qemu/cputlb.c
<<
>>
Prefs
   1/*
   2 *  Common CPU TLB handling
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "config.h"
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "exec/memory.h"
  24#include "exec/address-spaces.h"
  25
  26#include "exec/cputlb.h"
  27
  28#include "exec/memory-internal.h"
  29
  30//#define DEBUG_TLB
  31//#define DEBUG_TLB_CHECK
  32
  33/* statistics */
  34int tlb_flush_count;
  35
  36static const CPUTLBEntry s_cputlb_empty_entry = {
  37    .addr_read  = -1,
  38    .addr_write = -1,
  39    .addr_code  = -1,
  40    .addend     = -1,
  41};
  42
  43/* NOTE:
  44 * If flush_global is true (the usual case), flush all tlb entries.
  45 * If flush_global is false, flush (at least) all tlb entries not
  46 * marked global.
  47 *
  48 * Since QEMU doesn't currently implement a global/not-global flag
  49 * for tlb entries, at the moment tlb_flush() will also flush all
  50 * tlb entries in the flush_global == false case. This is OK because
  51 * CPU architectures generally permit an implementation to drop
  52 * entries from the TLB at any time, so flushing more entries than
  53 * required is only an efficiency issue, not a correctness issue.
  54 */
  55void tlb_flush(CPUArchState *env, int flush_global)
  56{
  57    CPUState *cpu = ENV_GET_CPU(env);
  58    int i;
  59
  60#if defined(DEBUG_TLB)
  61    printf("tlb_flush:\n");
  62#endif
  63    /* must reset current TB so that interrupts cannot modify the
  64       links while we are modifying them */
  65    cpu->current_tb = NULL;
  66
  67    for (i = 0; i < CPU_TLB_SIZE; i++) {
  68        int mmu_idx;
  69
  70        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
  71            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
  72        }
  73    }
  74
  75    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
  76
  77    env->tlb_flush_addr = -1;
  78    env->tlb_flush_mask = 0;
  79    tlb_flush_count++;
  80}
  81
  82static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
  83{
  84    if (addr == (tlb_entry->addr_read &
  85                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  86        addr == (tlb_entry->addr_write &
  87                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
  88        addr == (tlb_entry->addr_code &
  89                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
  90        *tlb_entry = s_cputlb_empty_entry;
  91    }
  92}
  93
  94void tlb_flush_page(CPUArchState *env, target_ulong addr)
  95{
  96    CPUState *cpu = ENV_GET_CPU(env);
  97    int i;
  98    int mmu_idx;
  99
 100#if defined(DEBUG_TLB)
 101    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 102#endif
 103    /* Check if we need to flush due to large pages.  */
 104    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 105#if defined(DEBUG_TLB)
 106        printf("tlb_flush_page: forced full flush ("
 107               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 108               env->tlb_flush_addr, env->tlb_flush_mask);
 109#endif
 110        tlb_flush(env, 1);
 111        return;
 112    }
 113    /* must reset current TB so that interrupts cannot modify the
 114       links while we are modifying them */
 115    cpu->current_tb = NULL;
 116
 117    addr &= TARGET_PAGE_MASK;
 118    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 119    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 120        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 121    }
 122
 123    tb_flush_jmp_cache(env, addr);
 124}
 125
 126/* update the TLBs so that writes to code in the virtual page 'addr'
 127   can be detected */
 128void tlb_protect_code(ram_addr_t ram_addr)
 129{
 130    cpu_physical_memory_reset_dirty(ram_addr,
 131                                    ram_addr + TARGET_PAGE_SIZE,
 132                                    CODE_DIRTY_FLAG);
 133}
 134
 135/* update the TLB so that writes in physical page 'phys_addr' are no longer
 136   tested for self modifying code */
 137void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
 138                             target_ulong vaddr)
 139{
 140    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
 141}
 142
 143static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
 144{
 145    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
 146}
 147
 148void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
 149                           uintptr_t length)
 150{
 151    uintptr_t addr;
 152
 153    if (tlb_is_dirty_ram(tlb_entry)) {
 154        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 155        if ((addr - start) < length) {
 156            tlb_entry->addr_write |= TLB_NOTDIRTY;
 157        }
 158    }
 159}
 160
 161static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 162{
 163    ram_addr_t ram_addr;
 164
 165    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
 166        fprintf(stderr, "Bad ram pointer %p\n", ptr);
 167        abort();
 168    }
 169    return ram_addr;
 170}
 171
 172static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
 173{
 174    ram_addr_t ram_addr;
 175    void *p;
 176
 177    if (tlb_is_dirty_ram(tlb_entry)) {
 178        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
 179            + tlb_entry->addend);
 180        ram_addr = qemu_ram_addr_from_host_nofail(p);
 181        if (!cpu_physical_memory_is_dirty(ram_addr)) {
 182            tlb_entry->addr_write |= TLB_NOTDIRTY;
 183        }
 184    }
 185}
 186
 187void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
 188{
 189    CPUState *cpu;
 190    CPUArchState *env;
 191
 192    for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
 193        int mmu_idx;
 194
 195        env = cpu->env_ptr;
 196        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 197            unsigned int i;
 198
 199            for (i = 0; i < CPU_TLB_SIZE; i++) {
 200                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 201                                      start1, length);
 202            }
 203        }
 204    }
 205}
 206
 207static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 208{
 209    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 210        tlb_entry->addr_write = vaddr;
 211    }
 212}
 213
 214/* update the TLB corresponding to virtual page vaddr
 215   so that it is no longer dirty */
 216void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
 217{
 218    int i;
 219    int mmu_idx;
 220
 221    vaddr &= TARGET_PAGE_MASK;
 222    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 223    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 224        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 225    }
 226}
 227
 228/* Our TLB does not support large pages, so remember the area covered by
 229   large pages and trigger a full TLB flush if these are invalidated.  */
 230static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
 231                               target_ulong size)
 232{
 233    target_ulong mask = ~(size - 1);
 234
 235    if (env->tlb_flush_addr == (target_ulong)-1) {
 236        env->tlb_flush_addr = vaddr & mask;
 237        env->tlb_flush_mask = mask;
 238        return;
 239    }
 240    /* Extend the existing region to include the new page.
 241       This is a compromise between unnecessary flushes and the cost
 242       of maintaining a full variable size TLB.  */
 243    mask &= env->tlb_flush_mask;
 244    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 245        mask <<= 1;
 246    }
 247    env->tlb_flush_addr &= mask;
 248    env->tlb_flush_mask = mask;
 249}
 250
 251/* Add a new TLB entry. At most one entry for a given virtual address
 252   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 253   supplied size is only used by tlb_flush_page.  */
 254void tlb_set_page(CPUArchState *env, target_ulong vaddr,
 255                  hwaddr paddr, int prot,
 256                  int mmu_idx, target_ulong size)
 257{
 258    MemoryRegionSection *section;
 259    unsigned int index;
 260    target_ulong address;
 261    target_ulong code_address;
 262    uintptr_t addend;
 263    CPUTLBEntry *te;
 264    hwaddr iotlb, xlat, sz;
 265
 266    assert(size >= TARGET_PAGE_SIZE);
 267    if (size != TARGET_PAGE_SIZE) {
 268        tlb_add_large_page(env, vaddr, size);
 269    }
 270
 271    sz = size;
 272    section = address_space_translate_for_iotlb(&address_space_memory, paddr,
 273                                                &xlat, &sz);
 274    assert(sz >= TARGET_PAGE_SIZE);
 275
 276#if defined(DEBUG_TLB)
 277    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 278           " prot=%x idx=%d\n",
 279           vaddr, paddr, prot, mmu_idx);
 280#endif
 281
 282    address = vaddr;
 283    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
 284        /* IO memory case */
 285        address |= TLB_MMIO;
 286        addend = 0;
 287    } else {
 288        /* TLB_MMIO for rom/romd handled below */
 289        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 290    }
 291
 292    code_address = address;
 293    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
 294                                            prot, &address);
 295
 296    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 297    env->iotlb[mmu_idx][index] = iotlb - vaddr;
 298    te = &env->tlb_table[mmu_idx][index];
 299    te->addend = addend - vaddr;
 300    if (prot & PAGE_READ) {
 301        te->addr_read = address;
 302    } else {
 303        te->addr_read = -1;
 304    }
 305
 306    if (prot & PAGE_EXEC) {
 307        te->addr_code = code_address;
 308    } else {
 309        te->addr_code = -1;
 310    }
 311    if (prot & PAGE_WRITE) {
 312        if ((memory_region_is_ram(section->mr) && section->readonly)
 313            || memory_region_is_romd(section->mr)) {
 314            /* Write access calls the I/O callback.  */
 315            te->addr_write = address | TLB_MMIO;
 316        } else if (memory_region_is_ram(section->mr)
 317                   && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
 318            te->addr_write = address | TLB_NOTDIRTY;
 319        } else {
 320            te->addr_write = address;
 321        }
 322    } else {
 323        te->addr_write = -1;
 324    }
 325}
 326
 327/* NOTE: this function can trigger an exception */
 328/* NOTE2: the returned address is not exactly the physical address: it
 329 * is actually a ram_addr_t (in system mode; the user mode emulation
 330 * version of this function returns a guest virtual address).
 331 */
 332tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 333{
 334    int mmu_idx, page_index, pd;
 335    void *p;
 336    MemoryRegion *mr;
 337
 338    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 339    mmu_idx = cpu_mmu_index(env1);
 340    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
 341                 (addr & TARGET_PAGE_MASK))) {
 342        cpu_ldub_code(env1, addr);
 343    }
 344    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
 345    mr = iotlb_to_region(pd);
 346    if (memory_region_is_unassigned(mr)) {
 347        CPUState *cpu = ENV_GET_CPU(env1);
 348        CPUClass *cc = CPU_GET_CLASS(cpu);
 349
 350        if (cc->do_unassigned_access) {
 351            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
 352        } else {
 353            cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
 354                      TARGET_FMT_lx "\n", addr);
 355        }
 356    }
 357    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
 358    return qemu_ram_addr_from_host_nofail(p);
 359}
 360
 361#define MMUSUFFIX _cmmu
 362#undef GETPC
 363#define GETPC() ((uintptr_t)0)
 364#define SOFTMMU_CODE_ACCESS
 365
 366#define SHIFT 0
 367#include "exec/softmmu_template.h"
 368
 369#define SHIFT 1
 370#include "exec/softmmu_template.h"
 371
 372#define SHIFT 2
 373#include "exec/softmmu_template.h"
 374
 375#define SHIFT 3
 376#include "exec/softmmu_template.h"
 377
 378#undef env
 379