qemu/cputlb.c
<<
>>
Prefs
   1/*
   2 *  Common CPU TLB handling
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "config.h"
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "exec/memory.h"
  24#include "exec/address-spaces.h"
  25
  26#include "exec/cputlb.h"
  27
  28#include "exec/memory-internal.h"
  29
  30//#define DEBUG_TLB
  31//#define DEBUG_TLB_CHECK
  32
  33/* statistics */
  34int tlb_flush_count;
  35
  36static const CPUTLBEntry s_cputlb_empty_entry = {
  37    .addr_read  = -1,
  38    .addr_write = -1,
  39    .addr_code  = -1,
  40    .addend     = -1,
  41};
  42
  43/* NOTE:
  44 * If flush_global is true (the usual case), flush all tlb entries.
  45 * If flush_global is false, flush (at least) all tlb entries not
  46 * marked global.
  47 *
  48 * Since QEMU doesn't currently implement a global/not-global flag
  49 * for tlb entries, at the moment tlb_flush() will also flush all
  50 * tlb entries in the flush_global == false case. This is OK because
  51 * CPU architectures generally permit an implementation to drop
  52 * entries from the TLB at any time, so flushing more entries than
  53 * required is only an efficiency issue, not a correctness issue.
  54 */
  55void tlb_flush(CPUArchState *env, int flush_global)
  56{
  57    CPUState *cpu = ENV_GET_CPU(env);
  58    int i;
  59
  60#if defined(DEBUG_TLB)
  61    printf("tlb_flush:\n");
  62#endif
  63    /* must reset current TB so that interrupts cannot modify the
  64       links while we are modifying them */
  65    cpu->current_tb = NULL;
  66
  67    for (i = 0; i < CPU_TLB_SIZE; i++) {
  68        int mmu_idx;
  69
  70        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
  71            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
  72        }
  73    }
  74
  75    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
  76
  77    env->tlb_flush_addr = -1;
  78    env->tlb_flush_mask = 0;
  79    tlb_flush_count++;
  80}
  81
  82static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
  83{
  84    if (addr == (tlb_entry->addr_read &
  85                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  86        addr == (tlb_entry->addr_write &
  87                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  88        addr == (tlb_entry->addr_code &
  89                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
  90        *tlb_entry = s_cputlb_empty_entry;
  91    }
  92}
  93
  94void tlb_flush_page(CPUArchState *env, target_ulong addr)
  95{
  96    CPUState *cpu = ENV_GET_CPU(env);
  97    int i;
  98    int mmu_idx;
  99
 100#if defined(DEBUG_TLB)
 101    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 102#endif
 103    /* Check if we need to flush due to large pages.  */
 104    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 105#if defined(DEBUG_TLB)
 106        printf("tlb_flush_page: forced full flush ("
 107               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 108               env->tlb_flush_addr, env->tlb_flush_mask);
 109#endif
 110        tlb_flush(env, 1);
 111        return;
 112    }
 113    /* must reset current TB so that interrupts cannot modify the
 114       links while we are modifying them */
 115    cpu->current_tb = NULL;
 116
 117    addr &= TARGET_PAGE_MASK;
 118    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 119    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 120        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 121    }
 122
 123    tb_flush_jmp_cache(env, addr);
 124}
 125
 126/* update the TLBs so that writes to code in the virtual page 'addr'
 127   can be detected */
 128void tlb_protect_code(ram_addr_t ram_addr)
 129{
 130    cpu_physical_memory_reset_dirty(ram_addr,
 131                                    ram_addr + TARGET_PAGE_SIZE,
 132                                    CODE_DIRTY_FLAG);
 133}
 134
 135/* update the TLB so that writes in physical page 'phys_addr' are no longer
 136   tested for self modifying code */
 137void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
 138                             target_ulong vaddr)
 139{
 140    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
 141}
 142
 143static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
 144{
 145    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
 146}
 147
 148void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
 149                           uintptr_t length)
 150{
 151    uintptr_t addr;
 152
 153    if (tlb_is_dirty_ram(tlb_entry)) {
 154        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 155        if ((addr - start) < length) {
 156            tlb_entry->addr_write |= TLB_NOTDIRTY;
 157        }
 158    }
 159}
 160
 161static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
 162{
 163    ram_addr_t ram_addr;
 164    void *p;
 165
 166    if (tlb_is_dirty_ram(tlb_entry)) {
 167        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
 168            + tlb_entry->addend);
 169        ram_addr = qemu_ram_addr_from_host_nofail(p);
 170        if (!cpu_physical_memory_is_dirty(ram_addr)) {
 171            tlb_entry->addr_write |= TLB_NOTDIRTY;
 172        }
 173    }
 174}
 175
 176void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
 177{
 178    CPUArchState *env;
 179
 180    for (env = first_cpu; env != NULL; env = env->next_cpu) {
 181        int mmu_idx;
 182
 183        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 184            unsigned int i;
 185
 186            for (i = 0; i < CPU_TLB_SIZE; i++) {
 187                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 188                                      start1, length);
 189            }
 190        }
 191    }
 192}
 193
 194static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 195{
 196    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 197        tlb_entry->addr_write = vaddr;
 198    }
 199}
 200
 201/* update the TLB corresponding to virtual page vaddr
 202   so that it is no longer dirty */
 203void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
 204{
 205    int i;
 206    int mmu_idx;
 207
 208    vaddr &= TARGET_PAGE_MASK;
 209    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 210    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 211        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 212    }
 213}
 214
 215/* Our TLB does not support large pages, so remember the area covered by
 216   large pages and trigger a full TLB flush if these are invalidated.  */
 217static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
 218                               target_ulong size)
 219{
 220    target_ulong mask = ~(size - 1);
 221
 222    if (env->tlb_flush_addr == (target_ulong)-1) {
 223        env->tlb_flush_addr = vaddr & mask;
 224        env->tlb_flush_mask = mask;
 225        return;
 226    }
 227    /* Extend the existing region to include the new page.
 228       This is a compromise between unnecessary flushes and the cost
 229       of maintaining a full variable size TLB.  */
 230    mask &= env->tlb_flush_mask;
 231    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 232        mask <<= 1;
 233    }
 234    env->tlb_flush_addr &= mask;
 235    env->tlb_flush_mask = mask;
 236}
 237
 238/* Add a new TLB entry. At most one entry for a given virtual address
 239   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 240   supplied size is only used by tlb_flush_page.  */
 241void tlb_set_page(CPUArchState *env, target_ulong vaddr,
 242                  hwaddr paddr, int prot,
 243                  int mmu_idx, target_ulong size)
 244{
 245    MemoryRegionSection *section;
 246    unsigned int index;
 247    target_ulong address;
 248    target_ulong code_address;
 249    uintptr_t addend;
 250    CPUTLBEntry *te;
 251    hwaddr iotlb;
 252
 253    assert(size >= TARGET_PAGE_SIZE);
 254    if (size != TARGET_PAGE_SIZE) {
 255        tlb_add_large_page(env, vaddr, size);
 256    }
 257    section = phys_page_find(address_space_memory.dispatch, paddr >> TARGET_PAGE_BITS);
 258#if defined(DEBUG_TLB)
 259    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 260           " prot=%x idx=%d pd=0x%08lx\n",
 261           vaddr, paddr, prot, mmu_idx, pd);
 262#endif
 263
 264    address = vaddr;
 265    if (!(memory_region_is_ram(section->mr) ||
 266          memory_region_is_romd(section->mr))) {
 267        /* IO memory case (romd handled later) */
 268        address |= TLB_MMIO;
 269    }
 270    if (memory_region_is_ram(section->mr) ||
 271        memory_region_is_romd(section->mr)) {
 272        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
 273        + memory_region_section_addr(section, paddr);
 274    } else {
 275        addend = 0;
 276    }
 277
 278    code_address = address;
 279    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
 280                                            &address);
 281
 282    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 283    env->iotlb[mmu_idx][index] = iotlb - vaddr;
 284    te = &env->tlb_table[mmu_idx][index];
 285    te->addend = addend - vaddr;
 286    if (prot & PAGE_READ) {
 287        te->addr_read = address;
 288    } else {
 289        te->addr_read = -1;
 290    }
 291
 292    if (prot & PAGE_EXEC) {
 293        te->addr_code = code_address;
 294    } else {
 295        te->addr_code = -1;
 296    }
 297    if (prot & PAGE_WRITE) {
 298        if ((memory_region_is_ram(section->mr) && section->readonly)
 299            || memory_region_is_romd(section->mr)) {
 300            /* Write access calls the I/O callback.  */
 301            te->addr_write = address | TLB_MMIO;
 302        } else if (memory_region_is_ram(section->mr)
 303                   && !cpu_physical_memory_is_dirty(
 304                           section->mr->ram_addr
 305                           + memory_region_section_addr(section, paddr))) {
 306            te->addr_write = address | TLB_NOTDIRTY;
 307        } else {
 308            te->addr_write = address;
 309        }
 310    } else {
 311        te->addr_write = -1;
 312    }
 313}
 314
 315/* NOTE: this function can trigger an exception */
 316/* NOTE2: the returned address is not exactly the physical address: it
 317 * is actually a ram_addr_t (in system mode; the user mode emulation
 318 * version of this function returns a guest virtual address).
 319 */
 320tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 321{
 322    int mmu_idx, page_index, pd;
 323    void *p;
 324    MemoryRegion *mr;
 325
 326    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 327    mmu_idx = cpu_mmu_index(env1);
 328    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
 329                 (addr & TARGET_PAGE_MASK))) {
 330        cpu_ldub_code(env1, addr);
 331    }
 332    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
 333    mr = iotlb_to_region(pd);
 334    if (memory_region_is_unassigned(mr)) {
 335#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
 336        cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
 337#else
 338        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
 339                  TARGET_FMT_lx "\n", addr);
 340#endif
 341    }
 342    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
 343    return qemu_ram_addr_from_host_nofail(p);
 344}
 345
 346#define MMUSUFFIX _cmmu
 347#undef GETPC
 348#define GETPC() ((uintptr_t)0)
 349#define SOFTMMU_CODE_ACCESS
 350
 351#define SHIFT 0
 352#include "exec/softmmu_template.h"
 353
 354#define SHIFT 1
 355#include "exec/softmmu_template.h"
 356
 357#define SHIFT 2
 358#include "exec/softmmu_template.h"
 359
 360#define SHIFT 3
 361#include "exec/softmmu_template.h"
 362
 363#undef env
 364