_listener;
 206    int i;
 207
 208    for (i = 0; i < s->nr_slots; i++) {
 209        KVMSlot *mem = &kml->slots[i];
 210
 211        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 212            *phys_addr = mem->start_addr + (ram - mem->ram);
 213            return 1;
 214        }
 215    }
 216
 217    return 0;
 218}
 219
 220static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
 221{
 222    KVMState *s = kvm_state;
 223    struct kvm_userspace_memory_region mem;
 224
 225    mem.slot = slot->slot | (kml->as_id << 16);
 226    mem.guest_phys_addr = slot->start_addr;
 227    mem.userspace_addr = (unsigned long)slot->ram;
 228    mem.flags = slot->flags;
 229
 230    if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
 231        /* Set the slot size to 0 before setting the slot to the desired
 232         * value. This is needed based on KVM commit 75d61fbc. */
 233        mem.memory_size = 0;
 234        kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 235    }
 236    mem.memory_size = slot->memory_size;
 237    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 238}
 239
 240int kvm_init_vcpu(CPUState *cpu)
 241{
 242    KVMState *s = kvm_state;
 243    long mmap_size;
 244    int ret;
 245
 246    DPRINTF("kvm_init_vcpu\n");
 247
 248    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
 249    if (ret < 0) {
 250        DPRINTF("kvm_create_vcpu failed\n");
 251        goto err;
 252    }
 253
 254    cpu->kvm_fd = ret;
 255    cpu->kvm_state = s;
 256    cpu->kvm_vcpu_dirty = true;
 257
 258    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 259    if (mmap_size < 0) {
 260        ret = mmap_size;
 261        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 262        goto err;
 263    }
 264
 265    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 266                        cpu->kvm_fd, 0);
 267    if (cpu->kvm_run == MAP_FAILED) {
 268        ret = -errno;
 269        DPRINTF("mmap'ing vcpu state failed\n");
 270        goto err;
 271    }
 272
 273    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 274        s->coalesced_mmio_ring =
 275            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 276    }
 277
 278    ret = kvm_arch_init_vcpu(cpu);
 279err:
 280    return ret;
 281}
 282
 283/*
 284 * dirty pages logging control
 285 */
 286
 287static int kvm_mem_flags(MemoryRegion *mr)
 288{
 289    bool readonly = mr->readonly || memory_region_is_romd(mr);
 290    int flags = 0;
 291
 292    if (memory_region_get_dirty_log_mask(mr) != 0) {
 293        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 294    }
 295    if (readonly && kvm_readonly_mem_allowed) {
 296        flags |= KVM_MEM_READONLY;
 297    }
 298    return flags;
 299}
 300
 301static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
 302                                 MemoryRegion *mr)
 303{
 304    int old_flags;
 305
 306    old_flags = mem->flags;
 307    mem->flags = kvm_mem_flags(mr);
 308
 309    /* If nothing changed effectively, no need to issue ioctl */
 310    if (mem->flags == old_flags) {
 311        return 0;
 312    }
 313
 314    return kvm_set_user_memory_region(kml, mem);
 315}
 316
 317static int kvm_section_update_flags(KVMMemoryListener *kml,
 318                                    MemoryRegionSection *section)
 319{
 320    hwaddr phys_addr = section->offset_within_address_space;
 321    ram_addr_t size = int128_get64(section->size);
 322    KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
 323
 324    if (mem == NULL)  {
 325        return 0;
 326    } else {
 327        return kvm_slot_update_flags(kml, mem, section->mr);
 328    }
 329}
 330
 331static void kvm_log_start(MemoryListener *listener,
 332                          MemoryRegionSection *section,
 333                          int old, int new)
 334{
 335    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 336    int r;
 337
 338    if (old != 0) {
 339        return;
 340    }
 341
 342    r = kvm_section_update_flags(kml, section);
 343    if (r < 0) {
 344        abort();
 345    }
 346}
 347
 348static void kvm_log_stop(MemoryListener *listener,
 349                          MemoryRegionSection *section,
 350                          int old, int new)
 351{
 352    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 353    int r;
 354
 355    if (new != 0) {
 356        return;
 357    }
 358
 359    r = kvm_section_update_flags(kml, section);
 360    if (r < 0) {
 361        abort();
 362    }
 363}
 364
 365/* get kvm's dirty pages bitmap and update qemu's */
 366static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 367                                         unsigned long *bitmap)
 368{
 369    ram_addr_t start = section->offset_within_region +
 370                       memory_region_get_ram_addr(section->mr);
 371    ram_addr_t pages = int128_get64(section->size) / getpagesize();
 372
 373    cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
 374    return 0;
 375}
 376
 377#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 378
 379/**
 380 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 381 * This function updates qemu's dirty bitmap using
 382 * memory_region_set_dirty().  This means all bits are set
 383 * to dirty.
 384 *
 385 * @start_add: start of logged region.
 386 * @end_addr: end of logged region.
 387 */
 388static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
 389                                          MemoryRegionSection *section)
 390{
 391    KVMState *s = kvm_state;
 392    unsigned long size, allocated_size = 0;
 393    struct kvm_dirty_log d = {};
 394    KVMSlot *mem;
 395    int ret = 0;
 396    hwaddr start_addr = section->offset_within_address_space;
 397    hwaddr end_addr = start_addr + int128_get64(section->size);
 398
 399    d.dirty_bitmap = NULL;
 400    while (start_addr < end_addr) {
 401        mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
 402        if (mem == NULL) {
 403            break;
 404        }
 405
 406        /* XXX bad kernel interface alert
 407         * For dirty bitmap, kernel allocates array of size aligned to
 408         * bits-per-long.  But for case when the kernel is 64bits and
 409         * the userspace is 32bits, userspace can't align to the same
 410         * bits-per-long, since sizeof(long) is different between kernel
 411         * and user space.  This way, userspace will provide buffer which
 412         * may be 4 bytes less than the kernel will use, resulting in
 413         * userspace memory corruption (which is not detectable by valgrind
 414         * too, in most cases).
 415         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 416         * a hope that sizeof(long) won't become >8 any time soon.
 417         */
 418        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
 419                     /*HOST_LONG_BITS*/ 64) / 8;
 420        if (!d.dirty_bitmap) {
 421            d.dirty_bitmap = g_malloc(size);
 422        } else if (size > allocated_size) {
 423            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
 424        }
 425        allocated_size = size;
 426        memset(d.dirty_bitmap, 0, allocated_size);
 427
 428        d.slot = mem->slot | (kml->as_id << 16);
 429        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 430            DPRINTF("ioctl failed %d\n", errno);
 431            ret = -1;
 432            break;
 433        }
 434
 435        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
 436        start_addr = mem->start_addr + mem->memory_size;
 437    }
 438    g_free(d.dirty_bitmap);
 439
 440    return ret;
 441}
 442
 443static void kvm_coalesce_mmio_region(MemoryListener *listener,
 444                                     MemoryRegionSection *secion,
 445                                     hwaddr start, hwaddr size)
 446{
 447    KVMState *s = kvm_state;
 448
 449    if (s->coalesced_mmio) {
 450        struct kvm_coalesced_mmio_zone zone;
 451
 452        zone.addr = start;
 453        zone.size = size;
 454        zone.pad = 0;
 455
 456        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 457    }
 458}
 459
 460static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 461                                       MemoryRegionSection *secion,
 462                                       hwaddr start, hwaddr size)
 463{
 464    KVMState *s = kvm_state;
 465
 466    if (s->coalesced_mmio) {
 467        struct kvm_coalesced_mmio_zone zone;
 468
 469        zone.addr = start;
 470        zone.size = size;
 471        zone.pad = 0;
 472
 473        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 474    }
 475}
 476
 477int kvm_check_extension(KVMState *s, unsigned int extension)
 478{
 479    int ret;
 480
 481    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 482    if (ret < 0) {
 483        ret = 0;
 484    }
 485
 486    return ret;
 487}
 488
 489int kvm_vm_check_extension(KVMState *s, unsigned int extension)
 490{
 491    int ret;
 492
 493    ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 494    if (ret < 0) {
 495        /* VM wide version not implemented, use global one instead */
 496        ret = kvm_check_extension(s, extension);
 497    }
 498
 499    return ret;
 500}
 501
 502static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
 503{
 504#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
 505    /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
 506     * endianness, but the memory core hands them in target endianness.
 507     * For example, PPC is always treated as big-endian even if running
 508     * on KVM and on PPC64LE.  Correct here.
 509     */
 510    switch (size) {
 511    case 2:
 512        val = bswap16(val);
 513        break;
 514    case 4:
 515        val = bswap32(val);
 516        break;
 517    }
 518#endif
 519    return val;
 520}
 521
 522static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
 523                                  bool assign, uint32_t size, bool datamatch)
 524{
 525    int ret;
 526    struct kvm_ioeventfd iofd = {
 527        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 528        .addr = addr,
 529        .len = size,
 530        .flags = 0,
 531        .fd = fd,
 532    };
 533
 534    if (!kvm_enabled()) {
 535        return -ENOSYS;
 536    }
 537
 538    if (datamatch) {
 539        iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 540    }
 541    if (!assign) {
 542        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 543    }
 544
 545    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 546
 547    if (ret < 0) {
 548        return -errno;
 549    }
 550
 551    return 0;
 552}
 553
 554static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
 555                                 bool assign, uint32_t size, bool datamatch)
 556{
 557    struct kvm_ioeventfd kick = {
 558        .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
 559        .addr = addr,
 560        .flags = KVM_IOEVENTFD_FLAG_PIO,
 561        .len = size,
 562        .fd = fd,
 563    };
 564    int r;
 565    if (!kvm_enabled()) {
 566        return -ENOSYS;
 567    }
 568    if (datamatch) {
 569        kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 570    }
 571    if (!assign) {
 572        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 573    }
 574    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 575    if (r < 0) {
 576        return r;
 577    }
 578    return 0;
 579}
 580
 581
 582static int kvm_check_many_ioeventfds(void)
 583{
 584    /* Userspace can use ioeventfd for io notification.  This requires a host
 585     * that supports eventfd(2) and an I/O thread; since eventfd does not
 586     * support SIGIO it cannot interrupt the vcpu.
 587     *
 588     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 589     * can avoid creating too many ioeventfds.
 590     */
 591#if defined(CONFIG_EVENTFD)
 592    int ioeventfds[7];
 593    int i, ret = 0;
 594    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 595        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 596        if (ioeventfds[i] < 0) {
 597            break;
 598        }
 599        ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
 600        if (ret < 0) {
 601            close(ioeventfds[i]);
 602            break;
 603        }
 604    }
 605
 606    /* Decide whether many devices are supported or not */
 607    ret = i == ARRAY_SIZE(ioeventfds);
 608
 609    while (i-- > 0) {
 610        kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
 611        close(ioeventfds[i]);
 612    }
 613    return ret;
 614#else
 615    return 0;
 616#endif
 617}
 618
 619static const KVMCapabilityInfo *
 620kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 621{
 622    while (list->name) {
 623        if (!kvm_check_extension(s, list->value)) {
 624            return list;
 625        }
 626        list++;
 627    }
 628    return NULL;
 629}
 630
 631static void kvm_set_phys_mem(KVMMemoryListener *kml,
 632                             MemoryRegionSection *section, bool add)
 633{
 634    KVMState *s = kvm_state;
 635    KVMSlot *mem, old;
 636    int err;
 637    MemoryRegion *mr = section->mr;
 638    bool writeable = !mr->readonly && !mr->rom_device;
 639    hwaddr start_addr = section->offset_within_address_space;
 640    ram_addr_t size = int128_get64(section->size);
 641    void *ram = NULL;
 642    unsigned delta;
 643
 644    /* kvm works in page size chunks, but the function may be called
 645       with sub-page size and unaligned start address. Pad the start
 646       address to next and truncate size to previous page boundary. */
 647    delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
 648    delta &= ~qemu_real_host_page_mask;
 649    if (delta > size) {
 650        return;
 651    }
 652    start_addr += delta;
 653    size -= delta;
 654    size &= qemu_real_host_page_mask;
 655    if (!size || (start_addr & ~qemu_real_host_page_mask)) {
 656        return;
 657    }
 658
 659    if (!memory_region_is_ram(mr)) {
 660        if (writeable || !kvm_readonly_mem_allowed) {
 661            return;
 662        } else if (!mr->romd_mode) {
 663            /* If the memory device is not in romd_mode, then we actually want
 664             * to remove the kvm memory slot so all accesses will trap. */
 665            add = false;
 666        }
 667    }
 668
 669    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
 670
 671    while (1) {
 672        mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
 673        if (!mem) {
 674            break;
 675        }
 676
 677        if (add && start_addr >= mem->start_addr &&
 678            (start_addr + size <= mem->start_addr + mem->memory_size) &&
 679            (ram - start_addr == mem->ram - mem->start_addr)) {
 680            /* The new slot fits into the existing one and comes with
 681             * identical parameters - update flags and done. */
 682            kvm_slot_update_flags(kml, mem, mr);
 683            return;
 684        }
 685
 686        old = *mem;
 687
 688        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 689            kvm_physical_sync_dirty_bitmap(kml, section);
 690        }
 691
 692        /* unregister the overlapping slot */
 693        mem->memory_size = 0;
 694        err = kvm_set_user_memory_region(kml, mem);
 695        if (err) {
 696            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 697                    __func__, strerror(-err));
 698            abort();
 699        }
 700
 701        /* Workaround for older KVM versions: we can't join slots, even not by
 702         * unregistering the previous ones and then registering the larger
 703         * slot. We have to maintain the existing fragmentation. Sigh.
 704         *
 705         * This workaround assumes that the new slot starts at the same
 706         * address as the first existing one. If not or if some overlapping
 707         * slot comes around later, we will fail (not seen in practice so far)
 708         * - and actually require a recent KVM version. */
 709        if (s->broken_set_mem_region &&
 710            old.start_addr == start_addr && old.memory_size < size && add) {
 711            mem = kvm_alloc_slot(kml);
 712            mem->memory_size = old.memory_size;
 713            mem->start_addr = old.start_addr;
 714            mem->ram = old.ram;
 715            mem->flags = kvm_mem_flags(mr);
 716
 717            err = kvm_set_user_memory_region(kml, mem);
 718            if (err) {
 719                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 720                        strerror(-err));
 721                abort();
 722            }
 723
 724            start_addr += old.memory_size;
 725            ram += old.memory_size;
 726            size -= old.memory_size;
 727            continue;
 728        }
 729
 730        /* register prefix slot */
 731        if (old.start_addr < start_addr) {
 732            mem = kvm_alloc_slot(kml);
 733            mem->memory_size = start_addr - old.start_addr;
 734            mem->start_addr = old.start_addr;
 735            mem->ram = old.ram;
 736            mem->flags =  kvm_mem_flags(mr);
 737
 738            err = kvm_set_user_memory_region(kml, mem);
 739            if (err) {
 740                fprintf(stderr, "%s: error registering prefix slot: %s\n",
 741                        __func__, strerror(-err));
 742#ifdef TARGET_PPC
 743                fprintf(stderr, "%s: This is probably because your kernel's " \
 744                                "PAGE_SIZE is too big. Please try to use 4k " \
 745                                "PAGE_SIZE!\n", __func__);
 746#endif
 747                abort();
 748            }
 749        }
 750
 751        /* register suffix slot */
 752        if (old.start_addr + old.memory_size > start_addr + size) {
 753            ram_addr_t size_delta;
 754
 755            mem = kvm_alloc_slot(kml);
 756            mem->start_addr = start_addr + size;
 757            size_delta = mem->start_addr - old.start_addr;
 758            mem->memory_size = old.memory_size - size_delta;
 759            mem->ram = old.ram + size_delta;
 760            mem->flags = kvm_mem_flags(mr);
 761
 762            err = kvm_set_user_memory_region(kml, mem);
 763            if (err) {
 764                fprintf(stderr, "%s: error registering suffix slot: %s\n",
 765                        __func__, strerror(-err));
 766                abort();
 767            }
 768        }
 769    }
 770
 771    /* in case the KVM bug workaround already "consumed" the new slot */
 772    if (!size) {
 773        return;
 774    }
 775    if (!add) {
 776        return;
 777    }
 778    mem = kvm_alloc_slot(kml);
 779    mem->memory_size = size;
 780    mem->start_addr = start_addr;
 781    mem->ram = ram;
 782    mem->flags = kvm_mem_flags(mr);
 783
 784    err = kvm_set_user_memory_region(kml, mem);
 785    if (err) {
 786        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 787                strerror(-err));
 788        abort();
 789    }
 790}
 791
 792static void kvm_region_add(MemoryListener *listener,
 793                           MemoryRegionSection *section)
 794{
 795    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 796
 797    memory_region_ref(section->mr);
 798    kvm_set_phys_mem(kml, section, true);
 799}
 800
 801static void kvm_region_del(MemoryListener *listener,
 802                           MemoryRegionSection *section)
 803{
 804    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 805
 806    kvm_set_phys_mem(kml, section, false);
 807    memory_region_unref(section->mr);
 808}
 809
 810static void kvm_log_sync(MemoryListener *listener,
 811                         MemoryRegionSection *section)
 812{
 813    KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
 814    int r;
 815
 816    r = kvm_physical_sync_dirty_bitmap(kml, section);
 817    if (r < 0) {
 818        abort();
 819    }
 820}
 821
 822static void kvm_mem_ioeventfd_add(MemoryListener *listener,
 823                                  MemoryRegionSection *section,
 824                                  bool match_data, uint64_t data,
 825                                  EventNotifier *e)
 826{
 827    int fd = event_notifier_get_fd(e);
 828    int r;
 829
 830    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 831                               data, true, int128_get64(section->size),
 832                               match_data);
 833    if (r < 0) {
 834        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 835                __func__, strerror(-r));
 836        abort();
 837    }
 838}
 839
 840static void kvm_mem_ioeventfd_del(MemoryListener *listener,
 841                                  MemoryRegionSection *section,
 842                                  bool match_data, uint64_t data,
 843                                  EventNotifier *e)
 844{
 845    int fd = event_notifier_get_fd(e);
 846    int r;
 847
 848    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 849                               data, false, int128_get64(section->size),
 850                               match_data);
 851    if (r < 0) {
 852        abort();
 853    }
 854}
 855
 856static void kvm_io_ioeventfd_add(MemoryListener *listener,
 857                                 MemoryRegionSection *section,
 858                                 bool match_data, uint64_t data,
 859                                 EventNotifier *e)
 860{
 861    int fd = event_notifier_get_fd(e);
 862    int r;
 863
 864    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 865                              data, true, int128_get64(section->size),
 866                              match_data);
 867    if (r < 0) {
 868        fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 869                __func__, strerror(-r));
 870        abort();
 871    }
 872}
 873
 874static void kvm_io_ioeventfd_del(MemoryListener *listener,
 875                                 MemoryRegionSection *section,
 876                                 bool match_data, uint64_t data,
 877                                 EventNotifier *e)
 878
 879{
 880    int fd = event_notifier_get_fd(e);
 881    int r;
 882
 883    r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 884                              data, false, int128_get64(section->size),
 885                              match_data);
 886    if (r < 0) {
 887        abort();
 888    }
 889}
 890
 891void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
 892                                  AddressSpace *as, int as_id)
 893{
 894    int i;
 895
 896    kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
 897    kml->as_id = as_id;
 898
 899    for (i = 0; i < s->nr_slots; i++) {
 900        kml->slots[i].slot = i;
 901    }
 902
 903    kml->listener.region_add = kvm_region_add;
 904    kml->listener.region_del = kvm_region_del;
 905    kml->listener.log_start = kvm_log_start;
 906    kml->listener.log_stop = kvm_log_stop;
 907    kml->listener.log_sync = kvm_log_sync;
 908    kml->listener.priority = 10;
 909
 910    memory_listener_register(&kml->listener, as);
 911}
 912
 913static MemoryListener kvm_io_listener = {
 914    .eventfd_add = kvm_io_ioeventfd_add,
 915    .eventfd_del = kvm_io_ioeventfd_del,
 916    .priority = 10,
 917};
 918
 919static void kvm_handle_interrupt(CPUState *cpu, int mask)
 920{
 921    cpu->interrupt_request |= mask;
 922
 923    if (!qemu_cpu_is_self(cpu)) {
 924        qemu_cpu_kick(cpu);
 925    }
 926}
 927
 928int kvm_set_irq(KVMState *s, int irq, int level)
 929{
 930    struct kvm_irq_level event;
 931    int ret;
 932
 933    assert(kvm_async_interrupts_enabled());
 934
 935    event.level = level;
 936    event.irq = irq;
 937    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
 938    if (ret < 0) {
 939        perror("kvm_set_irq");
 940        abort();
 941    }
 942
 943    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
 944}
 945
 946#ifdef KVM_CAP_IRQ_ROUTING
 947typedef struct KVMMSIRoute {
 948    struct kvm_irq_routing_entry kroute;
 949    QTAILQ_ENTRY(KVMMSIRoute) entry;
 950} KVMMSIRoute;
 951
 952static void set_gsi(KVMState *s, unsigned int gsi)
 953{
 954    set_bit(gsi, s->used_gsi_bitmap);
 955}
 956
 957static void clear_gsi(KVMState *s, unsigned int gsi)
 958{
 959    clear_bit(gsi, s->used_gsi_bitmap);
 960}
 961
 962void kvm_init_irq_routing(KVMState *s)
 963{
 964    int gsi_count, i;
 965
 966    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
 967    if (gsi_count > 0) {
 968        /* Round up so we can search ints using ffs */
 969        s->used_gsi_bitmap = bitmap_new(gsi_count);
 970        s->gsi_count = gsi_count;
 971    }
 972
 973    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
 974    s->nr_allocated_irq_routes = 0;
 975
 976    if (!kvm_direct_msi_allowed) {
 977        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
 978            QTAILQ_INIT(&s->msi_hashtab[i]);
 979        }
 980    }
 981
 982    kvm_arch_init_irq_routing(s);
 983}
 984
 985void kvm_irqchip_commit_routes(KVMState *s)
 986{
 987    int ret;
 988
 989    s->irq_routes->flags = 0;
 990    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
 991    assert(ret == 0);
 992}
 993
 994static void kvm_add_routing_entry(KVMState *s,
 995                                  struct kvm_irq_routing_entry *entry)
 996{
 997    struct kvm_irq_routing_entry *new;
 998    int n, size;
 999
1000    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1001        n = s->nr_allocated_irq_routes * 2;
1002        if (n < 64) {
1003            n = 64;
1004        }
1005        size = sizeof(struct kvm_irq_routing);
1006        size += n * sizeof(*new);
1007        s->irq_routes = g_realloc(s->irq_routes, size);
1008        s->nr_allocated_irq_routes = n;
1009    }
1010    n = s->irq_routes->nr++;
1011    new = &s->irq_routes->entries[n];
1012
1013    *new = *entry;
1014
1015    set_gsi(s, entry->gsi);
1016}
1017
1018static int kvm_update_routing_entry(KVMState *s,
1019                                    struct kvm_irq_routing_entry *new_entry)
1020{
1021    struct kvm_irq_routing_entry *entry;
1022    int n;
1023
1024    for (n = 0; n < s->irq_routes->nr; n++) {
1025        entry = &s->irq_routes->entries[n];
1026        if (entry->gsi != new_entry->gsi) {
1027            continue;
1028        }
1029
1030        if(!memcmp(entry, new_entry, sizeof *entry)) {
1031            return 0;
1032        }
1033
1034        *entry = *new_entry;
1035
1036        kvm_irqchip_commit_routes(s);
1037
1038        return 0;
1039    }
1040
1041    return -ESRCH;
1042}
1043
1044void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1045{
1046    struct kvm_irq_routing_entry e = {};
1047
1048    assert(pin < s->gsi_count);
1049
1050    e.gsi = irq;
1051    e.type = KVM_IRQ_ROUTING_IRQCHIP;
1052    e.flags = 0;
1053    e.u.irqchip.irqchip = irqchip;
1054    e.u.irqchip.pin = pin;
1055    kvm_add_routing_entry(s, &e);
1056}
1057
1058void kvm_irqchip_release_virq(KVMState *s, int virq)
1059{
1060    struct kvm_irq_routing_entry *e;
1061    int i;
1062
1063    if (kvm_gsi_direct_mapping()) {
1064        return;
1065    }
1066
1067    for (i = 0; i < s->irq_routes->nr; i++) {
1068        e = &s->irq_routes->entries[i];
1069        if (e->gsi == virq) {
1070            s->irq_routes->nr--;
1071            *e = s->irq_routes->entries[s->irq_routes->nr];
1072        }
1073    }
1074    clear_gsi(s, virq);
1075}
1076
1077static unsigned int kvm_hash_msi(uint32_t data)
1078{
1079    /* This is optimized for IA32 MSI layout. However, no other arch shall
1080     * repeat the mistake of not providing a direct MSI injection API. */
1081    return data & 0xff;
1082}
1083
1084static void kvm_flush_dynamic_msi_routes(KVMState *s)
1085{
1086    KVMMSIRoute *route, *next;
1087    unsigned int hash;
1088
1089    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1090        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1091            kvm_irqchip_release_virq(s, route->kroute.gsi);
1092            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1093            g_free(route);
1094        }
1095    }
1096}
1097
1098static int kvm_irqchip_get_virq(KVMState *s)
1099{
1100    int next_virq;
1101
1102    /*
1103     * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1104     * GSI numbers are more than the number of IRQ route. Allocating a GSI
1105     * number can succeed even though a new route entry cannot be added.
1106     * When this happens, flush dynamic MSI entries to free IRQ route entries.
1107     */
1108    if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1109        kvm_flush_dynamic_msi_routes(s);
1110    }
1111
1112    /* Return the lowest unused GSI in the bitmap */
1113    next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1114    if (next_virq >= s->gsi_count) {
1115        return -ENOSPC;
1116    } else {
1117        return next_virq;
1118    }
1119}
1120
1121static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1122{
1123    unsigned int hash = kvm_hash_msi(msg.data);
1124    KVMMSIRoute *route;
1125
1126    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1127        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1128            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1129            route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1130            return route;
1131        }
1132    }
1133    return NULL;
1134}
1135
1136int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1137{
1138    struct kvm_msi msi;
1139    KVMMSIRoute *route;
1140
1141    if (kvm_direct_msi_allowed) {
1142        msi.address_lo = (uint32_t)msg.address;
1143        msi.address_hi = msg.address >> 32;
1144        msi.data = le32_to_cpu(msg.data);
1145        msi.flags = 0;
1146        memset(msi.pad, 0, sizeof(msi.pad));
1147
1148        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1149    }
1150
1151    route = kvm_lookup_msi_route(s, msg);
1152    if (!route) {
1153        int virq;
1154
1155        virq = kvm_irqchip_get_virq(s);
1156        if (virq < 0) {
1157            return virq;
1158        }
1159
1160        route = g_malloc0(sizeof(KVMMSIRoute));
1161        route->kroute.gsi = virq;
1162        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1163        route->kroute.flags = 0;
1164        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1165        route->kroute.u.msi.address_hi = msg.address >> 32;
1166        route->kroute.u.msi.data = le32_to_cpu(msg.data);
1167
1168        kvm_add_routing_entry(s, &route->kroute);
1169        kvm_irqchip_commit_routes(s);
1170
1171        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1172                           entry);
1173    }
1174
1175    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1176
1177    return kvm_set_irq(s, route->kroute.gsi, 1);
1178}
1179
1180int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev)
1181{
1182    struct kvm_irq_routing_entry kroute = {};
1183    int virq;
1184
1185    if (kvm_gsi_direct_mapping()) {
1186        return kvm_arch_msi_data_to_gsi(msg.data);
1187    }
1188
1189    if (!kvm_gsi_routing_enabled()) {
1190        return -ENOSYS;
1191    }
1192
1193    virq = kvm_irqchip_get_virq(s);
1194    if (virq < 0) {
1195        return virq;
1196    }
1197
1198    kroute.gsi = virq;
1199    kroute.type = KVM_IRQ_ROUTING_MSI;
1200    kroute.flags = 0;
1201    kroute.u.msi.address_lo = (uint32_t)msg.address;
1202    kroute.u.msi.address_hi = msg.address >> 32;
1203    kroute.u.msi.data = le32_to_cpu(msg.data);
1204    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1205        kvm_irqchip_release_virq(s, virq);
1206        return -EINVAL;
1207    }
1208
1209    kvm_add_routing_entry(s, &kroute);
1210    kvm_irqchip_commit_routes(s);
1211
1212    return virq;
1213}
1214
1215int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1216                                 PCIDevice *dev)
1217{
1218    struct kvm_irq_routing_entry kroute = {};
1219
1220    if (kvm_gsi_direct_mapping()) {
1221        return 0;
1222    }
1223
1224    if (!kvm_irqchip_in_kernel()) {
1225        return -ENOSYS;
1226    }
1227
1228    kroute.gsi = virq;
1229    kroute.type = KVM_IRQ_ROUTING_MSI;
1230    kroute.flags = 0;
1231    kroute.u.msi.address_lo = (uint32_t)msg.address;
1232    kroute.u.msi.address_hi = msg.address >> 32;
1233    kroute.u.msi.data = le32_to_cpu(msg.data);
1234    if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1235        return -EINVAL;
1236    }
1237
1238    return kvm_update_routing_entry(s, &kroute);
1239}
1240
1241static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1242                                    bool assign)
1243{
1244    struct kvm_irqfd irqfd = {
1245        .fd = fd,
1246        .gsi = virq,
1247        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1248    };
1249
1250    if (rfd != -1) {
1251        irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1252        irqfd.resamplefd = rfd;
1253    }
1254
1255    if (!kvm_irqfds_enabled()) {
1256        return -ENOSYS;
1257    }
1258
1259    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1260}
1261
1262int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1263{
1264    struct kvm_irq_routing_entry kroute = {};
1265    int virq;
1266
1267    if (!kvm_gsi_routing_enabled()) {
1268        return -ENOSYS;
1269    }
1270
1271    virq = kvm_irqchip_get_virq(s);
1272    if (virq < 0) {
1273        return virq;
1274    }
1275
1276    kroute.gsi = virq;
1277    kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1278    kroute.flags = 0;
1279    kroute.u.adapter.summary_addr = adapter->summary_addr;
1280    kroute.u.adapter.ind_addr = adapter->ind_addr;
1281    kroute.u.adapter.summary_offset = adapter->summary_offset;
1282    kroute.u.adapter.ind_offset = adapter->ind_offset;
1283    kroute.u.adapter.adapter_id = adapter->adapter_id;
1284
1285    kvm_add_routing_entry(s, &kroute);
1286
1287    return virq;
1288}
1289
1290int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1291{
1292    struct kvm_irq_routing_entry kroute = {};
1293    int virq;
1294
1295    if (!kvm_gsi_routing_enabled()) {
1296        return -ENOSYS;
1297    }
1298    if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1299        return -ENOSYS;
1300    }
1301    virq = kvm_irqchip_get_virq(s);
1302    if (virq < 0) {
1303        return virq;
1304    }
1305
1306    kroute.gsi = virq;
1307    kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1308    kroute.flags = 0;
1309    kroute.u.hv_sint.vcpu = vcpu;
1310    kroute.u.hv_sint.sint = sint;
1311
1312    kvm_add_routing_entry(s, &kroute);
1313    kvm_irqchip_commit_routes(s);
1314
1315    return virq;
1316}
1317
1318#else /* !KVM_CAP_IRQ_ROUTING */
1319
1320void kvm_init_irq_routing(KVMState *s)
1321{
1322}
1323
1324void kvm_irqchip_release_virq(KVMState *s, int virq)
1325{
1326}
1327
1328int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1329{
1330    abort();
1331}
1332
1333int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1334{
1335    return -ENOSYS;
1336}
1337
1338int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1339{
1340    return -ENOSYS;
1341}
1342
1343int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1344{
1345    return -ENOSYS;
1346}
1347
1348static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1349{
1350    abort();
1351}
1352
1353int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1354{
1355    return -ENOSYS;
1356}
1357#endif /* !KVM_CAP_IRQ_ROUTING */
1358
1359int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1360                                       EventNotifier *rn, int virq)
1361{
1362    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1363           rn ? event_notifier_get_fd(rn) : -1, virq, true);
1364}
1365
1366int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1367                                          int virq)
1368{
1369    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1370           false);
1371}
1372
1373int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1374                                   EventNotifier *rn, qemu_irq irq)
1375{
1376    gpointer key, gsi;
1377    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1378
1379    if (!found) {
1380        return -ENXIO;
1381    }
1382    return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1383}
1384
1385int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1386                                      qemu_irq irq)
1387{
1388    gpointer key, gsi;
1389    gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1390
1391    if (!found) {
1392        return -ENXIO;
1393    }
1394    return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1395}
1396
1397void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1398{
1399    g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1400}
1401
1402static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1403{
1404    int ret;
1405
1406    if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1407        ;
1408    } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1409        ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1410        if (ret < 0) {
1411            fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1412            exit(1);
1413        }
1414    } else {
1415        return;
1416    }
1417
1418    /* First probe and see if there's a arch-specific hook to create the
1419     * in-kernel irqchip for us */
1420    ret = kvm_arch_irqchip_create(machine, s);
1421    if (ret == 0) {
1422        if (machine_kernel_irqchip_split(machine)) {
1423            perror("Split IRQ chip mode not supported.");
1424            exit(1);
1425        } else {
1426            ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1427        }
1428    }
1429    if (ret < 0) {
1430        fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1431        exit(1);
1432    }
1433
1434    kvm_kernel_irqchip = true;
1435    /* If we have an in-kernel IRQ chip then we must have asynchronous
1436     * interrupt delivery (though the reverse is not necessarily true)
1437     */
1438    kvm_async_interrupts_allowed = true;
1439    kvm_halt_in_kernel_allowed = true;
1440
1441    kvm_init_irq_routing(s);
1442
1443    s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1444}
1445
1446/* Find number of supported CPUs using the recommended
1447 * procedure from the kernel API documentation to cope with
1448 * older kernels that may be missing capabilities.
1449 */
1450static int kvm_recommended_vcpus(KVMState *s)
1451{
1452    int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1453    return (ret) ? ret : 4;
1454}
1455
1456static int kvm_max_vcpus(KVMState *s)
1457{
1458    int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1459    return (ret) ? ret : kvm_recommended_vcpus(s);
1460}
1461
1462static int kvm_init(MachineState *ms)
1463{
1464    MachineClass *mc = MACHINE_GET_CLASS(ms);
1465    static const char upgrade_note[] =
1466        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1467        "(see http://sourceforge.net/projects/kvm).\n";
1468    struct {
1469        const char *name;
1470        int num;
1471    } num_cpus[] = {
1472        { "SMP",          smp_cpus },
1473        { "hotpluggable", max_cpus },
1474        { NULL, }
1475    }, *nc = num_cpus;
1476    int soft_vcpus_limit, hard_vcpus_limit;
1477    KVMState *s;
1478    const KVMCapabilityInfo *missing_cap;
1479    int ret;
1480    int type = 0;
1481    const char *kvm_type;
1482
1483    s = KVM_STATE(ms->accelerator);
1484
1485    /*
1486     * On systems where the kernel can support different base page
1487     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1488     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1489     * page size for the system though.
1490     */
1491    assert(TARGET_PAGE_SIZE <= getpagesize());
1492
1493    s->sigmask_len = 8;
1494
1495#ifdef KVM_CAP_SET_GUEST_DEBUG
1496    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1497#endif
1498    s->vmfd = -1;
1499    s->fd = qemu_open("/dev/kvm", O_RDWR);
1500    if (s->fd == -1) {
1501        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1502        ret = -errno;
1503        goto err;
1504    }
1505
1506    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1507    if (ret < KVM_API_VERSION) {
1508        if (ret >= 0) {
1509            ret = -EINVAL;
1510        }
1511        fprintf(stderr, "kvm version too old\n");
1512        goto err;
1513    }
1514
1515    if (ret > KVM_API_VERSION) {
1516        ret = -EINVAL;
1517        fprintf(stderr, "kvm version not supported\n");
1518        goto err;
1519    }
1520
1521    s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1522
1523    /* If unspecified, use the default value */
1524    if (!s->nr_slots) {
1525        s->nr_slots = 32;
1526    }
1527
1528    /* check the vcpu limits */
1529    soft_vcpus_limit = kvm_recommended_vcpus(s);
1530    hard_vcpus_limit = kvm_max_vcpus(s);
1531
1532    while (nc->name) {
1533        if (nc->num > soft_vcpus_limit) {
1534            fprintf(stderr,
1535                    "Warning: Number of %s cpus requested (%d) exceeds "
1536                    "the recommended cpus supported by KVM (%d)\n",
1537                    nc->name, nc->num, soft_vcpus_limit);
1538
1539            if (nc->num > hard_vcpus_limit) {
1540                fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1541                        "the maximum cpus supported by KVM (%d)\n",
1542                        nc->name, nc->num, hard_vcpus_limit);
1543                exit(1);
1544            }
1545        }
1546        nc++;
1547    }
1548
1549    kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1550    if (mc->kvm_type) {
1551        type = mc->kvm_type(kvm_type);
1552    } else if (kvm_type) {
1553        ret = -EINVAL;
1554        fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1555        goto err;
1556    }
1557
1558    do {
1559        ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1560    } while (ret == -EINTR);
1561
1562    if (ret < 0) {
1563        fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1564                strerror(-ret));
1565
1566#ifdef TARGET_S390X
1567        if (ret == -EINVAL) {
1568            fprintf(stderr,
1569                    "Host kernel setup problem detected. Please verify:\n");
1570            fprintf(stderr, "- for kernels supporting the switch_amode or"
1571                    " user_mode parameters, whether\n");
1572            fprintf(stderr,
1573                    "  user space is running in primary address space\n");
1574            fprintf(stderr,
1575                    "- for kernels supporting the vm.allocate_pgste sysctl, "
1576                    "whether it is enabled\n");
1577        }
1578#endif
1579        goto err;
1580    }
1581
1582    s->vmfd = ret;
1583    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1584    if (!missing_cap) {
1585        missing_cap =
1586            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1587    }
1588    if (missing_cap) {
1589        ret = -EINVAL;
1590        fprintf(stderr, "kvm does not support %s\n%s",
1591                missing_cap->name, upgrade_note);
1592        goto err;
1593    }
1594
1595    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1596
1597    s->broken_set_mem_region = 1;
1598    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1599    if (ret > 0) {
1600        s->broken_set_mem_region = 0;
1601    }
1602
1603#ifdef KVM_CAP_VCPU_EVENTS
1604    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1605#endif
1606
1607    s->robust_singlestep =
1608        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1609
1610#ifdef KVM_CAP_DEBUGREGS
1611    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1612#endif
1613
1614#ifdef KVM_CAP_IRQ_ROUTING
1615    kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1616#endif
1617
1618    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1619
1620    s->irq_set_ioctl = KVM_IRQ_LINE;
1621    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1622        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1623    }
1624
1625#ifdef KVM_CAP_READONLY_MEM
1626    kvm_readonly_mem_allowed =
1627        (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1628#endif
1629
1630    kvm_eventfds_allowed =
1631        (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1632
1633    kvm_irqfds_allowed =
1634        (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1635
1636    kvm_resamplefds_allowed =
1637        (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1638
1639    kvm_vm_attributes_allowed =
1640        (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1641
1642    kvm_ioeventfd_any_length_allowed =
1643        (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1644
1645    ret = kvm_arch_init(ms, s);
1646    if (ret < 0) {
1647        goto err;
1648    }
1649
1650    if (machine_kernel_irqchip_allowed(ms)) {
1651        kvm_irqchip_create(ms, s);
1652    }
1653
1654    kvm_state = s;
1655
1656    if (kvm_eventfds_allowed) {
1657        s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1658        s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1659    }
1660    s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1661    s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1662
1663    kvm_memory_listener_register(s, &s->memory_listener,
1664                                 &address_space_memory, 0);
1665    memory_listener_register(&kvm_io_listener,
1666                             &address_space_io);
1667
1668    s->many_ioeventfds = kvm_check_many_ioeventfds();
1669
1670    cpu_interrupt_handler = kvm_handle_interrupt;
1671
1672    return 0;
1673
1674err:
1675    assert(ret < 0);
1676    if (s->vmfd >= 0) {
1677        close(s->vmfd);
1678    }
1679    if (s->fd != -1) {
1680        close(s->fd);
1681    }
1682    g_free(s->memory_listener.slots);
1683
1684    return ret;
1685}
1686
1687void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1688{
1689    s->sigmask_len = sigmask_len;
1690}
1691
1692static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1693                          int size, uint32_t count)
1694{
1695    int i;
1696    uint8_t *ptr = data;
1697
1698    for (i = 0; i < count; i++) {
1699        address_space_rw(&address_space_io, port, attrs,
1700                         ptr, size,
1701                         direction == KVM_EXIT_IO_OUT);
1702        ptr += size;
1703    }
1704}
1705
1706static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1707{
1708    fprintf(stderr, "KVM internal error. Suberror: %d\n",
1709            run->internal.suberror);
1710
1711    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1712        int i;
1713
1714        for (i = 0; i < run->internal.ndata; ++i) {
1715            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1716                    i, (uint64_t)run->internal.data[i]);
1717        }
1718    }
1719    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1720        fprintf(stderr, "emulation failure\n");
1721        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1722            cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1723            return EXCP_INTERRUPT;
1724        }
1725    }
1726    /* FIXME: Should trigger a qmp message to let management know
1727     * something went wrong.
1728     */
1729    return -1;
1730}
1731
1732void kvm_flush_coalesced_mmio_buffer(void)
1733{
1734    KVMState *s = kvm_state;
1735
1736    if (s->coalesced_flush_in_progress) {
1737        return;
1738    }
1739
1740    s->coalesced_flush_in_progress = true;
1741
1742    if (s->coalesced_mmio_ring) {
1743        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1744        while (ring->first != ring->last) {
1745            struct kvm_coalesced_mmio *ent;
1746
1747            ent = &ring->coalesced_mmio[ring->first];
1748
1749            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1750            smp_wmb();
1751            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1752        }
1753    }
1754
1755    s->coalesced_flush_in_progress = false;
1756}
1757
1758static void do_kvm_cpu_synchronize_state(void *arg)
1759{
1760    CPUState *cpu = arg;
1761
1762    if (!cpu->kvm_vcpu_dirty) {
1763        kvm_arch_get_registers(cpu);
1764        cpu->kvm_vcpu_dirty = true;
1765    }
1766}
1767
1768void kvm_cpu_synchronize_state(CPUState *cpu)
1769{
1770    if (!cpu->kvm_vcpu_dirty) {
1771        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1772    }
1773}
1774
1775static void do_kvm_cpu_synchronize_post_reset(void *arg)
1776{
1777    CPUState *cpu = arg;
1778
1779    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1780    cpu->kvm_vcpu_dirty = false;
1781}
1782
1783void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1784{
1785    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1786}
1787
1788static void do_kvm_cpu_synchronize_post_init(void *arg)
1789{
1790    CPUState *cpu = arg;
1791
1792    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1793    cpu->kvm_vcpu_dirty = false;
1794}
1795
1796void kvm_cpu_synchronize_post_init(CPUState *cpu)
1797{
1798    run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1799}
1800
1801int kvm_cpu_exec(CPUState *cpu)
1802{
1803    struct kvm_run *run = cpu->kvm_run;
1804    int ret, run_ret;
1805
1806    DPRINTF("kvm_cpu_exec()\n");
1807
1808    if (kvm_arch_process_async_events(cpu)) {
1809        cpu->exit_request = 0;
1810        return EXCP_HLT;
1811    }
1812
1813    qemu_mutex_unlock_iothread();
1814
1815    do {
1816        MemTxAttrs attrs;
1817
1818        if (cpu->kvm_vcpu_dirty) {
1819            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1820            cpu->kvm_vcpu_dirty = false;
1821        }
1822
1823        kvm_arch_pre_run(cpu, run);
1824        if (cpu->exit_request) {
1825            DPRINTF("interrupt exit requested\n");
1826            /*
1827             * KVM requires us to reenter the kernel after IO exits to complete
1828             * instruction emulation. This self-signal will ensure that we
1829             * leave ASAP again.
1830             */
1831            qemu_cpu_kick_self();
1832        }
1833
1834        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1835
1836        attrs = kvm_arch_post_run(cpu, run);
1837
1838        if (run_ret < 0) {
1839            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1840                DPRINTF("io window exit\n");
1841                ret = EXCP_INTERRUPT;
1842                break;
1843            }
1844            fprintf(stderr, "error: kvm run failed %s\n",
1845                    strerror(-run_ret));
1846#ifdef TARGET_PPC
1847            if (run_ret == -EBUSY) {
1848                fprintf(stderr,
1849                        "This is probably because your SMT is enabled.\n"
1850                        "VCPU can only run on primary threads with all "
1851                        "secondary threads offline.\n");
1852            }
1853#endif
1854            ret = -1;
1855            break;
1856        }
1857
1858        trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1859        switch (run->exit_reason) {
1860        case KVM_EXIT_IO:
1861            DPRINTF("handle_io\n");
1862            /* Called outside BQL */
1863            kvm_handle_io(run->io.port, attrs,
1864                          (uint8_t *)run + run->io.data_offset,
1865                          run->io.direction,
1866                          run->io.size,
1867                          run->io.count);
1868            ret = 0;
1869            break;
1870        case KVM_EXIT_MMIO:
1871            DPRINTF("handle_mmio\n");
1872            /* Called outside BQL */
1873            address_space_rw(&address_space_memory,
1874                             run->mmio.phys_addr, attrs,
1875                             run->mmio.data,
1876                             run->mmio.len,
1877                             run->mmio.is_write);
1878            ret = 0;
1879            break;
1880        case KVM_EXIT_IRQ_WINDOW_OPEN:
1881            DPRINTF("irq_window_open\n");
1882            ret = EXCP_INTERRUPT;
1883            break;
1884        case KVM_EXIT_SHUTDOWN:
1885            DPRINTF("shutdown\n");
1886            qemu_system_reset_request();
1887            ret = EXCP_INTERRUPT;
1888            break;
1889        case KVM_EXIT_UNKNOWN:
1890            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1891                    (uint64_t)run->hw.hardware_exit_reason);
1892            ret = -1;
1893            break;
1894        case KVM_EXIT_INTERNAL_ERROR:
1895            ret = kvm_handle_internal_error(cpu, run);
1896            break;
1897        case KVM_EXIT_SYSTEM_EVENT:
1898            switch (run->system_event.type) {
1899            case KVM_SYSTEM_EVENT_SHUTDOWN:
1900                qemu_system_shutdown_request();
1901                ret = EXCP_INTERRUPT;
1902                break;
1903            case KVM_SYSTEM_EVENT_RESET:
1904                qemu_system_reset_request();
1905                ret = EXCP_INTERRUPT;
1906                break;
1907            case KVM_SYSTEM_EVENT_CRASH:
1908                qemu_mutex_lock_iothread();
1909                qemu_system_guest_panicked();
1910                qemu_mutex_unlock_iothread();
1911                ret = 0;
1912                break;
1913            default:
1914                DPRINTF("kvm_arch_handle_exit\n");
1915                ret = kvm_arch_handle_exit(cpu, run);
1916                break;
1917            }
1918            break;
1919        default:
1920            DPRINTF("kvm_arch_handle_exit\n");
1921            ret = kvm_arch_handle_exit(cpu, run);
1922            break;
1923        }
1924    } while (ret == 0);
1925
1926    qemu_mutex_lock_iothread();
1927
1928    if (ret < 0) {
1929        cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1930        vm_stop(RUN_STATE_INTERNAL_ERROR);
1931    }
1932
1933    cpu->exit_request = 0;
1934    return ret;
1935}
1936
1937int kvm_ioctl(KVMState *s, int type, ...)
1938{
1939    int ret;
1940    void *arg;
1941    va_list ap;
1942
1943    va_start(ap, type);
1944    arg = va_arg(ap, void *);
1945    va_end(ap);
1946
1947    trace_kvm_ioctl(type, arg);
1948    ret = ioctl(s->fd, type, arg);
1949    if (ret == -1) {
1950        ret = -errno;
1951    }
1952    return ret;
1953}
1954
1955int kvm_vm_ioctl(KVMState *s, int type, ...)
1956{
1957    int ret;
1958    void *arg;
1959    va_list ap;
1960
1961    va_start(ap, type);
1962    arg = va_arg(ap, void *);
1963    va_end(ap);
1964
1965    trace_kvm_vm_ioctl(type, arg);
1966    ret = ioctl(s->vmfd, type, arg);
1967    if (ret == -1) {
1968        ret = -errno;
1969    }
1970    return ret;
1971}
1972
1973int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1974{
1975    int ret;
1976    void *arg;
1977    va_list ap;
1978
1979    va_start(ap, type);
1980    arg = va_arg(ap, void *);
1981    va_end(ap);
1982
1983    trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1984    ret = ioctl(cpu->kvm_fd, type, arg);
1985    if (ret == -1) {
1986        ret = -errno;
1987    }
1988    return ret;
1989}
1990
1991int kvm_device_ioctl(int fd, int type, ...)
1992{
1993    int ret;
1994    void *arg;
1995    va_list ap;
1996
1997    va_start(ap, type);
1998    arg = va_arg(ap, void *);
1999    va_end(ap);
2000
2001    trace_kvm_device_ioctl(fd, type, arg);
2002    ret = ioctl(fd, type, arg);
2003    if (ret == -1) {
2004        ret = -errno;
2005    }
2006    return ret;
2007}
2008
2009int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2010{
2011    int ret;
2012    struct kvm_device_attr attribute = {
2013        .group = group,
2014        .attr = attr,
2015    };
2016
2017    if (!kvm_vm_attributes_allowed) {
2018        return 0;
2019    }
2020
2021    ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2022    /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2023    return ret ? 0 : 1;
2024}
2025
2026int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2027{
2028    struct kvm_device_attr attribute = {
2029        .group = group,
2030        .attr = attr,
2031        .flags = 0,
2032    };
2033
2034    return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2035}
2036
2037void kvm_device_access(int fd, int group, uint64_t attr,
2038                       void *val, bool write)
2039{
2040    struct kvm_device_attr kvmattr;
2041    int err;
2042
2043    kvmattr.flags = 0;
2044    kvmattr.group = group;
2045    kvmattr.attr = attr;
2046    kvmattr.addr = (uintptr_t)val;
2047
2048    err = kvm_device_ioctl(fd,
2049                           write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2050                           &kvmattr);
2051    if (err < 0) {
2052        error_report("KVM_%s_DEVICE_ATTR failed: %s",
2053                     write ? "SET" : "GET", strerror(-err));
2054        error_printf("Group %d attr 0x%016" PRIx64, group, attr);
2055        abort();
2056    }
2057}
2058
2059int kvm_has_sync_mmu(void)
2060{
2061    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2062}
2063
2064int kvm_has_vcpu_events(void)
2065{
2066    return kvm_state->vcpu_events;
2067}
2068
2069int kvm_has_robust_singlestep(void)
2070{
2071    return kvm_state->robust_singlestep;
2072}
2073
2074int kvm_has_debugregs(void)
2075{
2076    return kvm_state->debugregs;
2077}
2078
2079int kvm_has_many_ioeventfds(void)
2080{
2081    if (!kvm_enabled()) {
2082        return 0;
2083    }
2084    return kvm_state->many_ioeventfds;
2085}
2086
2087int kvm_has_gsi_routing(void)
2088{
2089#ifdef KVM_CAP_IRQ_ROUTING
2090    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2091#else
2092    return false;
2093#endif
2094}
2095
2096int kvm_has_intx_set_mask(void)
2097{
2098    return kvm_state->intx_set_mask;
2099}
2100
2101void kvm_setup_guest_memory(void *start, size_t size)
2102{
2103    if (!kvm_has_sync_mmu()) {
2104        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2105
2106        if (ret) {
2107            perror("qemu_madvise");
2108            fprintf(stderr,
2109                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2110            exit(1);
2111        }
2112    }
2113}
2114
2115#ifdef KVM_CAP_SET_GUEST_DEBUG
2116struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2117                                                 target_ulong pc)
2118{
2119    struct kvm_sw_breakpoint *bp;
2120
2121    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2122        if (bp->pc == pc) {
2123            return bp;
2124        }
2125    }
2126    return NULL;
2127}
2128
2129int kvm_sw_breakpoints_active(CPUState *cpu)
2130{
2131    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2132}
2133
2134struct kvm_set_guest_debug_data {
2135    struct kvm_guest_debug dbg;
2136    CPUState *cpu;
2137    int err;
2138};
2139
2140static void kvm_invoke_set_guest_debug(void *data)
2141{
2142    struct kvm_set_guest_debug_data *dbg_data = data;
2143
2144    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2145                                   &dbg_data->dbg);
2146}
2147
2148int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2149{
2150    struct kvm_set_guest_debug_data data;
2151
2152    data.dbg.control = reinject_trap;
2153
2154    if (cpu->singlestep_enabled) {
2155        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2156    }
2157    kvm_arch_update_guest_debug(cpu, &data.dbg);
2158    data.cpu = cpu;
2159
2160    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2161    return data.err;
2162}
2163
2164int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2165                          target_ulong len, int type)
2166{
2167    struct kvm_sw_breakpoint *bp;
2168    int err;
2169
2170    if (type == GDB_BREAKPOINT_SW) {
2171        bp = kvm_find_sw_breakpoint(cpu, addr);
2172        if (bp) {
2173            bp->use_count++;
2174            return 0;
2175        }
2176
2177        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2178        bp->pc = addr;
2179        bp->use_count = 1;
2180        err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2181        if (err) {
2182            g_free(bp);
2183            return err;
2184        }
2185
2186        QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2187    } else {
2188        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2189        if (err) {
2190            return err;
2191        }
2192    }
2193
2194    CPU_FOREACH(cpu) {
2195        err = kvm_update_guest_debug(cpu, 0);
2196        if (err) {
2197            return err;
2198        }
2199    }
2200    return 0;
2201}
2202
2203int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2204                          target_ulong len, int type)
2205{
2206    struct kvm_sw_breakpoint *bp;
2207    int err;
2208
2209    if (type == GDB_BREAKPOINT_SW) {
2210        bp = kvm_find_sw_breakpoint(cpu, addr);
2211        if (!bp) {
2212            return -ENOENT;
2213        }
2214
2215        if (bp->use_count > 1) {
2216            bp->use_count--;
2217            return 0;
2218        }
2219
2220        err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2221        if (err) {
2222            return err;
2223        }
2224
2225        QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2226        g_free(bp);
2227    } else {
2228        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2229        if (err) {
2230            return err;
2231        }
2232    }
2233
2234    CPU_FOREACH(cpu) {
2235        err = kvm_update_guest_debug(cpu, 0);
2236        if (err) {
2237            return err;
2238        }
2239    }
2240    return 0;
2241}
2242
2243void kvm_remove_all_breakpoints(CPUState *cpu)
2244{
2245    struct kvm_sw_breakpoint *bp, *next;
2246    KVMState *s = cpu->kvm_state;
2247    CPUState *tmpcpu;
2248
2249    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2250        if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2251            /* Try harder to find a CPU that currently sees the breakpoint. */
2252            CPU_FOREACH(tmpcpu) {
2253                if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2254                    break;
2255                }
2256            }
2257        }
2258        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2259        g_free(bp);
2260    }
2261    kvm_arch_remove_all_hw_breakpoints();
2262
2263    CPU_FOREACH(cpu) {
2264        kvm_update_guest_debug(cpu, 0);
2265    }
2266}
2267
2268#else /* !KVM_CAP_SET_GUEST_DEBUG */
2269
2270int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2271{
2272    return -EINVAL;
2273}
2274
2275int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2276                          target_ulong len, int type)
2277{
2278    return -EINVAL;
2279}
2280
2281int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2282                          target_ulong len, int type)
2283{
2284    return -EINVAL;
2285}
2286
2287void kvm_remove_all_breakpoints(CPUState *cpu)
2288{
2289}
2290#endif /* !KVM_CAP_SET_GUEST_DEBUG */
2291
2292int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2293{
2294    KVMState *s = kvm_state;
2295    struct kvm_signal_mask *sigmask;
2296    int r;
2297
2298    if (!sigset) {
2299        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2300    }
2301
2302    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2303
2304    sigmask->len = s->sigmask_len;
2305    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2306    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2307    g_free(sigmask);
2308
2309    return r;
2310}
2311int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2312{
2313    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2314}
2315
2316int kvm_on_sigbus(int code, void *addr)
2317{
2318    return kvm_arch_on_sigbus(code, addr);
2319}
2320
2321int kvm_create_device(KVMState *s, uint64_t type, bool test)
2322{
2323    int ret;
2324    struct kvm_create_device create_dev;
2325
2326    create_dev.type = type;
2327    create_dev.fd = -1;
2328    create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2329
2330    if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2331        return -ENOTSUP;
2332    }
2333
2334    ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2335    if (ret) {
2336        return ret;
2337    }
2338
2339    return test ? 0 : create_dev.fd;
2340}
2341
2342bool kvm_device_supported(int vmfd, uint64_t type)
2343{
2344    struct kvm_create_device create_dev = {
2345        .type = type,
2346        .fd = -1,
2347        .flags = KVM_CREATE_DEVICE_TEST,
2348    };
2349
2350    if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2351        return false;
2352    }
2353
2354    return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2355}
2356
2357int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2358{
2359    struct kvm_one_reg reg;
2360    int r;
2361
2362    reg.id = id;
2363    reg.addr = (uintptr_t) source;
2364    r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2365    if (r) {
2366        trace_kvm_failed_reg_set(id, strerror(-r));
2367    }
2368    return r;
2369}
2370
2371int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2372{
2373    struct kvm_one_reg reg;
2374    int r;
2375
2376    reg.id = id;
2377    reg.addr = (uintptr_t) target;
2378    r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2379    if (r) {
2380        trace_kvm_failed_reg_get(id, strerror(-r));
2381    }
2382    return r;
2383}
2384
2385static void kvm_accel_class_init(ObjectClass *oc, void *data)
2386{
2387    AccelClass *ac = ACCEL_CLASS(oc);
2388    ac->name = "KVM";
2389    ac->init_machine = kvm_init;
2390    ac->allowed = &kvm_allowed;
2391}
2392
2393static const TypeInfo kvm_accel_type = {
2394    .name = TYPE_KVM_ACCEL,
2395    .parent = TYPE_ACCEL,
2396    .class_init = kvm_accel_class_init,
2397    .instance_size = sizeof(KVMState),
2398};
2399
2400static void kvm_type_init(void)
2401{
2402    type_register_static(&kvm_accel_type);
2403}
2404
2405type_init(kvm_type_init);
2406