qemu/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
  19 */
  20#ifndef CPU_ALL_H
  21#define CPU_ALL_H
  22
  23#include "qemu-common.h"
  24
  25#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
  26#define WORDS_ALIGNED
  27#endif
  28
  29/* some important defines:
  30 *
  31 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
  32 * memory accesses.
  33 *
  34 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
  35 * otherwise little endian.
  36 *
  37 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
  38 *
  39 * TARGET_WORDS_BIGENDIAN : same for target cpu
  40 */
  41
  42#include "bswap.h"
  43#include "softfloat.h"
  44
  45#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
  46#define BSWAP_NEEDED
  47#endif
  48
  49#ifdef BSWAP_NEEDED
  50
  51static inline uint16_t tswap16(uint16_t s)
  52{
  53    return bswap16(s);
  54}
  55
  56static inline uint32_t tswap32(uint32_t s)
  57{
  58    return bswap32(s);
  59}
  60
  61static inline uint64_t tswap64(uint64_t s)
  62{
  63    return bswap64(s);
  64}
  65
  66static inline void tswap16s(uint16_t *s)
  67{
  68    *s = bswap16(*s);
  69}
  70
  71static inline void tswap32s(uint32_t *s)
  72{
  73    *s = bswap32(*s);
  74}
  75
  76static inline void tswap64s(uint64_t *s)
  77{
  78    *s = bswap64(*s);
  79}
  80
  81#else
  82
  83static inline uint16_t tswap16(uint16_t s)
  84{
  85    return s;
  86}
  87
  88static inline uint32_t tswap32(uint32_t s)
  89{
  90    return s;
  91}
  92
  93static inline uint64_t tswap64(uint64_t s)
  94{
  95    return s;
  96}
  97
  98static inline void tswap16s(uint16_t *s)
  99{
 100}
 101
 102static inline void tswap32s(uint32_t *s)
 103{
 104}
 105
 106static inline void tswap64s(uint64_t *s)
 107{
 108}
 109
 110#endif
 111
 112#if TARGET_LONG_SIZE == 4
 113#define tswapl(s) tswap32(s)
 114#define tswapls(s) tswap32s((uint32_t *)(s))
 115#define bswaptls(s) bswap32s(s)
 116#else
 117#define tswapl(s) tswap64(s)
 118#define tswapls(s) tswap64s((uint64_t *)(s))
 119#define bswaptls(s) bswap64s(s)
 120#endif
 121
 122typedef union {
 123    float32 f;
 124    uint32_t l;
 125} CPU_FloatU;
 126
 127/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
 128   endian ! */
 129typedef union {
 130    float64 d;
 131#if defined(WORDS_BIGENDIAN) \
 132    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
 133    struct {
 134        uint32_t upper;
 135        uint32_t lower;
 136    } l;
 137#else
 138    struct {
 139        uint32_t lower;
 140        uint32_t upper;
 141    } l;
 142#endif
 143    uint64_t ll;
 144} CPU_DoubleU;
 145
 146#ifdef TARGET_SPARC
 147typedef union {
 148    float128 q;
 149#if defined(WORDS_BIGENDIAN) \
 150    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
 151    struct {
 152        uint32_t upmost;
 153        uint32_t upper;
 154        uint32_t lower;
 155        uint32_t lowest;
 156    } l;
 157    struct {
 158        uint64_t upper;
 159        uint64_t lower;
 160    } ll;
 161#else
 162    struct {
 163        uint32_t lowest;
 164        uint32_t lower;
 165        uint32_t upper;
 166        uint32_t upmost;
 167    } l;
 168    struct {
 169        uint64_t lower;
 170        uint64_t upper;
 171    } ll;
 172#endif
 173} CPU_QuadU;
 174#endif
 175
 176/* CPU memory access without any memory or io remapping */
 177
 178/*
 179 * the generic syntax for the memory accesses is:
 180 *
 181 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 182 *
 183 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 184 *
 185 * type is:
 186 * (empty): integer access
 187 *   f    : float access
 188 *
 189 * sign is:
 190 * (empty): for floats or 32 bit size
 191 *   u    : unsigned
 192 *   s    : signed
 193 *
 194 * size is:
 195 *   b: 8 bits
 196 *   w: 16 bits
 197 *   l: 32 bits
 198 *   q: 64 bits
 199 *
 200 * endian is:
 201 * (empty): target cpu endianness or 8 bit access
 202 *   r    : reversed target cpu endianness (not implemented yet)
 203 *   be   : big endian (not implemented yet)
 204 *   le   : little endian (not implemented yet)
 205 *
 206 * access_type is:
 207 *   raw    : host memory access
 208 *   user   : user mode access using soft MMU
 209 *   kernel : kernel mode access using soft MMU
 210 */
 211static inline int ldub_p(const void *ptr)
 212{
 213    return *(uint8_t *)ptr;
 214}
 215
 216static inline int ldsb_p(const void *ptr)
 217{
 218    return *(int8_t *)ptr;
 219}
 220
 221static inline void stb_p(void *ptr, int v)
 222{
 223    *(uint8_t *)ptr = v;
 224}
 225
 226/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
 227   kernel handles unaligned load/stores may give better results, but
 228   it is a system wide setting : bad */
 229#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 230
 231/* conservative code for little endian unaligned accesses */
 232static inline int lduw_le_p(const void *ptr)
 233{
 234#ifdef _ARCH_PPC
 235    int val;
 236    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 237    return val;
 238#else
 239    const uint8_t *p = ptr;
 240    return p[0] | (p[1] << 8);
 241#endif
 242}
 243
 244static inline int ldsw_le_p(const void *ptr)
 245{
 246#ifdef _ARCH_PPC
 247    int val;
 248    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 249    return (int16_t)val;
 250#else
 251    const uint8_t *p = ptr;
 252    return (int16_t)(p[0] | (p[1] << 8));
 253#endif
 254}
 255
 256static inline int ldl_le_p(const void *ptr)
 257{
 258#ifdef _ARCH_PPC
 259    int val;
 260    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 261    return val;
 262#else
 263    const uint8_t *p = ptr;
 264    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
 265#endif
 266}
 267
 268static inline uint64_t ldq_le_p(const void *ptr)
 269{
 270    const uint8_t *p = ptr;
 271    uint32_t v1, v2;
 272    v1 = ldl_le_p(p);
 273    v2 = ldl_le_p(p + 4);
 274    return v1 | ((uint64_t)v2 << 32);
 275}
 276
 277static inline void stw_le_p(void *ptr, int v)
 278{
 279#ifdef _ARCH_PPC
 280    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
 281#else
 282    uint8_t *p = ptr;
 283    p[0] = v;
 284    p[1] = v >> 8;
 285#endif
 286}
 287
 288static inline void stl_le_p(void *ptr, int v)
 289{
 290#ifdef _ARCH_PPC
 291    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
 292#else
 293    uint8_t *p = ptr;
 294    p[0] = v;
 295    p[1] = v >> 8;
 296    p[2] = v >> 16;
 297    p[3] = v >> 24;
 298#endif
 299}
 300
 301static inline void stq_le_p(void *ptr, uint64_t v)
 302{
 303    uint8_t *p = ptr;
 304    stl_le_p(p, (uint32_t)v);
 305    stl_le_p(p + 4, v >> 32);
 306}
 307
 308/* float access */
 309
 310static inline float32 ldfl_le_p(const void *ptr)
 311{
 312    union {
 313        float32 f;
 314        uint32_t i;
 315    } u;
 316    u.i = ldl_le_p(ptr);
 317    return u.f;
 318}
 319
 320static inline void stfl_le_p(void *ptr, float32 v)
 321{
 322    union {
 323        float32 f;
 324        uint32_t i;
 325    } u;
 326    u.f = v;
 327    stl_le_p(ptr, u.i);
 328}
 329
 330static inline float64 ldfq_le_p(const void *ptr)
 331{
 332    CPU_DoubleU u;
 333    u.l.lower = ldl_le_p(ptr);
 334    u.l.upper = ldl_le_p(ptr + 4);
 335    return u.d;
 336}
 337
 338static inline void stfq_le_p(void *ptr, float64 v)
 339{
 340    CPU_DoubleU u;
 341    u.d = v;
 342    stl_le_p(ptr, u.l.lower);
 343    stl_le_p(ptr + 4, u.l.upper);
 344}
 345
 346#else
 347
 348static inline int lduw_le_p(const void *ptr)
 349{
 350    return *(uint16_t *)ptr;
 351}
 352
 353static inline int ldsw_le_p(const void *ptr)
 354{
 355    return *(int16_t *)ptr;
 356}
 357
 358static inline int ldl_le_p(const void *ptr)
 359{
 360    return *(uint32_t *)ptr;
 361}
 362
 363static inline uint64_t ldq_le_p(const void *ptr)
 364{
 365    return *(uint64_t *)ptr;
 366}
 367
 368static inline void stw_le_p(void *ptr, int v)
 369{
 370    *(uint16_t *)ptr = v;
 371}
 372
 373static inline void stl_le_p(void *ptr, int v)
 374{
 375    *(uint32_t *)ptr = v;
 376}
 377
 378static inline void stq_le_p(void *ptr, uint64_t v)
 379{
 380    *(uint64_t *)ptr = v;
 381}
 382
 383/* float access */
 384
 385static inline float32 ldfl_le_p(const void *ptr)
 386{
 387    return *(float32 *)ptr;
 388}
 389
 390static inline float64 ldfq_le_p(const void *ptr)
 391{
 392    return *(float64 *)ptr;
 393}
 394
 395static inline void stfl_le_p(void *ptr, float32 v)
 396{
 397    *(float32 *)ptr = v;
 398}
 399
 400static inline void stfq_le_p(void *ptr, float64 v)
 401{
 402    *(float64 *)ptr = v;
 403}
 404#endif
 405
 406#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 407
 408static inline int lduw_be_p(const void *ptr)
 409{
 410#if defined(__i386__)
 411    int val;
 412    asm volatile ("movzwl %1, %0\n"
 413                  "xchgb %b0, %h0\n"
 414                  : "=q" (val)
 415                  : "m" (*(uint16_t *)ptr));
 416    return val;
 417#else
 418    const uint8_t *b = ptr;
 419    return ((b[0] << 8) | b[1]);
 420#endif
 421}
 422
 423static inline int ldsw_be_p(const void *ptr)
 424{
 425#if defined(__i386__)
 426    int val;
 427    asm volatile ("movzwl %1, %0\n"
 428                  "xchgb %b0, %h0\n"
 429                  : "=q" (val)
 430                  : "m" (*(uint16_t *)ptr));
 431    return (int16_t)val;
 432#else
 433    const uint8_t *b = ptr;
 434    return (int16_t)((b[0] << 8) | b[1]);
 435#endif
 436}
 437
 438static inline int ldl_be_p(const void *ptr)
 439{
 440#if defined(__i386__) || defined(__x86_64__)
 441    int val;
 442    asm volatile ("movl %1, %0\n"
 443                  "bswap %0\n"
 444                  : "=r" (val)
 445                  : "m" (*(uint32_t *)ptr));
 446    return val;
 447#else
 448    const uint8_t *b = ptr;
 449    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
 450#endif
 451}
 452
 453static inline uint64_t ldq_be_p(const void *ptr)
 454{
 455    uint32_t a,b;
 456    a = ldl_be_p(ptr);
 457    b = ldl_be_p((uint8_t *)ptr + 4);
 458    return (((uint64_t)a<<32)|b);
 459}
 460
 461static inline void stw_be_p(void *ptr, int v)
 462{
 463#if defined(__i386__)
 464    asm volatile ("xchgb %b0, %h0\n"
 465                  "movw %w0, %1\n"
 466                  : "=q" (v)
 467                  : "m" (*(uint16_t *)ptr), "0" (v));
 468#else
 469    uint8_t *d = (uint8_t *) ptr;
 470    d[0] = v >> 8;
 471    d[1] = v;
 472#endif
 473}
 474
 475static inline void stl_be_p(void *ptr, int v)
 476{
 477#if defined(__i386__) || defined(__x86_64__)
 478    asm volatile ("bswap %0\n"
 479                  "movl %0, %1\n"
 480                  : "=r" (v)
 481                  : "m" (*(uint32_t *)ptr), "0" (v));
 482#else
 483    uint8_t *d = (uint8_t *) ptr;
 484    d[0] = v >> 24;
 485    d[1] = v >> 16;
 486    d[2] = v >> 8;
 487    d[3] = v;
 488#endif
 489}
 490
 491static inline void stq_be_p(void *ptr, uint64_t v)
 492{
 493    stl_be_p(ptr, v >> 32);
 494    stl_be_p((uint8_t *)ptr + 4, v);
 495}
 496
 497/* float access */
 498
 499static inline float32 ldfl_be_p(const void *ptr)
 500{
 501    union {
 502        float32 f;
 503        uint32_t i;
 504    } u;
 505    u.i = ldl_be_p(ptr);
 506    return u.f;
 507}
 508
 509static inline void stfl_be_p(void *ptr, float32 v)
 510{
 511    union {
 512        float32 f;
 513        uint32_t i;
 514    } u;
 515    u.f = v;
 516    stl_be_p(ptr, u.i);
 517}
 518
 519static inline float64 ldfq_be_p(const void *ptr)
 520{
 521    CPU_DoubleU u;
 522    u.l.upper = ldl_be_p(ptr);
 523    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
 524    return u.d;
 525}
 526
 527static inline void stfq_be_p(void *ptr, float64 v)
 528{
 529    CPU_DoubleU u;
 530    u.d = v;
 531    stl_be_p(ptr, u.l.upper);
 532    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
 533}
 534
 535#else
 536
 537static inline int lduw_be_p(const void *ptr)
 538{
 539    return *(uint16_t *)ptr;
 540}
 541
 542static inline int ldsw_be_p(const void *ptr)
 543{
 544    return *(int16_t *)ptr;
 545}
 546
 547static inline int ldl_be_p(const void *ptr)
 548{
 549    return *(uint32_t *)ptr;
 550}
 551
 552static inline uint64_t ldq_be_p(const void *ptr)
 553{
 554    return *(uint64_t *)ptr;
 555}
 556
 557static inline void stw_be_p(void *ptr, int v)
 558{
 559    *(uint16_t *)ptr = v;
 560}
 561
 562static inline void stl_be_p(void *ptr, int v)
 563{
 564    *(uint32_t *)ptr = v;
 565}
 566
 567static inline void stq_be_p(void *ptr, uint64_t v)
 568{
 569    *(uint64_t *)ptr = v;
 570}
 571
 572/* float access */
 573
 574static inline float32 ldfl_be_p(const void *ptr)
 575{
 576    return *(float32 *)ptr;
 577}
 578
 579static inline float64 ldfq_be_p(const void *ptr)
 580{
 581    return *(float64 *)ptr;
 582}
 583
 584static inline void stfl_be_p(void *ptr, float32 v)
 585{
 586    *(float32 *)ptr = v;
 587}
 588
 589static inline void stfq_be_p(void *ptr, float64 v)
 590{
 591    *(float64 *)ptr = v;
 592}
 593
 594#endif
 595
 596/* target CPU memory access functions */
 597#if defined(TARGET_WORDS_BIGENDIAN)
 598#define lduw_p(p) lduw_be_p(p)
 599#define ldsw_p(p) ldsw_be_p(p)
 600#define ldl_p(p) ldl_be_p(p)
 601#define ldq_p(p) ldq_be_p(p)
 602#define ldfl_p(p) ldfl_be_p(p)
 603#define ldfq_p(p) ldfq_be_p(p)
 604#define stw_p(p, v) stw_be_p(p, v)
 605#define stl_p(p, v) stl_be_p(p, v)
 606#define stq_p(p, v) stq_be_p(p, v)
 607#define stfl_p(p, v) stfl_be_p(p, v)
 608#define stfq_p(p, v) stfq_be_p(p, v)
 609#else
 610#define lduw_p(p) lduw_le_p(p)
 611#define ldsw_p(p) ldsw_le_p(p)
 612#define ldl_p(p) ldl_le_p(p)
 613#define ldq_p(p) ldq_le_p(p)
 614#define ldfl_p(p) ldfl_le_p(p)
 615#define ldfq_p(p) ldfq_le_p(p)
 616#define stw_p(p, v) stw_le_p(p, v)
 617#define stl_p(p, v) stl_le_p(p, v)
 618#define stq_p(p, v) stq_le_p(p, v)
 619#define stfl_p(p, v) stfl_le_p(p, v)
 620#define stfq_p(p, v) stfq_le_p(p, v)
 621#endif
 622
 623/* MMU memory access macros */
 624
 625#if defined(CONFIG_USER_ONLY)
 626#include <assert.h>
 627#include "qemu-types.h"
 628
 629/* On some host systems the guest address space is reserved on the host.
 630 * This allows the guest address space to be offset to a convenient location.
 631 */
 632//#define GUEST_BASE 0x20000000
 633#define GUEST_BASE 0
 634
 635/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
 636#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
 637#define h2g(x) ({ \
 638    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
 639    /* Check if given address fits target address space */ \
 640    assert(__ret == (abi_ulong)__ret); \
 641    (abi_ulong)__ret; \
 642})
 643#define h2g_valid(x) ({ \
 644    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
 645    (__guest == (abi_ulong)__guest); \
 646})
 647
 648#define saddr(x) g2h(x)
 649#define laddr(x) g2h(x)
 650
 651#else /* !CONFIG_USER_ONLY */
 652/* NOTE: we use double casts if pointers and target_ulong have
 653   different sizes */
 654#define saddr(x) (uint8_t *)(long)(x)
 655#define laddr(x) (uint8_t *)(long)(x)
 656#endif
 657
 658#define ldub_raw(p) ldub_p(laddr((p)))
 659#define ldsb_raw(p) ldsb_p(laddr((p)))
 660#define lduw_raw(p) lduw_p(laddr((p)))
 661#define ldsw_raw(p) ldsw_p(laddr((p)))
 662#define ldl_raw(p) ldl_p(laddr((p)))
 663#define ldq_raw(p) ldq_p(laddr((p)))
 664#define ldfl_raw(p) ldfl_p(laddr((p)))
 665#define ldfq_raw(p) ldfq_p(laddr((p)))
 666#define stb_raw(p, v) stb_p(saddr((p)), v)
 667#define stw_raw(p, v) stw_p(saddr((p)), v)
 668#define stl_raw(p, v) stl_p(saddr((p)), v)
 669#define stq_raw(p, v) stq_p(saddr((p)), v)
 670#define stfl_raw(p, v) stfl_p(saddr((p)), v)
 671#define stfq_raw(p, v) stfq_p(saddr((p)), v)
 672
 673
 674#if defined(CONFIG_USER_ONLY)
 675
 676/* if user mode, no other memory access functions */
 677#define ldub(p) ldub_raw(p)
 678#define ldsb(p) ldsb_raw(p)
 679#define lduw(p) lduw_raw(p)
 680#define ldsw(p) ldsw_raw(p)
 681#define ldl(p) ldl_raw(p)
 682#define ldq(p) ldq_raw(p)
 683#define ldfl(p) ldfl_raw(p)
 684#define ldfq(p) ldfq_raw(p)
 685#define stb(p, v) stb_raw(p, v)
 686#define stw(p, v) stw_raw(p, v)
 687#define stl(p, v) stl_raw(p, v)
 688#define stq(p, v) stq_raw(p, v)
 689#define stfl(p, v) stfl_raw(p, v)
 690#define stfq(p, v) stfq_raw(p, v)
 691
 692#define ldub_code(p) ldub_raw(p)
 693#define ldsb_code(p) ldsb_raw(p)
 694#define lduw_code(p) lduw_raw(p)
 695#define ldsw_code(p) ldsw_raw(p)
 696#define ldl_code(p) ldl_raw(p)
 697#define ldq_code(p) ldq_raw(p)
 698
 699#define ldub_kernel(p) ldub_raw(p)
 700#define ldsb_kernel(p) ldsb_raw(p)
 701#define lduw_kernel(p) lduw_raw(p)
 702#define ldsw_kernel(p) ldsw_raw(p)
 703#define ldl_kernel(p) ldl_raw(p)
 704#define ldq_kernel(p) ldq_raw(p)
 705#define ldfl_kernel(p) ldfl_raw(p)
 706#define ldfq_kernel(p) ldfq_raw(p)
 707#define stb_kernel(p, v) stb_raw(p, v)
 708#define stw_kernel(p, v) stw_raw(p, v)
 709#define stl_kernel(p, v) stl_raw(p, v)
 710#define stq_kernel(p, v) stq_raw(p, v)
 711#define stfl_kernel(p, v) stfl_raw(p, v)
 712#define stfq_kernel(p, vt) stfq_raw(p, v)
 713
 714#endif /* defined(CONFIG_USER_ONLY) */
 715
 716/* page related stuff */
 717
 718#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
 719#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
 720#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
 721
 722/* ??? These should be the larger of unsigned long and target_ulong.  */
 723extern unsigned long qemu_real_host_page_size;
 724extern unsigned long qemu_host_page_bits;
 725extern unsigned long qemu_host_page_size;
 726extern unsigned long qemu_host_page_mask;
 727
 728#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
 729
 730/* same as PROT_xxx */
 731#define PAGE_READ      0x0001
 732#define PAGE_WRITE     0x0002
 733#define PAGE_EXEC      0x0004
 734#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 735#define PAGE_VALID     0x0008
 736/* original state of the write flag (used when tracking self-modifying
 737   code */
 738#define PAGE_WRITE_ORG 0x0010
 739#define PAGE_RESERVED  0x0020
 740
 741void page_dump(FILE *f);
 742int page_get_flags(target_ulong address);
 743void page_set_flags(target_ulong start, target_ulong end, int flags);
 744int page_check_range(target_ulong start, target_ulong len, int flags);
 745
 746void cpu_exec_init_all(unsigned long tb_size);
 747CPUState *cpu_copy(CPUState *env);
 748
 749void cpu_dump_state(CPUState *env, FILE *f,
 750                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
 751                    int flags);
 752void cpu_dump_statistics (CPUState *env, FILE *f,
 753                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
 754                          int flags);
 755
 756void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
 757    __attribute__ ((__format__ (__printf__, 2, 3)));
 758extern CPUState *first_cpu;
 759extern CPUState *cpu_single_env;
 760extern int64_t qemu_icount;
 761extern int use_icount;
 762
 763#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
 764#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
 765#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
 766#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
 767#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
 768#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
 769#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
 770#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
 771#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
 772#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
 773
 774void cpu_interrupt(CPUState *s, int mask);
 775void cpu_reset_interrupt(CPUState *env, int mask);
 776
 777/* Breakpoint/watchpoint flags */
 778#define BP_MEM_READ           0x01
 779#define BP_MEM_WRITE          0x02
 780#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
 781#define BP_STOP_BEFORE_ACCESS 0x04
 782#define BP_WATCHPOINT_HIT     0x08
 783#define BP_GDB                0x10
 784#define BP_CPU                0x20
 785
 786int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
 787                          CPUBreakpoint **breakpoint);
 788int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
 789void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
 790void cpu_breakpoint_remove_all(CPUState *env, int mask);
 791int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
 792                          int flags, CPUWatchpoint **watchpoint);
 793int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
 794                          target_ulong len, int flags);
 795void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
 796void cpu_watchpoint_remove_all(CPUState *env, int mask);
 797
 798#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
 799#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
 800#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
 801
 802void cpu_single_step(CPUState *env, int enabled);
 803void cpu_reset(CPUState *s);
 804
 805/* Return the physical page corresponding to a virtual one. Use it
 806   only for debugging because no protection checks are done. Return -1
 807   if no page found. */
 808target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
 809
 810#define CPU_LOG_TB_OUT_ASM (1 << 0)
 811#define CPU_LOG_TB_IN_ASM  (1 << 1)
 812#define CPU_LOG_TB_OP      (1 << 2)
 813#define CPU_LOG_TB_OP_OPT  (1 << 3)
 814#define CPU_LOG_INT        (1 << 4)
 815#define CPU_LOG_EXEC       (1 << 5)
 816#define CPU_LOG_PCALL      (1 << 6)
 817#define CPU_LOG_IOPORT     (1 << 7)
 818#define CPU_LOG_TB_CPU     (1 << 8)
 819#define CPU_LOG_RESET      (1 << 9)
 820
 821/* define log items */
 822typedef struct CPULogItem {
 823    int mask;
 824    const char *name;
 825    const char *help;
 826} CPULogItem;
 827
 828extern const CPULogItem cpu_log_items[];
 829
 830void cpu_set_log(int log_flags);
 831void cpu_set_log_filename(const char *filename);
 832int cpu_str_to_log_mask(const char *str);
 833
 834/* IO ports API */
 835
 836/* NOTE: as these functions may be even used when there is an isa
 837   brige on non x86 targets, we always defined them */
 838#ifndef NO_CPU_IO_DEFS
 839void cpu_outb(CPUState *env, int addr, int val);
 840void cpu_outw(CPUState *env, int addr, int val);
 841void cpu_outl(CPUState *env, int addr, int val);
 842int cpu_inb(CPUState *env, int addr);
 843int cpu_inw(CPUState *env, int addr);
 844int cpu_inl(CPUState *env, int addr);
 845#endif
 846
 847/* address in the RAM (different from a physical address) */
 848#ifdef USE_KQEMU
 849typedef uint32_t ram_addr_t;
 850#else
 851typedef unsigned long ram_addr_t;
 852#endif
 853
 854/* memory API */
 855
 856extern ram_addr_t phys_ram_size;
 857extern int phys_ram_fd;
 858extern uint8_t *phys_ram_base;
 859extern uint8_t *phys_ram_dirty;
 860extern ram_addr_t ram_size;
 861
 862/* physical memory access */
 863
 864/* MMIO pages are identified by a combination of an IO device index and
 865   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
 866   so only a limited number of ids are avaiable.  */
 867
 868#define IO_MEM_SHIFT       3
 869#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
 870
 871#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
 872#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
 873#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
 874#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
 875
 876/* Acts like a ROM when read and like a device when written.  */
 877#define IO_MEM_ROMD        (1)
 878#define IO_MEM_SUBPAGE     (2)
 879#define IO_MEM_SUBWIDTH    (4)
 880
 881/* Flags stored in the low bits of the TLB virtual address.  These are
 882   defined so that fast path ram access is all zeros.  */
 883/* Zero if TLB entry is valid.  */
 884#define TLB_INVALID_MASK   (1 << 3)
 885/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 886   contain the page physical address.  */
 887#define TLB_NOTDIRTY    (1 << 4)
 888/* Set if TLB entry is an IO callback.  */
 889#define TLB_MMIO        (1 << 5)
 890
 891typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
 892typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
 893
 894void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
 895                                         ram_addr_t size,
 896                                         ram_addr_t phys_offset,
 897                                         ram_addr_t region_offset);
 898static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
 899                                                ram_addr_t size,
 900                                                ram_addr_t phys_offset)
 901{
 902    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
 903}
 904
 905ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
 906ram_addr_t qemu_ram_alloc(ram_addr_t);
 907void qemu_ram_free(ram_addr_t addr);
 908int cpu_register_io_memory(int io_index,
 909                           CPUReadMemoryFunc **mem_read,
 910                           CPUWriteMemoryFunc **mem_write,
 911                           void *opaque);
 912void cpu_unregister_io_memory(int table_address);
 913CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
 914CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
 915
 916void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
 917                            int len, int is_write);
 918static inline void cpu_physical_memory_read(target_phys_addr_t addr,
 919                                            uint8_t *buf, int len)
 920{
 921    cpu_physical_memory_rw(addr, buf, len, 0);
 922}
 923static inline void cpu_physical_memory_write(target_phys_addr_t addr,
 924                                             const uint8_t *buf, int len)
 925{
 926    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
 927}
 928void *cpu_physical_memory_map(target_phys_addr_t addr,
 929                              target_phys_addr_t *plen,
 930                              int is_write);
 931void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
 932                               int is_write, target_phys_addr_t access_len);
 933void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
 934void cpu_unregister_map_client(void *cookie);
 935
 936uint32_t ldub_phys(target_phys_addr_t addr);
 937uint32_t lduw_phys(target_phys_addr_t addr);
 938uint32_t ldl_phys(target_phys_addr_t addr);
 939uint64_t ldq_phys(target_phys_addr_t addr);
 940void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
 941void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
 942void stb_phys(target_phys_addr_t addr, uint32_t val);
 943void stw_phys(target_phys_addr_t addr, uint32_t val);
 944void stl_phys(target_phys_addr_t addr, uint32_t val);
 945void stq_phys(target_phys_addr_t addr, uint64_t val);
 946
 947void cpu_physical_memory_write_rom(target_phys_addr_t addr,
 948                                   const uint8_t *buf, int len);
 949int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
 950                        uint8_t *buf, int len, int is_write);
 951
 952#define VGA_DIRTY_FLAG       0x01
 953#define CODE_DIRTY_FLAG      0x02
 954#define KQEMU_DIRTY_FLAG     0x04
 955#define MIGRATION_DIRTY_FLAG 0x08
 956
 957/* read dirty bit (return 0 or 1) */
 958static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
 959{
 960    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
 961}
 962
 963static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
 964                                                int dirty_flags)
 965{
 966    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
 967}
 968
 969static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
 970{
 971    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
 972}
 973
 974void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 975                                     int dirty_flags);
 976void cpu_tlb_update_dirty(CPUState *env);
 977
 978int cpu_physical_memory_set_dirty_tracking(int enable);
 979
 980int cpu_physical_memory_get_dirty_tracking(void);
 981
 982void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
 983
 984void dump_exec_info(FILE *f,
 985                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
 986
 987/* Coalesced MMIO regions are areas where write operations can be reordered.
 988 * This usually implies that write operations are side-effect free.  This allows
 989 * batching which can make a major impact on performance when using
 990 * virtualization.
 991 */
 992void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
 993
 994void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
 995
 996/*******************************************/
 997/* host CPU ticks (if available) */
 998
 999#if defined(_ARCH_PPC)
1000
1001static inline int64_t cpu_get_real_ticks(void)
1002{
1003    int64_t retval;
1004#ifdef _ARCH_PPC64
1005    /* This reads timebase in one 64bit go and includes Cell workaround from:
1006       http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
1007     */
1008    __asm__ __volatile__ (
1009        "mftb    %0\n\t"
1010        "cmpwi   %0,0\n\t"
1011        "beq-    $-8"
1012        : "=r" (retval));
1013#else
1014    /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
1015    unsigned long junk;
1016    __asm__ __volatile__ (
1017        "mftbu   %1\n\t"
1018        "mftb    %L0\n\t"
1019        "mftbu   %0\n\t"
1020        "cmpw    %0,%1\n\t"
1021        "bne     $-16"
1022        : "=r" (retval), "=r" (junk));
1023#endif
1024    return retval;
1025}
1026
1027#elif defined(__i386__)
1028
1029static inline int64_t cpu_get_real_ticks(void)
1030{
1031    int64_t val;
1032    asm volatile ("rdtsc" : "=A" (val));
1033    return val;
1034}
1035
1036#elif defined(__x86_64__)
1037
1038static inline int64_t cpu_get_real_ticks(void)
1039{
1040    uint32_t low,high;
1041    int64_t val;
1042    asm volatile("rdtsc" : "=a" (low), "=d" (high));
1043    val = high;
1044    val <<= 32;
1045    val |= low;
1046    return val;
1047}
1048
1049#elif defined(__hppa__)
1050
1051static inline int64_t cpu_get_real_ticks(void)
1052{
1053    int val;
1054    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1055    return val;
1056}
1057
1058#elif defined(__ia64)
1059
1060static inline int64_t cpu_get_real_ticks(void)
1061{
1062        int64_t val;
1063        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1064        return val;
1065}
1066
1067#elif defined(__s390__)
1068
1069static inline int64_t cpu_get_real_ticks(void)
1070{
1071    int64_t val;
1072    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1073    return val;
1074}
1075
1076#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1077
1078static inline int64_t cpu_get_real_ticks (void)
1079{
1080#if     defined(_LP64)
1081        uint64_t        rval;
1082        asm volatile("rd %%tick,%0" : "=r"(rval));
1083        return rval;
1084#else
1085        union {
1086                uint64_t i64;
1087                struct {
1088                        uint32_t high;
1089                        uint32_t low;
1090                }       i32;
1091        } rval;
1092        asm volatile("rd %%tick,%1; srlx %1,32,%0"
1093                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1094        return rval.i64;
1095#endif
1096}
1097
1098#elif defined(__mips__)
1099
1100static inline int64_t cpu_get_real_ticks(void)
1101{
1102#if __mips_isa_rev >= 2
1103    uint32_t count;
1104    static uint32_t cyc_per_count = 0;
1105
1106    if (!cyc_per_count)
1107        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1108
1109    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1110    return (int64_t)(count * cyc_per_count);
1111#else
1112    /* FIXME */
1113    static int64_t ticks = 0;
1114    return ticks++;
1115#endif
1116}
1117
1118#else
1119/* The host CPU doesn't have an easily accessible cycle counter.
1120   Just return a monotonically increasing value.  This will be
1121   totally wrong, but hopefully better than nothing.  */
1122static inline int64_t cpu_get_real_ticks (void)
1123{
1124    static int64_t ticks = 0;
1125    return ticks++;
1126}
1127#endif
1128
1129/* profiling */
1130#ifdef CONFIG_PROFILER
1131static inline int64_t profile_getclock(void)
1132{
1133    return cpu_get_real_ticks();
1134}
1135
1136extern int64_t kqemu_time, kqemu_time_start;
1137extern int64_t qemu_time, qemu_time_start;
1138extern int64_t tlb_flush_time;
1139extern int64_t kqemu_exec_count;
1140extern int64_t dev_time;
1141extern int64_t kqemu_ret_int_count;
1142extern int64_t kqemu_ret_excp_count;
1143extern int64_t kqemu_ret_intr_count;
1144#endif
1145
1146#endif /* CPU_ALL_H */
1147