qemu/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ALL_H
  20#define CPU_ALL_H
  21
  22#include "qemu-common.h"
  23#include "cpu-common.h"
  24
  25/* some important defines:
  26 *
  27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
  28 * memory accesses.
  29 *
  30 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
  31 * otherwise little endian.
  32 *
  33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
  34 *
  35 * TARGET_WORDS_BIGENDIAN : same for target cpu
  36 */
  37
  38#include "softfloat.h"
  39
  40#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
  41#define BSWAP_NEEDED
  42#endif
  43
  44#ifdef BSWAP_NEEDED
  45
  46static inline uint16_t tswap16(uint16_t s)
  47{
  48    return bswap16(s);
  49}
  50
  51static inline uint32_t tswap32(uint32_t s)
  52{
  53    return bswap32(s);
  54}
  55
  56static inline uint64_t tswap64(uint64_t s)
  57{
  58    return bswap64(s);
  59}
  60
  61static inline void tswap16s(uint16_t *s)
  62{
  63    *s = bswap16(*s);
  64}
  65
  66static inline void tswap32s(uint32_t *s)
  67{
  68    *s = bswap32(*s);
  69}
  70
  71static inline void tswap64s(uint64_t *s)
  72{
  73    *s = bswap64(*s);
  74}
  75
  76#else
  77
  78static inline uint16_t tswap16(uint16_t s)
  79{
  80    return s;
  81}
  82
  83static inline uint32_t tswap32(uint32_t s)
  84{
  85    return s;
  86}
  87
  88static inline uint64_t tswap64(uint64_t s)
  89{
  90    return s;
  91}
  92
  93static inline void tswap16s(uint16_t *s)
  94{
  95}
  96
  97static inline void tswap32s(uint32_t *s)
  98{
  99}
 100
 101static inline void tswap64s(uint64_t *s)
 102{
 103}
 104
 105#endif
 106
 107#if TARGET_LONG_SIZE == 4
 108#define tswapl(s) tswap32(s)
 109#define tswapls(s) tswap32s((uint32_t *)(s))
 110#define bswaptls(s) bswap32s(s)
 111#else
 112#define tswapl(s) tswap64(s)
 113#define tswapls(s) tswap64s((uint64_t *)(s))
 114#define bswaptls(s) bswap64s(s)
 115#endif
 116
 117typedef union {
 118    float32 f;
 119    uint32_t l;
 120} CPU_FloatU;
 121
 122/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
 123   endian ! */
 124typedef union {
 125    float64 d;
 126#if defined(WORDS_BIGENDIAN) \
 127    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
 128    struct {
 129        uint32_t upper;
 130        uint32_t lower;
 131    } l;
 132#else
 133    struct {
 134        uint32_t lower;
 135        uint32_t upper;
 136    } l;
 137#endif
 138    uint64_t ll;
 139} CPU_DoubleU;
 140
 141#ifdef TARGET_SPARC
 142typedef union {
 143    float128 q;
 144#if defined(WORDS_BIGENDIAN) \
 145    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
 146    struct {
 147        uint32_t upmost;
 148        uint32_t upper;
 149        uint32_t lower;
 150        uint32_t lowest;
 151    } l;
 152    struct {
 153        uint64_t upper;
 154        uint64_t lower;
 155    } ll;
 156#else
 157    struct {
 158        uint32_t lowest;
 159        uint32_t lower;
 160        uint32_t upper;
 161        uint32_t upmost;
 162    } l;
 163    struct {
 164        uint64_t lower;
 165        uint64_t upper;
 166    } ll;
 167#endif
 168} CPU_QuadU;
 169#endif
 170
 171/* CPU memory access without any memory or io remapping */
 172
 173/*
 174 * the generic syntax for the memory accesses is:
 175 *
 176 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 177 *
 178 * store: st{type}{size}{endian}_{access_type}(ptr, val)
 179 *
 180 * type is:
 181 * (empty): integer access
 182 *   f    : float access
 183 *
 184 * sign is:
 185 * (empty): for floats or 32 bit size
 186 *   u    : unsigned
 187 *   s    : signed
 188 *
 189 * size is:
 190 *   b: 8 bits
 191 *   w: 16 bits
 192 *   l: 32 bits
 193 *   q: 64 bits
 194 *
 195 * endian is:
 196 * (empty): target cpu endianness or 8 bit access
 197 *   r    : reversed target cpu endianness (not implemented yet)
 198 *   be   : big endian (not implemented yet)
 199 *   le   : little endian (not implemented yet)
 200 *
 201 * access_type is:
 202 *   raw    : host memory access
 203 *   user   : user mode access using soft MMU
 204 *   kernel : kernel mode access using soft MMU
 205 */
 206static inline int ldub_p(const void *ptr)
 207{
 208    return *(uint8_t *)ptr;
 209}
 210
 211static inline int ldsb_p(const void *ptr)
 212{
 213    return *(int8_t *)ptr;
 214}
 215
 216static inline void stb_p(void *ptr, int v)
 217{
 218    *(uint8_t *)ptr = v;
 219}
 220
 221/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
 222   kernel handles unaligned load/stores may give better results, but
 223   it is a system wide setting : bad */
 224#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 225
 226/* conservative code for little endian unaligned accesses */
 227static inline int lduw_le_p(const void *ptr)
 228{
 229#ifdef _ARCH_PPC
 230    int val;
 231    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 232    return val;
 233#else
 234    const uint8_t *p = ptr;
 235    return p[0] | (p[1] << 8);
 236#endif
 237}
 238
 239static inline int ldsw_le_p(const void *ptr)
 240{
 241#ifdef _ARCH_PPC
 242    int val;
 243    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 244    return (int16_t)val;
 245#else
 246    const uint8_t *p = ptr;
 247    return (int16_t)(p[0] | (p[1] << 8));
 248#endif
 249}
 250
 251static inline int ldl_le_p(const void *ptr)
 252{
 253#ifdef _ARCH_PPC
 254    int val;
 255    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 256    return val;
 257#else
 258    const uint8_t *p = ptr;
 259    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
 260#endif
 261}
 262
 263static inline uint64_t ldq_le_p(const void *ptr)
 264{
 265    const uint8_t *p = ptr;
 266    uint32_t v1, v2;
 267    v1 = ldl_le_p(p);
 268    v2 = ldl_le_p(p + 4);
 269    return v1 | ((uint64_t)v2 << 32);
 270}
 271
 272static inline void stw_le_p(void *ptr, int v)
 273{
 274#ifdef _ARCH_PPC
 275    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
 276#else
 277    uint8_t *p = ptr;
 278    p[0] = v;
 279    p[1] = v >> 8;
 280#endif
 281}
 282
 283static inline void stl_le_p(void *ptr, int v)
 284{
 285#ifdef _ARCH_PPC
 286    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
 287#else
 288    uint8_t *p = ptr;
 289    p[0] = v;
 290    p[1] = v >> 8;
 291    p[2] = v >> 16;
 292    p[3] = v >> 24;
 293#endif
 294}
 295
 296static inline void stq_le_p(void *ptr, uint64_t v)
 297{
 298    uint8_t *p = ptr;
 299    stl_le_p(p, (uint32_t)v);
 300    stl_le_p(p + 4, v >> 32);
 301}
 302
 303/* float access */
 304
 305static inline float32 ldfl_le_p(const void *ptr)
 306{
 307    union {
 308        float32 f;
 309        uint32_t i;
 310    } u;
 311    u.i = ldl_le_p(ptr);
 312    return u.f;
 313}
 314
 315static inline void stfl_le_p(void *ptr, float32 v)
 316{
 317    union {
 318        float32 f;
 319        uint32_t i;
 320    } u;
 321    u.f = v;
 322    stl_le_p(ptr, u.i);
 323}
 324
 325static inline float64 ldfq_le_p(const void *ptr)
 326{
 327    CPU_DoubleU u;
 328    u.l.lower = ldl_le_p(ptr);
 329    u.l.upper = ldl_le_p(ptr + 4);
 330    return u.d;
 331}
 332
 333static inline void stfq_le_p(void *ptr, float64 v)
 334{
 335    CPU_DoubleU u;
 336    u.d = v;
 337    stl_le_p(ptr, u.l.lower);
 338    stl_le_p(ptr + 4, u.l.upper);
 339}
 340
 341#else
 342
 343static inline int lduw_le_p(const void *ptr)
 344{
 345    return *(uint16_t *)ptr;
 346}
 347
 348static inline int ldsw_le_p(const void *ptr)
 349{
 350    return *(int16_t *)ptr;
 351}
 352
 353static inline int ldl_le_p(const void *ptr)
 354{
 355    return *(uint32_t *)ptr;
 356}
 357
 358static inline uint64_t ldq_le_p(const void *ptr)
 359{
 360    return *(uint64_t *)ptr;
 361}
 362
 363static inline void stw_le_p(void *ptr, int v)
 364{
 365    *(uint16_t *)ptr = v;
 366}
 367
 368static inline void stl_le_p(void *ptr, int v)
 369{
 370    *(uint32_t *)ptr = v;
 371}
 372
 373static inline void stq_le_p(void *ptr, uint64_t v)
 374{
 375    *(uint64_t *)ptr = v;
 376}
 377
 378/* float access */
 379
 380static inline float32 ldfl_le_p(const void *ptr)
 381{
 382    return *(float32 *)ptr;
 383}
 384
 385static inline float64 ldfq_le_p(const void *ptr)
 386{
 387    return *(float64 *)ptr;
 388}
 389
 390static inline void stfl_le_p(void *ptr, float32 v)
 391{
 392    *(float32 *)ptr = v;
 393}
 394
 395static inline void stfq_le_p(void *ptr, float64 v)
 396{
 397    *(float64 *)ptr = v;
 398}
 399#endif
 400
 401#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 402
 403static inline int lduw_be_p(const void *ptr)
 404{
 405#if defined(__i386__)
 406    int val;
 407    asm volatile ("movzwl %1, %0\n"
 408                  "xchgb %b0, %h0\n"
 409                  : "=q" (val)
 410                  : "m" (*(uint16_t *)ptr));
 411    return val;
 412#else
 413    const uint8_t *b = ptr;
 414    return ((b[0] << 8) | b[1]);
 415#endif
 416}
 417
 418static inline int ldsw_be_p(const void *ptr)
 419{
 420#if defined(__i386__)
 421    int val;
 422    asm volatile ("movzwl %1, %0\n"
 423                  "xchgb %b0, %h0\n"
 424                  : "=q" (val)
 425                  : "m" (*(uint16_t *)ptr));
 426    return (int16_t)val;
 427#else
 428    const uint8_t *b = ptr;
 429    return (int16_t)((b[0] << 8) | b[1]);
 430#endif
 431}
 432
 433static inline int ldl_be_p(const void *ptr)
 434{
 435#if defined(__i386__) || defined(__x86_64__)
 436    int val;
 437    asm volatile ("movl %1, %0\n"
 438                  "bswap %0\n"
 439                  : "=r" (val)
 440                  : "m" (*(uint32_t *)ptr));
 441    return val;
 442#else
 443    const uint8_t *b = ptr;
 444    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
 445#endif
 446}
 447
 448static inline uint64_t ldq_be_p(const void *ptr)
 449{
 450    uint32_t a,b;
 451    a = ldl_be_p(ptr);
 452    b = ldl_be_p((uint8_t *)ptr + 4);
 453    return (((uint64_t)a<<32)|b);
 454}
 455
 456static inline void stw_be_p(void *ptr, int v)
 457{
 458#if defined(__i386__)
 459    asm volatile ("xchgb %b0, %h0\n"
 460                  "movw %w0, %1\n"
 461                  : "=q" (v)
 462                  : "m" (*(uint16_t *)ptr), "0" (v));
 463#else
 464    uint8_t *d = (uint8_t *) ptr;
 465    d[0] = v >> 8;
 466    d[1] = v;
 467#endif
 468}
 469
 470static inline void stl_be_p(void *ptr, int v)
 471{
 472#if defined(__i386__) || defined(__x86_64__)
 473    asm volatile ("bswap %0\n"
 474                  "movl %0, %1\n"
 475                  : "=r" (v)
 476                  : "m" (*(uint32_t *)ptr), "0" (v));
 477#else
 478    uint8_t *d = (uint8_t *) ptr;
 479    d[0] = v >> 24;
 480    d[1] = v >> 16;
 481    d[2] = v >> 8;
 482    d[3] = v;
 483#endif
 484}
 485
 486static inline void stq_be_p(void *ptr, uint64_t v)
 487{
 488    stl_be_p(ptr, v >> 32);
 489    stl_be_p((uint8_t *)ptr + 4, v);
 490}
 491
 492/* float access */
 493
 494static inline float32 ldfl_be_p(const void *ptr)
 495{
 496    union {
 497        float32 f;
 498        uint32_t i;
 499    } u;
 500    u.i = ldl_be_p(ptr);
 501    return u.f;
 502}
 503
 504static inline void stfl_be_p(void *ptr, float32 v)
 505{
 506    union {
 507        float32 f;
 508        uint32_t i;
 509    } u;
 510    u.f = v;
 511    stl_be_p(ptr, u.i);
 512}
 513
 514static inline float64 ldfq_be_p(const void *ptr)
 515{
 516    CPU_DoubleU u;
 517    u.l.upper = ldl_be_p(ptr);
 518    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
 519    return u.d;
 520}
 521
 522static inline void stfq_be_p(void *ptr, float64 v)
 523{
 524    CPU_DoubleU u;
 525    u.d = v;
 526    stl_be_p(ptr, u.l.upper);
 527    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
 528}
 529
 530#else
 531
 532static inline int lduw_be_p(const void *ptr)
 533{
 534    return *(uint16_t *)ptr;
 535}
 536
 537static inline int ldsw_be_p(const void *ptr)
 538{
 539    return *(int16_t *)ptr;
 540}
 541
 542static inline int ldl_be_p(const void *ptr)
 543{
 544    return *(uint32_t *)ptr;
 545}
 546
 547static inline uint64_t ldq_be_p(const void *ptr)
 548{
 549    return *(uint64_t *)ptr;
 550}
 551
 552static inline void stw_be_p(void *ptr, int v)
 553{
 554    *(uint16_t *)ptr = v;
 555}
 556
 557static inline void stl_be_p(void *ptr, int v)
 558{
 559    *(uint32_t *)ptr = v;
 560}
 561
 562static inline void stq_be_p(void *ptr, uint64_t v)
 563{
 564    *(uint64_t *)ptr = v;
 565}
 566
 567/* float access */
 568
 569static inline float32 ldfl_be_p(const void *ptr)
 570{
 571    return *(float32 *)ptr;
 572}
 573
 574static inline float64 ldfq_be_p(const void *ptr)
 575{
 576    return *(float64 *)ptr;
 577}
 578
 579static inline void stfl_be_p(void *ptr, float32 v)
 580{
 581    *(float32 *)ptr = v;
 582}
 583
 584static inline void stfq_be_p(void *ptr, float64 v)
 585{
 586    *(float64 *)ptr = v;
 587}
 588
 589#endif
 590
 591/* target CPU memory access functions */
 592#if defined(TARGET_WORDS_BIGENDIAN)
 593#define lduw_p(p) lduw_be_p(p)
 594#define ldsw_p(p) ldsw_be_p(p)
 595#define ldl_p(p) ldl_be_p(p)
 596#define ldq_p(p) ldq_be_p(p)
 597#define ldfl_p(p) ldfl_be_p(p)
 598#define ldfq_p(p) ldfq_be_p(p)
 599#define stw_p(p, v) stw_be_p(p, v)
 600#define stl_p(p, v) stl_be_p(p, v)
 601#define stq_p(p, v) stq_be_p(p, v)
 602#define stfl_p(p, v) stfl_be_p(p, v)
 603#define stfq_p(p, v) stfq_be_p(p, v)
 604#else
 605#define lduw_p(p) lduw_le_p(p)
 606#define ldsw_p(p) ldsw_le_p(p)
 607#define ldl_p(p) ldl_le_p(p)
 608#define ldq_p(p) ldq_le_p(p)
 609#define ldfl_p(p) ldfl_le_p(p)
 610#define ldfq_p(p) ldfq_le_p(p)
 611#define stw_p(p, v) stw_le_p(p, v)
 612#define stl_p(p, v) stl_le_p(p, v)
 613#define stq_p(p, v) stq_le_p(p, v)
 614#define stfl_p(p, v) stfl_le_p(p, v)
 615#define stfq_p(p, v) stfq_le_p(p, v)
 616#endif
 617
 618/* MMU memory access macros */
 619
 620#if defined(CONFIG_USER_ONLY)
 621#include <assert.h>
 622#include "qemu-types.h"
 623
 624/* On some host systems the guest address space is reserved on the host.
 625 * This allows the guest address space to be offset to a convenient location.
 626 */
 627//#define GUEST_BASE 0x20000000
 628#define GUEST_BASE 0
 629
 630/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
 631#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
 632#define h2g(x) ({ \
 633    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
 634    /* Check if given address fits target address space */ \
 635    assert(__ret == (abi_ulong)__ret); \
 636    (abi_ulong)__ret; \
 637})
 638#define h2g_valid(x) ({ \
 639    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
 640    (__guest == (abi_ulong)__guest); \
 641})
 642
 643#define saddr(x) g2h(x)
 644#define laddr(x) g2h(x)
 645
 646#else /* !CONFIG_USER_ONLY */
 647/* NOTE: we use double casts if pointers and target_ulong have
 648   different sizes */
 649#define saddr(x) (uint8_t *)(long)(x)
 650#define laddr(x) (uint8_t *)(long)(x)
 651#endif
 652
 653#define ldub_raw(p) ldub_p(laddr((p)))
 654#define ldsb_raw(p) ldsb_p(laddr((p)))
 655#define lduw_raw(p) lduw_p(laddr((p)))
 656#define ldsw_raw(p) ldsw_p(laddr((p)))
 657#define ldl_raw(p) ldl_p(laddr((p)))
 658#define ldq_raw(p) ldq_p(laddr((p)))
 659#define ldfl_raw(p) ldfl_p(laddr((p)))
 660#define ldfq_raw(p) ldfq_p(laddr((p)))
 661#define stb_raw(p, v) stb_p(saddr((p)), v)
 662#define stw_raw(p, v) stw_p(saddr((p)), v)
 663#define stl_raw(p, v) stl_p(saddr((p)), v)
 664#define stq_raw(p, v) stq_p(saddr((p)), v)
 665#define stfl_raw(p, v) stfl_p(saddr((p)), v)
 666#define stfq_raw(p, v) stfq_p(saddr((p)), v)
 667
 668
 669#if defined(CONFIG_USER_ONLY)
 670
 671/* if user mode, no other memory access functions */
 672#define ldub(p) ldub_raw(p)
 673#define ldsb(p) ldsb_raw(p)
 674#define lduw(p) lduw_raw(p)
 675#define ldsw(p) ldsw_raw(p)
 676#define ldl(p) ldl_raw(p)
 677#define ldq(p) ldq_raw(p)
 678#define ldfl(p) ldfl_raw(p)
 679#define ldfq(p) ldfq_raw(p)
 680#define stb(p, v) stb_raw(p, v)
 681#define stw(p, v) stw_raw(p, v)
 682#define stl(p, v) stl_raw(p, v)
 683#define stq(p, v) stq_raw(p, v)
 684#define stfl(p, v) stfl_raw(p, v)
 685#define stfq(p, v) stfq_raw(p, v)
 686
 687#define ldub_code(p) ldub_raw(p)
 688#define ldsb_code(p) ldsb_raw(p)
 689#define lduw_code(p) lduw_raw(p)
 690#define ldsw_code(p) ldsw_raw(p)
 691#define ldl_code(p) ldl_raw(p)
 692#define ldq_code(p) ldq_raw(p)
 693
 694#define ldub_kernel(p) ldub_raw(p)
 695#define ldsb_kernel(p) ldsb_raw(p)
 696#define lduw_kernel(p) lduw_raw(p)
 697#define ldsw_kernel(p) ldsw_raw(p)
 698#define ldl_kernel(p) ldl_raw(p)
 699#define ldq_kernel(p) ldq_raw(p)
 700#define ldfl_kernel(p) ldfl_raw(p)
 701#define ldfq_kernel(p) ldfq_raw(p)
 702#define stb_kernel(p, v) stb_raw(p, v)
 703#define stw_kernel(p, v) stw_raw(p, v)
 704#define stl_kernel(p, v) stl_raw(p, v)
 705#define stq_kernel(p, v) stq_raw(p, v)
 706#define stfl_kernel(p, v) stfl_raw(p, v)
 707#define stfq_kernel(p, vt) stfq_raw(p, v)
 708
 709#endif /* defined(CONFIG_USER_ONLY) */
 710
 711/* page related stuff */
 712
 713#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
 714#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
 715#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
 716
 717/* ??? These should be the larger of unsigned long and target_ulong.  */
 718extern unsigned long qemu_real_host_page_size;
 719extern unsigned long qemu_host_page_bits;
 720extern unsigned long qemu_host_page_size;
 721extern unsigned long qemu_host_page_mask;
 722
 723#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
 724
 725/* same as PROT_xxx */
 726#define PAGE_READ      0x0001
 727#define PAGE_WRITE     0x0002
 728#define PAGE_EXEC      0x0004
 729#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 730#define PAGE_VALID     0x0008
 731/* original state of the write flag (used when tracking self-modifying
 732   code */
 733#define PAGE_WRITE_ORG 0x0010
 734#define PAGE_RESERVED  0x0020
 735
 736void page_dump(FILE *f);
 737int walk_memory_regions(void *,
 738    int (*fn)(void *, unsigned long, unsigned long, unsigned long));
 739int page_get_flags(target_ulong address);
 740void page_set_flags(target_ulong start, target_ulong end, int flags);
 741int page_check_range(target_ulong start, target_ulong len, int flags);
 742
 743void cpu_exec_init_all(unsigned long tb_size);
 744CPUState *cpu_copy(CPUState *env);
 745CPUState *qemu_get_cpu(int cpu);
 746
 747void cpu_dump_state(CPUState *env, FILE *f,
 748                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
 749                    int flags);
 750void cpu_dump_statistics (CPUState *env, FILE *f,
 751                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
 752                          int flags);
 753
 754void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
 755    __attribute__ ((__format__ (__printf__, 2, 3)));
 756extern CPUState *first_cpu;
 757extern CPUState *cpu_single_env;
 758extern int64_t qemu_icount;
 759extern int use_icount;
 760
 761#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
 762#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
 763#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
 764#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
 765#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
 766#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
 767#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
 768#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
 769#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
 770#define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
 771#define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
 772#define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
 773
 774void cpu_interrupt(CPUState *s, int mask);
 775void cpu_reset_interrupt(CPUState *env, int mask);
 776
 777void cpu_exit(CPUState *s);
 778
 779int qemu_cpu_has_work(CPUState *env);
 780
 781/* Breakpoint/watchpoint flags */
 782#define BP_MEM_READ           0x01
 783#define BP_MEM_WRITE          0x02
 784#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
 785#define BP_STOP_BEFORE_ACCESS 0x04
 786#define BP_WATCHPOINT_HIT     0x08
 787#define BP_GDB                0x10
 788#define BP_CPU                0x20
 789
 790int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
 791                          CPUBreakpoint **breakpoint);
 792int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
 793void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
 794void cpu_breakpoint_remove_all(CPUState *env, int mask);
 795int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
 796                          int flags, CPUWatchpoint **watchpoint);
 797int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
 798                          target_ulong len, int flags);
 799void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
 800void cpu_watchpoint_remove_all(CPUState *env, int mask);
 801
 802#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
 803#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
 804#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
 805
 806void cpu_single_step(CPUState *env, int enabled);
 807void cpu_reset(CPUState *s);
 808
 809/* Return the physical page corresponding to a virtual one. Use it
 810   only for debugging because no protection checks are done. Return -1
 811   if no page found. */
 812target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
 813
 814#define CPU_LOG_TB_OUT_ASM (1 << 0)
 815#define CPU_LOG_TB_IN_ASM  (1 << 1)
 816#define CPU_LOG_TB_OP      (1 << 2)
 817#define CPU_LOG_TB_OP_OPT  (1 << 3)
 818#define CPU_LOG_INT        (1 << 4)
 819#define CPU_LOG_EXEC       (1 << 5)
 820#define CPU_LOG_PCALL      (1 << 6)
 821#define CPU_LOG_IOPORT     (1 << 7)
 822#define CPU_LOG_TB_CPU     (1 << 8)
 823#define CPU_LOG_RESET      (1 << 9)
 824
 825/* define log items */
 826typedef struct CPULogItem {
 827    int mask;
 828    const char *name;
 829    const char *help;
 830} CPULogItem;
 831
 832extern const CPULogItem cpu_log_items[];
 833
 834void cpu_set_log(int log_flags);
 835void cpu_set_log_filename(const char *filename);
 836int cpu_str_to_log_mask(const char *str);
 837
 838/* IO ports API */
 839#include "ioport.h"
 840
 841/* memory API */
 842
 843extern int phys_ram_fd;
 844extern uint8_t *phys_ram_dirty;
 845extern ram_addr_t ram_size;
 846extern ram_addr_t last_ram_offset;
 847
 848/* physical memory access */
 849
 850/* MMIO pages are identified by a combination of an IO device index and
 851   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
 852   so only a limited number of ids are avaiable.  */
 853
 854#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
 855
 856/* Flags stored in the low bits of the TLB virtual address.  These are
 857   defined so that fast path ram access is all zeros.  */
 858/* Zero if TLB entry is valid.  */
 859#define TLB_INVALID_MASK   (1 << 3)
 860/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 861   contain the page physical address.  */
 862#define TLB_NOTDIRTY    (1 << 4)
 863/* Set if TLB entry is an IO callback.  */
 864#define TLB_MMIO        (1 << 5)
 865
 866int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
 867                        uint8_t *buf, int len, int is_write);
 868
 869#define VGA_DIRTY_FLAG       0x01
 870#define CODE_DIRTY_FLAG      0x02
 871#define KQEMU_DIRTY_FLAG     0x04
 872#define MIGRATION_DIRTY_FLAG 0x08
 873
 874/* read dirty bit (return 0 or 1) */
 875static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
 876{
 877    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
 878}
 879
 880static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
 881                                                int dirty_flags)
 882{
 883    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
 884}
 885
 886static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
 887{
 888    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
 889}
 890
 891void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 892                                     int dirty_flags);
 893void cpu_tlb_update_dirty(CPUState *env);
 894
 895int cpu_physical_memory_set_dirty_tracking(int enable);
 896
 897int cpu_physical_memory_get_dirty_tracking(void);
 898
 899int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
 900                                   target_phys_addr_t end_addr);
 901
 902void dump_exec_info(FILE *f,
 903                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
 904
 905/* Coalesced MMIO regions are areas where write operations can be reordered.
 906 * This usually implies that write operations are side-effect free.  This allows
 907 * batching which can make a major impact on performance when using
 908 * virtualization.
 909 */
 910void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
 911
 912void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
 913
 914/*******************************************/
 915/* host CPU ticks (if available) */
 916
 917#if defined(_ARCH_PPC)
 918
 919static inline int64_t cpu_get_real_ticks(void)
 920{
 921    int64_t retval;
 922#ifdef _ARCH_PPC64
 923    /* This reads timebase in one 64bit go and includes Cell workaround from:
 924       http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
 925     */
 926    __asm__ __volatile__ (
 927        "mftb    %0\n\t"
 928        "cmpwi   %0,0\n\t"
 929        "beq-    $-8"
 930        : "=r" (retval));
 931#else
 932    /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
 933    unsigned long junk;
 934    __asm__ __volatile__ (
 935        "mftbu   %1\n\t"
 936        "mftb    %L0\n\t"
 937        "mftbu   %0\n\t"
 938        "cmpw    %0,%1\n\t"
 939        "bne     $-16"
 940        : "=r" (retval), "=r" (junk));
 941#endif
 942    return retval;
 943}
 944
 945#elif defined(__i386__)
 946
 947static inline int64_t cpu_get_real_ticks(void)
 948{
 949    int64_t val;
 950    asm volatile ("rdtsc" : "=A" (val));
 951    return val;
 952}
 953
 954#elif defined(__x86_64__)
 955
 956static inline int64_t cpu_get_real_ticks(void)
 957{
 958    uint32_t low,high;
 959    int64_t val;
 960    asm volatile("rdtsc" : "=a" (low), "=d" (high));
 961    val = high;
 962    val <<= 32;
 963    val |= low;
 964    return val;
 965}
 966
 967#elif defined(__hppa__)
 968
 969static inline int64_t cpu_get_real_ticks(void)
 970{
 971    int val;
 972    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
 973    return val;
 974}
 975
 976#elif defined(__ia64)
 977
 978static inline int64_t cpu_get_real_ticks(void)
 979{
 980        int64_t val;
 981        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
 982        return val;
 983}
 984
 985#elif defined(__s390__)
 986
 987static inline int64_t cpu_get_real_ticks(void)
 988{
 989    int64_t val;
 990    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
 991    return val;
 992}
 993
 994#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
 995
 996static inline int64_t cpu_get_real_ticks (void)
 997{
 998#if     defined(_LP64)
 999        uint64_t        rval;
1000        asm volatile("rd %%tick,%0" : "=r"(rval));
1001        return rval;
1002#else
1003        union {
1004                uint64_t i64;
1005                struct {
1006                        uint32_t high;
1007                        uint32_t low;
1008                }       i32;
1009        } rval;
1010        asm volatile("rd %%tick,%1; srlx %1,32,%0"
1011                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1012        return rval.i64;
1013#endif
1014}
1015
1016#elif defined(__mips__)
1017
1018static inline int64_t cpu_get_real_ticks(void)
1019{
1020#if __mips_isa_rev >= 2
1021    uint32_t count;
1022    static uint32_t cyc_per_count = 0;
1023
1024    if (!cyc_per_count)
1025        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1026
1027    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1028    return (int64_t)(count * cyc_per_count);
1029#else
1030    /* FIXME */
1031    static int64_t ticks = 0;
1032    return ticks++;
1033#endif
1034}
1035
1036#else
1037/* The host CPU doesn't have an easily accessible cycle counter.
1038   Just return a monotonically increasing value.  This will be
1039   totally wrong, but hopefully better than nothing.  */
1040static inline int64_t cpu_get_real_ticks (void)
1041{
1042    static int64_t ticks = 0;
1043    return ticks++;
1044}
1045#endif
1046
1047/* profiling */
1048#ifdef CONFIG_PROFILER
1049static inline int64_t profile_getclock(void)
1050{
1051    return cpu_get_real_ticks();
1052}
1053
1054extern int64_t kqemu_time, kqemu_time_start;
1055extern int64_t qemu_time, qemu_time_start;
1056extern int64_t tlb_flush_time;
1057extern int64_t kqemu_exec_count;
1058extern int64_t dev_time;
1059extern int64_t kqemu_ret_int_count;
1060extern int64_t kqemu_ret_excp_count;
1061extern int64_t kqemu_ret_intr_count;
1062#endif
1063
1064void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
1065                        uint64_t mcg_status, uint64_t addr, uint64_t misc);
1066
1067#endif /* CPU_ALL_H */
1068