1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include "config.h"
20#include "qemu-common.h"
21#ifdef CONFIG_USER_ONLY
22#include <stdlib.h>
23#include <stdio.h>
24#include <stdarg.h>
25#include <string.h>
26#include <errno.h>
27#include <unistd.h>
28#include <fcntl.h>
29
30#include "qemu.h"
31#else
32#include "monitor.h"
33#include "qemu-char.h"
34#include "sysemu.h"
35#include "gdbstub.h"
36#endif
37
38#define MAX_PACKET_LENGTH 4096
39
40#include "cpu.h"
41#include "qemu_socket.h"
42#include "kvm.h"
43
44#ifndef TARGET_CPU_MEMORY_RW_DEBUG
45static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
46 uint8_t *buf, int len, int is_write)
47{
48 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
49}
50#else
51
52#endif
53
54enum {
55 GDB_SIGNAL_0 = 0,
56 GDB_SIGNAL_INT = 2,
57 GDB_SIGNAL_QUIT = 3,
58 GDB_SIGNAL_TRAP = 5,
59 GDB_SIGNAL_ABRT = 6,
60 GDB_SIGNAL_ALRM = 14,
61 GDB_SIGNAL_IO = 23,
62 GDB_SIGNAL_XCPU = 24,
63 GDB_SIGNAL_UNKNOWN = 143
64};
65
66#ifdef CONFIG_USER_ONLY
67
68
69
70
71
72
73static int gdb_signal_table[] = {
74 0,
75 TARGET_SIGHUP,
76 TARGET_SIGINT,
77 TARGET_SIGQUIT,
78 TARGET_SIGILL,
79 TARGET_SIGTRAP,
80 TARGET_SIGABRT,
81 -1,
82 TARGET_SIGFPE,
83 TARGET_SIGKILL,
84 TARGET_SIGBUS,
85 TARGET_SIGSEGV,
86 TARGET_SIGSYS,
87 TARGET_SIGPIPE,
88 TARGET_SIGALRM,
89 TARGET_SIGTERM,
90 TARGET_SIGURG,
91 TARGET_SIGSTOP,
92 TARGET_SIGTSTP,
93 TARGET_SIGCONT,
94 TARGET_SIGCHLD,
95 TARGET_SIGTTIN,
96 TARGET_SIGTTOU,
97 TARGET_SIGIO,
98 TARGET_SIGXCPU,
99 TARGET_SIGXFSZ,
100 TARGET_SIGVTALRM,
101 TARGET_SIGPROF,
102 TARGET_SIGWINCH,
103 -1,
104 TARGET_SIGUSR1,
105 TARGET_SIGUSR2,
106#ifdef TARGET_SIGPWR
107 TARGET_SIGPWR,
108#else
109 -1,
110#endif
111 -1,
112 -1,
113 -1,
114 -1,
115 -1,
116 -1,
117 -1,
118 -1,
119 -1,
120 -1,
121 -1,
122 -1,
123#ifdef __SIGRTMIN
124 __SIGRTMIN + 1,
125 __SIGRTMIN + 2,
126 __SIGRTMIN + 3,
127 __SIGRTMIN + 4,
128 __SIGRTMIN + 5,
129 __SIGRTMIN + 6,
130 __SIGRTMIN + 7,
131 __SIGRTMIN + 8,
132 __SIGRTMIN + 9,
133 __SIGRTMIN + 10,
134 __SIGRTMIN + 11,
135 __SIGRTMIN + 12,
136 __SIGRTMIN + 13,
137 __SIGRTMIN + 14,
138 __SIGRTMIN + 15,
139 __SIGRTMIN + 16,
140 __SIGRTMIN + 17,
141 __SIGRTMIN + 18,
142 __SIGRTMIN + 19,
143 __SIGRTMIN + 20,
144 __SIGRTMIN + 21,
145 __SIGRTMIN + 22,
146 __SIGRTMIN + 23,
147 __SIGRTMIN + 24,
148 __SIGRTMIN + 25,
149 __SIGRTMIN + 26,
150 __SIGRTMIN + 27,
151 __SIGRTMIN + 28,
152 __SIGRTMIN + 29,
153 __SIGRTMIN + 30,
154 __SIGRTMIN + 31,
155 -1,
156 __SIGRTMIN,
157 __SIGRTMIN + 32,
158 __SIGRTMIN + 33,
159 __SIGRTMIN + 34,
160 __SIGRTMIN + 35,
161 __SIGRTMIN + 36,
162 __SIGRTMIN + 37,
163 __SIGRTMIN + 38,
164 __SIGRTMIN + 39,
165 __SIGRTMIN + 40,
166 __SIGRTMIN + 41,
167 __SIGRTMIN + 42,
168 __SIGRTMIN + 43,
169 __SIGRTMIN + 44,
170 __SIGRTMIN + 45,
171 __SIGRTMIN + 46,
172 __SIGRTMIN + 47,
173 __SIGRTMIN + 48,
174 __SIGRTMIN + 49,
175 __SIGRTMIN + 50,
176 __SIGRTMIN + 51,
177 __SIGRTMIN + 52,
178 __SIGRTMIN + 53,
179 __SIGRTMIN + 54,
180 __SIGRTMIN + 55,
181 __SIGRTMIN + 56,
182 __SIGRTMIN + 57,
183 __SIGRTMIN + 58,
184 __SIGRTMIN + 59,
185 __SIGRTMIN + 60,
186 __SIGRTMIN + 61,
187 __SIGRTMIN + 62,
188 __SIGRTMIN + 63,
189 __SIGRTMIN + 64,
190 __SIGRTMIN + 65,
191 __SIGRTMIN + 66,
192 __SIGRTMIN + 67,
193 __SIGRTMIN + 68,
194 __SIGRTMIN + 69,
195 __SIGRTMIN + 70,
196 __SIGRTMIN + 71,
197 __SIGRTMIN + 72,
198 __SIGRTMIN + 73,
199 __SIGRTMIN + 74,
200 __SIGRTMIN + 75,
201 __SIGRTMIN + 76,
202 __SIGRTMIN + 77,
203 __SIGRTMIN + 78,
204 __SIGRTMIN + 79,
205 __SIGRTMIN + 80,
206 __SIGRTMIN + 81,
207 __SIGRTMIN + 82,
208 __SIGRTMIN + 83,
209 __SIGRTMIN + 84,
210 __SIGRTMIN + 85,
211 __SIGRTMIN + 86,
212 __SIGRTMIN + 87,
213 __SIGRTMIN + 88,
214 __SIGRTMIN + 89,
215 __SIGRTMIN + 90,
216 __SIGRTMIN + 91,
217 __SIGRTMIN + 92,
218 __SIGRTMIN + 93,
219 __SIGRTMIN + 94,
220 __SIGRTMIN + 95,
221 -1,
222 -1,
223 -1,
224 -1,
225 -1,
226 -1,
227 -1,
228 -1,
229 -1
230#endif
231};
232#else
233
234
235
236enum {
237 TARGET_SIGINT = 2,
238 TARGET_SIGTRAP = 5
239};
240
241static int gdb_signal_table[] = {
242 -1,
243 -1,
244 TARGET_SIGINT,
245 -1,
246 -1,
247 TARGET_SIGTRAP
248};
249#endif
250
251#ifdef CONFIG_USER_ONLY
252static int target_signal_to_gdb (int sig)
253{
254 int i;
255 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
256 if (gdb_signal_table[i] == sig)
257 return i;
258 return GDB_SIGNAL_UNKNOWN;
259}
260#endif
261
262static int gdb_signal_to_target (int sig)
263{
264 if (sig < ARRAY_SIZE (gdb_signal_table))
265 return gdb_signal_table[sig];
266 else
267 return -1;
268}
269
270
271
272typedef struct GDBRegisterState {
273 int base_reg;
274 int num_regs;
275 gdb_reg_cb get_reg;
276 gdb_reg_cb set_reg;
277 const char *xml;
278 struct GDBRegisterState *next;
279} GDBRegisterState;
280
281enum RSState {
282 RS_INACTIVE,
283 RS_IDLE,
284 RS_GETLINE,
285 RS_CHKSUM1,
286 RS_CHKSUM2,
287};
288typedef struct GDBState {
289 CPUArchState *c_cpu;
290 CPUArchState *g_cpu;
291 CPUArchState *query_cpu;
292 enum RSState state;
293 char line_buf[MAX_PACKET_LENGTH];
294 int line_buf_index;
295 int line_csum;
296 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
297 int last_packet_len;
298 int signal;
299#ifdef CONFIG_USER_ONLY
300 int fd;
301 int running_state;
302#else
303 CharDriverState *chr;
304 CharDriverState *mon_chr;
305#endif
306 char syscall_buf[256];
307 gdb_syscall_complete_cb current_syscall_cb;
308} GDBState;
309
310
311
312
313static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
314
315static GDBState *gdbserver_state;
316
317
318
319
320static int gdb_has_xml;
321
322#ifdef CONFIG_USER_ONLY
323
324static int gdbserver_fd = -1;
325
326static int get_char(GDBState *s)
327{
328 uint8_t ch;
329 int ret;
330
331 for(;;) {
332 ret = qemu_recv(s->fd, &ch, 1, 0);
333 if (ret < 0) {
334 if (errno == ECONNRESET)
335 s->fd = -1;
336 if (errno != EINTR && errno != EAGAIN)
337 return -1;
338 } else if (ret == 0) {
339 close(s->fd);
340 s->fd = -1;
341 return -1;
342 } else {
343 break;
344 }
345 }
346 return ch;
347}
348#endif
349
350static enum {
351 GDB_SYS_UNKNOWN,
352 GDB_SYS_ENABLED,
353 GDB_SYS_DISABLED,
354} gdb_syscall_mode;
355
356
357
358int use_gdb_syscalls(void)
359{
360 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
361 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
362 : GDB_SYS_DISABLED);
363 }
364 return gdb_syscall_mode == GDB_SYS_ENABLED;
365}
366
367
368static inline void gdb_continue(GDBState *s)
369{
370#ifdef CONFIG_USER_ONLY
371 s->running_state = 1;
372#else
373 vm_start();
374#endif
375}
376
377static void put_buffer(GDBState *s, const uint8_t *buf, int len)
378{
379#ifdef CONFIG_USER_ONLY
380 int ret;
381
382 while (len > 0) {
383 ret = send(s->fd, buf, len, 0);
384 if (ret < 0) {
385 if (errno != EINTR && errno != EAGAIN)
386 return;
387 } else {
388 buf += ret;
389 len -= ret;
390 }
391 }
392#else
393 qemu_chr_fe_write(s->chr, buf, len);
394#endif
395}
396
397static inline int fromhex(int v)
398{
399 if (v >= '0' && v <= '9')
400 return v - '0';
401 else if (v >= 'A' && v <= 'F')
402 return v - 'A' + 10;
403 else if (v >= 'a' && v <= 'f')
404 return v - 'a' + 10;
405 else
406 return 0;
407}
408
409static inline int tohex(int v)
410{
411 if (v < 10)
412 return v + '0';
413 else
414 return v - 10 + 'a';
415}
416
417static void memtohex(char *buf, const uint8_t *mem, int len)
418{
419 int i, c;
420 char *q;
421 q = buf;
422 for(i = 0; i < len; i++) {
423 c = mem[i];
424 *q++ = tohex(c >> 4);
425 *q++ = tohex(c & 0xf);
426 }
427 *q = '\0';
428}
429
430static void hextomem(uint8_t *mem, const char *buf, int len)
431{
432 int i;
433
434 for(i = 0; i < len; i++) {
435 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
436 buf += 2;
437 }
438}
439
440
441static int put_packet_binary(GDBState *s, const char *buf, int len)
442{
443 int csum, i;
444 uint8_t *p;
445
446 for(;;) {
447 p = s->last_packet;
448 *(p++) = '$';
449 memcpy(p, buf, len);
450 p += len;
451 csum = 0;
452 for(i = 0; i < len; i++) {
453 csum += buf[i];
454 }
455 *(p++) = '#';
456 *(p++) = tohex((csum >> 4) & 0xf);
457 *(p++) = tohex((csum) & 0xf);
458
459 s->last_packet_len = p - s->last_packet;
460 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
461
462#ifdef CONFIG_USER_ONLY
463 i = get_char(s);
464 if (i < 0)
465 return -1;
466 if (i == '+')
467 break;
468#else
469 break;
470#endif
471 }
472 return 0;
473}
474
475
476static int put_packet(GDBState *s, const char *buf)
477{
478#ifdef DEBUG_GDB
479 printf("reply='%s'\n", buf);
480#endif
481
482 return put_packet_binary(s, buf, strlen(buf));
483}
484
485
486
487
488
489#define GET_REG8(val) do { \
490 stb_p(mem_buf, val); \
491 return 1; \
492 } while(0)
493#define GET_REG16(val) do { \
494 stw_p(mem_buf, val); \
495 return 2; \
496 } while(0)
497#define GET_REG32(val) do { \
498 stl_p(mem_buf, val); \
499 return 4; \
500 } while(0)
501#define GET_REG64(val) do { \
502 stq_p(mem_buf, val); \
503 return 8; \
504 } while(0)
505
506#if TARGET_LONG_BITS == 64
507#define GET_REGL(val) GET_REG64(val)
508#define ldtul_p(addr) ldq_p(addr)
509#else
510#define GET_REGL(val) GET_REG32(val)
511#define ldtul_p(addr) ldl_p(addr)
512#endif
513
514#if defined(TARGET_I386)
515
516#ifdef TARGET_X86_64
517static const int gpr_map[16] = {
518 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
519 8, 9, 10, 11, 12, 13, 14, 15
520};
521#else
522#define gpr_map gpr_map32
523#endif
524static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
525
526#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
527
528#define IDX_IP_REG CPU_NB_REGS
529#define IDX_FLAGS_REG (IDX_IP_REG + 1)
530#define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
531#define IDX_FP_REGS (IDX_SEG_REGS + 6)
532#define IDX_XMM_REGS (IDX_FP_REGS + 16)
533#define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
534
535static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
536{
537 if (n < CPU_NB_REGS) {
538 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
539 GET_REG64(env->regs[gpr_map[n]]);
540 } else if (n < CPU_NB_REGS32) {
541 GET_REG32(env->regs[gpr_map32[n]]);
542 }
543 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
544#ifdef USE_X86LDOUBLE
545
546 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
547#else
548 memset(mem_buf, 0, 10);
549#endif
550 return 10;
551 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
552 n -= IDX_XMM_REGS;
553 if (n < CPU_NB_REGS32 ||
554 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
555 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
556 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
557 return 16;
558 }
559 } else {
560 switch (n) {
561 case IDX_IP_REG:
562 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
563 GET_REG64(env->eip);
564 } else {
565 GET_REG32(env->eip);
566 }
567 case IDX_FLAGS_REG: GET_REG32(env->eflags);
568
569 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
570 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
571 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
572 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
573 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
574 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
575
576 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
577 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
578 (env->fpstt & 0x7) << 11);
579 case IDX_FP_REGS + 10: GET_REG32(0);
580 case IDX_FP_REGS + 11: GET_REG32(0);
581 case IDX_FP_REGS + 12: GET_REG32(0);
582 case IDX_FP_REGS + 13: GET_REG32(0);
583 case IDX_FP_REGS + 14: GET_REG32(0);
584 case IDX_FP_REGS + 15: GET_REG32(0);
585
586 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
587 }
588 }
589 return 0;
590}
591
592static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
593{
594 uint16_t selector = ldl_p(mem_buf);
595
596 if (selector != env->segs[sreg].selector) {
597#if defined(CONFIG_USER_ONLY)
598 cpu_x86_load_seg(env, sreg, selector);
599#else
600 unsigned int limit, flags;
601 target_ulong base;
602
603 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
604 base = selector << 4;
605 limit = 0xffff;
606 flags = 0;
607 } else {
608 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
609 return 4;
610 }
611 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
612#endif
613 }
614 return 4;
615}
616
617static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
618{
619 uint32_t tmp;
620
621 if (n < CPU_NB_REGS) {
622 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
623 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
624 return sizeof(target_ulong);
625 } else if (n < CPU_NB_REGS32) {
626 n = gpr_map32[n];
627 env->regs[n] &= ~0xffffffffUL;
628 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
629 return 4;
630 }
631 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
632#ifdef USE_X86LDOUBLE
633
634 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
635#endif
636 return 10;
637 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
638 n -= IDX_XMM_REGS;
639 if (n < CPU_NB_REGS32 ||
640 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
641 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
642 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
643 return 16;
644 }
645 } else {
646 switch (n) {
647 case IDX_IP_REG:
648 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
649 env->eip = ldq_p(mem_buf);
650 return 8;
651 } else {
652 env->eip &= ~0xffffffffUL;
653 env->eip |= (uint32_t)ldl_p(mem_buf);
654 return 4;
655 }
656 case IDX_FLAGS_REG:
657 env->eflags = ldl_p(mem_buf);
658 return 4;
659
660 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
661 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
662 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
663 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
664 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
665 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
666
667 case IDX_FP_REGS + 8:
668 env->fpuc = ldl_p(mem_buf);
669 return 4;
670 case IDX_FP_REGS + 9:
671 tmp = ldl_p(mem_buf);
672 env->fpstt = (tmp >> 11) & 7;
673 env->fpus = tmp & ~0x3800;
674 return 4;
675 case IDX_FP_REGS + 10: return 4;
676 case IDX_FP_REGS + 11: return 4;
677 case IDX_FP_REGS + 12: return 4;
678 case IDX_FP_REGS + 13: return 4;
679 case IDX_FP_REGS + 14: return 4;
680 case IDX_FP_REGS + 15: return 4;
681
682 case IDX_MXCSR_REG:
683 env->mxcsr = ldl_p(mem_buf);
684 return 4;
685 }
686 }
687
688 return 0;
689}
690
691#elif defined (TARGET_PPC)
692
693
694
695
696
697
698#define NUM_CORE_REGS 71
699#if defined (TARGET_PPC64)
700#define GDB_CORE_XML "power64-core.xml"
701#else
702#define GDB_CORE_XML "power-core.xml"
703#endif
704
705static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
706{
707 if (n < 32) {
708
709 GET_REGL(env->gpr[n]);
710 } else if (n < 64) {
711
712 if (gdb_has_xml)
713 return 0;
714 stfq_p(mem_buf, env->fpr[n-32]);
715 return 8;
716 } else {
717 switch (n) {
718 case 64: GET_REGL(env->nip);
719 case 65: GET_REGL(env->msr);
720 case 66:
721 {
722 uint32_t cr = 0;
723 int i;
724 for (i = 0; i < 8; i++)
725 cr |= env->crf[i] << (32 - ((i + 1) * 4));
726 GET_REG32(cr);
727 }
728 case 67: GET_REGL(env->lr);
729 case 68: GET_REGL(env->ctr);
730 case 69: GET_REGL(env->xer);
731 case 70:
732 {
733 if (gdb_has_xml)
734 return 0;
735 GET_REG32(env->fpscr);
736 }
737 }
738 }
739 return 0;
740}
741
742static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
743{
744 if (n < 32) {
745
746 env->gpr[n] = ldtul_p(mem_buf);
747 return sizeof(target_ulong);
748 } else if (n < 64) {
749
750 if (gdb_has_xml)
751 return 0;
752 env->fpr[n-32] = ldfq_p(mem_buf);
753 return 8;
754 } else {
755 switch (n) {
756 case 64:
757 env->nip = ldtul_p(mem_buf);
758 return sizeof(target_ulong);
759 case 65:
760 ppc_store_msr(env, ldtul_p(mem_buf));
761 return sizeof(target_ulong);
762 case 66:
763 {
764 uint32_t cr = ldl_p(mem_buf);
765 int i;
766 for (i = 0; i < 8; i++)
767 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
768 return 4;
769 }
770 case 67:
771 env->lr = ldtul_p(mem_buf);
772 return sizeof(target_ulong);
773 case 68:
774 env->ctr = ldtul_p(mem_buf);
775 return sizeof(target_ulong);
776 case 69:
777 env->xer = ldtul_p(mem_buf);
778 return sizeof(target_ulong);
779 case 70:
780
781 if (gdb_has_xml)
782 return 0;
783 return 4;
784 }
785 }
786 return 0;
787}
788
789#elif defined (TARGET_SPARC)
790
791#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
792#define NUM_CORE_REGS 86
793#else
794#define NUM_CORE_REGS 72
795#endif
796
797#ifdef TARGET_ABI32
798#define GET_REGA(val) GET_REG32(val)
799#else
800#define GET_REGA(val) GET_REGL(val)
801#endif
802
803static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
804{
805 if (n < 8) {
806
807 GET_REGA(env->gregs[n]);
808 }
809 if (n < 32) {
810
811 GET_REGA(env->regwptr[n - 8]);
812 }
813#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
814 if (n < 64) {
815
816 if (n & 1) {
817 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
818 } else {
819 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
820 }
821 }
822
823 switch (n) {
824 case 64: GET_REGA(env->y);
825 case 65: GET_REGA(cpu_get_psr(env));
826 case 66: GET_REGA(env->wim);
827 case 67: GET_REGA(env->tbr);
828 case 68: GET_REGA(env->pc);
829 case 69: GET_REGA(env->npc);
830 case 70: GET_REGA(env->fsr);
831 case 71: GET_REGA(0);
832 default: GET_REGA(0);
833 }
834#else
835 if (n < 64) {
836
837 if (n & 1) {
838 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
839 } else {
840 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
841 }
842 }
843 if (n < 80) {
844
845 GET_REG64(env->fpr[(n - 32) / 2].ll);
846 }
847 switch (n) {
848 case 80: GET_REGL(env->pc);
849 case 81: GET_REGL(env->npc);
850 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
851 ((env->asi & 0xff) << 24) |
852 ((env->pstate & 0xfff) << 8) |
853 cpu_get_cwp64(env));
854 case 83: GET_REGL(env->fsr);
855 case 84: GET_REGL(env->fprs);
856 case 85: GET_REGL(env->y);
857 }
858#endif
859 return 0;
860}
861
862static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
863{
864#if defined(TARGET_ABI32)
865 abi_ulong tmp;
866
867 tmp = ldl_p(mem_buf);
868#else
869 target_ulong tmp;
870
871 tmp = ldtul_p(mem_buf);
872#endif
873
874 if (n < 8) {
875
876 env->gregs[n] = tmp;
877 } else if (n < 32) {
878
879 env->regwptr[n - 8] = tmp;
880 }
881#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
882 else if (n < 64) {
883
884
885 if (n & 1) {
886 env->fpr[(n - 32) / 2].l.lower = tmp;
887 } else {
888 env->fpr[(n - 32) / 2].l.upper = tmp;
889 }
890 } else {
891
892 switch (n) {
893 case 64: env->y = tmp; break;
894 case 65: cpu_put_psr(env, tmp); break;
895 case 66: env->wim = tmp; break;
896 case 67: env->tbr = tmp; break;
897 case 68: env->pc = tmp; break;
898 case 69: env->npc = tmp; break;
899 case 70: env->fsr = tmp; break;
900 default: return 0;
901 }
902 }
903 return 4;
904#else
905 else if (n < 64) {
906
907 tmp = ldl_p(mem_buf);
908 if (n & 1) {
909 env->fpr[(n - 32) / 2].l.lower = tmp;
910 } else {
911 env->fpr[(n - 32) / 2].l.upper = tmp;
912 }
913 return 4;
914 } else if (n < 80) {
915
916 env->fpr[(n - 32) / 2].ll = tmp;
917 } else {
918 switch (n) {
919 case 80: env->pc = tmp; break;
920 case 81: env->npc = tmp; break;
921 case 82:
922 cpu_put_ccr(env, tmp >> 32);
923 env->asi = (tmp >> 24) & 0xff;
924 env->pstate = (tmp >> 8) & 0xfff;
925 cpu_put_cwp64(env, tmp & 0xff);
926 break;
927 case 83: env->fsr = tmp; break;
928 case 84: env->fprs = tmp; break;
929 case 85: env->y = tmp; break;
930 default: return 0;
931 }
932 }
933 return 8;
934#endif
935}
936#elif defined (TARGET_ARM)
937
938
939
940
941
942
943#define NUM_CORE_REGS 26
944#define GDB_CORE_XML "arm-core.xml"
945
946static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
947{
948 if (n < 16) {
949
950 GET_REG32(env->regs[n]);
951 }
952 if (n < 24) {
953
954 if (gdb_has_xml)
955 return 0;
956 memset(mem_buf, 0, 12);
957 return 12;
958 }
959 switch (n) {
960 case 24:
961
962 if (gdb_has_xml)
963 return 0;
964 GET_REG32(0);
965 case 25:
966
967 GET_REG32(cpsr_read(env));
968 }
969
970 return 0;
971}
972
973static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
974{
975 uint32_t tmp;
976
977 tmp = ldl_p(mem_buf);
978
979
980
981 if (n == 15)
982 tmp &= ~1;
983
984 if (n < 16) {
985
986 env->regs[n] = tmp;
987 return 4;
988 }
989 if (n < 24) {
990
991 if (gdb_has_xml)
992 return 0;
993 return 12;
994 }
995 switch (n) {
996 case 24:
997
998 if (gdb_has_xml)
999 return 0;
1000 return 4;
1001 case 25:
1002
1003 cpsr_write (env, tmp, 0xffffffff);
1004 return 4;
1005 }
1006
1007 return 0;
1008}
1009
1010#elif defined (TARGET_M68K)
1011
1012#define NUM_CORE_REGS 18
1013
1014#define GDB_CORE_XML "cf-core.xml"
1015
1016static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1017{
1018 if (n < 8) {
1019
1020 GET_REG32(env->dregs[n]);
1021 } else if (n < 16) {
1022
1023 GET_REG32(env->aregs[n - 8]);
1024 } else {
1025 switch (n) {
1026 case 16: GET_REG32(env->sr);
1027 case 17: GET_REG32(env->pc);
1028 }
1029 }
1030
1031
1032 return 0;
1033}
1034
1035static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1036{
1037 uint32_t tmp;
1038
1039 tmp = ldl_p(mem_buf);
1040
1041 if (n < 8) {
1042
1043 env->dregs[n] = tmp;
1044 } else if (n < 16) {
1045
1046 env->aregs[n - 8] = tmp;
1047 } else {
1048 switch (n) {
1049 case 16: env->sr = tmp; break;
1050 case 17: env->pc = tmp; break;
1051 default: return 0;
1052 }
1053 }
1054 return 4;
1055}
1056#elif defined (TARGET_MIPS)
1057
1058#define NUM_CORE_REGS 73
1059
1060static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1061{
1062 if (n < 32) {
1063 GET_REGL(env->active_tc.gpr[n]);
1064 }
1065 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1066 if (n >= 38 && n < 70) {
1067 if (env->CP0_Status & (1 << CP0St_FR))
1068 GET_REGL(env->active_fpu.fpr[n - 38].d);
1069 else
1070 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1071 }
1072 switch (n) {
1073 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1074 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1075 }
1076 }
1077 switch (n) {
1078 case 32: GET_REGL((int32_t)env->CP0_Status);
1079 case 33: GET_REGL(env->active_tc.LO[0]);
1080 case 34: GET_REGL(env->active_tc.HI[0]);
1081 case 35: GET_REGL(env->CP0_BadVAddr);
1082 case 36: GET_REGL((int32_t)env->CP0_Cause);
1083 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1084 case 72: GET_REGL(0);
1085 case 89: GET_REGL((int32_t)env->CP0_PRid);
1086 }
1087 if (n >= 73 && n <= 88) {
1088
1089 GET_REGL(0);
1090 }
1091
1092 return 0;
1093}
1094
1095
1096static unsigned int ieee_rm[] =
1097 {
1098 float_round_nearest_even,
1099 float_round_to_zero,
1100 float_round_up,
1101 float_round_down
1102 };
1103#define RESTORE_ROUNDING_MODE \
1104 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1105
1106static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1107{
1108 target_ulong tmp;
1109
1110 tmp = ldtul_p(mem_buf);
1111
1112 if (n < 32) {
1113 env->active_tc.gpr[n] = tmp;
1114 return sizeof(target_ulong);
1115 }
1116 if (env->CP0_Config1 & (1 << CP0C1_FP)
1117 && n >= 38 && n < 73) {
1118 if (n < 70) {
1119 if (env->CP0_Status & (1 << CP0St_FR))
1120 env->active_fpu.fpr[n - 38].d = tmp;
1121 else
1122 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1123 }
1124 switch (n) {
1125 case 70:
1126 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1127
1128 RESTORE_ROUNDING_MODE;
1129 break;
1130 case 71: env->active_fpu.fcr0 = tmp; break;
1131 }
1132 return sizeof(target_ulong);
1133 }
1134 switch (n) {
1135 case 32: env->CP0_Status = tmp; break;
1136 case 33: env->active_tc.LO[0] = tmp; break;
1137 case 34: env->active_tc.HI[0] = tmp; break;
1138 case 35: env->CP0_BadVAddr = tmp; break;
1139 case 36: env->CP0_Cause = tmp; break;
1140 case 37:
1141 env->active_tc.PC = tmp & ~(target_ulong)1;
1142 if (tmp & 1) {
1143 env->hflags |= MIPS_HFLAG_M16;
1144 } else {
1145 env->hflags &= ~(MIPS_HFLAG_M16);
1146 }
1147 break;
1148 case 72: break;
1149 default:
1150 if (n > 89)
1151 return 0;
1152
1153 break;
1154 }
1155
1156 return sizeof(target_ulong);
1157}
1158#elif defined(TARGET_OPENRISC)
1159
1160#define NUM_CORE_REGS (32 + 3)
1161
1162static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
1163{
1164 if (n < 32) {
1165 GET_REG32(env->gpr[n]);
1166 } else {
1167 switch (n) {
1168 case 32:
1169 GET_REG32(env->ppc);
1170 break;
1171
1172 case 33:
1173 GET_REG32(env->npc);
1174 break;
1175
1176 case 34:
1177 GET_REG32(env->sr);
1178 break;
1179
1180 default:
1181 break;
1182 }
1183 }
1184 return 0;
1185}
1186
1187static int cpu_gdb_write_register(CPUOpenRISCState *env,
1188 uint8_t *mem_buf, int n)
1189{
1190 uint32_t tmp;
1191
1192 if (n > NUM_CORE_REGS) {
1193 return 0;
1194 }
1195
1196 tmp = ldl_p(mem_buf);
1197
1198 if (n < 32) {
1199 env->gpr[n] = tmp;
1200 } else {
1201 switch (n) {
1202 case 32:
1203 env->ppc = tmp;
1204 break;
1205
1206 case 33:
1207 env->npc = tmp;
1208 break;
1209
1210 case 34:
1211 env->sr = tmp;
1212 break;
1213
1214 default:
1215 break;
1216 }
1217 }
1218 return 4;
1219}
1220#elif defined (TARGET_SH4)
1221
1222
1223
1224
1225#define NUM_CORE_REGS 59
1226
1227static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1228{
1229 if (n < 8) {
1230 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1231 GET_REGL(env->gregs[n + 16]);
1232 } else {
1233 GET_REGL(env->gregs[n]);
1234 }
1235 } else if (n < 16) {
1236 GET_REGL(env->gregs[n]);
1237 } else if (n >= 25 && n < 41) {
1238 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1239 } else if (n >= 43 && n < 51) {
1240 GET_REGL(env->gregs[n - 43]);
1241 } else if (n >= 51 && n < 59) {
1242 GET_REGL(env->gregs[n - (51 - 16)]);
1243 }
1244 switch (n) {
1245 case 16: GET_REGL(env->pc);
1246 case 17: GET_REGL(env->pr);
1247 case 18: GET_REGL(env->gbr);
1248 case 19: GET_REGL(env->vbr);
1249 case 20: GET_REGL(env->mach);
1250 case 21: GET_REGL(env->macl);
1251 case 22: GET_REGL(env->sr);
1252 case 23: GET_REGL(env->fpul);
1253 case 24: GET_REGL(env->fpscr);
1254 case 41: GET_REGL(env->ssr);
1255 case 42: GET_REGL(env->spc);
1256 }
1257
1258 return 0;
1259}
1260
1261static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1262{
1263 uint32_t tmp;
1264
1265 tmp = ldl_p(mem_buf);
1266
1267 if (n < 8) {
1268 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1269 env->gregs[n + 16] = tmp;
1270 } else {
1271 env->gregs[n] = tmp;
1272 }
1273 return 4;
1274 } else if (n < 16) {
1275 env->gregs[n] = tmp;
1276 return 4;
1277 } else if (n >= 25 && n < 41) {
1278 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1279 return 4;
1280 } else if (n >= 43 && n < 51) {
1281 env->gregs[n - 43] = tmp;
1282 return 4;
1283 } else if (n >= 51 && n < 59) {
1284 env->gregs[n - (51 - 16)] = tmp;
1285 return 4;
1286 }
1287 switch (n) {
1288 case 16: env->pc = tmp; break;
1289 case 17: env->pr = tmp; break;
1290 case 18: env->gbr = tmp; break;
1291 case 19: env->vbr = tmp; break;
1292 case 20: env->mach = tmp; break;
1293 case 21: env->macl = tmp; break;
1294 case 22: env->sr = tmp; break;
1295 case 23: env->fpul = tmp; break;
1296 case 24: env->fpscr = tmp; break;
1297 case 41: env->ssr = tmp; break;
1298 case 42: env->spc = tmp; break;
1299 default: return 0;
1300 }
1301
1302 return 4;
1303}
1304#elif defined (TARGET_MICROBLAZE)
1305
1306#define NUM_CORE_REGS (32 + 5)
1307
1308static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1309{
1310 if (n < 32) {
1311 GET_REG32(env->regs[n]);
1312 } else {
1313 GET_REG32(env->sregs[n - 32]);
1314 }
1315 return 0;
1316}
1317
1318static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1319{
1320 uint32_t tmp;
1321
1322 if (n > NUM_CORE_REGS)
1323 return 0;
1324
1325 tmp = ldl_p(mem_buf);
1326
1327 if (n < 32) {
1328 env->regs[n] = tmp;
1329 } else {
1330 env->sregs[n - 32] = tmp;
1331 }
1332 return 4;
1333}
1334#elif defined (TARGET_CRIS)
1335
1336#define NUM_CORE_REGS 49
1337
1338static int
1339read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1340{
1341 if (n < 15) {
1342 GET_REG32(env->regs[n]);
1343 }
1344
1345 if (n == 15) {
1346 GET_REG32(env->pc);
1347 }
1348
1349 if (n < 32) {
1350 switch (n) {
1351 case 16:
1352 GET_REG8(env->pregs[n - 16]);
1353 break;
1354 case 17:
1355 GET_REG8(env->pregs[n - 16]);
1356 break;
1357 case 20:
1358 case 21:
1359 GET_REG16(env->pregs[n - 16]);
1360 break;
1361 default:
1362 if (n >= 23) {
1363 GET_REG32(env->pregs[n - 16]);
1364 }
1365 break;
1366 }
1367 }
1368 return 0;
1369}
1370
1371static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1372{
1373 uint8_t srs;
1374
1375 if (env->pregs[PR_VR] < 32)
1376 return read_register_crisv10(env, mem_buf, n);
1377
1378 srs = env->pregs[PR_SRS];
1379 if (n < 16) {
1380 GET_REG32(env->regs[n]);
1381 }
1382
1383 if (n >= 21 && n < 32) {
1384 GET_REG32(env->pregs[n - 16]);
1385 }
1386 if (n >= 33 && n < 49) {
1387 GET_REG32(env->sregs[srs][n - 33]);
1388 }
1389 switch (n) {
1390 case 16: GET_REG8(env->pregs[0]);
1391 case 17: GET_REG8(env->pregs[1]);
1392 case 18: GET_REG32(env->pregs[2]);
1393 case 19: GET_REG8(srs);
1394 case 20: GET_REG16(env->pregs[4]);
1395 case 32: GET_REG32(env->pc);
1396 }
1397
1398 return 0;
1399}
1400
1401static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1402{
1403 uint32_t tmp;
1404
1405 if (n > 49)
1406 return 0;
1407
1408 tmp = ldl_p(mem_buf);
1409
1410 if (n < 16) {
1411 env->regs[n] = tmp;
1412 }
1413
1414 if (n >= 21 && n < 32) {
1415 env->pregs[n - 16] = tmp;
1416 }
1417
1418
1419 switch (n) {
1420 case 16: return 1;
1421 case 17: return 1;
1422 case 18: env->pregs[PR_PID] = tmp; break;
1423 case 19: return 1;
1424 case 20: return 2;
1425 case 32: env->pc = tmp; break;
1426 }
1427
1428 return 4;
1429}
1430#elif defined (TARGET_ALPHA)
1431
1432#define NUM_CORE_REGS 67
1433
1434static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1435{
1436 uint64_t val;
1437 CPU_DoubleU d;
1438
1439 switch (n) {
1440 case 0 ... 30:
1441 val = env->ir[n];
1442 break;
1443 case 32 ... 62:
1444 d.d = env->fir[n - 32];
1445 val = d.ll;
1446 break;
1447 case 63:
1448 val = cpu_alpha_load_fpcr(env);
1449 break;
1450 case 64:
1451 val = env->pc;
1452 break;
1453 case 66:
1454 val = env->unique;
1455 break;
1456 case 31:
1457 case 65:
1458
1459
1460 val = 0;
1461 break;
1462 default:
1463 return 0;
1464 }
1465 GET_REGL(val);
1466}
1467
1468static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1469{
1470 target_ulong tmp = ldtul_p(mem_buf);
1471 CPU_DoubleU d;
1472
1473 switch (n) {
1474 case 0 ... 30:
1475 env->ir[n] = tmp;
1476 break;
1477 case 32 ... 62:
1478 d.ll = tmp;
1479 env->fir[n - 32] = d.d;
1480 break;
1481 case 63:
1482 cpu_alpha_store_fpcr(env, tmp);
1483 break;
1484 case 64:
1485 env->pc = tmp;
1486 break;
1487 case 66:
1488 env->unique = tmp;
1489 break;
1490 case 31:
1491 case 65:
1492
1493
1494 break;
1495 default:
1496 return 0;
1497 }
1498 return 8;
1499}
1500#elif defined (TARGET_S390X)
1501
1502#define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1503
1504static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1505{
1506 switch (n) {
1507 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1508 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1509 case S390_R0_REGNUM ... S390_R15_REGNUM:
1510 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1511 case S390_A0_REGNUM ... S390_A15_REGNUM:
1512 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1513 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1514 case S390_F0_REGNUM ... S390_F15_REGNUM:
1515
1516 break;
1517 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1518 case S390_CC_REGNUM:
1519 env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst,
1520 env->cc_vr);
1521 GET_REG32(env->cc_op);
1522 break;
1523 }
1524
1525 return 0;
1526}
1527
1528static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1529{
1530 target_ulong tmpl;
1531 uint32_t tmp32;
1532 int r = 8;
1533 tmpl = ldtul_p(mem_buf);
1534 tmp32 = ldl_p(mem_buf);
1535
1536 switch (n) {
1537 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1538 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1539 case S390_R0_REGNUM ... S390_R15_REGNUM:
1540 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1541 case S390_A0_REGNUM ... S390_A15_REGNUM:
1542 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1543 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1544 case S390_F0_REGNUM ... S390_F15_REGNUM:
1545
1546 break;
1547 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1548 case S390_CC_REGNUM: env->cc_op = tmp32; r=4; break;
1549 }
1550
1551 return r;
1552}
1553#elif defined (TARGET_LM32)
1554
1555#include "hw/lm32_pic.h"
1556#define NUM_CORE_REGS (32 + 7)
1557
1558static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1559{
1560 if (n < 32) {
1561 GET_REG32(env->regs[n]);
1562 } else {
1563 switch (n) {
1564 case 32:
1565 GET_REG32(env->pc);
1566 break;
1567
1568 case 33:
1569 GET_REG32(0);
1570 break;
1571 case 34:
1572 GET_REG32(env->eba);
1573 break;
1574 case 35:
1575 GET_REG32(env->deba);
1576 break;
1577 case 36:
1578 GET_REG32(env->ie);
1579 break;
1580 case 37:
1581 GET_REG32(lm32_pic_get_im(env->pic_state));
1582 break;
1583 case 38:
1584 GET_REG32(lm32_pic_get_ip(env->pic_state));
1585 break;
1586 }
1587 }
1588 return 0;
1589}
1590
1591static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1592{
1593 uint32_t tmp;
1594
1595 if (n > NUM_CORE_REGS) {
1596 return 0;
1597 }
1598
1599 tmp = ldl_p(mem_buf);
1600
1601 if (n < 32) {
1602 env->regs[n] = tmp;
1603 } else {
1604 switch (n) {
1605 case 32:
1606 env->pc = tmp;
1607 break;
1608 case 34:
1609 env->eba = tmp;
1610 break;
1611 case 35:
1612 env->deba = tmp;
1613 break;
1614 case 36:
1615 env->ie = tmp;
1616 break;
1617 case 37:
1618 lm32_pic_set_im(env->pic_state, tmp);
1619 break;
1620 case 38:
1621 lm32_pic_set_ip(env->pic_state, tmp);
1622 break;
1623 }
1624 }
1625 return 4;
1626}
1627#elif defined(TARGET_XTENSA)
1628
1629
1630
1631
1632
1633
1634#define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1635#define num_g_regs NUM_CORE_REGS
1636
1637static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1638{
1639 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1640
1641 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1642 return 0;
1643 }
1644
1645 switch (reg->type) {
1646 case 9:
1647 GET_REG32(env->pc);
1648 break;
1649
1650 case 1:
1651 xtensa_sync_phys_from_window(env);
1652 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1653 break;
1654
1655 case 2:
1656 GET_REG32(env->sregs[reg->targno & 0xff]);
1657 break;
1658
1659 case 3:
1660 GET_REG32(env->uregs[reg->targno & 0xff]);
1661 break;
1662
1663 case 8:
1664 GET_REG32(env->regs[reg->targno & 0x0f]);
1665 break;
1666
1667 default:
1668 qemu_log("%s from reg %d of unsupported type %d\n",
1669 __func__, n, reg->type);
1670 return 0;
1671 }
1672}
1673
1674static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1675{
1676 uint32_t tmp;
1677 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1678
1679 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1680 return 0;
1681 }
1682
1683 tmp = ldl_p(mem_buf);
1684
1685 switch (reg->type) {
1686 case 9:
1687 env->pc = tmp;
1688 break;
1689
1690 case 1:
1691 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1692 xtensa_sync_window_from_phys(env);
1693 break;
1694
1695 case 2:
1696 env->sregs[reg->targno & 0xff] = tmp;
1697 break;
1698
1699 case 3:
1700 env->uregs[reg->targno & 0xff] = tmp;
1701 break;
1702
1703 case 8:
1704 env->regs[reg->targno & 0x0f] = tmp;
1705 break;
1706
1707 default:
1708 qemu_log("%s to reg %d of unsupported type %d\n",
1709 __func__, n, reg->type);
1710 return 0;
1711 }
1712
1713 return 4;
1714}
1715#else
1716
1717#define NUM_CORE_REGS 0
1718
1719static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1720{
1721 return 0;
1722}
1723
1724static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1725{
1726 return 0;
1727}
1728
1729#endif
1730
1731#if !defined(TARGET_XTENSA)
1732static int num_g_regs = NUM_CORE_REGS;
1733#endif
1734
1735#ifdef GDB_CORE_XML
1736
1737static int memtox(char *buf, const char *mem, int len)
1738{
1739 char *p = buf;
1740 char c;
1741
1742 while (len--) {
1743 c = *(mem++);
1744 switch (c) {
1745 case '#': case '$': case '*': case '}':
1746 *(p++) = '}';
1747 *(p++) = c ^ 0x20;
1748 break;
1749 default:
1750 *(p++) = c;
1751 break;
1752 }
1753 }
1754 return p - buf;
1755}
1756
1757static const char *get_feature_xml(const char *p, const char **newp)
1758{
1759 size_t len;
1760 int i;
1761 const char *name;
1762 static char target_xml[1024];
1763
1764 len = 0;
1765 while (p[len] && p[len] != ':')
1766 len++;
1767 *newp = p + len;
1768
1769 name = NULL;
1770 if (strncmp(p, "target.xml", len) == 0) {
1771
1772 if (!target_xml[0]) {
1773 GDBRegisterState *r;
1774
1775 snprintf(target_xml, sizeof(target_xml),
1776 "<?xml version=\"1.0\"?>"
1777 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1778 "<target>"
1779 "<xi:include href=\"%s\"/>",
1780 GDB_CORE_XML);
1781
1782 for (r = first_cpu->gdb_regs; r; r = r->next) {
1783 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1784 pstrcat(target_xml, sizeof(target_xml), r->xml);
1785 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1786 }
1787 pstrcat(target_xml, sizeof(target_xml), "</target>");
1788 }
1789 return target_xml;
1790 }
1791 for (i = 0; ; i++) {
1792 name = xml_builtin[i][0];
1793 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1794 break;
1795 }
1796 return name ? xml_builtin[i][1] : NULL;
1797}
1798#endif
1799
1800static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1801{
1802 GDBRegisterState *r;
1803
1804 if (reg < NUM_CORE_REGS)
1805 return cpu_gdb_read_register(env, mem_buf, reg);
1806
1807 for (r = env->gdb_regs; r; r = r->next) {
1808 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1809 return r->get_reg(env, mem_buf, reg - r->base_reg);
1810 }
1811 }
1812 return 0;
1813}
1814
1815static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1816{
1817 GDBRegisterState *r;
1818
1819 if (reg < NUM_CORE_REGS)
1820 return cpu_gdb_write_register(env, mem_buf, reg);
1821
1822 for (r = env->gdb_regs; r; r = r->next) {
1823 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1824 return r->set_reg(env, mem_buf, reg - r->base_reg);
1825 }
1826 }
1827 return 0;
1828}
1829
1830#if !defined(TARGET_XTENSA)
1831
1832
1833
1834
1835
1836
1837void gdb_register_coprocessor(CPUArchState * env,
1838 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1839 int num_regs, const char *xml, int g_pos)
1840{
1841 GDBRegisterState *s;
1842 GDBRegisterState **p;
1843 static int last_reg = NUM_CORE_REGS;
1844
1845 p = &env->gdb_regs;
1846 while (*p) {
1847
1848 if (strcmp((*p)->xml, xml) == 0)
1849 return;
1850 p = &(*p)->next;
1851 }
1852
1853 s = g_new0(GDBRegisterState, 1);
1854 s->base_reg = last_reg;
1855 s->num_regs = num_regs;
1856 s->get_reg = get_reg;
1857 s->set_reg = set_reg;
1858 s->xml = xml;
1859
1860
1861 last_reg += num_regs;
1862 *p = s;
1863 if (g_pos) {
1864 if (g_pos != s->base_reg) {
1865 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1866 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1867 } else {
1868 num_g_regs = last_reg;
1869 }
1870 }
1871}
1872#endif
1873
1874#ifndef CONFIG_USER_ONLY
1875static const int xlat_gdb_type[] = {
1876 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1877 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1878 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1879};
1880#endif
1881
1882static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1883{
1884 CPUArchState *env;
1885 int err = 0;
1886
1887 if (kvm_enabled())
1888 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1889
1890 switch (type) {
1891 case GDB_BREAKPOINT_SW:
1892 case GDB_BREAKPOINT_HW:
1893 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1894 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1895 if (err)
1896 break;
1897 }
1898 return err;
1899#ifndef CONFIG_USER_ONLY
1900 case GDB_WATCHPOINT_WRITE:
1901 case GDB_WATCHPOINT_READ:
1902 case GDB_WATCHPOINT_ACCESS:
1903 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1904 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1905 NULL);
1906 if (err)
1907 break;
1908 }
1909 return err;
1910#endif
1911 default:
1912 return -ENOSYS;
1913 }
1914}
1915
1916static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1917{
1918 CPUArchState *env;
1919 int err = 0;
1920
1921 if (kvm_enabled())
1922 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1923
1924 switch (type) {
1925 case GDB_BREAKPOINT_SW:
1926 case GDB_BREAKPOINT_HW:
1927 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1928 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1929 if (err)
1930 break;
1931 }
1932 return err;
1933#ifndef CONFIG_USER_ONLY
1934 case GDB_WATCHPOINT_WRITE:
1935 case GDB_WATCHPOINT_READ:
1936 case GDB_WATCHPOINT_ACCESS:
1937 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1938 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1939 if (err)
1940 break;
1941 }
1942 return err;
1943#endif
1944 default:
1945 return -ENOSYS;
1946 }
1947}
1948
1949static void gdb_breakpoint_remove_all(void)
1950{
1951 CPUArchState *env;
1952
1953 if (kvm_enabled()) {
1954 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1955 return;
1956 }
1957
1958 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1959 cpu_breakpoint_remove_all(env, BP_GDB);
1960#ifndef CONFIG_USER_ONLY
1961 cpu_watchpoint_remove_all(env, BP_GDB);
1962#endif
1963 }
1964}
1965
1966static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1967{
1968 cpu_synchronize_state(s->c_cpu);
1969#if defined(TARGET_I386)
1970 s->c_cpu->eip = pc;
1971#elif defined (TARGET_PPC)
1972 s->c_cpu->nip = pc;
1973#elif defined (TARGET_SPARC)
1974 s->c_cpu->pc = pc;
1975 s->c_cpu->npc = pc + 4;
1976#elif defined (TARGET_ARM)
1977 s->c_cpu->regs[15] = pc;
1978#elif defined (TARGET_SH4)
1979 s->c_cpu->pc = pc;
1980#elif defined (TARGET_MIPS)
1981 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1982 if (pc & 1) {
1983 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1984 } else {
1985 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1986 }
1987#elif defined (TARGET_MICROBLAZE)
1988 s->c_cpu->sregs[SR_PC] = pc;
1989#elif defined(TARGET_OPENRISC)
1990 s->c_cpu->pc = pc;
1991#elif defined (TARGET_CRIS)
1992 s->c_cpu->pc = pc;
1993#elif defined (TARGET_ALPHA)
1994 s->c_cpu->pc = pc;
1995#elif defined (TARGET_S390X)
1996 s->c_cpu->psw.addr = pc;
1997#elif defined (TARGET_LM32)
1998 s->c_cpu->pc = pc;
1999#elif defined(TARGET_XTENSA)
2000 s->c_cpu->pc = pc;
2001#endif
2002}
2003
2004static CPUArchState *find_cpu(uint32_t thread_id)
2005{
2006 CPUArchState *env;
2007
2008 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2009 if (cpu_index(env) == thread_id) {
2010 return env;
2011 }
2012 }
2013
2014 return NULL;
2015}
2016
2017static int gdb_handle_packet(GDBState *s, const char *line_buf)
2018{
2019 CPUArchState *env;
2020 const char *p;
2021 uint32_t thread;
2022 int ch, reg_size, type, res;
2023 char buf[MAX_PACKET_LENGTH];
2024 uint8_t mem_buf[MAX_PACKET_LENGTH];
2025 uint8_t *registers;
2026 target_ulong addr, len;
2027
2028#ifdef DEBUG_GDB
2029 printf("command='%s'\n", line_buf);
2030#endif
2031 p = line_buf;
2032 ch = *p++;
2033 switch(ch) {
2034 case '?':
2035
2036 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
2037 cpu_index(s->c_cpu));
2038 put_packet(s, buf);
2039
2040
2041
2042
2043 gdb_breakpoint_remove_all();
2044 break;
2045 case 'c':
2046 if (*p != '\0') {
2047 addr = strtoull(p, (char **)&p, 16);
2048 gdb_set_cpu_pc(s, addr);
2049 }
2050 s->signal = 0;
2051 gdb_continue(s);
2052 return RS_IDLE;
2053 case 'C':
2054 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2055 if (s->signal == -1)
2056 s->signal = 0;
2057 gdb_continue(s);
2058 return RS_IDLE;
2059 case 'v':
2060 if (strncmp(p, "Cont", 4) == 0) {
2061 int res_signal, res_thread;
2062
2063 p += 4;
2064 if (*p == '?') {
2065 put_packet(s, "vCont;c;C;s;S");
2066 break;
2067 }
2068 res = 0;
2069 res_signal = 0;
2070 res_thread = 0;
2071 while (*p) {
2072 int action, signal;
2073
2074 if (*p++ != ';') {
2075 res = 0;
2076 break;
2077 }
2078 action = *p++;
2079 signal = 0;
2080 if (action == 'C' || action == 'S') {
2081 signal = strtoul(p, (char **)&p, 16);
2082 } else if (action != 'c' && action != 's') {
2083 res = 0;
2084 break;
2085 }
2086 thread = 0;
2087 if (*p == ':') {
2088 thread = strtoull(p+1, (char **)&p, 16);
2089 }
2090 action = tolower(action);
2091 if (res == 0 || (res == 'c' && action == 's')) {
2092 res = action;
2093 res_signal = signal;
2094 res_thread = thread;
2095 }
2096 }
2097 if (res) {
2098 if (res_thread != -1 && res_thread != 0) {
2099 env = find_cpu(res_thread);
2100 if (env == NULL) {
2101 put_packet(s, "E22");
2102 break;
2103 }
2104 s->c_cpu = env;
2105 }
2106 if (res == 's') {
2107 cpu_single_step(s->c_cpu, sstep_flags);
2108 }
2109 s->signal = res_signal;
2110 gdb_continue(s);
2111 return RS_IDLE;
2112 }
2113 break;
2114 } else {
2115 goto unknown_command;
2116 }
2117 case 'k':
2118#ifdef CONFIG_USER_ONLY
2119
2120 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2121 exit(0);
2122#endif
2123 case 'D':
2124
2125 gdb_breakpoint_remove_all();
2126 gdb_syscall_mode = GDB_SYS_DISABLED;
2127 gdb_continue(s);
2128 put_packet(s, "OK");
2129 break;
2130 case 's':
2131 if (*p != '\0') {
2132 addr = strtoull(p, (char **)&p, 16);
2133 gdb_set_cpu_pc(s, addr);
2134 }
2135 cpu_single_step(s->c_cpu, sstep_flags);
2136 gdb_continue(s);
2137 return RS_IDLE;
2138 case 'F':
2139 {
2140 target_ulong ret;
2141 target_ulong err;
2142
2143 ret = strtoull(p, (char **)&p, 16);
2144 if (*p == ',') {
2145 p++;
2146 err = strtoull(p, (char **)&p, 16);
2147 } else {
2148 err = 0;
2149 }
2150 if (*p == ',')
2151 p++;
2152 type = *p;
2153 if (s->current_syscall_cb) {
2154 s->current_syscall_cb(s->c_cpu, ret, err);
2155 s->current_syscall_cb = NULL;
2156 }
2157 if (type == 'C') {
2158 put_packet(s, "T02");
2159 } else {
2160 gdb_continue(s);
2161 }
2162 }
2163 break;
2164 case 'g':
2165 cpu_synchronize_state(s->g_cpu);
2166 env = s->g_cpu;
2167 len = 0;
2168 for (addr = 0; addr < num_g_regs; addr++) {
2169 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
2170 len += reg_size;
2171 }
2172 memtohex(buf, mem_buf, len);
2173 put_packet(s, buf);
2174 break;
2175 case 'G':
2176 cpu_synchronize_state(s->g_cpu);
2177 env = s->g_cpu;
2178 registers = mem_buf;
2179 len = strlen(p) / 2;
2180 hextomem((uint8_t *)registers, p, len);
2181 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2182 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2183 len -= reg_size;
2184 registers += reg_size;
2185 }
2186 put_packet(s, "OK");
2187 break;
2188 case 'm':
2189 addr = strtoull(p, (char **)&p, 16);
2190 if (*p == ',')
2191 p++;
2192 len = strtoull(p, NULL, 16);
2193 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2194 put_packet (s, "E14");
2195 } else {
2196 memtohex(buf, mem_buf, len);
2197 put_packet(s, buf);
2198 }
2199 break;
2200 case 'M':
2201 addr = strtoull(p, (char **)&p, 16);
2202 if (*p == ',')
2203 p++;
2204 len = strtoull(p, (char **)&p, 16);
2205 if (*p == ':')
2206 p++;
2207 hextomem(mem_buf, p, len);
2208 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2209 put_packet(s, "E14");
2210 } else {
2211 put_packet(s, "OK");
2212 }
2213 break;
2214 case 'p':
2215
2216
2217
2218 if (!gdb_has_xml)
2219 goto unknown_command;
2220 addr = strtoull(p, (char **)&p, 16);
2221 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2222 if (reg_size) {
2223 memtohex(buf, mem_buf, reg_size);
2224 put_packet(s, buf);
2225 } else {
2226 put_packet(s, "E14");
2227 }
2228 break;
2229 case 'P':
2230 if (!gdb_has_xml)
2231 goto unknown_command;
2232 addr = strtoull(p, (char **)&p, 16);
2233 if (*p == '=')
2234 p++;
2235 reg_size = strlen(p) / 2;
2236 hextomem(mem_buf, p, reg_size);
2237 gdb_write_register(s->g_cpu, mem_buf, addr);
2238 put_packet(s, "OK");
2239 break;
2240 case 'Z':
2241 case 'z':
2242 type = strtoul(p, (char **)&p, 16);
2243 if (*p == ',')
2244 p++;
2245 addr = strtoull(p, (char **)&p, 16);
2246 if (*p == ',')
2247 p++;
2248 len = strtoull(p, (char **)&p, 16);
2249 if (ch == 'Z')
2250 res = gdb_breakpoint_insert(addr, len, type);
2251 else
2252 res = gdb_breakpoint_remove(addr, len, type);
2253 if (res >= 0)
2254 put_packet(s, "OK");
2255 else if (res == -ENOSYS)
2256 put_packet(s, "");
2257 else
2258 put_packet(s, "E22");
2259 break;
2260 case 'H':
2261 type = *p++;
2262 thread = strtoull(p, (char **)&p, 16);
2263 if (thread == -1 || thread == 0) {
2264 put_packet(s, "OK");
2265 break;
2266 }
2267 env = find_cpu(thread);
2268 if (env == NULL) {
2269 put_packet(s, "E22");
2270 break;
2271 }
2272 switch (type) {
2273 case 'c':
2274 s->c_cpu = env;
2275 put_packet(s, "OK");
2276 break;
2277 case 'g':
2278 s->g_cpu = env;
2279 put_packet(s, "OK");
2280 break;
2281 default:
2282 put_packet(s, "E22");
2283 break;
2284 }
2285 break;
2286 case 'T':
2287 thread = strtoull(p, (char **)&p, 16);
2288 env = find_cpu(thread);
2289
2290 if (env != NULL) {
2291 put_packet(s, "OK");
2292 } else {
2293 put_packet(s, "E22");
2294 }
2295 break;
2296 case 'q':
2297 case 'Q':
2298
2299 if (!strcmp(p,"qemu.sstepbits")) {
2300
2301 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2302 SSTEP_ENABLE,
2303 SSTEP_NOIRQ,
2304 SSTEP_NOTIMER);
2305 put_packet(s, buf);
2306 break;
2307 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2308
2309 p += 10;
2310 if (*p != '=') {
2311
2312 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2313 put_packet(s, buf);
2314 break;
2315 }
2316 p++;
2317 type = strtoul(p, (char **)&p, 16);
2318 sstep_flags = type;
2319 put_packet(s, "OK");
2320 break;
2321 } else if (strcmp(p,"C") == 0) {
2322
2323
2324 put_packet(s, "QC1");
2325 break;
2326 } else if (strcmp(p,"fThreadInfo") == 0) {
2327 s->query_cpu = first_cpu;
2328 goto report_cpuinfo;
2329 } else if (strcmp(p,"sThreadInfo") == 0) {
2330 report_cpuinfo:
2331 if (s->query_cpu) {
2332 snprintf(buf, sizeof(buf), "m%x", cpu_index(s->query_cpu));
2333 put_packet(s, buf);
2334 s->query_cpu = s->query_cpu->next_cpu;
2335 } else
2336 put_packet(s, "l");
2337 break;
2338 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2339 thread = strtoull(p+16, (char **)&p, 16);
2340 env = find_cpu(thread);
2341 if (env != NULL) {
2342 cpu_synchronize_state(env);
2343 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2344 "CPU#%d [%s]", env->cpu_index,
2345 env->halted ? "halted " : "running");
2346 memtohex(buf, mem_buf, len);
2347 put_packet(s, buf);
2348 }
2349 break;
2350 }
2351#ifdef CONFIG_USER_ONLY
2352 else if (strncmp(p, "Offsets", 7) == 0) {
2353 TaskState *ts = s->c_cpu->opaque;
2354
2355 snprintf(buf, sizeof(buf),
2356 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2357 ";Bss=" TARGET_ABI_FMT_lx,
2358 ts->info->code_offset,
2359 ts->info->data_offset,
2360 ts->info->data_offset);
2361 put_packet(s, buf);
2362 break;
2363 }
2364#else
2365 else if (strncmp(p, "Rcmd,", 5) == 0) {
2366 int len = strlen(p + 5);
2367
2368 if ((len % 2) != 0) {
2369 put_packet(s, "E01");
2370 break;
2371 }
2372 hextomem(mem_buf, p + 5, len);
2373 len = len / 2;
2374 mem_buf[len++] = 0;
2375 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2376 put_packet(s, "OK");
2377 break;
2378 }
2379#endif
2380 if (strncmp(p, "Supported", 9) == 0) {
2381 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2382#ifdef GDB_CORE_XML
2383 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2384#endif
2385 put_packet(s, buf);
2386 break;
2387 }
2388#ifdef GDB_CORE_XML
2389 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2390 const char *xml;
2391 target_ulong total_len;
2392
2393 gdb_has_xml = 1;
2394 p += 19;
2395 xml = get_feature_xml(p, &p);
2396 if (!xml) {
2397 snprintf(buf, sizeof(buf), "E00");
2398 put_packet(s, buf);
2399 break;
2400 }
2401
2402 if (*p == ':')
2403 p++;
2404 addr = strtoul(p, (char **)&p, 16);
2405 if (*p == ',')
2406 p++;
2407 len = strtoul(p, (char **)&p, 16);
2408
2409 total_len = strlen(xml);
2410 if (addr > total_len) {
2411 snprintf(buf, sizeof(buf), "E00");
2412 put_packet(s, buf);
2413 break;
2414 }
2415 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2416 len = (MAX_PACKET_LENGTH - 5) / 2;
2417 if (len < total_len - addr) {
2418 buf[0] = 'm';
2419 len = memtox(buf + 1, xml + addr, len);
2420 } else {
2421 buf[0] = 'l';
2422 len = memtox(buf + 1, xml + addr, total_len - addr);
2423 }
2424 put_packet_binary(s, buf, len + 1);
2425 break;
2426 }
2427#endif
2428
2429 goto unknown_command;
2430
2431 default:
2432 unknown_command:
2433
2434 buf[0] = '\0';
2435 put_packet(s, buf);
2436 break;
2437 }
2438 return RS_IDLE;
2439}
2440
2441void gdb_set_stop_cpu(CPUArchState *env)
2442{
2443 gdbserver_state->c_cpu = env;
2444 gdbserver_state->g_cpu = env;
2445}
2446
2447#ifndef CONFIG_USER_ONLY
2448static void gdb_vm_state_change(void *opaque, int running, RunState state)
2449{
2450 GDBState *s = gdbserver_state;
2451 CPUArchState *env = s->c_cpu;
2452 char buf[256];
2453 const char *type;
2454 int ret;
2455
2456 if (running || s->state == RS_INACTIVE) {
2457 return;
2458 }
2459
2460 if (s->current_syscall_cb) {
2461 put_packet(s, s->syscall_buf);
2462 return;
2463 }
2464 switch (state) {
2465 case RUN_STATE_DEBUG:
2466 if (env->watchpoint_hit) {
2467 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2468 case BP_MEM_READ:
2469 type = "r";
2470 break;
2471 case BP_MEM_ACCESS:
2472 type = "a";
2473 break;
2474 default:
2475 type = "";
2476 break;
2477 }
2478 snprintf(buf, sizeof(buf),
2479 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2480 GDB_SIGNAL_TRAP, cpu_index(env), type,
2481 env->watchpoint_hit->vaddr);
2482 env->watchpoint_hit = NULL;
2483 goto send_packet;
2484 }
2485 tb_flush(env);
2486 ret = GDB_SIGNAL_TRAP;
2487 break;
2488 case RUN_STATE_PAUSED:
2489 ret = GDB_SIGNAL_INT;
2490 break;
2491 case RUN_STATE_SHUTDOWN:
2492 ret = GDB_SIGNAL_QUIT;
2493 break;
2494 case RUN_STATE_IO_ERROR:
2495 ret = GDB_SIGNAL_IO;
2496 break;
2497 case RUN_STATE_WATCHDOG:
2498 ret = GDB_SIGNAL_ALRM;
2499 break;
2500 case RUN_STATE_INTERNAL_ERROR:
2501 ret = GDB_SIGNAL_ABRT;
2502 break;
2503 case RUN_STATE_SAVE_VM:
2504 case RUN_STATE_RESTORE_VM:
2505 return;
2506 case RUN_STATE_FINISH_MIGRATE:
2507 ret = GDB_SIGNAL_XCPU;
2508 break;
2509 default:
2510 ret = GDB_SIGNAL_UNKNOWN;
2511 break;
2512 }
2513 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(env));
2514
2515send_packet:
2516 put_packet(s, buf);
2517
2518
2519 cpu_single_step(env, 0);
2520}
2521#endif
2522
2523
2524
2525
2526
2527
2528void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2529{
2530 va_list va;
2531 char *p;
2532 char *p_end;
2533 target_ulong addr;
2534 uint64_t i64;
2535 GDBState *s;
2536
2537 s = gdbserver_state;
2538 if (!s)
2539 return;
2540 s->current_syscall_cb = cb;
2541#ifndef CONFIG_USER_ONLY
2542 vm_stop(RUN_STATE_DEBUG);
2543#endif
2544 va_start(va, fmt);
2545 p = s->syscall_buf;
2546 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2547 *(p++) = 'F';
2548 while (*fmt) {
2549 if (*fmt == '%') {
2550 fmt++;
2551 switch (*fmt++) {
2552 case 'x':
2553 addr = va_arg(va, target_ulong);
2554 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2555 break;
2556 case 'l':
2557 if (*(fmt++) != 'x')
2558 goto bad_format;
2559 i64 = va_arg(va, uint64_t);
2560 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2561 break;
2562 case 's':
2563 addr = va_arg(va, target_ulong);
2564 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2565 addr, va_arg(va, int));
2566 break;
2567 default:
2568 bad_format:
2569 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2570 fmt - 1);
2571 break;
2572 }
2573 } else {
2574 *(p++) = *(fmt++);
2575 }
2576 }
2577 *p = 0;
2578 va_end(va);
2579#ifdef CONFIG_USER_ONLY
2580 put_packet(s, s->syscall_buf);
2581 gdb_handlesig(s->c_cpu, 0);
2582#else
2583
2584
2585
2586
2587
2588
2589 cpu_exit(s->c_cpu);
2590#endif
2591}
2592
2593static void gdb_read_byte(GDBState *s, int ch)
2594{
2595 int i, csum;
2596 uint8_t reply;
2597
2598#ifndef CONFIG_USER_ONLY
2599 if (s->last_packet_len) {
2600
2601
2602 if (ch == '-') {
2603#ifdef DEBUG_GDB
2604 printf("Got NACK, retransmitting\n");
2605#endif
2606 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2607 }
2608#ifdef DEBUG_GDB
2609 else if (ch == '+')
2610 printf("Got ACK\n");
2611 else
2612 printf("Got '%c' when expecting ACK/NACK\n", ch);
2613#endif
2614 if (ch == '+' || ch == '$')
2615 s->last_packet_len = 0;
2616 if (ch != '$')
2617 return;
2618 }
2619 if (runstate_is_running()) {
2620
2621
2622 vm_stop(RUN_STATE_PAUSED);
2623 } else
2624#endif
2625 {
2626 switch(s->state) {
2627 case RS_IDLE:
2628 if (ch == '$') {
2629 s->line_buf_index = 0;
2630 s->state = RS_GETLINE;
2631 }
2632 break;
2633 case RS_GETLINE:
2634 if (ch == '#') {
2635 s->state = RS_CHKSUM1;
2636 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2637 s->state = RS_IDLE;
2638 } else {
2639 s->line_buf[s->line_buf_index++] = ch;
2640 }
2641 break;
2642 case RS_CHKSUM1:
2643 s->line_buf[s->line_buf_index] = '\0';
2644 s->line_csum = fromhex(ch) << 4;
2645 s->state = RS_CHKSUM2;
2646 break;
2647 case RS_CHKSUM2:
2648 s->line_csum |= fromhex(ch);
2649 csum = 0;
2650 for(i = 0; i < s->line_buf_index; i++) {
2651 csum += s->line_buf[i];
2652 }
2653 if (s->line_csum != (csum & 0xff)) {
2654 reply = '-';
2655 put_buffer(s, &reply, 1);
2656 s->state = RS_IDLE;
2657 } else {
2658 reply = '+';
2659 put_buffer(s, &reply, 1);
2660 s->state = gdb_handle_packet(s, s->line_buf);
2661 }
2662 break;
2663 default:
2664 abort();
2665 }
2666 }
2667}
2668
2669
2670void gdb_exit(CPUArchState *env, int code)
2671{
2672 GDBState *s;
2673 char buf[4];
2674
2675 s = gdbserver_state;
2676 if (!s) {
2677 return;
2678 }
2679#ifdef CONFIG_USER_ONLY
2680 if (gdbserver_fd < 0 || s->fd < 0) {
2681 return;
2682 }
2683#endif
2684
2685 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2686 put_packet(s, buf);
2687
2688#ifndef CONFIG_USER_ONLY
2689 if (s->chr) {
2690 qemu_chr_delete(s->chr);
2691 }
2692#endif
2693}
2694
2695#ifdef CONFIG_USER_ONLY
2696int
2697gdb_queuesig (void)
2698{
2699 GDBState *s;
2700
2701 s = gdbserver_state;
2702
2703 if (gdbserver_fd < 0 || s->fd < 0)
2704 return 0;
2705 else
2706 return 1;
2707}
2708
2709int
2710gdb_handlesig (CPUArchState *env, int sig)
2711{
2712 GDBState *s;
2713 char buf[256];
2714 int n;
2715
2716 s = gdbserver_state;
2717 if (gdbserver_fd < 0 || s->fd < 0)
2718 return sig;
2719
2720
2721 cpu_single_step(env, 0);
2722 tb_flush(env);
2723
2724 if (sig != 0)
2725 {
2726 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2727 put_packet(s, buf);
2728 }
2729
2730
2731 if (s->fd < 0)
2732 return sig;
2733
2734 sig = 0;
2735 s->state = RS_IDLE;
2736 s->running_state = 0;
2737 while (s->running_state == 0) {
2738 n = read (s->fd, buf, 256);
2739 if (n > 0)
2740 {
2741 int i;
2742
2743 for (i = 0; i < n; i++)
2744 gdb_read_byte (s, buf[i]);
2745 }
2746 else if (n == 0 || errno != EAGAIN)
2747 {
2748
2749
2750 return sig;
2751 }
2752 }
2753 sig = s->signal;
2754 s->signal = 0;
2755 return sig;
2756}
2757
2758
2759void gdb_signalled(CPUArchState *env, int sig)
2760{
2761 GDBState *s;
2762 char buf[4];
2763
2764 s = gdbserver_state;
2765 if (gdbserver_fd < 0 || s->fd < 0)
2766 return;
2767
2768 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2769 put_packet(s, buf);
2770}
2771
2772static void gdb_accept(void)
2773{
2774 GDBState *s;
2775 struct sockaddr_in sockaddr;
2776 socklen_t len;
2777 int val, fd;
2778
2779 for(;;) {
2780 len = sizeof(sockaddr);
2781 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2782 if (fd < 0 && errno != EINTR) {
2783 perror("accept");
2784 return;
2785 } else if (fd >= 0) {
2786#ifndef _WIN32
2787 fcntl(fd, F_SETFD, FD_CLOEXEC);
2788#endif
2789 break;
2790 }
2791 }
2792
2793
2794 val = 1;
2795 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2796
2797 s = g_malloc0(sizeof(GDBState));
2798 s->c_cpu = first_cpu;
2799 s->g_cpu = first_cpu;
2800 s->fd = fd;
2801 gdb_has_xml = 0;
2802
2803 gdbserver_state = s;
2804
2805 fcntl(fd, F_SETFL, O_NONBLOCK);
2806}
2807
2808static int gdbserver_open(int port)
2809{
2810 struct sockaddr_in sockaddr;
2811 int fd, val, ret;
2812
2813 fd = socket(PF_INET, SOCK_STREAM, 0);
2814 if (fd < 0) {
2815 perror("socket");
2816 return -1;
2817 }
2818#ifndef _WIN32
2819 fcntl(fd, F_SETFD, FD_CLOEXEC);
2820#endif
2821
2822
2823 val = 1;
2824 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2825
2826 sockaddr.sin_family = AF_INET;
2827 sockaddr.sin_port = htons(port);
2828 sockaddr.sin_addr.s_addr = 0;
2829 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2830 if (ret < 0) {
2831 perror("bind");
2832 close(fd);
2833 return -1;
2834 }
2835 ret = listen(fd, 0);
2836 if (ret < 0) {
2837 perror("listen");
2838 close(fd);
2839 return -1;
2840 }
2841 return fd;
2842}
2843
2844int gdbserver_start(int port)
2845{
2846 gdbserver_fd = gdbserver_open(port);
2847 if (gdbserver_fd < 0)
2848 return -1;
2849
2850 gdb_accept();
2851 return 0;
2852}
2853
2854
2855void gdbserver_fork(CPUArchState *env)
2856{
2857 GDBState *s = gdbserver_state;
2858 if (gdbserver_fd < 0 || s->fd < 0)
2859 return;
2860 close(s->fd);
2861 s->fd = -1;
2862 cpu_breakpoint_remove_all(env, BP_GDB);
2863 cpu_watchpoint_remove_all(env, BP_GDB);
2864}
2865#else
2866static int gdb_chr_can_receive(void *opaque)
2867{
2868
2869
2870 return MAX_PACKET_LENGTH;
2871}
2872
2873static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2874{
2875 int i;
2876
2877 for (i = 0; i < size; i++) {
2878 gdb_read_byte(gdbserver_state, buf[i]);
2879 }
2880}
2881
2882static void gdb_chr_event(void *opaque, int event)
2883{
2884 switch (event) {
2885 case CHR_EVENT_OPENED:
2886 vm_stop(RUN_STATE_PAUSED);
2887 gdb_has_xml = 0;
2888 break;
2889 default:
2890 break;
2891 }
2892}
2893
2894static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2895{
2896 char buf[MAX_PACKET_LENGTH];
2897
2898 buf[0] = 'O';
2899 if (len > (MAX_PACKET_LENGTH/2) - 1)
2900 len = (MAX_PACKET_LENGTH/2) - 1;
2901 memtohex(buf + 1, (uint8_t *)msg, len);
2902 put_packet(s, buf);
2903}
2904
2905static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2906{
2907 const char *p = (const char *)buf;
2908 int max_sz;
2909
2910 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2911 for (;;) {
2912 if (len <= max_sz) {
2913 gdb_monitor_output(gdbserver_state, p, len);
2914 break;
2915 }
2916 gdb_monitor_output(gdbserver_state, p, max_sz);
2917 p += max_sz;
2918 len -= max_sz;
2919 }
2920 return len;
2921}
2922
2923#ifndef _WIN32
2924static void gdb_sigterm_handler(int signal)
2925{
2926 if (runstate_is_running()) {
2927 vm_stop(RUN_STATE_PAUSED);
2928 }
2929}
2930#endif
2931
2932int gdbserver_start(const char *device)
2933{
2934 GDBState *s;
2935 char gdbstub_device_name[128];
2936 CharDriverState *chr = NULL;
2937 CharDriverState *mon_chr;
2938
2939 if (!device)
2940 return -1;
2941 if (strcmp(device, "none") != 0) {
2942 if (strstart(device, "tcp:", NULL)) {
2943
2944 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2945 "%s,nowait,nodelay,server", device);
2946 device = gdbstub_device_name;
2947 }
2948#ifndef _WIN32
2949 else if (strcmp(device, "stdio") == 0) {
2950 struct sigaction act;
2951
2952 memset(&act, 0, sizeof(act));
2953 act.sa_handler = gdb_sigterm_handler;
2954 sigaction(SIGINT, &act, NULL);
2955 }
2956#endif
2957 chr = qemu_chr_new("gdb", device, NULL);
2958 if (!chr)
2959 return -1;
2960
2961 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2962 gdb_chr_event, NULL);
2963 }
2964
2965 s = gdbserver_state;
2966 if (!s) {
2967 s = g_malloc0(sizeof(GDBState));
2968 gdbserver_state = s;
2969
2970 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2971
2972
2973 mon_chr = g_malloc0(sizeof(*mon_chr));
2974 mon_chr->chr_write = gdb_monitor_write;
2975 monitor_init(mon_chr, 0);
2976 } else {
2977 if (s->chr)
2978 qemu_chr_delete(s->chr);
2979 mon_chr = s->mon_chr;
2980 memset(s, 0, sizeof(GDBState));
2981 }
2982 s->c_cpu = first_cpu;
2983 s->g_cpu = first_cpu;
2984 s->chr = chr;
2985 s->state = chr ? RS_IDLE : RS_INACTIVE;
2986 s->mon_chr = mon_chr;
2987 s->current_syscall_cb = NULL;
2988
2989 return 0;
2990}
2991#endif
2992