1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include "config.h"
20#include "qemu-common.h"
21#ifdef CONFIG_USER_ONLY
22#include <stdlib.h>
23#include <stdio.h>
24#include <stdarg.h>
25#include <string.h>
26#include <errno.h>
27#include <unistd.h>
28#include <fcntl.h>
29
30#include "qemu.h"
31#else
32#include "monitor.h"
33#include "qemu-char.h"
34#include "sysemu.h"
35#include "gdbstub.h"
36#endif
37
38#define MAX_PACKET_LENGTH 4096
39
40#include "cpu.h"
41#include "qemu_socket.h"
42#include "kvm.h"
43
44#ifndef TARGET_CPU_MEMORY_RW_DEBUG
45static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
46 uint8_t *buf, int len, int is_write)
47{
48 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
49}
50#else
51
52#endif
53
54enum {
55 GDB_SIGNAL_0 = 0,
56 GDB_SIGNAL_INT = 2,
57 GDB_SIGNAL_QUIT = 3,
58 GDB_SIGNAL_TRAP = 5,
59 GDB_SIGNAL_ABRT = 6,
60 GDB_SIGNAL_ALRM = 14,
61 GDB_SIGNAL_IO = 23,
62 GDB_SIGNAL_XCPU = 24,
63 GDB_SIGNAL_UNKNOWN = 143
64};
65
66#ifdef CONFIG_USER_ONLY
67
68
69
70
71
72
73static int gdb_signal_table[] = {
74 0,
75 TARGET_SIGHUP,
76 TARGET_SIGINT,
77 TARGET_SIGQUIT,
78 TARGET_SIGILL,
79 TARGET_SIGTRAP,
80 TARGET_SIGABRT,
81 -1,
82 TARGET_SIGFPE,
83 TARGET_SIGKILL,
84 TARGET_SIGBUS,
85 TARGET_SIGSEGV,
86 TARGET_SIGSYS,
87 TARGET_SIGPIPE,
88 TARGET_SIGALRM,
89 TARGET_SIGTERM,
90 TARGET_SIGURG,
91 TARGET_SIGSTOP,
92 TARGET_SIGTSTP,
93 TARGET_SIGCONT,
94 TARGET_SIGCHLD,
95 TARGET_SIGTTIN,
96 TARGET_SIGTTOU,
97 TARGET_SIGIO,
98 TARGET_SIGXCPU,
99 TARGET_SIGXFSZ,
100 TARGET_SIGVTALRM,
101 TARGET_SIGPROF,
102 TARGET_SIGWINCH,
103 -1,
104 TARGET_SIGUSR1,
105 TARGET_SIGUSR2,
106#ifdef TARGET_SIGPWR
107 TARGET_SIGPWR,
108#else
109 -1,
110#endif
111 -1,
112 -1,
113 -1,
114 -1,
115 -1,
116 -1,
117 -1,
118 -1,
119 -1,
120 -1,
121 -1,
122 -1,
123#ifdef __SIGRTMIN
124 __SIGRTMIN + 1,
125 __SIGRTMIN + 2,
126 __SIGRTMIN + 3,
127 __SIGRTMIN + 4,
128 __SIGRTMIN + 5,
129 __SIGRTMIN + 6,
130 __SIGRTMIN + 7,
131 __SIGRTMIN + 8,
132 __SIGRTMIN + 9,
133 __SIGRTMIN + 10,
134 __SIGRTMIN + 11,
135 __SIGRTMIN + 12,
136 __SIGRTMIN + 13,
137 __SIGRTMIN + 14,
138 __SIGRTMIN + 15,
139 __SIGRTMIN + 16,
140 __SIGRTMIN + 17,
141 __SIGRTMIN + 18,
142 __SIGRTMIN + 19,
143 __SIGRTMIN + 20,
144 __SIGRTMIN + 21,
145 __SIGRTMIN + 22,
146 __SIGRTMIN + 23,
147 __SIGRTMIN + 24,
148 __SIGRTMIN + 25,
149 __SIGRTMIN + 26,
150 __SIGRTMIN + 27,
151 __SIGRTMIN + 28,
152 __SIGRTMIN + 29,
153 __SIGRTMIN + 30,
154 __SIGRTMIN + 31,
155 -1,
156 __SIGRTMIN,
157 __SIGRTMIN + 32,
158 __SIGRTMIN + 33,
159 __SIGRTMIN + 34,
160 __SIGRTMIN + 35,
161 __SIGRTMIN + 36,
162 __SIGRTMIN + 37,
163 __SIGRTMIN + 38,
164 __SIGRTMIN + 39,
165 __SIGRTMIN + 40,
166 __SIGRTMIN + 41,
167 __SIGRTMIN + 42,
168 __SIGRTMIN + 43,
169 __SIGRTMIN + 44,
170 __SIGRTMIN + 45,
171 __SIGRTMIN + 46,
172 __SIGRTMIN + 47,
173 __SIGRTMIN + 48,
174 __SIGRTMIN + 49,
175 __SIGRTMIN + 50,
176 __SIGRTMIN + 51,
177 __SIGRTMIN + 52,
178 __SIGRTMIN + 53,
179 __SIGRTMIN + 54,
180 __SIGRTMIN + 55,
181 __SIGRTMIN + 56,
182 __SIGRTMIN + 57,
183 __SIGRTMIN + 58,
184 __SIGRTMIN + 59,
185 __SIGRTMIN + 60,
186 __SIGRTMIN + 61,
187 __SIGRTMIN + 62,
188 __SIGRTMIN + 63,
189 __SIGRTMIN + 64,
190 __SIGRTMIN + 65,
191 __SIGRTMIN + 66,
192 __SIGRTMIN + 67,
193 __SIGRTMIN + 68,
194 __SIGRTMIN + 69,
195 __SIGRTMIN + 70,
196 __SIGRTMIN + 71,
197 __SIGRTMIN + 72,
198 __SIGRTMIN + 73,
199 __SIGRTMIN + 74,
200 __SIGRTMIN + 75,
201 __SIGRTMIN + 76,
202 __SIGRTMIN + 77,
203 __SIGRTMIN + 78,
204 __SIGRTMIN + 79,
205 __SIGRTMIN + 80,
206 __SIGRTMIN + 81,
207 __SIGRTMIN + 82,
208 __SIGRTMIN + 83,
209 __SIGRTMIN + 84,
210 __SIGRTMIN + 85,
211 __SIGRTMIN + 86,
212 __SIGRTMIN + 87,
213 __SIGRTMIN + 88,
214 __SIGRTMIN + 89,
215 __SIGRTMIN + 90,
216 __SIGRTMIN + 91,
217 __SIGRTMIN + 92,
218 __SIGRTMIN + 93,
219 __SIGRTMIN + 94,
220 __SIGRTMIN + 95,
221 -1,
222 -1,
223 -1,
224 -1,
225 -1,
226 -1,
227 -1,
228 -1,
229 -1
230#endif
231};
232#else
233
234
235
236enum {
237 TARGET_SIGINT = 2,
238 TARGET_SIGTRAP = 5
239};
240
241static int gdb_signal_table[] = {
242 -1,
243 -1,
244 TARGET_SIGINT,
245 -1,
246 -1,
247 TARGET_SIGTRAP
248};
249#endif
250
251#ifdef CONFIG_USER_ONLY
252static int target_signal_to_gdb (int sig)
253{
254 int i;
255 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
256 if (gdb_signal_table[i] == sig)
257 return i;
258 return GDB_SIGNAL_UNKNOWN;
259}
260#endif
261
262static int gdb_signal_to_target (int sig)
263{
264 if (sig < ARRAY_SIZE (gdb_signal_table))
265 return gdb_signal_table[sig];
266 else
267 return -1;
268}
269
270
271
272typedef struct GDBRegisterState {
273 int base_reg;
274 int num_regs;
275 gdb_reg_cb get_reg;
276 gdb_reg_cb set_reg;
277 const char *xml;
278 struct GDBRegisterState *next;
279} GDBRegisterState;
280
281enum RSState {
282 RS_INACTIVE,
283 RS_IDLE,
284 RS_GETLINE,
285 RS_CHKSUM1,
286 RS_CHKSUM2,
287};
288typedef struct GDBState {
289 CPUArchState *c_cpu;
290 CPUArchState *g_cpu;
291 CPUArchState *query_cpu;
292 enum RSState state;
293 char line_buf[MAX_PACKET_LENGTH];
294 int line_buf_index;
295 int line_csum;
296 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
297 int last_packet_len;
298 int signal;
299#ifdef CONFIG_USER_ONLY
300 int fd;
301 int running_state;
302#else
303 CharDriverState *chr;
304 CharDriverState *mon_chr;
305#endif
306 char syscall_buf[256];
307 gdb_syscall_complete_cb current_syscall_cb;
308} GDBState;
309
310
311
312
313static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
314
315static GDBState *gdbserver_state;
316
317
318
319
320static int gdb_has_xml;
321
322#ifdef CONFIG_USER_ONLY
323
324static int gdbserver_fd = -1;
325
326static int get_char(GDBState *s)
327{
328 uint8_t ch;
329 int ret;
330
331 for(;;) {
332 ret = qemu_recv(s->fd, &ch, 1, 0);
333 if (ret < 0) {
334 if (errno == ECONNRESET)
335 s->fd = -1;
336 if (errno != EINTR && errno != EAGAIN)
337 return -1;
338 } else if (ret == 0) {
339 close(s->fd);
340 s->fd = -1;
341 return -1;
342 } else {
343 break;
344 }
345 }
346 return ch;
347}
348#endif
349
350static enum {
351 GDB_SYS_UNKNOWN,
352 GDB_SYS_ENABLED,
353 GDB_SYS_DISABLED,
354} gdb_syscall_mode;
355
356
357
358int use_gdb_syscalls(void)
359{
360 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
361 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
362 : GDB_SYS_DISABLED);
363 }
364 return gdb_syscall_mode == GDB_SYS_ENABLED;
365}
366
367
368static inline void gdb_continue(GDBState *s)
369{
370#ifdef CONFIG_USER_ONLY
371 s->running_state = 1;
372#else
373 vm_start();
374#endif
375}
376
377static void put_buffer(GDBState *s, const uint8_t *buf, int len)
378{
379#ifdef CONFIG_USER_ONLY
380 int ret;
381
382 while (len > 0) {
383 ret = send(s->fd, buf, len, 0);
384 if (ret < 0) {
385 if (errno != EINTR && errno != EAGAIN)
386 return;
387 } else {
388 buf += ret;
389 len -= ret;
390 }
391 }
392#else
393 qemu_chr_fe_write(s->chr, buf, len);
394#endif
395}
396
397static inline int fromhex(int v)
398{
399 if (v >= '0' && v <= '9')
400 return v - '0';
401 else if (v >= 'A' && v <= 'F')
402 return v - 'A' + 10;
403 else if (v >= 'a' && v <= 'f')
404 return v - 'a' + 10;
405 else
406 return 0;
407}
408
409static inline int tohex(int v)
410{
411 if (v < 10)
412 return v + '0';
413 else
414 return v - 10 + 'a';
415}
416
417static void memtohex(char *buf, const uint8_t *mem, int len)
418{
419 int i, c;
420 char *q;
421 q = buf;
422 for(i = 0; i < len; i++) {
423 c = mem[i];
424 *q++ = tohex(c >> 4);
425 *q++ = tohex(c & 0xf);
426 }
427 *q = '\0';
428}
429
430static void hextomem(uint8_t *mem, const char *buf, int len)
431{
432 int i;
433
434 for(i = 0; i < len; i++) {
435 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
436 buf += 2;
437 }
438}
439
440
441static int put_packet_binary(GDBState *s, const char *buf, int len)
442{
443 int csum, i;
444 uint8_t *p;
445
446 for(;;) {
447 p = s->last_packet;
448 *(p++) = '$';
449 memcpy(p, buf, len);
450 p += len;
451 csum = 0;
452 for(i = 0; i < len; i++) {
453 csum += buf[i];
454 }
455 *(p++) = '#';
456 *(p++) = tohex((csum >> 4) & 0xf);
457 *(p++) = tohex((csum) & 0xf);
458
459 s->last_packet_len = p - s->last_packet;
460 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
461
462#ifdef CONFIG_USER_ONLY
463 i = get_char(s);
464 if (i < 0)
465 return -1;
466 if (i == '+')
467 break;
468#else
469 break;
470#endif
471 }
472 return 0;
473}
474
475
476static int put_packet(GDBState *s, const char *buf)
477{
478#ifdef DEBUG_GDB
479 printf("reply='%s'\n", buf);
480#endif
481
482 return put_packet_binary(s, buf, strlen(buf));
483}
484
485
486
487
488
489#define GET_REG8(val) do { \
490 stb_p(mem_buf, val); \
491 return 1; \
492 } while(0)
493#define GET_REG16(val) do { \
494 stw_p(mem_buf, val); \
495 return 2; \
496 } while(0)
497#define GET_REG32(val) do { \
498 stl_p(mem_buf, val); \
499 return 4; \
500 } while(0)
501#define GET_REG64(val) do { \
502 stq_p(mem_buf, val); \
503 return 8; \
504 } while(0)
505
506#if TARGET_LONG_BITS == 64
507#define GET_REGL(val) GET_REG64(val)
508#define ldtul_p(addr) ldq_p(addr)
509#else
510#define GET_REGL(val) GET_REG32(val)
511#define ldtul_p(addr) ldl_p(addr)
512#endif
513
514#if defined(TARGET_I386)
515
516#ifdef TARGET_X86_64
517static const int gpr_map[16] = {
518 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
519 8, 9, 10, 11, 12, 13, 14, 15
520};
521#else
522#define gpr_map gpr_map32
523#endif
524static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
525
526#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
527
528#define IDX_IP_REG CPU_NB_REGS
529#define IDX_FLAGS_REG (IDX_IP_REG + 1)
530#define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
531#define IDX_FP_REGS (IDX_SEG_REGS + 6)
532#define IDX_XMM_REGS (IDX_FP_REGS + 16)
533#define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
534
535static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
536{
537 if (n < CPU_NB_REGS) {
538 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
539 GET_REG64(env->regs[gpr_map[n]]);
540 } else if (n < CPU_NB_REGS32) {
541 GET_REG32(env->regs[gpr_map32[n]]);
542 }
543 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
544#ifdef USE_X86LDOUBLE
545
546 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
547#else
548 memset(mem_buf, 0, 10);
549#endif
550 return 10;
551 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
552 n -= IDX_XMM_REGS;
553 if (n < CPU_NB_REGS32 ||
554 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
555 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
556 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
557 return 16;
558 }
559 } else {
560 switch (n) {
561 case IDX_IP_REG:
562 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
563 GET_REG64(env->eip);
564 } else {
565 GET_REG32(env->eip);
566 }
567 case IDX_FLAGS_REG: GET_REG32(env->eflags);
568
569 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
570 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
571 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
572 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
573 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
574 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
575
576 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
577 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
578 (env->fpstt & 0x7) << 11);
579 case IDX_FP_REGS + 10: GET_REG32(0);
580 case IDX_FP_REGS + 11: GET_REG32(0);
581 case IDX_FP_REGS + 12: GET_REG32(0);
582 case IDX_FP_REGS + 13: GET_REG32(0);
583 case IDX_FP_REGS + 14: GET_REG32(0);
584 case IDX_FP_REGS + 15: GET_REG32(0);
585
586 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
587 }
588 }
589 return 0;
590}
591
592static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
593{
594 uint16_t selector = ldl_p(mem_buf);
595
596 if (selector != env->segs[sreg].selector) {
597#if defined(CONFIG_USER_ONLY)
598 cpu_x86_load_seg(env, sreg, selector);
599#else
600 unsigned int limit, flags;
601 target_ulong base;
602
603 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
604 base = selector << 4;
605 limit = 0xffff;
606 flags = 0;
607 } else {
608 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
609 return 4;
610 }
611 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
612#endif
613 }
614 return 4;
615}
616
617static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
618{
619 uint32_t tmp;
620
621 if (n < CPU_NB_REGS) {
622 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
623 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
624 return sizeof(target_ulong);
625 } else if (n < CPU_NB_REGS32) {
626 n = gpr_map32[n];
627 env->regs[n] &= ~0xffffffffUL;
628 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
629 return 4;
630 }
631 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
632#ifdef USE_X86LDOUBLE
633
634 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
635#endif
636 return 10;
637 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
638 n -= IDX_XMM_REGS;
639 if (n < CPU_NB_REGS32 ||
640 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
641 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
642 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
643 return 16;
644 }
645 } else {
646 switch (n) {
647 case IDX_IP_REG:
648 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
649 env->eip = ldq_p(mem_buf);
650 return 8;
651 } else {
652 env->eip &= ~0xffffffffUL;
653 env->eip |= (uint32_t)ldl_p(mem_buf);
654 return 4;
655 }
656 case IDX_FLAGS_REG:
657 env->eflags = ldl_p(mem_buf);
658 return 4;
659
660 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
661 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
662 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
663 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
664 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
665 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
666
667 case IDX_FP_REGS + 8:
668 env->fpuc = ldl_p(mem_buf);
669 return 4;
670 case IDX_FP_REGS + 9:
671 tmp = ldl_p(mem_buf);
672 env->fpstt = (tmp >> 11) & 7;
673 env->fpus = tmp & ~0x3800;
674 return 4;
675 case IDX_FP_REGS + 10: return 4;
676 case IDX_FP_REGS + 11: return 4;
677 case IDX_FP_REGS + 12: return 4;
678 case IDX_FP_REGS + 13: return 4;
679 case IDX_FP_REGS + 14: return 4;
680 case IDX_FP_REGS + 15: return 4;
681
682 case IDX_MXCSR_REG:
683 env->mxcsr = ldl_p(mem_buf);
684 return 4;
685 }
686 }
687
688 return 0;
689}
690
691#elif defined (TARGET_PPC)
692
693
694
695
696
697
698#define NUM_CORE_REGS 71
699#if defined (TARGET_PPC64)
700#define GDB_CORE_XML "power64-core.xml"
701#else
702#define GDB_CORE_XML "power-core.xml"
703#endif
704
705static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
706{
707 if (n < 32) {
708
709 GET_REGL(env->gpr[n]);
710 } else if (n < 64) {
711
712 if (gdb_has_xml)
713 return 0;
714 stfq_p(mem_buf, env->fpr[n-32]);
715 return 8;
716 } else {
717 switch (n) {
718 case 64: GET_REGL(env->nip);
719 case 65: GET_REGL(env->msr);
720 case 66:
721 {
722 uint32_t cr = 0;
723 int i;
724 for (i = 0; i < 8; i++)
725 cr |= env->crf[i] << (32 - ((i + 1) * 4));
726 GET_REG32(cr);
727 }
728 case 67: GET_REGL(env->lr);
729 case 68: GET_REGL(env->ctr);
730 case 69: GET_REGL(env->xer);
731 case 70:
732 {
733 if (gdb_has_xml)
734 return 0;
735 GET_REG32(env->fpscr);
736 }
737 }
738 }
739 return 0;
740}
741
742static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
743{
744 if (n < 32) {
745
746 env->gpr[n] = ldtul_p(mem_buf);
747 return sizeof(target_ulong);
748 } else if (n < 64) {
749
750 if (gdb_has_xml)
751 return 0;
752 env->fpr[n-32] = ldfq_p(mem_buf);
753 return 8;
754 } else {
755 switch (n) {
756 case 64:
757 env->nip = ldtul_p(mem_buf);
758 return sizeof(target_ulong);
759 case 65:
760 ppc_store_msr(env, ldtul_p(mem_buf));
761 return sizeof(target_ulong);
762 case 66:
763 {
764 uint32_t cr = ldl_p(mem_buf);
765 int i;
766 for (i = 0; i < 8; i++)
767 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
768 return 4;
769 }
770 case 67:
771 env->lr = ldtul_p(mem_buf);
772 return sizeof(target_ulong);
773 case 68:
774 env->ctr = ldtul_p(mem_buf);
775 return sizeof(target_ulong);
776 case 69:
777 env->xer = ldtul_p(mem_buf);
778 return sizeof(target_ulong);
779 case 70:
780
781 if (gdb_has_xml)
782 return 0;
783 return 4;
784 }
785 }
786 return 0;
787}
788
789#elif defined (TARGET_SPARC)
790
791#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
792#define NUM_CORE_REGS 86
793#else
794#define NUM_CORE_REGS 72
795#endif
796
797#ifdef TARGET_ABI32
798#define GET_REGA(val) GET_REG32(val)
799#else
800#define GET_REGA(val) GET_REGL(val)
801#endif
802
803static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
804{
805 if (n < 8) {
806
807 GET_REGA(env->gregs[n]);
808 }
809 if (n < 32) {
810
811 GET_REGA(env->regwptr[n - 8]);
812 }
813#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
814 if (n < 64) {
815
816 if (n & 1) {
817 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
818 } else {
819 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
820 }
821 }
822
823 switch (n) {
824 case 64: GET_REGA(env->y);
825 case 65: GET_REGA(cpu_get_psr(env));
826 case 66: GET_REGA(env->wim);
827 case 67: GET_REGA(env->tbr);
828 case 68: GET_REGA(env->pc);
829 case 69: GET_REGA(env->npc);
830 case 70: GET_REGA(env->fsr);
831 case 71: GET_REGA(0);
832 default: GET_REGA(0);
833 }
834#else
835 if (n < 64) {
836
837 if (n & 1) {
838 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
839 } else {
840 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
841 }
842 }
843 if (n < 80) {
844
845 GET_REG64(env->fpr[(n - 32) / 2].ll);
846 }
847 switch (n) {
848 case 80: GET_REGL(env->pc);
849 case 81: GET_REGL(env->npc);
850 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
851 ((env->asi & 0xff) << 24) |
852 ((env->pstate & 0xfff) << 8) |
853 cpu_get_cwp64(env));
854 case 83: GET_REGL(env->fsr);
855 case 84: GET_REGL(env->fprs);
856 case 85: GET_REGL(env->y);
857 }
858#endif
859 return 0;
860}
861
862static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
863{
864#if defined(TARGET_ABI32)
865 abi_ulong tmp;
866
867 tmp = ldl_p(mem_buf);
868#else
869 target_ulong tmp;
870
871 tmp = ldtul_p(mem_buf);
872#endif
873
874 if (n < 8) {
875
876 env->gregs[n] = tmp;
877 } else if (n < 32) {
878
879 env->regwptr[n - 8] = tmp;
880 }
881#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
882 else if (n < 64) {
883
884
885 if (n & 1) {
886 env->fpr[(n - 32) / 2].l.lower = tmp;
887 } else {
888 env->fpr[(n - 32) / 2].l.upper = tmp;
889 }
890 } else {
891
892 switch (n) {
893 case 64: env->y = tmp; break;
894 case 65: cpu_put_psr(env, tmp); break;
895 case 66: env->wim = tmp; break;
896 case 67: env->tbr = tmp; break;
897 case 68: env->pc = tmp; break;
898 case 69: env->npc = tmp; break;
899 case 70: env->fsr = tmp; break;
900 default: return 0;
901 }
902 }
903 return 4;
904#else
905 else if (n < 64) {
906
907 tmp = ldl_p(mem_buf);
908 if (n & 1) {
909 env->fpr[(n - 32) / 2].l.lower = tmp;
910 } else {
911 env->fpr[(n - 32) / 2].l.upper = tmp;
912 }
913 return 4;
914 } else if (n < 80) {
915
916 env->fpr[(n - 32) / 2].ll = tmp;
917 } else {
918 switch (n) {
919 case 80: env->pc = tmp; break;
920 case 81: env->npc = tmp; break;
921 case 82:
922 cpu_put_ccr(env, tmp >> 32);
923 env->asi = (tmp >> 24) & 0xff;
924 env->pstate = (tmp >> 8) & 0xfff;
925 cpu_put_cwp64(env, tmp & 0xff);
926 break;
927 case 83: env->fsr = tmp; break;
928 case 84: env->fprs = tmp; break;
929 case 85: env->y = tmp; break;
930 default: return 0;
931 }
932 }
933 return 8;
934#endif
935}
936#elif defined (TARGET_ARM)
937
938
939
940
941
942
943#define NUM_CORE_REGS 26
944#define GDB_CORE_XML "arm-core.xml"
945
946static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
947{
948 if (n < 16) {
949
950 GET_REG32(env->regs[n]);
951 }
952 if (n < 24) {
953
954 if (gdb_has_xml)
955 return 0;
956 memset(mem_buf, 0, 12);
957 return 12;
958 }
959 switch (n) {
960 case 24:
961
962 if (gdb_has_xml)
963 return 0;
964 GET_REG32(0);
965 case 25:
966
967 GET_REG32(cpsr_read(env));
968 }
969
970 return 0;
971}
972
973static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
974{
975 uint32_t tmp;
976
977 tmp = ldl_p(mem_buf);
978
979
980
981 if (n == 15)
982 tmp &= ~1;
983
984 if (n < 16) {
985
986 env->regs[n] = tmp;
987 return 4;
988 }
989 if (n < 24) {
990
991 if (gdb_has_xml)
992 return 0;
993 return 12;
994 }
995 switch (n) {
996 case 24:
997
998 if (gdb_has_xml)
999 return 0;
1000 return 4;
1001 case 25:
1002
1003 cpsr_write (env, tmp, 0xffffffff);
1004 return 4;
1005 }
1006
1007 return 0;
1008}
1009
1010#elif defined (TARGET_M68K)
1011
1012#define NUM_CORE_REGS 18
1013
1014#define GDB_CORE_XML "cf-core.xml"
1015
1016static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1017{
1018 if (n < 8) {
1019
1020 GET_REG32(env->dregs[n]);
1021 } else if (n < 16) {
1022
1023 GET_REG32(env->aregs[n - 8]);
1024 } else {
1025 switch (n) {
1026 case 16: GET_REG32(env->sr);
1027 case 17: GET_REG32(env->pc);
1028 }
1029 }
1030
1031
1032 return 0;
1033}
1034
1035static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1036{
1037 uint32_t tmp;
1038
1039 tmp = ldl_p(mem_buf);
1040
1041 if (n < 8) {
1042
1043 env->dregs[n] = tmp;
1044 } else if (n < 16) {
1045
1046 env->aregs[n - 8] = tmp;
1047 } else {
1048 switch (n) {
1049 case 16: env->sr = tmp; break;
1050 case 17: env->pc = tmp; break;
1051 default: return 0;
1052 }
1053 }
1054 return 4;
1055}
1056#elif defined (TARGET_MIPS)
1057
1058#define NUM_CORE_REGS 73
1059
1060static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1061{
1062 if (n < 32) {
1063 GET_REGL(env->active_tc.gpr[n]);
1064 }
1065 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1066 if (n >= 38 && n < 70) {
1067 if (env->CP0_Status & (1 << CP0St_FR))
1068 GET_REGL(env->active_fpu.fpr[n - 38].d);
1069 else
1070 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1071 }
1072 switch (n) {
1073 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1074 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1075 }
1076 }
1077 switch (n) {
1078 case 32: GET_REGL((int32_t)env->CP0_Status);
1079 case 33: GET_REGL(env->active_tc.LO[0]);
1080 case 34: GET_REGL(env->active_tc.HI[0]);
1081 case 35: GET_REGL(env->CP0_BadVAddr);
1082 case 36: GET_REGL((int32_t)env->CP0_Cause);
1083 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1084 case 72: GET_REGL(0);
1085 case 89: GET_REGL((int32_t)env->CP0_PRid);
1086 }
1087 if (n >= 73 && n <= 88) {
1088
1089 GET_REGL(0);
1090 }
1091
1092 return 0;
1093}
1094
1095
1096static unsigned int ieee_rm[] =
1097 {
1098 float_round_nearest_even,
1099 float_round_to_zero,
1100 float_round_up,
1101 float_round_down
1102 };
1103#define RESTORE_ROUNDING_MODE \
1104 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1105
1106static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1107{
1108 target_ulong tmp;
1109
1110 tmp = ldtul_p(mem_buf);
1111
1112 if (n < 32) {
1113 env->active_tc.gpr[n] = tmp;
1114 return sizeof(target_ulong);
1115 }
1116 if (env->CP0_Config1 & (1 << CP0C1_FP)
1117 && n >= 38 && n < 73) {
1118 if (n < 70) {
1119 if (env->CP0_Status & (1 << CP0St_FR))
1120 env->active_fpu.fpr[n - 38].d = tmp;
1121 else
1122 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1123 }
1124 switch (n) {
1125 case 70:
1126 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1127
1128 RESTORE_ROUNDING_MODE;
1129 break;
1130 case 71: env->active_fpu.fcr0 = tmp; break;
1131 }
1132 return sizeof(target_ulong);
1133 }
1134 switch (n) {
1135 case 32: env->CP0_Status = tmp; break;
1136 case 33: env->active_tc.LO[0] = tmp; break;
1137 case 34: env->active_tc.HI[0] = tmp; break;
1138 case 35: env->CP0_BadVAddr = tmp; break;
1139 case 36: env->CP0_Cause = tmp; break;
1140 case 37:
1141 env->active_tc.PC = tmp & ~(target_ulong)1;
1142 if (tmp & 1) {
1143 env->hflags |= MIPS_HFLAG_M16;
1144 } else {
1145 env->hflags &= ~(MIPS_HFLAG_M16);
1146 }
1147 break;
1148 case 72: break;
1149 default:
1150 if (n > 89)
1151 return 0;
1152
1153 break;
1154 }
1155
1156 return sizeof(target_ulong);
1157}
1158#elif defined (TARGET_SH4)
1159
1160
1161
1162
1163#define NUM_CORE_REGS 59
1164
1165static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1166{
1167 if (n < 8) {
1168 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1169 GET_REGL(env->gregs[n + 16]);
1170 } else {
1171 GET_REGL(env->gregs[n]);
1172 }
1173 } else if (n < 16) {
1174 GET_REGL(env->gregs[n]);
1175 } else if (n >= 25 && n < 41) {
1176 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1177 } else if (n >= 43 && n < 51) {
1178 GET_REGL(env->gregs[n - 43]);
1179 } else if (n >= 51 && n < 59) {
1180 GET_REGL(env->gregs[n - (51 - 16)]);
1181 }
1182 switch (n) {
1183 case 16: GET_REGL(env->pc);
1184 case 17: GET_REGL(env->pr);
1185 case 18: GET_REGL(env->gbr);
1186 case 19: GET_REGL(env->vbr);
1187 case 20: GET_REGL(env->mach);
1188 case 21: GET_REGL(env->macl);
1189 case 22: GET_REGL(env->sr);
1190 case 23: GET_REGL(env->fpul);
1191 case 24: GET_REGL(env->fpscr);
1192 case 41: GET_REGL(env->ssr);
1193 case 42: GET_REGL(env->spc);
1194 }
1195
1196 return 0;
1197}
1198
1199static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1200{
1201 uint32_t tmp;
1202
1203 tmp = ldl_p(mem_buf);
1204
1205 if (n < 8) {
1206 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1207 env->gregs[n + 16] = tmp;
1208 } else {
1209 env->gregs[n] = tmp;
1210 }
1211 return 4;
1212 } else if (n < 16) {
1213 env->gregs[n] = tmp;
1214 return 4;
1215 } else if (n >= 25 && n < 41) {
1216 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1217 return 4;
1218 } else if (n >= 43 && n < 51) {
1219 env->gregs[n - 43] = tmp;
1220 return 4;
1221 } else if (n >= 51 && n < 59) {
1222 env->gregs[n - (51 - 16)] = tmp;
1223 return 4;
1224 }
1225 switch (n) {
1226 case 16: env->pc = tmp; break;
1227 case 17: env->pr = tmp; break;
1228 case 18: env->gbr = tmp; break;
1229 case 19: env->vbr = tmp; break;
1230 case 20: env->mach = tmp; break;
1231 case 21: env->macl = tmp; break;
1232 case 22: env->sr = tmp; break;
1233 case 23: env->fpul = tmp; break;
1234 case 24: env->fpscr = tmp; break;
1235 case 41: env->ssr = tmp; break;
1236 case 42: env->spc = tmp; break;
1237 default: return 0;
1238 }
1239
1240 return 4;
1241}
1242#elif defined (TARGET_MICROBLAZE)
1243
1244#define NUM_CORE_REGS (32 + 5)
1245
1246static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1247{
1248 if (n < 32) {
1249 GET_REG32(env->regs[n]);
1250 } else {
1251 GET_REG32(env->sregs[n - 32]);
1252 }
1253 return 0;
1254}
1255
1256static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1257{
1258 uint32_t tmp;
1259
1260 if (n > NUM_CORE_REGS)
1261 return 0;
1262
1263 tmp = ldl_p(mem_buf);
1264
1265 if (n < 32) {
1266 env->regs[n] = tmp;
1267 } else {
1268 env->sregs[n - 32] = tmp;
1269 }
1270 return 4;
1271}
1272#elif defined (TARGET_CRIS)
1273
1274#define NUM_CORE_REGS 49
1275
1276static int
1277read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1278{
1279 if (n < 15) {
1280 GET_REG32(env->regs[n]);
1281 }
1282
1283 if (n == 15) {
1284 GET_REG32(env->pc);
1285 }
1286
1287 if (n < 32) {
1288 switch (n) {
1289 case 16:
1290 GET_REG8(env->pregs[n - 16]);
1291 break;
1292 case 17:
1293 GET_REG8(env->pregs[n - 16]);
1294 break;
1295 case 20:
1296 case 21:
1297 GET_REG16(env->pregs[n - 16]);
1298 break;
1299 default:
1300 if (n >= 23) {
1301 GET_REG32(env->pregs[n - 16]);
1302 }
1303 break;
1304 }
1305 }
1306 return 0;
1307}
1308
1309static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1310{
1311 uint8_t srs;
1312
1313 if (env->pregs[PR_VR] < 32)
1314 return read_register_crisv10(env, mem_buf, n);
1315
1316 srs = env->pregs[PR_SRS];
1317 if (n < 16) {
1318 GET_REG32(env->regs[n]);
1319 }
1320
1321 if (n >= 21 && n < 32) {
1322 GET_REG32(env->pregs[n - 16]);
1323 }
1324 if (n >= 33 && n < 49) {
1325 GET_REG32(env->sregs[srs][n - 33]);
1326 }
1327 switch (n) {
1328 case 16: GET_REG8(env->pregs[0]);
1329 case 17: GET_REG8(env->pregs[1]);
1330 case 18: GET_REG32(env->pregs[2]);
1331 case 19: GET_REG8(srs);
1332 case 20: GET_REG16(env->pregs[4]);
1333 case 32: GET_REG32(env->pc);
1334 }
1335
1336 return 0;
1337}
1338
1339static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1340{
1341 uint32_t tmp;
1342
1343 if (n > 49)
1344 return 0;
1345
1346 tmp = ldl_p(mem_buf);
1347
1348 if (n < 16) {
1349 env->regs[n] = tmp;
1350 }
1351
1352 if (n >= 21 && n < 32) {
1353 env->pregs[n - 16] = tmp;
1354 }
1355
1356
1357 switch (n) {
1358 case 16: return 1;
1359 case 17: return 1;
1360 case 18: env->pregs[PR_PID] = tmp; break;
1361 case 19: return 1;
1362 case 20: return 2;
1363 case 32: env->pc = tmp; break;
1364 }
1365
1366 return 4;
1367}
1368#elif defined (TARGET_ALPHA)
1369
1370#define NUM_CORE_REGS 67
1371
1372static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1373{
1374 uint64_t val;
1375 CPU_DoubleU d;
1376
1377 switch (n) {
1378 case 0 ... 30:
1379 val = env->ir[n];
1380 break;
1381 case 32 ... 62:
1382 d.d = env->fir[n - 32];
1383 val = d.ll;
1384 break;
1385 case 63:
1386 val = cpu_alpha_load_fpcr(env);
1387 break;
1388 case 64:
1389 val = env->pc;
1390 break;
1391 case 66:
1392 val = env->unique;
1393 break;
1394 case 31:
1395 case 65:
1396
1397
1398 val = 0;
1399 break;
1400 default:
1401 return 0;
1402 }
1403 GET_REGL(val);
1404}
1405
1406static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1407{
1408 target_ulong tmp = ldtul_p(mem_buf);
1409 CPU_DoubleU d;
1410
1411 switch (n) {
1412 case 0 ... 30:
1413 env->ir[n] = tmp;
1414 break;
1415 case 32 ... 62:
1416 d.ll = tmp;
1417 env->fir[n - 32] = d.d;
1418 break;
1419 case 63:
1420 cpu_alpha_store_fpcr(env, tmp);
1421 break;
1422 case 64:
1423 env->pc = tmp;
1424 break;
1425 case 66:
1426 env->unique = tmp;
1427 break;
1428 case 31:
1429 case 65:
1430
1431
1432 break;
1433 default:
1434 return 0;
1435 }
1436 return 8;
1437}
1438#elif defined (TARGET_S390X)
1439
1440#define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1441
1442static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1443{
1444 switch (n) {
1445 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1446 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1447 case S390_R0_REGNUM ... S390_R15_REGNUM:
1448 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1449 case S390_A0_REGNUM ... S390_A15_REGNUM:
1450 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1451 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1452 case S390_F0_REGNUM ... S390_F15_REGNUM:
1453
1454 break;
1455 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1456 case S390_CC_REGNUM:
1457 env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst,
1458 env->cc_vr);
1459 GET_REG32(env->cc_op);
1460 break;
1461 }
1462
1463 return 0;
1464}
1465
1466static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1467{
1468 target_ulong tmpl;
1469 uint32_t tmp32;
1470 int r = 8;
1471 tmpl = ldtul_p(mem_buf);
1472 tmp32 = ldl_p(mem_buf);
1473
1474 switch (n) {
1475 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1476 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1477 case S390_R0_REGNUM ... S390_R15_REGNUM:
1478 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1479 case S390_A0_REGNUM ... S390_A15_REGNUM:
1480 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1481 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1482 case S390_F0_REGNUM ... S390_F15_REGNUM:
1483
1484 break;
1485 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1486 case S390_CC_REGNUM: env->cc_op = tmp32; r=4; break;
1487 }
1488
1489 return r;
1490}
1491#elif defined (TARGET_LM32)
1492
1493#include "hw/lm32_pic.h"
1494#define NUM_CORE_REGS (32 + 7)
1495
1496static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1497{
1498 if (n < 32) {
1499 GET_REG32(env->regs[n]);
1500 } else {
1501 switch (n) {
1502 case 32:
1503 GET_REG32(env->pc);
1504 break;
1505
1506 case 33:
1507 GET_REG32(0);
1508 break;
1509 case 34:
1510 GET_REG32(env->eba);
1511 break;
1512 case 35:
1513 GET_REG32(env->deba);
1514 break;
1515 case 36:
1516 GET_REG32(env->ie);
1517 break;
1518 case 37:
1519 GET_REG32(lm32_pic_get_im(env->pic_state));
1520 break;
1521 case 38:
1522 GET_REG32(lm32_pic_get_ip(env->pic_state));
1523 break;
1524 }
1525 }
1526 return 0;
1527}
1528
1529static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1530{
1531 uint32_t tmp;
1532
1533 if (n > NUM_CORE_REGS) {
1534 return 0;
1535 }
1536
1537 tmp = ldl_p(mem_buf);
1538
1539 if (n < 32) {
1540 env->regs[n] = tmp;
1541 } else {
1542 switch (n) {
1543 case 32:
1544 env->pc = tmp;
1545 break;
1546 case 34:
1547 env->eba = tmp;
1548 break;
1549 case 35:
1550 env->deba = tmp;
1551 break;
1552 case 36:
1553 env->ie = tmp;
1554 break;
1555 case 37:
1556 lm32_pic_set_im(env->pic_state, tmp);
1557 break;
1558 case 38:
1559 lm32_pic_set_ip(env->pic_state, tmp);
1560 break;
1561 }
1562 }
1563 return 4;
1564}
1565#elif defined(TARGET_XTENSA)
1566
1567
1568
1569
1570
1571
1572#define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1573#define num_g_regs NUM_CORE_REGS
1574
1575static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1576{
1577 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1578
1579 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1580 return 0;
1581 }
1582
1583 switch (reg->type) {
1584 case 9:
1585 GET_REG32(env->pc);
1586 break;
1587
1588 case 1:
1589 xtensa_sync_phys_from_window(env);
1590 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1591 break;
1592
1593 case 2:
1594 GET_REG32(env->sregs[reg->targno & 0xff]);
1595 break;
1596
1597 case 3:
1598 GET_REG32(env->uregs[reg->targno & 0xff]);
1599 break;
1600
1601 case 8:
1602 GET_REG32(env->regs[reg->targno & 0x0f]);
1603 break;
1604
1605 default:
1606 qemu_log("%s from reg %d of unsupported type %d\n",
1607 __func__, n, reg->type);
1608 return 0;
1609 }
1610}
1611
1612static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1613{
1614 uint32_t tmp;
1615 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1616
1617 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1618 return 0;
1619 }
1620
1621 tmp = ldl_p(mem_buf);
1622
1623 switch (reg->type) {
1624 case 9:
1625 env->pc = tmp;
1626 break;
1627
1628 case 1:
1629 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1630 xtensa_sync_window_from_phys(env);
1631 break;
1632
1633 case 2:
1634 env->sregs[reg->targno & 0xff] = tmp;
1635 break;
1636
1637 case 3:
1638 env->uregs[reg->targno & 0xff] = tmp;
1639 break;
1640
1641 case 8:
1642 env->regs[reg->targno & 0x0f] = tmp;
1643 break;
1644
1645 default:
1646 qemu_log("%s to reg %d of unsupported type %d\n",
1647 __func__, n, reg->type);
1648 return 0;
1649 }
1650
1651 return 4;
1652}
1653#else
1654
1655#define NUM_CORE_REGS 0
1656
1657static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1658{
1659 return 0;
1660}
1661
1662static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1663{
1664 return 0;
1665}
1666
1667#endif
1668
1669#if !defined(TARGET_XTENSA)
1670static int num_g_regs = NUM_CORE_REGS;
1671#endif
1672
1673#ifdef GDB_CORE_XML
1674
1675static int memtox(char *buf, const char *mem, int len)
1676{
1677 char *p = buf;
1678 char c;
1679
1680 while (len--) {
1681 c = *(mem++);
1682 switch (c) {
1683 case '#': case '$': case '*': case '}':
1684 *(p++) = '}';
1685 *(p++) = c ^ 0x20;
1686 break;
1687 default:
1688 *(p++) = c;
1689 break;
1690 }
1691 }
1692 return p - buf;
1693}
1694
1695static const char *get_feature_xml(const char *p, const char **newp)
1696{
1697 size_t len;
1698 int i;
1699 const char *name;
1700 static char target_xml[1024];
1701
1702 len = 0;
1703 while (p[len] && p[len] != ':')
1704 len++;
1705 *newp = p + len;
1706
1707 name = NULL;
1708 if (strncmp(p, "target.xml", len) == 0) {
1709
1710 if (!target_xml[0]) {
1711 GDBRegisterState *r;
1712
1713 snprintf(target_xml, sizeof(target_xml),
1714 "<?xml version=\"1.0\"?>"
1715 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1716 "<target>"
1717 "<xi:include href=\"%s\"/>",
1718 GDB_CORE_XML);
1719
1720 for (r = first_cpu->gdb_regs; r; r = r->next) {
1721 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1722 pstrcat(target_xml, sizeof(target_xml), r->xml);
1723 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1724 }
1725 pstrcat(target_xml, sizeof(target_xml), "</target>");
1726 }
1727 return target_xml;
1728 }
1729 for (i = 0; ; i++) {
1730 name = xml_builtin[i][0];
1731 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1732 break;
1733 }
1734 return name ? xml_builtin[i][1] : NULL;
1735}
1736#endif
1737
1738static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1739{
1740 GDBRegisterState *r;
1741
1742 if (reg < NUM_CORE_REGS)
1743 return cpu_gdb_read_register(env, mem_buf, reg);
1744
1745 for (r = env->gdb_regs; r; r = r->next) {
1746 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1747 return r->get_reg(env, mem_buf, reg - r->base_reg);
1748 }
1749 }
1750 return 0;
1751}
1752
1753static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1754{
1755 GDBRegisterState *r;
1756
1757 if (reg < NUM_CORE_REGS)
1758 return cpu_gdb_write_register(env, mem_buf, reg);
1759
1760 for (r = env->gdb_regs; r; r = r->next) {
1761 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1762 return r->set_reg(env, mem_buf, reg - r->base_reg);
1763 }
1764 }
1765 return 0;
1766}
1767
1768#if !defined(TARGET_XTENSA)
1769
1770
1771
1772
1773
1774
1775void gdb_register_coprocessor(CPUArchState * env,
1776 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1777 int num_regs, const char *xml, int g_pos)
1778{
1779 GDBRegisterState *s;
1780 GDBRegisterState **p;
1781 static int last_reg = NUM_CORE_REGS;
1782
1783 p = &env->gdb_regs;
1784 while (*p) {
1785
1786 if (strcmp((*p)->xml, xml) == 0)
1787 return;
1788 p = &(*p)->next;
1789 }
1790
1791 s = g_new0(GDBRegisterState, 1);
1792 s->base_reg = last_reg;
1793 s->num_regs = num_regs;
1794 s->get_reg = get_reg;
1795 s->set_reg = set_reg;
1796 s->xml = xml;
1797
1798
1799 last_reg += num_regs;
1800 *p = s;
1801 if (g_pos) {
1802 if (g_pos != s->base_reg) {
1803 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1804 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1805 } else {
1806 num_g_regs = last_reg;
1807 }
1808 }
1809}
1810#endif
1811
1812#ifndef CONFIG_USER_ONLY
1813static const int xlat_gdb_type[] = {
1814 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1815 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1816 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1817};
1818#endif
1819
1820static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1821{
1822 CPUArchState *env;
1823 int err = 0;
1824
1825 if (kvm_enabled())
1826 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1827
1828 switch (type) {
1829 case GDB_BREAKPOINT_SW:
1830 case GDB_BREAKPOINT_HW:
1831 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1832 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1833 if (err)
1834 break;
1835 }
1836 return err;
1837#ifndef CONFIG_USER_ONLY
1838 case GDB_WATCHPOINT_WRITE:
1839 case GDB_WATCHPOINT_READ:
1840 case GDB_WATCHPOINT_ACCESS:
1841 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1842 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1843 NULL);
1844 if (err)
1845 break;
1846 }
1847 return err;
1848#endif
1849 default:
1850 return -ENOSYS;
1851 }
1852}
1853
1854static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1855{
1856 CPUArchState *env;
1857 int err = 0;
1858
1859 if (kvm_enabled())
1860 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1861
1862 switch (type) {
1863 case GDB_BREAKPOINT_SW:
1864 case GDB_BREAKPOINT_HW:
1865 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1866 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1867 if (err)
1868 break;
1869 }
1870 return err;
1871#ifndef CONFIG_USER_ONLY
1872 case GDB_WATCHPOINT_WRITE:
1873 case GDB_WATCHPOINT_READ:
1874 case GDB_WATCHPOINT_ACCESS:
1875 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1876 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1877 if (err)
1878 break;
1879 }
1880 return err;
1881#endif
1882 default:
1883 return -ENOSYS;
1884 }
1885}
1886
1887static void gdb_breakpoint_remove_all(void)
1888{
1889 CPUArchState *env;
1890
1891 if (kvm_enabled()) {
1892 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1893 return;
1894 }
1895
1896 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1897 cpu_breakpoint_remove_all(env, BP_GDB);
1898#ifndef CONFIG_USER_ONLY
1899 cpu_watchpoint_remove_all(env, BP_GDB);
1900#endif
1901 }
1902}
1903
1904static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1905{
1906 cpu_synchronize_state(s->c_cpu);
1907#if defined(TARGET_I386)
1908 s->c_cpu->eip = pc;
1909#elif defined (TARGET_PPC)
1910 s->c_cpu->nip = pc;
1911#elif defined (TARGET_SPARC)
1912 s->c_cpu->pc = pc;
1913 s->c_cpu->npc = pc + 4;
1914#elif defined (TARGET_ARM)
1915 s->c_cpu->regs[15] = pc;
1916#elif defined (TARGET_SH4)
1917 s->c_cpu->pc = pc;
1918#elif defined (TARGET_MIPS)
1919 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1920 if (pc & 1) {
1921 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1922 } else {
1923 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1924 }
1925#elif defined (TARGET_MICROBLAZE)
1926 s->c_cpu->sregs[SR_PC] = pc;
1927#elif defined (TARGET_CRIS)
1928 s->c_cpu->pc = pc;
1929#elif defined (TARGET_ALPHA)
1930 s->c_cpu->pc = pc;
1931#elif defined (TARGET_S390X)
1932 s->c_cpu->psw.addr = pc;
1933#elif defined (TARGET_LM32)
1934 s->c_cpu->pc = pc;
1935#elif defined(TARGET_XTENSA)
1936 s->c_cpu->pc = pc;
1937#endif
1938}
1939
1940static inline int gdb_id(CPUArchState *env)
1941{
1942#if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1943 return env->host_tid;
1944#else
1945 return env->cpu_index + 1;
1946#endif
1947}
1948
1949static CPUArchState *find_cpu(uint32_t thread_id)
1950{
1951 CPUArchState *env;
1952
1953 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1954 if (gdb_id(env) == thread_id) {
1955 return env;
1956 }
1957 }
1958
1959 return NULL;
1960}
1961
1962static int gdb_handle_packet(GDBState *s, const char *line_buf)
1963{
1964 CPUArchState *env;
1965 const char *p;
1966 uint32_t thread;
1967 int ch, reg_size, type, res;
1968 char buf[MAX_PACKET_LENGTH];
1969 uint8_t mem_buf[MAX_PACKET_LENGTH];
1970 uint8_t *registers;
1971 target_ulong addr, len;
1972
1973#ifdef DEBUG_GDB
1974 printf("command='%s'\n", line_buf);
1975#endif
1976 p = line_buf;
1977 ch = *p++;
1978 switch(ch) {
1979 case '?':
1980
1981 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1982 gdb_id(s->c_cpu));
1983 put_packet(s, buf);
1984
1985
1986
1987
1988 gdb_breakpoint_remove_all();
1989 break;
1990 case 'c':
1991 if (*p != '\0') {
1992 addr = strtoull(p, (char **)&p, 16);
1993 gdb_set_cpu_pc(s, addr);
1994 }
1995 s->signal = 0;
1996 gdb_continue(s);
1997 return RS_IDLE;
1998 case 'C':
1999 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2000 if (s->signal == -1)
2001 s->signal = 0;
2002 gdb_continue(s);
2003 return RS_IDLE;
2004 case 'v':
2005 if (strncmp(p, "Cont", 4) == 0) {
2006 int res_signal, res_thread;
2007
2008 p += 4;
2009 if (*p == '?') {
2010 put_packet(s, "vCont;c;C;s;S");
2011 break;
2012 }
2013 res = 0;
2014 res_signal = 0;
2015 res_thread = 0;
2016 while (*p) {
2017 int action, signal;
2018
2019 if (*p++ != ';') {
2020 res = 0;
2021 break;
2022 }
2023 action = *p++;
2024 signal = 0;
2025 if (action == 'C' || action == 'S') {
2026 signal = strtoul(p, (char **)&p, 16);
2027 } else if (action != 'c' && action != 's') {
2028 res = 0;
2029 break;
2030 }
2031 thread = 0;
2032 if (*p == ':') {
2033 thread = strtoull(p+1, (char **)&p, 16);
2034 }
2035 action = tolower(action);
2036 if (res == 0 || (res == 'c' && action == 's')) {
2037 res = action;
2038 res_signal = signal;
2039 res_thread = thread;
2040 }
2041 }
2042 if (res) {
2043 if (res_thread != -1 && res_thread != 0) {
2044 env = find_cpu(res_thread);
2045 if (env == NULL) {
2046 put_packet(s, "E22");
2047 break;
2048 }
2049 s->c_cpu = env;
2050 }
2051 if (res == 's') {
2052 cpu_single_step(s->c_cpu, sstep_flags);
2053 }
2054 s->signal = res_signal;
2055 gdb_continue(s);
2056 return RS_IDLE;
2057 }
2058 break;
2059 } else {
2060 goto unknown_command;
2061 }
2062 case 'k':
2063#ifdef CONFIG_USER_ONLY
2064
2065 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2066 exit(0);
2067#endif
2068 case 'D':
2069
2070 gdb_breakpoint_remove_all();
2071 gdb_syscall_mode = GDB_SYS_DISABLED;
2072 gdb_continue(s);
2073 put_packet(s, "OK");
2074 break;
2075 case 's':
2076 if (*p != '\0') {
2077 addr = strtoull(p, (char **)&p, 16);
2078 gdb_set_cpu_pc(s, addr);
2079 }
2080 cpu_single_step(s->c_cpu, sstep_flags);
2081 gdb_continue(s);
2082 return RS_IDLE;
2083 case 'F':
2084 {
2085 target_ulong ret;
2086 target_ulong err;
2087
2088 ret = strtoull(p, (char **)&p, 16);
2089 if (*p == ',') {
2090 p++;
2091 err = strtoull(p, (char **)&p, 16);
2092 } else {
2093 err = 0;
2094 }
2095 if (*p == ',')
2096 p++;
2097 type = *p;
2098 if (s->current_syscall_cb) {
2099 s->current_syscall_cb(s->c_cpu, ret, err);
2100 s->current_syscall_cb = NULL;
2101 }
2102 if (type == 'C') {
2103 put_packet(s, "T02");
2104 } else {
2105 gdb_continue(s);
2106 }
2107 }
2108 break;
2109 case 'g':
2110 cpu_synchronize_state(s->g_cpu);
2111 env = s->g_cpu;
2112 len = 0;
2113 for (addr = 0; addr < num_g_regs; addr++) {
2114 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
2115 len += reg_size;
2116 }
2117 memtohex(buf, mem_buf, len);
2118 put_packet(s, buf);
2119 break;
2120 case 'G':
2121 cpu_synchronize_state(s->g_cpu);
2122 env = s->g_cpu;
2123 registers = mem_buf;
2124 len = strlen(p) / 2;
2125 hextomem((uint8_t *)registers, p, len);
2126 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2127 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2128 len -= reg_size;
2129 registers += reg_size;
2130 }
2131 put_packet(s, "OK");
2132 break;
2133 case 'm':
2134 addr = strtoull(p, (char **)&p, 16);
2135 if (*p == ',')
2136 p++;
2137 len = strtoull(p, NULL, 16);
2138 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2139 put_packet (s, "E14");
2140 } else {
2141 memtohex(buf, mem_buf, len);
2142 put_packet(s, buf);
2143 }
2144 break;
2145 case 'M':
2146 addr = strtoull(p, (char **)&p, 16);
2147 if (*p == ',')
2148 p++;
2149 len = strtoull(p, (char **)&p, 16);
2150 if (*p == ':')
2151 p++;
2152 hextomem(mem_buf, p, len);
2153 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2154 put_packet(s, "E14");
2155 } else {
2156 put_packet(s, "OK");
2157 }
2158 break;
2159 case 'p':
2160
2161
2162
2163 if (!gdb_has_xml)
2164 goto unknown_command;
2165 addr = strtoull(p, (char **)&p, 16);
2166 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2167 if (reg_size) {
2168 memtohex(buf, mem_buf, reg_size);
2169 put_packet(s, buf);
2170 } else {
2171 put_packet(s, "E14");
2172 }
2173 break;
2174 case 'P':
2175 if (!gdb_has_xml)
2176 goto unknown_command;
2177 addr = strtoull(p, (char **)&p, 16);
2178 if (*p == '=')
2179 p++;
2180 reg_size = strlen(p) / 2;
2181 hextomem(mem_buf, p, reg_size);
2182 gdb_write_register(s->g_cpu, mem_buf, addr);
2183 put_packet(s, "OK");
2184 break;
2185 case 'Z':
2186 case 'z':
2187 type = strtoul(p, (char **)&p, 16);
2188 if (*p == ',')
2189 p++;
2190 addr = strtoull(p, (char **)&p, 16);
2191 if (*p == ',')
2192 p++;
2193 len = strtoull(p, (char **)&p, 16);
2194 if (ch == 'Z')
2195 res = gdb_breakpoint_insert(addr, len, type);
2196 else
2197 res = gdb_breakpoint_remove(addr, len, type);
2198 if (res >= 0)
2199 put_packet(s, "OK");
2200 else if (res == -ENOSYS)
2201 put_packet(s, "");
2202 else
2203 put_packet(s, "E22");
2204 break;
2205 case 'H':
2206 type = *p++;
2207 thread = strtoull(p, (char **)&p, 16);
2208 if (thread == -1 || thread == 0) {
2209 put_packet(s, "OK");
2210 break;
2211 }
2212 env = find_cpu(thread);
2213 if (env == NULL) {
2214 put_packet(s, "E22");
2215 break;
2216 }
2217 switch (type) {
2218 case 'c':
2219 s->c_cpu = env;
2220 put_packet(s, "OK");
2221 break;
2222 case 'g':
2223 s->g_cpu = env;
2224 put_packet(s, "OK");
2225 break;
2226 default:
2227 put_packet(s, "E22");
2228 break;
2229 }
2230 break;
2231 case 'T':
2232 thread = strtoull(p, (char **)&p, 16);
2233 env = find_cpu(thread);
2234
2235 if (env != NULL) {
2236 put_packet(s, "OK");
2237 } else {
2238 put_packet(s, "E22");
2239 }
2240 break;
2241 case 'q':
2242 case 'Q':
2243
2244 if (!strcmp(p,"qemu.sstepbits")) {
2245
2246 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2247 SSTEP_ENABLE,
2248 SSTEP_NOIRQ,
2249 SSTEP_NOTIMER);
2250 put_packet(s, buf);
2251 break;
2252 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2253
2254 p += 10;
2255 if (*p != '=') {
2256
2257 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2258 put_packet(s, buf);
2259 break;
2260 }
2261 p++;
2262 type = strtoul(p, (char **)&p, 16);
2263 sstep_flags = type;
2264 put_packet(s, "OK");
2265 break;
2266 } else if (strcmp(p,"C") == 0) {
2267
2268
2269 put_packet(s, "QC1");
2270 break;
2271 } else if (strcmp(p,"fThreadInfo") == 0) {
2272 s->query_cpu = first_cpu;
2273 goto report_cpuinfo;
2274 } else if (strcmp(p,"sThreadInfo") == 0) {
2275 report_cpuinfo:
2276 if (s->query_cpu) {
2277 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2278 put_packet(s, buf);
2279 s->query_cpu = s->query_cpu->next_cpu;
2280 } else
2281 put_packet(s, "l");
2282 break;
2283 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2284 thread = strtoull(p+16, (char **)&p, 16);
2285 env = find_cpu(thread);
2286 if (env != NULL) {
2287 cpu_synchronize_state(env);
2288 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2289 "CPU#%d [%s]", env->cpu_index,
2290 env->halted ? "halted " : "running");
2291 memtohex(buf, mem_buf, len);
2292 put_packet(s, buf);
2293 }
2294 break;
2295 }
2296#ifdef CONFIG_USER_ONLY
2297 else if (strncmp(p, "Offsets", 7) == 0) {
2298 TaskState *ts = s->c_cpu->opaque;
2299
2300 snprintf(buf, sizeof(buf),
2301 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2302 ";Bss=" TARGET_ABI_FMT_lx,
2303 ts->info->code_offset,
2304 ts->info->data_offset,
2305 ts->info->data_offset);
2306 put_packet(s, buf);
2307 break;
2308 }
2309#else
2310 else if (strncmp(p, "Rcmd,", 5) == 0) {
2311 int len = strlen(p + 5);
2312
2313 if ((len % 2) != 0) {
2314 put_packet(s, "E01");
2315 break;
2316 }
2317 hextomem(mem_buf, p + 5, len);
2318 len = len / 2;
2319 mem_buf[len++] = 0;
2320 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2321 put_packet(s, "OK");
2322 break;
2323 }
2324#endif
2325 if (strncmp(p, "Supported", 9) == 0) {
2326 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2327#ifdef GDB_CORE_XML
2328 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2329#endif
2330 put_packet(s, buf);
2331 break;
2332 }
2333#ifdef GDB_CORE_XML
2334 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2335 const char *xml;
2336 target_ulong total_len;
2337
2338 gdb_has_xml = 1;
2339 p += 19;
2340 xml = get_feature_xml(p, &p);
2341 if (!xml) {
2342 snprintf(buf, sizeof(buf), "E00");
2343 put_packet(s, buf);
2344 break;
2345 }
2346
2347 if (*p == ':')
2348 p++;
2349 addr = strtoul(p, (char **)&p, 16);
2350 if (*p == ',')
2351 p++;
2352 len = strtoul(p, (char **)&p, 16);
2353
2354 total_len = strlen(xml);
2355 if (addr > total_len) {
2356 snprintf(buf, sizeof(buf), "E00");
2357 put_packet(s, buf);
2358 break;
2359 }
2360 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2361 len = (MAX_PACKET_LENGTH - 5) / 2;
2362 if (len < total_len - addr) {
2363 buf[0] = 'm';
2364 len = memtox(buf + 1, xml + addr, len);
2365 } else {
2366 buf[0] = 'l';
2367 len = memtox(buf + 1, xml + addr, total_len - addr);
2368 }
2369 put_packet_binary(s, buf, len + 1);
2370 break;
2371 }
2372#endif
2373
2374 goto unknown_command;
2375
2376 default:
2377 unknown_command:
2378
2379 buf[0] = '\0';
2380 put_packet(s, buf);
2381 break;
2382 }
2383 return RS_IDLE;
2384}
2385
2386void gdb_set_stop_cpu(CPUArchState *env)
2387{
2388 gdbserver_state->c_cpu = env;
2389 gdbserver_state->g_cpu = env;
2390}
2391
2392#ifndef CONFIG_USER_ONLY
2393static void gdb_vm_state_change(void *opaque, int running, RunState state)
2394{
2395 GDBState *s = gdbserver_state;
2396 CPUArchState *env = s->c_cpu;
2397 char buf[256];
2398 const char *type;
2399 int ret;
2400
2401 if (running || s->state == RS_INACTIVE) {
2402 return;
2403 }
2404
2405 if (s->current_syscall_cb) {
2406 put_packet(s, s->syscall_buf);
2407 return;
2408 }
2409 switch (state) {
2410 case RUN_STATE_DEBUG:
2411 if (env->watchpoint_hit) {
2412 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2413 case BP_MEM_READ:
2414 type = "r";
2415 break;
2416 case BP_MEM_ACCESS:
2417 type = "a";
2418 break;
2419 default:
2420 type = "";
2421 break;
2422 }
2423 snprintf(buf, sizeof(buf),
2424 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2425 GDB_SIGNAL_TRAP, gdb_id(env), type,
2426 env->watchpoint_hit->vaddr);
2427 env->watchpoint_hit = NULL;
2428 goto send_packet;
2429 }
2430 tb_flush(env);
2431 ret = GDB_SIGNAL_TRAP;
2432 break;
2433 case RUN_STATE_PAUSED:
2434 ret = GDB_SIGNAL_INT;
2435 break;
2436 case RUN_STATE_SHUTDOWN:
2437 ret = GDB_SIGNAL_QUIT;
2438 break;
2439 case RUN_STATE_IO_ERROR:
2440 ret = GDB_SIGNAL_IO;
2441 break;
2442 case RUN_STATE_WATCHDOG:
2443 ret = GDB_SIGNAL_ALRM;
2444 break;
2445 case RUN_STATE_INTERNAL_ERROR:
2446 ret = GDB_SIGNAL_ABRT;
2447 break;
2448 case RUN_STATE_SAVE_VM:
2449 case RUN_STATE_RESTORE_VM:
2450 return;
2451 case RUN_STATE_FINISH_MIGRATE:
2452 ret = GDB_SIGNAL_XCPU;
2453 break;
2454 default:
2455 ret = GDB_SIGNAL_UNKNOWN;
2456 break;
2457 }
2458 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2459
2460send_packet:
2461 put_packet(s, buf);
2462
2463
2464 cpu_single_step(env, 0);
2465}
2466#endif
2467
2468
2469
2470
2471
2472
2473void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2474{
2475 va_list va;
2476 char *p;
2477 char *p_end;
2478 target_ulong addr;
2479 uint64_t i64;
2480 GDBState *s;
2481
2482 s = gdbserver_state;
2483 if (!s)
2484 return;
2485 s->current_syscall_cb = cb;
2486#ifndef CONFIG_USER_ONLY
2487 vm_stop(RUN_STATE_DEBUG);
2488#endif
2489 va_start(va, fmt);
2490 p = s->syscall_buf;
2491 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2492 *(p++) = 'F';
2493 while (*fmt) {
2494 if (*fmt == '%') {
2495 fmt++;
2496 switch (*fmt++) {
2497 case 'x':
2498 addr = va_arg(va, target_ulong);
2499 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2500 break;
2501 case 'l':
2502 if (*(fmt++) != 'x')
2503 goto bad_format;
2504 i64 = va_arg(va, uint64_t);
2505 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2506 break;
2507 case 's':
2508 addr = va_arg(va, target_ulong);
2509 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2510 addr, va_arg(va, int));
2511 break;
2512 default:
2513 bad_format:
2514 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2515 fmt - 1);
2516 break;
2517 }
2518 } else {
2519 *(p++) = *(fmt++);
2520 }
2521 }
2522 *p = 0;
2523 va_end(va);
2524#ifdef CONFIG_USER_ONLY
2525 put_packet(s, s->syscall_buf);
2526 gdb_handlesig(s->c_cpu, 0);
2527#else
2528
2529
2530
2531
2532
2533
2534 cpu_exit(s->c_cpu);
2535#endif
2536}
2537
2538static void gdb_read_byte(GDBState *s, int ch)
2539{
2540 int i, csum;
2541 uint8_t reply;
2542
2543#ifndef CONFIG_USER_ONLY
2544 if (s->last_packet_len) {
2545
2546
2547 if (ch == '-') {
2548#ifdef DEBUG_GDB
2549 printf("Got NACK, retransmitting\n");
2550#endif
2551 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2552 }
2553#ifdef DEBUG_GDB
2554 else if (ch == '+')
2555 printf("Got ACK\n");
2556 else
2557 printf("Got '%c' when expecting ACK/NACK\n", ch);
2558#endif
2559 if (ch == '+' || ch == '$')
2560 s->last_packet_len = 0;
2561 if (ch != '$')
2562 return;
2563 }
2564 if (runstate_is_running()) {
2565
2566
2567 vm_stop(RUN_STATE_PAUSED);
2568 } else
2569#endif
2570 {
2571 switch(s->state) {
2572 case RS_IDLE:
2573 if (ch == '$') {
2574 s->line_buf_index = 0;
2575 s->state = RS_GETLINE;
2576 }
2577 break;
2578 case RS_GETLINE:
2579 if (ch == '#') {
2580 s->state = RS_CHKSUM1;
2581 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2582 s->state = RS_IDLE;
2583 } else {
2584 s->line_buf[s->line_buf_index++] = ch;
2585 }
2586 break;
2587 case RS_CHKSUM1:
2588 s->line_buf[s->line_buf_index] = '\0';
2589 s->line_csum = fromhex(ch) << 4;
2590 s->state = RS_CHKSUM2;
2591 break;
2592 case RS_CHKSUM2:
2593 s->line_csum |= fromhex(ch);
2594 csum = 0;
2595 for(i = 0; i < s->line_buf_index; i++) {
2596 csum += s->line_buf[i];
2597 }
2598 if (s->line_csum != (csum & 0xff)) {
2599 reply = '-';
2600 put_buffer(s, &reply, 1);
2601 s->state = RS_IDLE;
2602 } else {
2603 reply = '+';
2604 put_buffer(s, &reply, 1);
2605 s->state = gdb_handle_packet(s, s->line_buf);
2606 }
2607 break;
2608 default:
2609 abort();
2610 }
2611 }
2612}
2613
2614
2615void gdb_exit(CPUArchState *env, int code)
2616{
2617 GDBState *s;
2618 char buf[4];
2619
2620 s = gdbserver_state;
2621 if (!s) {
2622 return;
2623 }
2624#ifdef CONFIG_USER_ONLY
2625 if (gdbserver_fd < 0 || s->fd < 0) {
2626 return;
2627 }
2628#endif
2629
2630 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2631 put_packet(s, buf);
2632
2633#ifndef CONFIG_USER_ONLY
2634 if (s->chr) {
2635 qemu_chr_delete(s->chr);
2636 }
2637#endif
2638}
2639
2640#ifdef CONFIG_USER_ONLY
2641int
2642gdb_queuesig (void)
2643{
2644 GDBState *s;
2645
2646 s = gdbserver_state;
2647
2648 if (gdbserver_fd < 0 || s->fd < 0)
2649 return 0;
2650 else
2651 return 1;
2652}
2653
2654int
2655gdb_handlesig (CPUArchState *env, int sig)
2656{
2657 GDBState *s;
2658 char buf[256];
2659 int n;
2660
2661 s = gdbserver_state;
2662 if (gdbserver_fd < 0 || s->fd < 0)
2663 return sig;
2664
2665
2666 cpu_single_step(env, 0);
2667 tb_flush(env);
2668
2669 if (sig != 0)
2670 {
2671 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2672 put_packet(s, buf);
2673 }
2674
2675
2676 if (s->fd < 0)
2677 return sig;
2678
2679 sig = 0;
2680 s->state = RS_IDLE;
2681 s->running_state = 0;
2682 while (s->running_state == 0) {
2683 n = read (s->fd, buf, 256);
2684 if (n > 0)
2685 {
2686 int i;
2687
2688 for (i = 0; i < n; i++)
2689 gdb_read_byte (s, buf[i]);
2690 }
2691 else if (n == 0 || errno != EAGAIN)
2692 {
2693
2694
2695 return sig;
2696 }
2697 }
2698 sig = s->signal;
2699 s->signal = 0;
2700 return sig;
2701}
2702
2703
2704void gdb_signalled(CPUArchState *env, int sig)
2705{
2706 GDBState *s;
2707 char buf[4];
2708
2709 s = gdbserver_state;
2710 if (gdbserver_fd < 0 || s->fd < 0)
2711 return;
2712
2713 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2714 put_packet(s, buf);
2715}
2716
2717static void gdb_accept(void)
2718{
2719 GDBState *s;
2720 struct sockaddr_in sockaddr;
2721 socklen_t len;
2722 int val, fd;
2723
2724 for(;;) {
2725 len = sizeof(sockaddr);
2726 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2727 if (fd < 0 && errno != EINTR) {
2728 perror("accept");
2729 return;
2730 } else if (fd >= 0) {
2731#ifndef _WIN32
2732 fcntl(fd, F_SETFD, FD_CLOEXEC);
2733#endif
2734 break;
2735 }
2736 }
2737
2738
2739 val = 1;
2740 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2741
2742 s = g_malloc0(sizeof(GDBState));
2743 s->c_cpu = first_cpu;
2744 s->g_cpu = first_cpu;
2745 s->fd = fd;
2746 gdb_has_xml = 0;
2747
2748 gdbserver_state = s;
2749
2750 fcntl(fd, F_SETFL, O_NONBLOCK);
2751}
2752
2753static int gdbserver_open(int port)
2754{
2755 struct sockaddr_in sockaddr;
2756 int fd, val, ret;
2757
2758 fd = socket(PF_INET, SOCK_STREAM, 0);
2759 if (fd < 0) {
2760 perror("socket");
2761 return -1;
2762 }
2763#ifndef _WIN32
2764 fcntl(fd, F_SETFD, FD_CLOEXEC);
2765#endif
2766
2767
2768 val = 1;
2769 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2770
2771 sockaddr.sin_family = AF_INET;
2772 sockaddr.sin_port = htons(port);
2773 sockaddr.sin_addr.s_addr = 0;
2774 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2775 if (ret < 0) {
2776 perror("bind");
2777 close(fd);
2778 return -1;
2779 }
2780 ret = listen(fd, 0);
2781 if (ret < 0) {
2782 perror("listen");
2783 close(fd);
2784 return -1;
2785 }
2786 return fd;
2787}
2788
2789int gdbserver_start(int port)
2790{
2791 gdbserver_fd = gdbserver_open(port);
2792 if (gdbserver_fd < 0)
2793 return -1;
2794
2795 gdb_accept();
2796 return 0;
2797}
2798
2799
2800void gdbserver_fork(CPUArchState *env)
2801{
2802 GDBState *s = gdbserver_state;
2803 if (gdbserver_fd < 0 || s->fd < 0)
2804 return;
2805 close(s->fd);
2806 s->fd = -1;
2807 cpu_breakpoint_remove_all(env, BP_GDB);
2808 cpu_watchpoint_remove_all(env, BP_GDB);
2809}
2810#else
2811static int gdb_chr_can_receive(void *opaque)
2812{
2813
2814
2815 return MAX_PACKET_LENGTH;
2816}
2817
2818static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2819{
2820 int i;
2821
2822 for (i = 0; i < size; i++) {
2823 gdb_read_byte(gdbserver_state, buf[i]);
2824 }
2825}
2826
2827static void gdb_chr_event(void *opaque, int event)
2828{
2829 switch (event) {
2830 case CHR_EVENT_OPENED:
2831 vm_stop(RUN_STATE_PAUSED);
2832 gdb_has_xml = 0;
2833 break;
2834 default:
2835 break;
2836 }
2837}
2838
2839static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2840{
2841 char buf[MAX_PACKET_LENGTH];
2842
2843 buf[0] = 'O';
2844 if (len > (MAX_PACKET_LENGTH/2) - 1)
2845 len = (MAX_PACKET_LENGTH/2) - 1;
2846 memtohex(buf + 1, (uint8_t *)msg, len);
2847 put_packet(s, buf);
2848}
2849
2850static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2851{
2852 const char *p = (const char *)buf;
2853 int max_sz;
2854
2855 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2856 for (;;) {
2857 if (len <= max_sz) {
2858 gdb_monitor_output(gdbserver_state, p, len);
2859 break;
2860 }
2861 gdb_monitor_output(gdbserver_state, p, max_sz);
2862 p += max_sz;
2863 len -= max_sz;
2864 }
2865 return len;
2866}
2867
2868#ifndef _WIN32
2869static void gdb_sigterm_handler(int signal)
2870{
2871 if (runstate_is_running()) {
2872 vm_stop(RUN_STATE_PAUSED);
2873 }
2874}
2875#endif
2876
2877int gdbserver_start(const char *device)
2878{
2879 GDBState *s;
2880 char gdbstub_device_name[128];
2881 CharDriverState *chr = NULL;
2882 CharDriverState *mon_chr;
2883
2884 if (!device)
2885 return -1;
2886 if (strcmp(device, "none") != 0) {
2887 if (strstart(device, "tcp:", NULL)) {
2888
2889 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2890 "%s,nowait,nodelay,server", device);
2891 device = gdbstub_device_name;
2892 }
2893#ifndef _WIN32
2894 else if (strcmp(device, "stdio") == 0) {
2895 struct sigaction act;
2896
2897 memset(&act, 0, sizeof(act));
2898 act.sa_handler = gdb_sigterm_handler;
2899 sigaction(SIGINT, &act, NULL);
2900 }
2901#endif
2902 chr = qemu_chr_new("gdb", device, NULL);
2903 if (!chr)
2904 return -1;
2905
2906 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2907 gdb_chr_event, NULL);
2908 }
2909
2910 s = gdbserver_state;
2911 if (!s) {
2912 s = g_malloc0(sizeof(GDBState));
2913 gdbserver_state = s;
2914
2915 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2916
2917
2918 mon_chr = g_malloc0(sizeof(*mon_chr));
2919 mon_chr->chr_write = gdb_monitor_write;
2920 monitor_init(mon_chr, 0);
2921 } else {
2922 if (s->chr)
2923 qemu_chr_delete(s->chr);
2924 mon_chr = s->mon_chr;
2925 memset(s, 0, sizeof(GDBState));
2926 }
2927 s->c_cpu = first_cpu;
2928 s->g_cpu = first_cpu;
2929 s->chr = chr;
2930 s->state = chr ? RS_IDLE : RS_INACTIVE;
2931 s->mon_chr = mon_chr;
2932 s->current_syscall_cb = NULL;
2933
2934 return 0;
2935}
2936#endif
2937