qemu/exec.c
<<
>>
Prefs
   1/*
   2 *  Virtual page mapping
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "qapi/error.h"
  21
  22#include "qemu/cutils.h"
  23#include "cpu.h"
  24#include "exec/exec-all.h"
  25#include "exec/target_page.h"
  26#include "tcg.h"
  27#include "hw/qdev-core.h"
  28#include "hw/qdev-properties.h"
  29#if !defined(CONFIG_USER_ONLY)
  30#include "hw/boards.h"
  31#include "hw/xen/xen.h"
  32#endif
  33#include "sysemu/kvm.h"
  34#include "sysemu/sysemu.h"
  35#include "qemu/timer.h"
  36#include "qemu/config-file.h"
  37#include "qemu/error-report.h"
  38#if defined(CONFIG_USER_ONLY)
  39#include "qemu.h"
  40#else /* !CONFIG_USER_ONLY */
  41#include "hw/hw.h"
  42#include "exec/memory.h"
  43#include "exec/ioport.h"
  44#include "sysemu/dma.h"
  45#include "sysemu/numa.h"
  46#include "sysemu/hw_accel.h"
  47#include "exec/address-spaces.h"
  48#include "sysemu/xen-mapcache.h"
  49#include "trace-root.h"
  50
  51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  52#include <linux/falloc.h>
  53#endif
  54
  55#endif
  56#include "qemu/rcu_queue.h"
  57#include "qemu/main-loop.h"
  58#include "translate-all.h"
  59#include "sysemu/replay.h"
  60
  61#include "exec/memory-internal.h"
  62#include "exec/ram_addr.h"
  63#include "exec/log.h"
  64
  65#include "migration/vmstate.h"
  66
  67#include "qemu/range.h"
  68#ifndef _WIN32
  69#include "qemu/mmap-alloc.h"
  70#endif
  71
  72#include "monitor/monitor.h"
  73
  74//#define DEBUG_SUBPAGE
  75
  76#if !defined(CONFIG_USER_ONLY)
  77/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  78 * are protected by the ramlist lock.
  79 */
  80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  81
  82static MemoryRegion *system_memory;
  83static MemoryRegion *system_io;
  84
  85AddressSpace address_space_io;
  86AddressSpace address_space_memory;
  87
  88MemoryRegion io_mem_rom, io_mem_notdirty;
  89static MemoryRegion io_mem_unassigned;
  90#endif
  91
  92#ifdef TARGET_PAGE_BITS_VARY
  93int target_page_bits;
  94bool target_page_bits_decided;
  95#endif
  96
  97struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
  98/* current CPU in the current thread. It is only valid inside
  99   cpu_exec() */
 100__thread CPUState *current_cpu;
 101/* 0 = Do not count executed instructions.
 102   1 = Precise instruction counting.
 103   2 = Adaptive rate instruction counting.  */
 104int use_icount;
 105
 106uintptr_t qemu_host_page_size;
 107intptr_t qemu_host_page_mask;
 108
 109bool set_preferred_target_page_bits(int bits)
 110{
 111    /* The target page size is the lowest common denominator for all
 112     * the CPUs in the system, so we can only make it smaller, never
 113     * larger. And we can't make it smaller once we've committed to
 114     * a particular size.
 115     */
 116#ifdef TARGET_PAGE_BITS_VARY
 117    assert(bits >= TARGET_PAGE_BITS_MIN);
 118    if (target_page_bits == 0 || target_page_bits > bits) {
 119        if (target_page_bits_decided) {
 120            return false;
 121        }
 122        target_page_bits = bits;
 123    }
 124#endif
 125    return true;
 126}
 127
 128#if !defined(CONFIG_USER_ONLY)
 129
 130static void finalize_target_page_bits(void)
 131{
 132#ifdef TARGET_PAGE_BITS_VARY
 133    if (target_page_bits == 0) {
 134        target_page_bits = TARGET_PAGE_BITS_MIN;
 135    }
 136    target_page_bits_decided = true;
 137#endif
 138}
 139
 140typedef struct PhysPageEntry PhysPageEntry;
 141
 142struct PhysPageEntry {
 143    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 144    uint32_t skip : 6;
 145     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 146    uint32_t ptr : 26;
 147};
 148
 149#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 150
 151/* Size of the L2 (and L3, etc) page tables.  */
 152#define ADDR_SPACE_BITS 64
 153
 154#define P_L2_BITS 9
 155#define P_L2_SIZE (1 << P_L2_BITS)
 156
 157#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 158
 159typedef PhysPageEntry Node[P_L2_SIZE];
 160
 161typedef struct PhysPageMap {
 162    struct rcu_head rcu;
 163
 164    unsigned sections_nb;
 165    unsigned sections_nb_alloc;
 166    unsigned nodes_nb;
 167    unsigned nodes_nb_alloc;
 168    Node *nodes;
 169    MemoryRegionSection *sections;
 170} PhysPageMap;
 171
 172struct AddressSpaceDispatch {
 173    MemoryRegionSection *mru_section;
 174    /* This is a multi-level map on the physical address space.
 175     * The bottom level has pointers to MemoryRegionSections.
 176     */
 177    PhysPageEntry phys_map;
 178    PhysPageMap map;
 179};
 180
 181#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 182typedef struct subpage_t {
 183    MemoryRegion iomem;
 184    FlatView *fv;
 185    hwaddr base;
 186    uint16_t sub_section[];
 187} subpage_t;
 188
 189#define PHYS_SECTION_UNASSIGNED 0
 190#define PHYS_SECTION_NOTDIRTY 1
 191#define PHYS_SECTION_ROM 2
 192#define PHYS_SECTION_WATCH 3
 193
 194static void io_mem_init(void);
 195static void memory_map_init(void);
 196static void tcg_commit(MemoryListener *listener);
 197
 198static MemoryRegion io_mem_watch;
 199
 200/**
 201 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 202 * @cpu: the CPU whose AddressSpace this is
 203 * @as: the AddressSpace itself
 204 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 205 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 206 */
 207struct CPUAddressSpace {
 208    CPUState *cpu;
 209    AddressSpace *as;
 210    struct AddressSpaceDispatch *memory_dispatch;
 211    MemoryListener tcg_as_listener;
 212};
 213
 214struct DirtyBitmapSnapshot {
 215    ram_addr_t start;
 216    ram_addr_t end;
 217    unsigned long dirty[];
 218};
 219
 220#endif
 221
 222#if !defined(CONFIG_USER_ONLY)
 223
 224static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 225{
 226    static unsigned alloc_hint = 16;
 227    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 228        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
 229        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
 230        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 231        alloc_hint = map->nodes_nb_alloc;
 232    }
 233}
 234
 235static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 236{
 237    unsigned i;
 238    uint32_t ret;
 239    PhysPageEntry e;
 240    PhysPageEntry *p;
 241
 242    ret = map->nodes_nb++;
 243    p = map->nodes[ret];
 244    assert(ret != PHYS_MAP_NODE_NIL);
 245    assert(ret != map->nodes_nb_alloc);
 246
 247    e.skip = leaf ? 0 : 1;
 248    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 249    for (i = 0; i < P_L2_SIZE; ++i) {
 250        memcpy(&p[i], &e, sizeof(e));
 251    }
 252    return ret;
 253}
 254
 255static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 256                                hwaddr *index, hwaddr *nb, uint16_t leaf,
 257                                int level)
 258{
 259    PhysPageEntry *p;
 260    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 261
 262    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 263        lp->ptr = phys_map_node_alloc(map, level == 0);
 264    }
 265    p = map->nodes[lp->ptr];
 266    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 267
 268    while (*nb && lp < &p[P_L2_SIZE]) {
 269        if ((*index & (step - 1)) == 0 && *nb >= step) {
 270            lp->skip = 0;
 271            lp->ptr = leaf;
 272            *index += step;
 273            *nb -= step;
 274        } else {
 275            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 276        }
 277        ++lp;
 278    }
 279}
 280
 281static void phys_page_set(AddressSpaceDispatch *d,
 282                          hwaddr index, hwaddr nb,
 283                          uint16_t leaf)
 284{
 285    /* Wildly overreserve - it doesn't matter much. */
 286    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 287
 288    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 289}
 290
 291/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 292 * and update our entry so we can skip it and go directly to the destination.
 293 */
 294static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 295{
 296    unsigned valid_ptr = P_L2_SIZE;
 297    int valid = 0;
 298    PhysPageEntry *p;
 299    int i;
 300
 301    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 302        return;
 303    }
 304
 305    p = nodes[lp->ptr];
 306    for (i = 0; i < P_L2_SIZE; i++) {
 307        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 308            continue;
 309        }
 310
 311        valid_ptr = i;
 312        valid++;
 313        if (p[i].skip) {
 314            phys_page_compact(&p[i], nodes);
 315        }
 316    }
 317
 318    /* We can only compress if there's only one child. */
 319    if (valid != 1) {
 320        return;
 321    }
 322
 323    assert(valid_ptr < P_L2_SIZE);
 324
 325    /* Don't compress if it won't fit in the # of bits we have. */
 326    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
 327        return;
 328    }
 329
 330    lp->ptr = p[valid_ptr].ptr;
 331    if (!p[valid_ptr].skip) {
 332        /* If our only child is a leaf, make this a leaf. */
 333        /* By design, we should have made this node a leaf to begin with so we
 334         * should never reach here.
 335         * But since it's so simple to handle this, let's do it just in case we
 336         * change this rule.
 337         */
 338        lp->skip = 0;
 339    } else {
 340        lp->skip += p[valid_ptr].skip;
 341    }
 342}
 343
 344void address_space_dispatch_compact(AddressSpaceDispatch *d)
 345{
 346    if (d->phys_map.skip) {
 347        phys_page_compact(&d->phys_map, d->map.nodes);
 348    }
 349}
 350
 351static inline bool section_covers_addr(const MemoryRegionSection *section,
 352                                       hwaddr addr)
 353{
 354    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 355     * the section must cover the entire address space.
 356     */
 357    return int128_gethi(section->size) ||
 358           range_covers_byte(section->offset_within_address_space,
 359                             int128_getlo(section->size), addr);
 360}
 361
 362static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 363{
 364    PhysPageEntry lp = d->phys_map, *p;
 365    Node *nodes = d->map.nodes;
 366    MemoryRegionSection *sections = d->map.sections;
 367    hwaddr index = addr >> TARGET_PAGE_BITS;
 368    int i;
 369
 370    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 371        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 372            return &sections[PHYS_SECTION_UNASSIGNED];
 373        }
 374        p = nodes[lp.ptr];
 375        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 376    }
 377
 378    if (section_covers_addr(&sections[lp.ptr], addr)) {
 379        return &sections[lp.ptr];
 380    } else {
 381        return &sections[PHYS_SECTION_UNASSIGNED];
 382    }
 383}
 384
 385/* Called from RCU critical section */
 386static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 387                                                        hwaddr addr,
 388                                                        bool resolve_subpage)
 389{
 390    MemoryRegionSection *section = atomic_read(&d->mru_section);
 391    subpage_t *subpage;
 392
 393    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 394        !section_covers_addr(section, addr)) {
 395        section = phys_page_find(d, addr);
 396        atomic_set(&d->mru_section, section);
 397    }
 398    if (resolve_subpage && section->mr->subpage) {
 399        subpage = container_of(section->mr, subpage_t, iomem);
 400        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 401    }
 402    return section;
 403}
 404
 405/* Called from RCU critical section */
 406static MemoryRegionSection *
 407address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 408                                 hwaddr *plen, bool resolve_subpage)
 409{
 410    MemoryRegionSection *section;
 411    MemoryRegion *mr;
 412    Int128 diff;
 413
 414    section = address_space_lookup_region(d, addr, resolve_subpage);
 415    /* Compute offset within MemoryRegionSection */
 416    addr -= section->offset_within_address_space;
 417
 418    /* Compute offset within MemoryRegion */
 419    *xlat = addr + section->offset_within_region;
 420
 421    mr = section->mr;
 422
 423    /* MMIO registers can be expected to perform full-width accesses based only
 424     * on their address, without considering adjacent registers that could
 425     * decode to completely different MemoryRegions.  When such registers
 426     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 427     * regions overlap wildly.  For this reason we cannot clamp the accesses
 428     * here.
 429     *
 430     * If the length is small (as is the case for address_space_ldl/stl),
 431     * everything works fine.  If the incoming length is large, however,
 432     * the caller really has to do the clamping through memory_access_size.
 433     */
 434    if (memory_region_is_ram(mr)) {
 435        diff = int128_sub(section->size, int128_make64(addr));
 436        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 437    }
 438    return section;
 439}
 440
 441/**
 442 * address_space_translate_iommu - translate an address through an IOMMU
 443 * memory region and then through the target address space.
 444 *
 445 * @iommu_mr: the IOMMU memory region that we start the translation from
 446 * @addr: the address to be translated through the MMU
 447 * @xlat: the translated address offset within the destination memory region.
 448 *        It cannot be %NULL.
 449 * @plen_out: valid read/write length of the translated address. It
 450 *            cannot be %NULL.
 451 * @page_mask_out: page mask for the translated address. This
 452 *            should only be meaningful for IOMMU translated
 453 *            addresses, since there may be huge pages that this bit
 454 *            would tell. It can be %NULL if we don't care about it.
 455 * @is_write: whether the translation operation is for write
 456 * @is_mmio: whether this can be MMIO, set true if it can
 457 * @target_as: the address space targeted by the IOMMU
 458 * @attrs: transaction attributes
 459 *
 460 * This function is called from RCU critical section.  It is the common
 461 * part of flatview_do_translate and address_space_translate_cached.
 462 */
 463static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 464                                                         hwaddr *xlat,
 465                                                         hwaddr *plen_out,
 466                                                         hwaddr *page_mask_out,
 467                                                         bool is_write,
 468                                                         bool is_mmio,
 469                                                         AddressSpace **target_as,
 470                                                         MemTxAttrs attrs)
 471{
 472    MemoryRegionSection *section;
 473    hwaddr page_mask = (hwaddr)-1;
 474
 475    do {
 476        hwaddr addr = *xlat;
 477        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 478        int iommu_idx = 0;
 479        IOMMUTLBEntry iotlb;
 480
 481        if (imrc->attrs_to_index) {
 482            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 483        }
 484
 485        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 486                                IOMMU_WO : IOMMU_RO, iommu_idx);
 487
 488        if (!(iotlb.perm & (1 << is_write))) {
 489            goto unassigned;
 490        }
 491
 492        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 493                | (addr & iotlb.addr_mask));
 494        page_mask &= iotlb.addr_mask;
 495        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 496        *target_as = iotlb.target_as;
 497
 498        section = address_space_translate_internal(
 499                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 500                plen_out, is_mmio);
 501
 502        iommu_mr = memory_region_get_iommu(section->mr);
 503    } while (unlikely(iommu_mr));
 504
 505    if (page_mask_out) {
 506        *page_mask_out = page_mask;
 507    }
 508    return *section;
 509
 510unassigned:
 511    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 512}
 513
 514/**
 515 * flatview_do_translate - translate an address in FlatView
 516 *
 517 * @fv: the flat view that we want to translate on
 518 * @addr: the address to be translated in above address space
 519 * @xlat: the translated address offset within memory region. It
 520 *        cannot be @NULL.
 521 * @plen_out: valid read/write length of the translated address. It
 522 *            can be @NULL when we don't care about it.
 523 * @page_mask_out: page mask for the translated address. This
 524 *            should only be meaningful for IOMMU translated
 525 *            addresses, since there may be huge pages that this bit
 526 *            would tell. It can be @NULL if we don't care about it.
 527 * @is_write: whether the translation operation is for write
 528 * @is_mmio: whether this can be MMIO, set true if it can
 529 * @target_as: the address space targeted by the IOMMU
 530 * @attrs: memory transaction attributes
 531 *
 532 * This function is called from RCU critical section
 533 */
 534static MemoryRegionSection flatview_do_translate(FlatView *fv,
 535                                                 hwaddr addr,
 536                                                 hwaddr *xlat,
 537                                                 hwaddr *plen_out,
 538                                                 hwaddr *page_mask_out,
 539                                                 bool is_write,
 540                                                 bool is_mmio,
 541                                                 AddressSpace **target_as,
 542                                                 MemTxAttrs attrs)
 543{
 544    MemoryRegionSection *section;
 545    IOMMUMemoryRegion *iommu_mr;
 546    hwaddr plen = (hwaddr)(-1);
 547
 548    if (!plen_out) {
 549        plen_out = &plen;
 550    }
 551
 552    section = address_space_translate_internal(
 553            flatview_to_dispatch(fv), addr, xlat,
 554            plen_out, is_mmio);
 555
 556    iommu_mr = memory_region_get_iommu(section->mr);
 557    if (unlikely(iommu_mr)) {
 558        return address_space_translate_iommu(iommu_mr, xlat,
 559                                             plen_out, page_mask_out,
 560                                             is_write, is_mmio,
 561                                             target_as, attrs);
 562    }
 563    if (page_mask_out) {
 564        /* Not behind an IOMMU, use default page size. */
 565        *page_mask_out = ~TARGET_PAGE_MASK;
 566    }
 567
 568    return *section;
 569}
 570
 571/* Called from RCU critical section */
 572IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 573                                            bool is_write, MemTxAttrs attrs)
 574{
 575    MemoryRegionSection section;
 576    hwaddr xlat, page_mask;
 577
 578    /*
 579     * This can never be MMIO, and we don't really care about plen,
 580     * but page mask.
 581     */
 582    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 583                                    NULL, &page_mask, is_write, false, &as,
 584                                    attrs);
 585
 586    /* Illegal translation */
 587    if (section.mr == &io_mem_unassigned) {
 588        goto iotlb_fail;
 589    }
 590
 591    /* Convert memory region offset into address space offset */
 592    xlat += section.offset_within_address_space -
 593        section.offset_within_region;
 594
 595    return (IOMMUTLBEntry) {
 596        .target_as = as,
 597        .iova = addr & ~page_mask,
 598        .translated_addr = xlat & ~page_mask,
 599        .addr_mask = page_mask,
 600        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 601        .perm = IOMMU_RW,
 602    };
 603
 604iotlb_fail:
 605    return (IOMMUTLBEntry) {0};
 606}
 607
 608/* Called from RCU critical section */
 609MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 610                                 hwaddr *plen, bool is_write,
 611                                 MemTxAttrs attrs)
 612{
 613    MemoryRegion *mr;
 614    MemoryRegionSection section;
 615    AddressSpace *as = NULL;
 616
 617    /* This can be MMIO, so setup MMIO bit. */
 618    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 619                                    is_write, true, &as, attrs);
 620    mr = section.mr;
 621
 622    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 623        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 624        *plen = MIN(page, *plen);
 625    }
 626
 627    return mr;
 628}
 629
 630typedef struct TCGIOMMUNotifier {
 631    IOMMUNotifier n;
 632    MemoryRegion *mr;
 633    CPUState *cpu;
 634    int iommu_idx;
 635    bool active;
 636} TCGIOMMUNotifier;
 637
 638static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 639{
 640    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 641
 642    if (!notifier->active) {
 643        return;
 644    }
 645    tlb_flush(notifier->cpu);
 646    notifier->active = false;
 647    /* We leave the notifier struct on the list to avoid reallocating it later.
 648     * Generally the number of IOMMUs a CPU deals with will be small.
 649     * In any case we can't unregister the iommu notifier from a notify
 650     * callback.
 651     */
 652}
 653
 654static void tcg_register_iommu_notifier(CPUState *cpu,
 655                                        IOMMUMemoryRegion *iommu_mr,
 656                                        int iommu_idx)
 657{
 658    /* Make sure this CPU has an IOMMU notifier registered for this
 659     * IOMMU/IOMMU index combination, so that we can flush its TLB
 660     * when the IOMMU tells us the mappings we've cached have changed.
 661     */
 662    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 663    TCGIOMMUNotifier *notifier;
 664    int i;
 665
 666    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 667        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
 668        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 669            break;
 670        }
 671    }
 672    if (i == cpu->iommu_notifiers->len) {
 673        /* Not found, add a new entry at the end of the array */
 674        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 675        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
 676
 677        notifier->mr = mr;
 678        notifier->iommu_idx = iommu_idx;
 679        notifier->cpu = cpu;
 680        /* Rather than trying to register interest in the specific part
 681         * of the iommu's address space that we've accessed and then
 682         * expand it later as subsequent accesses touch more of it, we
 683         * just register interest in the whole thing, on the assumption
 684         * that iommu reconfiguration will be rare.
 685         */
 686        iommu_notifier_init(&notifier->n,
 687                            tcg_iommu_unmap_notify,
 688                            IOMMU_NOTIFIER_UNMAP,
 689                            0,
 690                            HWADDR_MAX,
 691                            iommu_idx);
 692        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
 693    }
 694
 695    if (!notifier->active) {
 696        notifier->active = true;
 697    }
 698}
 699
 700static void tcg_iommu_free_notifier_list(CPUState *cpu)
 701{
 702    /* Destroy the CPU's notifier list */
 703    int i;
 704    TCGIOMMUNotifier *notifier;
 705
 706    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 707        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
 708        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 709    }
 710    g_array_free(cpu->iommu_notifiers, true);
 711}
 712
 713/* Called from RCU critical section */
 714MemoryRegionSection *
 715address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 716                                  hwaddr *xlat, hwaddr *plen,
 717                                  MemTxAttrs attrs, int *prot)
 718{
 719    MemoryRegionSection *section;
 720    IOMMUMemoryRegion *iommu_mr;
 721    IOMMUMemoryRegionClass *imrc;
 722    IOMMUTLBEntry iotlb;
 723    int iommu_idx;
 724    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 725
 726    for (;;) {
 727        section = address_space_translate_internal(d, addr, &addr, plen, false);
 728
 729        iommu_mr = memory_region_get_iommu(section->mr);
 730        if (!iommu_mr) {
 731            break;
 732        }
 733
 734        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 735
 736        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 737        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 738        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 739         * doesn't short-cut its translation table walk.
 740         */
 741        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 742        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 743                | (addr & iotlb.addr_mask));
 744        /* Update the caller's prot bits to remove permissions the IOMMU
 745         * is giving us a failure response for. If we get down to no
 746         * permissions left at all we can give up now.
 747         */
 748        if (!(iotlb.perm & IOMMU_RO)) {
 749            *prot &= ~(PAGE_READ | PAGE_EXEC);
 750        }
 751        if (!(iotlb.perm & IOMMU_WO)) {
 752            *prot &= ~PAGE_WRITE;
 753        }
 754
 755        if (!*prot) {
 756            goto translate_fail;
 757        }
 758
 759        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 760    }
 761
 762    assert(!memory_region_is_iommu(section->mr));
 763    *xlat = addr;
 764    return section;
 765
 766translate_fail:
 767    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 768}
 769#endif
 770
 771#if !defined(CONFIG_USER_ONLY)
 772
 773static int cpu_common_post_load(void *opaque, int version_id)
 774{
 775    CPUState *cpu = opaque;
 776
 777    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 778       version_id is increased. */
 779    cpu->interrupt_request &= ~0x01;
 780    tlb_flush(cpu);
 781
 782    /* loadvm has just updated the content of RAM, bypassing the
 783     * usual mechanisms that ensure we flush TBs for writes to
 784     * memory we've translated code from. So we must flush all TBs,
 785     * which will now be stale.
 786     */
 787    tb_flush(cpu);
 788
 789    return 0;
 790}
 791
 792static int cpu_common_pre_load(void *opaque)
 793{
 794    CPUState *cpu = opaque;
 795
 796    cpu->exception_index = -1;
 797
 798    return 0;
 799}
 800
 801static bool cpu_common_exception_index_needed(void *opaque)
 802{
 803    CPUState *cpu = opaque;
 804
 805    return tcg_enabled() && cpu->exception_index != -1;
 806}
 807
 808static const VMStateDescription vmstate_cpu_common_exception_index = {
 809    .name = "cpu_common/exception_index",
 810    .version_id = 1,
 811    .minimum_version_id = 1,
 812    .needed = cpu_common_exception_index_needed,
 813    .fields = (VMStateField[]) {
 814        VMSTATE_INT32(exception_index, CPUState),
 815        VMSTATE_END_OF_LIST()
 816    }
 817};
 818
 819static bool cpu_common_crash_occurred_needed(void *opaque)
 820{
 821    CPUState *cpu = opaque;
 822
 823    return cpu->crash_occurred;
 824}
 825
 826static const VMStateDescription vmstate_cpu_common_crash_occurred = {
 827    .name = "cpu_common/crash_occurred",
 828    .version_id = 1,
 829    .minimum_version_id = 1,
 830    .needed = cpu_common_crash_occurred_needed,
 831    .fields = (VMStateField[]) {
 832        VMSTATE_BOOL(crash_occurred, CPUState),
 833        VMSTATE_END_OF_LIST()
 834    }
 835};
 836
 837const VMStateDescription vmstate_cpu_common = {
 838    .name = "cpu_common",
 839    .version_id = 1,
 840    .minimum_version_id = 1,
 841    .pre_load = cpu_common_pre_load,
 842    .post_load = cpu_common_post_load,
 843    .fields = (VMStateField[]) {
 844        VMSTATE_UINT32(halted, CPUState),
 845        VMSTATE_UINT32(interrupt_request, CPUState),
 846        VMSTATE_END_OF_LIST()
 847    },
 848    .subsections = (const VMStateDescription*[]) {
 849        &vmstate_cpu_common_exception_index,
 850        &vmstate_cpu_common_crash_occurred,
 851        NULL
 852    }
 853};
 854
 855#endif
 856
 857CPUState *qemu_get_cpu(int index)
 858{
 859    CPUState *cpu;
 860
 861    CPU_FOREACH(cpu) {
 862        if (cpu->cpu_index == index) {
 863            return cpu;
 864        }
 865    }
 866
 867    return NULL;
 868}
 869
 870#if !defined(CONFIG_USER_ONLY)
 871void cpu_address_space_init(CPUState *cpu, int asidx,
 872                            const char *prefix, MemoryRegion *mr)
 873{
 874    CPUAddressSpace *newas;
 875    AddressSpace *as = g_new0(AddressSpace, 1);
 876    char *as_name;
 877
 878    assert(mr);
 879    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 880    address_space_init(as, mr, as_name);
 881    g_free(as_name);
 882
 883    /* Target code should have set num_ases before calling us */
 884    assert(asidx < cpu->num_ases);
 885
 886    if (asidx == 0) {
 887        /* address space 0 gets the convenience alias */
 888        cpu->as = as;
 889    }
 890
 891    /* KVM cannot currently support multiple address spaces. */
 892    assert(asidx == 0 || !kvm_enabled());
 893
 894    if (!cpu->cpu_ases) {
 895        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 896    }
 897
 898    newas = &cpu->cpu_ases[asidx];
 899    newas->cpu = cpu;
 900    newas->as = as;
 901    if (tcg_enabled()) {
 902        newas->tcg_as_listener.commit = tcg_commit;
 903        memory_listener_register(&newas->tcg_as_listener, as);
 904    }
 905}
 906
 907AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 908{
 909    /* Return the AddressSpace corresponding to the specified index */
 910    return cpu->cpu_ases[asidx].as;
 911}
 912#endif
 913
 914void cpu_exec_unrealizefn(CPUState *cpu)
 915{
 916    CPUClass *cc = CPU_GET_CLASS(cpu);
 917
 918    cpu_list_remove(cpu);
 919
 920    if (cc->vmsd != NULL) {
 921        vmstate_unregister(NULL, cc->vmsd, cpu);
 922    }
 923    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 924        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
 925    }
 926#ifndef CONFIG_USER_ONLY
 927    tcg_iommu_free_notifier_list(cpu);
 928#endif
 929}
 930
 931Property cpu_common_props[] = {
 932#ifndef CONFIG_USER_ONLY
 933    /* Create a memory property for softmmu CPU object,
 934     * so users can wire up its memory. (This can't go in qom/cpu.c
 935     * because that file is compiled only once for both user-mode
 936     * and system builds.) The default if no link is set up is to use
 937     * the system address space.
 938     */
 939    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
 940                     MemoryRegion *),
 941#endif
 942    DEFINE_PROP_END_OF_LIST(),
 943};
 944
 945void cpu_exec_initfn(CPUState *cpu)
 946{
 947    cpu->as = NULL;
 948    cpu->num_ases = 0;
 949
 950#ifndef CONFIG_USER_ONLY
 951    cpu->thread_id = qemu_get_thread_id();
 952    cpu->memory = system_memory;
 953    object_ref(OBJECT(cpu->memory));
 954#endif
 955}
 956
 957void cpu_exec_realizefn(CPUState *cpu, Error **errp)
 958{
 959    CPUClass *cc = CPU_GET_CLASS(cpu);
 960    static bool tcg_target_initialized;
 961
 962    cpu_list_add(cpu);
 963
 964    if (tcg_enabled() && !tcg_target_initialized) {
 965        tcg_target_initialized = true;
 966        cc->tcg_initialize();
 967    }
 968    tlb_init(cpu);
 969
 970#ifndef CONFIG_USER_ONLY
 971    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 972        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
 973    }
 974    if (cc->vmsd != NULL) {
 975        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
 976    }
 977
 978    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
 979#endif
 980}
 981
 982const char *parse_cpu_model(const char *cpu_model)
 983{
 984    ObjectClass *oc;
 985    CPUClass *cc;
 986    gchar **model_pieces;
 987    const char *cpu_type;
 988
 989    model_pieces = g_strsplit(cpu_model, ",", 2);
 990
 991    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
 992    if (oc == NULL) {
 993        error_report("unable to find CPU model '%s'", model_pieces[0]);
 994        g_strfreev(model_pieces);
 995        exit(EXIT_FAILURE);
 996    }
 997
 998    cpu_type = object_class_get_name(oc);
 999    cc = CPU_CLASS(oc);
1000    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1001    g_strfreev(model_pieces);
1002    return cpu_type;
1003}
1004
1005#if defined(CONFIG_USER_ONLY)
1006void tb_invalidate_phys_addr(target_ulong addr)
1007{
1008    mmap_lock();
1009    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1010    mmap_unlock();
1011}
1012
1013static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1014{
1015    tb_invalidate_phys_addr(pc);
1016}
1017#else
1018void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1019{
1020    ram_addr_t ram_addr;
1021    MemoryRegion *mr;
1022    hwaddr l = 1;
1023
1024    if (!tcg_enabled()) {
1025        return;
1026    }
1027
1028    rcu_read_lock();
1029    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1030    if (!(memory_region_is_ram(mr)
1031          || memory_region_is_romd(mr))) {
1032        rcu_read_unlock();
1033        return;
1034    }
1035    ram_addr = memory_region_get_ram_addr(mr) + addr;
1036    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1037    rcu_read_unlock();
1038}
1039
1040static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1041{
1042    MemTxAttrs attrs;
1043    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1044    int asidx = cpu_asidx_from_attrs(cpu, attrs);
1045    if (phys != -1) {
1046        /* Locks grabbed by tb_invalidate_phys_addr */
1047        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1048                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1049    }
1050}
1051#endif
1052
1053#if defined(CONFIG_USER_ONLY)
1054void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1055
1056{
1057}
1058
1059int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1060                          int flags)
1061{
1062    return -ENOSYS;
1063}
1064
1065void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1066{
1067}
1068
1069int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1070                          int flags, CPUWatchpoint **watchpoint)
1071{
1072    return -ENOSYS;
1073}
1074#else
1075/* Add a watchpoint.  */
1076int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1077                          int flags, CPUWatchpoint **watchpoint)
1078{
1079    CPUWatchpoint *wp;
1080
1081    /* forbid ranges which are empty or run off the end of the address space */
1082    if (len == 0 || (addr + len - 1) < addr) {
1083        error_report("tried to set invalid watchpoint at %"
1084                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1085        return -EINVAL;
1086    }
1087    wp = g_malloc(sizeof(*wp));
1088
1089    wp->vaddr = addr;
1090    wp->len = len;
1091    wp->flags = flags;
1092
1093    /* keep all GDB-injected watchpoints in front */
1094    if (flags & BP_GDB) {
1095        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1096    } else {
1097        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1098    }
1099
1100    tlb_flush_page(cpu, addr);
1101
1102    if (watchpoint)
1103        *watchpoint = wp;
1104    return 0;
1105}
1106
1107/* Remove a specific watchpoint.  */
1108int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1109                          int flags)
1110{
1111    CPUWatchpoint *wp;
1112
1113    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1114        if (addr == wp->vaddr && len == wp->len
1115                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1116            cpu_watchpoint_remove_by_ref(cpu, wp);
1117            return 0;
1118        }
1119    }
1120    return -ENOENT;
1121}
1122
1123/* Remove a specific watchpoint by reference.  */
1124void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1125{
1126    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1127
1128    tlb_flush_page(cpu, watchpoint->vaddr);
1129
1130    g_free(watchpoint);
1131}
1132
1133/* Remove all matching watchpoints.  */
1134void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1135{
1136    CPUWatchpoint *wp, *next;
1137
1138    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1139        if (wp->flags & mask) {
1140            cpu_watchpoint_remove_by_ref(cpu, wp);
1141        }
1142    }
1143}
1144
1145/* Return true if this watchpoint address matches the specified
1146 * access (ie the address range covered by the watchpoint overlaps
1147 * partially or completely with the address range covered by the
1148 * access).
1149 */
1150static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1151                                                  vaddr addr,
1152                                                  vaddr len)
1153{
1154    /* We know the lengths are non-zero, but a little caution is
1155     * required to avoid errors in the case where the range ends
1156     * exactly at the top of the address space and so addr + len
1157     * wraps round to zero.
1158     */
1159    vaddr wpend = wp->vaddr + wp->len - 1;
1160    vaddr addrend = addr + len - 1;
1161
1162    return !(addr > wpend || wp->vaddr > addrend);
1163}
1164
1165#endif
1166
1167/* Add a breakpoint.  */
1168int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1169                          CPUBreakpoint **breakpoint)
1170{
1171    CPUBreakpoint *bp;
1172
1173    bp = g_malloc(sizeof(*bp));
1174
1175    bp->pc = pc;
1176    bp->flags = flags;
1177
1178    /* keep all GDB-injected breakpoints in front */
1179    if (flags & BP_GDB) {
1180        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1181    } else {
1182        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1183    }
1184
1185    breakpoint_invalidate(cpu, pc);
1186
1187    if (breakpoint) {
1188        *breakpoint = bp;
1189    }
1190    return 0;
1191}
1192
1193/* Remove a specific breakpoint.  */
1194int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1195{
1196    CPUBreakpoint *bp;
1197
1198    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1199        if (bp->pc == pc && bp->flags == flags) {
1200            cpu_breakpoint_remove_by_ref(cpu, bp);
1201            return 0;
1202        }
1203    }
1204    return -ENOENT;
1205}
1206
1207/* Remove a specific breakpoint by reference.  */
1208void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1209{
1210    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1211
1212    breakpoint_invalidate(cpu, breakpoint->pc);
1213
1214    g_free(breakpoint);
1215}
1216
1217/* Remove all matching breakpoints. */
1218void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1219{
1220    CPUBreakpoint *bp, *next;
1221
1222    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1223        if (bp->flags & mask) {
1224            cpu_breakpoint_remove_by_ref(cpu, bp);
1225        }
1226    }
1227}
1228
1229/* enable or disable single step mode. EXCP_DEBUG is returned by the
1230   CPU loop after each instruction */
1231void cpu_single_step(CPUState *cpu, int enabled)
1232{
1233    if (cpu->singlestep_enabled != enabled) {
1234        cpu->singlestep_enabled = enabled;
1235        if (kvm_enabled()) {
1236            kvm_update_guest_debug(cpu, 0);
1237        } else {
1238            /* must flush all the translated code to avoid inconsistencies */
1239            /* XXX: only flush what is necessary */
1240            tb_flush(cpu);
1241        }
1242    }
1243}
1244
1245void cpu_abort(CPUState *cpu, const char *fmt, ...)
1246{
1247    va_list ap;
1248    va_list ap2;
1249
1250    va_start(ap, fmt);
1251    va_copy(ap2, ap);
1252    fprintf(stderr, "qemu: fatal: ");
1253    vfprintf(stderr, fmt, ap);
1254    fprintf(stderr, "\n");
1255    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1256    if (qemu_log_separate()) {
1257        qemu_log_lock();
1258        qemu_log("qemu: fatal: ");
1259        qemu_log_vprintf(fmt, ap2);
1260        qemu_log("\n");
1261        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1262        qemu_log_flush();
1263        qemu_log_unlock();
1264        qemu_log_close();
1265    }
1266    va_end(ap2);
1267    va_end(ap);
1268    replay_finish();
1269#if defined(CONFIG_USER_ONLY)
1270    {
1271        struct sigaction act;
1272        sigfillset(&act.sa_mask);
1273        act.sa_handler = SIG_DFL;
1274        act.sa_flags = 0;
1275        sigaction(SIGABRT, &act, NULL);
1276    }
1277#endif
1278    abort();
1279}
1280
1281#if !defined(CONFIG_USER_ONLY)
1282/* Called from RCU critical section */
1283static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1284{
1285    RAMBlock *block;
1286
1287    block = atomic_rcu_read(&ram_list.mru_block);
1288    if (block && addr - block->offset < block->max_length) {
1289        return block;
1290    }
1291    RAMBLOCK_FOREACH(block) {
1292        if (addr - block->offset < block->max_length) {
1293            goto found;
1294        }
1295    }
1296
1297    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1298    abort();
1299
1300found:
1301    /* It is safe to write mru_block outside the iothread lock.  This
1302     * is what happens:
1303     *
1304     *     mru_block = xxx
1305     *     rcu_read_unlock()
1306     *                                        xxx removed from list
1307     *                  rcu_read_lock()
1308     *                  read mru_block
1309     *                                        mru_block = NULL;
1310     *                                        call_rcu(reclaim_ramblock, xxx);
1311     *                  rcu_read_unlock()
1312     *
1313     * atomic_rcu_set is not needed here.  The block was already published
1314     * when it was placed into the list.  Here we're just making an extra
1315     * copy of the pointer.
1316     */
1317    ram_list.mru_block = block;
1318    return block;
1319}
1320
1321static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1322{
1323    CPUState *cpu;
1324    ram_addr_t start1;
1325    RAMBlock *block;
1326    ram_addr_t end;
1327
1328    assert(tcg_enabled());
1329    end = TARGET_PAGE_ALIGN(start + length);
1330    start &= TARGET_PAGE_MASK;
1331
1332    rcu_read_lock();
1333    block = qemu_get_ram_block(start);
1334    assert(block == qemu_get_ram_block(end - 1));
1335    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1336    CPU_FOREACH(cpu) {
1337        tlb_reset_dirty(cpu, start1, length);
1338    }
1339    rcu_read_unlock();
1340}
1341
1342/* Note: start and end must be within the same ram block.  */
1343bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1344                                              ram_addr_t length,
1345                                              unsigned client)
1346{
1347    DirtyMemoryBlocks *blocks;
1348    unsigned long end, page;
1349    bool dirty = false;
1350
1351    if (length == 0) {
1352        return false;
1353    }
1354
1355    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1356    page = start >> TARGET_PAGE_BITS;
1357
1358    rcu_read_lock();
1359
1360    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1361
1362    while (page < end) {
1363        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1364        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1365        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1366
1367        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1368                                              offset, num);
1369        page += num;
1370    }
1371
1372    rcu_read_unlock();
1373
1374    if (dirty && tcg_enabled()) {
1375        tlb_reset_dirty_range_all(start, length);
1376    }
1377
1378    return dirty;
1379}
1380
1381DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1382     (ram_addr_t start, ram_addr_t length, unsigned client)
1383{
1384    DirtyMemoryBlocks *blocks;
1385    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1386    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1387    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1388    DirtyBitmapSnapshot *snap;
1389    unsigned long page, end, dest;
1390
1391    snap = g_malloc0(sizeof(*snap) +
1392                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1393    snap->start = first;
1394    snap->end   = last;
1395
1396    page = first >> TARGET_PAGE_BITS;
1397    end  = last  >> TARGET_PAGE_BITS;
1398    dest = 0;
1399
1400    rcu_read_lock();
1401
1402    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1403
1404    while (page < end) {
1405        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1406        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1407        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1408
1409        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1410        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1411        offset >>= BITS_PER_LEVEL;
1412
1413        bitmap_copy_and_clear_atomic(snap->dirty + dest,
1414                                     blocks->blocks[idx] + offset,
1415                                     num);
1416        page += num;
1417        dest += num >> BITS_PER_LEVEL;
1418    }
1419
1420    rcu_read_unlock();
1421
1422    if (tcg_enabled()) {
1423        tlb_reset_dirty_range_all(start, length);
1424    }
1425
1426    return snap;
1427}
1428
1429bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1430                                            ram_addr_t start,
1431                                            ram_addr_t length)
1432{
1433    unsigned long page, end;
1434
1435    assert(start >= snap->start);
1436    assert(start + length <= snap->end);
1437
1438    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1439    page = (start - snap->start) >> TARGET_PAGE_BITS;
1440
1441    while (page < end) {
1442        if (test_bit(page, snap->dirty)) {
1443            return true;
1444        }
1445        page++;
1446    }
1447    return false;
1448}
1449
1450/* Called from RCU critical section */
1451hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1452                                       MemoryRegionSection *section,
1453                                       target_ulong vaddr,
1454                                       hwaddr paddr, hwaddr xlat,
1455                                       int prot,
1456                                       target_ulong *address)
1457{
1458    hwaddr iotlb;
1459    CPUWatchpoint *wp;
1460
1461    if (memory_region_is_ram(section->mr)) {
1462        /* Normal RAM.  */
1463        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1464        if (!section->readonly) {
1465            iotlb |= PHYS_SECTION_NOTDIRTY;
1466        } else {
1467            iotlb |= PHYS_SECTION_ROM;
1468        }
1469    } else {
1470        AddressSpaceDispatch *d;
1471
1472        d = flatview_to_dispatch(section->fv);
1473        iotlb = section - d->map.sections;
1474        iotlb += xlat;
1475    }
1476
1477    /* Make accesses to pages with watchpoints go via the
1478       watchpoint trap routines.  */
1479    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1480        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1481            /* Avoid trapping reads of pages with a write breakpoint. */
1482            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1483                iotlb = PHYS_SECTION_WATCH + paddr;
1484                *address |= TLB_MMIO;
1485                break;
1486            }
1487        }
1488    }
1489
1490    return iotlb;
1491}
1492#endif /* defined(CONFIG_USER_ONLY) */
1493
1494#if !defined(CONFIG_USER_ONLY)
1495
1496static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1497                             uint16_t section);
1498static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1499
1500static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1501                               qemu_anon_ram_alloc;
1502
1503/*
1504 * Set a custom physical guest memory alloator.
1505 * Accelerators with unusual needs may need this.  Hopefully, we can
1506 * get rid of it eventually.
1507 */
1508void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1509{
1510    phys_mem_alloc = alloc;
1511}
1512
1513static uint16_t phys_section_add(PhysPageMap *map,
1514                                 MemoryRegionSection *section)
1515{
1516    /* The physical section number is ORed with a page-aligned
1517     * pointer to produce the iotlb entries.  Thus it should
1518     * never overflow into the page-aligned value.
1519     */
1520    assert(map->sections_nb < TARGET_PAGE_SIZE);
1521
1522    if (map->sections_nb == map->sections_nb_alloc) {
1523        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1524        map->sections = g_renew(MemoryRegionSection, map->sections,
1525                                map->sections_nb_alloc);
1526    }
1527    map->sections[map->sections_nb] = *section;
1528    memory_region_ref(section->mr);
1529    return map->sections_nb++;
1530}
1531
1532static void phys_section_destroy(MemoryRegion *mr)
1533{
1534    bool have_sub_page = mr->subpage;
1535
1536    memory_region_unref(mr);
1537
1538    if (have_sub_page) {
1539        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1540        object_unref(OBJECT(&subpage->iomem));
1541        g_free(subpage);
1542    }
1543}
1544
1545static void phys_sections_free(PhysPageMap *map)
1546{
1547    while (map->sections_nb > 0) {
1548        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1549        phys_section_destroy(section->mr);
1550    }
1551    g_free(map->sections);
1552    g_free(map->nodes);
1553}
1554
1555static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1556{
1557    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1558    subpage_t *subpage;
1559    hwaddr base = section->offset_within_address_space
1560        & TARGET_PAGE_MASK;
1561    MemoryRegionSection *existing = phys_page_find(d, base);
1562    MemoryRegionSection subsection = {
1563        .offset_within_address_space = base,
1564        .size = int128_make64(TARGET_PAGE_SIZE),
1565    };
1566    hwaddr start, end;
1567
1568    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1569
1570    if (!(existing->mr->subpage)) {
1571        subpage = subpage_init(fv, base);
1572        subsection.fv = fv;
1573        subsection.mr = &subpage->iomem;
1574        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1575                      phys_section_add(&d->map, &subsection));
1576    } else {
1577        subpage = container_of(existing->mr, subpage_t, iomem);
1578    }
1579    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1580    end = start + int128_get64(section->size) - 1;
1581    subpage_register(subpage, start, end,
1582                     phys_section_add(&d->map, section));
1583}
1584
1585
1586static void register_multipage(FlatView *fv,
1587                               MemoryRegionSection *section)
1588{
1589    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1590    hwaddr start_addr = section->offset_within_address_space;
1591    uint16_t section_index = phys_section_add(&d->map, section);
1592    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1593                                                    TARGET_PAGE_BITS));
1594
1595    assert(num_pages);
1596    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1597}
1598
1599void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1600{
1601    MemoryRegionSection now = *section, remain = *section;
1602    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1603
1604    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1605        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1606                       - now.offset_within_address_space;
1607
1608        now.size = int128_min(int128_make64(left), now.size);
1609        register_subpage(fv, &now);
1610    } else {
1611        now.size = int128_zero();
1612    }
1613    while (int128_ne(remain.size, now.size)) {
1614        remain.size = int128_sub(remain.size, now.size);
1615        remain.offset_within_address_space += int128_get64(now.size);
1616        remain.offset_within_region += int128_get64(now.size);
1617        now = remain;
1618        if (int128_lt(remain.size, page_size)) {
1619            register_subpage(fv, &now);
1620        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1621            now.size = page_size;
1622            register_subpage(fv, &now);
1623        } else {
1624            now.size = int128_and(now.size, int128_neg(page_size));
1625            register_multipage(fv, &now);
1626        }
1627    }
1628}
1629
1630void qemu_flush_coalesced_mmio_buffer(void)
1631{
1632    if (kvm_enabled())
1633        kvm_flush_coalesced_mmio_buffer();
1634}
1635
1636void qemu_mutex_lock_ramlist(void)
1637{
1638    qemu_mutex_lock(&ram_list.mutex);
1639}
1640
1641void qemu_mutex_unlock_ramlist(void)
1642{
1643    qemu_mutex_unlock(&ram_list.mutex);
1644}
1645
1646void ram_block_dump(Monitor *mon)
1647{
1648    RAMBlock *block;
1649    char *psize;
1650
1651    rcu_read_lock();
1652    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
1653                   "Block Name", "PSize", "Offset", "Used", "Total");
1654    RAMBLOCK_FOREACH(block) {
1655        psize = size_to_str(block->page_size);
1656        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1657                       " 0x%016" PRIx64 "\n", block->idstr, psize,
1658                       (uint64_t)block->offset,
1659                       (uint64_t)block->used_length,
1660                       (uint64_t)block->max_length);
1661        g_free(psize);
1662    }
1663    rcu_read_unlock();
1664}
1665
1666#ifdef __linux__
1667/*
1668 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1669 * may or may not name the same files / on the same filesystem now as
1670 * when we actually open and map them.  Iterate over the file
1671 * descriptors instead, and use qemu_fd_getpagesize().
1672 */
1673static int find_max_supported_pagesize(Object *obj, void *opaque)
1674{
1675    long *hpsize_min = opaque;
1676
1677    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1678        long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1679
1680        if (hpsize < *hpsize_min) {
1681            *hpsize_min = hpsize;
1682        }
1683    }
1684
1685    return 0;
1686}
1687
1688long qemu_getrampagesize(void)
1689{
1690    long hpsize = LONG_MAX;
1691    long mainrampagesize;
1692    Object *memdev_root;
1693
1694    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1695
1696    /* it's possible we have memory-backend objects with
1697     * hugepage-backed RAM. these may get mapped into system
1698     * address space via -numa parameters or memory hotplug
1699     * hooks. we want to take these into account, but we
1700     * also want to make sure these supported hugepage
1701     * sizes are applicable across the entire range of memory
1702     * we may boot from, so we take the min across all
1703     * backends, and assume normal pages in cases where a
1704     * backend isn't backed by hugepages.
1705     */
1706    memdev_root = object_resolve_path("/objects", NULL);
1707    if (memdev_root) {
1708        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1709    }
1710    if (hpsize == LONG_MAX) {
1711        /* No additional memory regions found ==> Report main RAM page size */
1712        return mainrampagesize;
1713    }
1714
1715    /* If NUMA is disabled or the NUMA nodes are not backed with a
1716     * memory-backend, then there is at least one node using "normal" RAM,
1717     * so if its page size is smaller we have got to report that size instead.
1718     */
1719    if (hpsize > mainrampagesize &&
1720        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1721        static bool warned;
1722        if (!warned) {
1723            error_report("Huge page support disabled (n/a for main memory).");
1724            warned = true;
1725        }
1726        return mainrampagesize;
1727    }
1728
1729    return hpsize;
1730}
1731#else
1732long qemu_getrampagesize(void)
1733{
1734    return getpagesize();
1735}
1736#endif
1737
1738#ifdef CONFIG_POSIX
1739static int64_t get_file_size(int fd)
1740{
1741    int64_t size = lseek(fd, 0, SEEK_END);
1742    if (size < 0) {
1743        return -errno;
1744    }
1745    return size;
1746}
1747
1748static int file_ram_open(const char *path,
1749                         const char *region_name,
1750                         bool *created,
1751                         Error **errp)
1752{
1753    char *filename;
1754    char *sanitized_name;
1755    char *c;
1756    int fd = -1;
1757
1758    *created = false;
1759    for (;;) {
1760        fd = open(path, O_RDWR);
1761        if (fd >= 0) {
1762            /* @path names an existing file, use it */
1763            break;
1764        }
1765        if (errno == ENOENT) {
1766            /* @path names a file that doesn't exist, create it */
1767            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1768            if (fd >= 0) {
1769                *created = true;
1770                break;
1771            }
1772        } else if (errno == EISDIR) {
1773            /* @path names a directory, create a file there */
1774            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1775            sanitized_name = g_strdup(region_name);
1776            for (c = sanitized_name; *c != '\0'; c++) {
1777                if (*c == '/') {
1778                    *c = '_';
1779                }
1780            }
1781
1782            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1783                                       sanitized_name);
1784            g_free(sanitized_name);
1785
1786            fd = mkstemp(filename);
1787            if (fd >= 0) {
1788                unlink(filename);
1789                g_free(filename);
1790                break;
1791            }
1792            g_free(filename);
1793        }
1794        if (errno != EEXIST && errno != EINTR) {
1795            error_setg_errno(errp, errno,
1796                             "can't open backing store %s for guest RAM",
1797                             path);
1798            return -1;
1799        }
1800        /*
1801         * Try again on EINTR and EEXIST.  The latter happens when
1802         * something else creates the file between our two open().
1803         */
1804    }
1805
1806    return fd;
1807}
1808
1809static void *file_ram_alloc(RAMBlock *block,
1810                            ram_addr_t memory,
1811                            int fd,
1812                            bool truncate,
1813                            Error **errp)
1814{
1815    void *area;
1816
1817    block->page_size = qemu_fd_getpagesize(fd);
1818    if (block->mr->align % block->page_size) {
1819        error_setg(errp, "alignment 0x%" PRIx64
1820                   " must be multiples of page size 0x%zx",
1821                   block->mr->align, block->page_size);
1822        return NULL;
1823    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1824        error_setg(errp, "alignment 0x%" PRIx64
1825                   " must be a power of two", block->mr->align);
1826        return NULL;
1827    }
1828    block->mr->align = MAX(block->page_size, block->mr->align);
1829#if defined(__s390x__)
1830    if (kvm_enabled()) {
1831        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1832    }
1833#endif
1834
1835    if (memory < block->page_size) {
1836        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1837                   "or larger than page size 0x%zx",
1838                   memory, block->page_size);
1839        return NULL;
1840    }
1841
1842    memory = ROUND_UP(memory, block->page_size);
1843
1844    /*
1845     * ftruncate is not supported by hugetlbfs in older
1846     * hosts, so don't bother bailing out on errors.
1847     * If anything goes wrong with it under other filesystems,
1848     * mmap will fail.
1849     *
1850     * Do not truncate the non-empty backend file to avoid corrupting
1851     * the existing data in the file. Disabling shrinking is not
1852     * enough. For example, the current vNVDIMM implementation stores
1853     * the guest NVDIMM labels at the end of the backend file. If the
1854     * backend file is later extended, QEMU will not be able to find
1855     * those labels. Therefore, extending the non-empty backend file
1856     * is disabled as well.
1857     */
1858    if (truncate && ftruncate(fd, memory)) {
1859        perror("ftruncate");
1860    }
1861
1862    area = qemu_ram_mmap(fd, memory, block->mr->align,
1863                         block->flags & RAM_SHARED);
1864    if (area == MAP_FAILED) {
1865        error_setg_errno(errp, errno,
1866                         "unable to map backing store for guest RAM");
1867        return NULL;
1868    }
1869
1870    if (mem_prealloc) {
1871        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1872        if (errp && *errp) {
1873            qemu_ram_munmap(area, memory);
1874            return NULL;
1875        }
1876    }
1877
1878    block->fd = fd;
1879    return area;
1880}
1881#endif
1882
1883/* Allocate space within the ram_addr_t space that governs the
1884 * dirty bitmaps.
1885 * Called with the ramlist lock held.
1886 */
1887static ram_addr_t find_ram_offset(ram_addr_t size)
1888{
1889    RAMBlock *block, *next_block;
1890    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1891
1892    assert(size != 0); /* it would hand out same offset multiple times */
1893
1894    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1895        return 0;
1896    }
1897
1898    RAMBLOCK_FOREACH(block) {
1899        ram_addr_t candidate, next = RAM_ADDR_MAX;
1900
1901        /* Align blocks to start on a 'long' in the bitmap
1902         * which makes the bitmap sync'ing take the fast path.
1903         */
1904        candidate = block->offset + block->max_length;
1905        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1906
1907        /* Search for the closest following block
1908         * and find the gap.
1909         */
1910        RAMBLOCK_FOREACH(next_block) {
1911            if (next_block->offset >= candidate) {
1912                next = MIN(next, next_block->offset);
1913            }
1914        }
1915
1916        /* If it fits remember our place and remember the size
1917         * of gap, but keep going so that we might find a smaller
1918         * gap to fill so avoiding fragmentation.
1919         */
1920        if (next - candidate >= size && next - candidate < mingap) {
1921            offset = candidate;
1922            mingap = next - candidate;
1923        }
1924
1925        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1926    }
1927
1928    if (offset == RAM_ADDR_MAX) {
1929        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1930                (uint64_t)size);
1931        abort();
1932    }
1933
1934    trace_find_ram_offset(size, offset);
1935
1936    return offset;
1937}
1938
1939static unsigned long last_ram_page(void)
1940{
1941    RAMBlock *block;
1942    ram_addr_t last = 0;
1943
1944    rcu_read_lock();
1945    RAMBLOCK_FOREACH(block) {
1946        last = MAX(last, block->offset + block->max_length);
1947    }
1948    rcu_read_unlock();
1949    return last >> TARGET_PAGE_BITS;
1950}
1951
1952static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1953{
1954    int ret;
1955
1956    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1957    if (!machine_dump_guest_core(current_machine)) {
1958        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1959        if (ret) {
1960            perror("qemu_madvise");
1961            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1962                            "but dump_guest_core=off specified\n");
1963        }
1964    }
1965}
1966
1967const char *qemu_ram_get_idstr(RAMBlock *rb)
1968{
1969    return rb->idstr;
1970}
1971
1972bool qemu_ram_is_shared(RAMBlock *rb)
1973{
1974    return rb->flags & RAM_SHARED;
1975}
1976
1977/* Note: Only set at the start of postcopy */
1978bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1979{
1980    return rb->flags & RAM_UF_ZEROPAGE;
1981}
1982
1983void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1984{
1985    rb->flags |= RAM_UF_ZEROPAGE;
1986}
1987
1988bool qemu_ram_is_migratable(RAMBlock *rb)
1989{
1990    return rb->flags & RAM_MIGRATABLE;
1991}
1992
1993void qemu_ram_set_migratable(RAMBlock *rb)
1994{
1995    rb->flags |= RAM_MIGRATABLE;
1996}
1997
1998void qemu_ram_unset_migratable(RAMBlock *rb)
1999{
2000    rb->flags &= ~RAM_MIGRATABLE;
2001}
2002
2003/* Called with iothread lock held.  */
2004void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2005{
2006    RAMBlock *block;
2007
2008    assert(new_block);
2009    assert(!new_block->idstr[0]);
2010
2011    if (dev) {
2012        char *id = qdev_get_dev_path(dev);
2013        if (id) {
2014            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2015            g_free(id);
2016        }
2017    }
2018    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2019
2020    rcu_read_lock();
2021    RAMBLOCK_FOREACH(block) {
2022        if (block != new_block &&
2023            !strcmp(block->idstr, new_block->idstr)) {
2024            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2025                    new_block->idstr);
2026            abort();
2027        }
2028    }
2029    rcu_read_unlock();
2030}
2031
2032/* Called with iothread lock held.  */
2033void qemu_ram_unset_idstr(RAMBlock *block)
2034{
2035    /* FIXME: arch_init.c assumes that this is not called throughout
2036     * migration.  Ignore the problem since hot-unplug during migration
2037     * does not work anyway.
2038     */
2039    if (block) {
2040        memset(block->idstr, 0, sizeof(block->idstr));
2041    }
2042}
2043
2044size_t qemu_ram_pagesize(RAMBlock *rb)
2045{
2046    return rb->page_size;
2047}
2048
2049/* Returns the largest size of page in use */
2050size_t qemu_ram_pagesize_largest(void)
2051{
2052    RAMBlock *block;
2053    size_t largest = 0;
2054
2055    RAMBLOCK_FOREACH(block) {
2056        largest = MAX(largest, qemu_ram_pagesize(block));
2057    }
2058
2059    return largest;
2060}
2061
2062static int memory_try_enable_merging(void *addr, size_t len)
2063{
2064    if (!machine_mem_merge(current_machine)) {
2065        /* disabled by the user */
2066        return 0;
2067    }
2068
2069    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2070}
2071
2072/* Only legal before guest might have detected the memory size: e.g. on
2073 * incoming migration, or right after reset.
2074 *
2075 * As memory core doesn't know how is memory accessed, it is up to
2076 * resize callback to update device state and/or add assertions to detect
2077 * misuse, if necessary.
2078 */
2079int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2080{
2081    assert(block);
2082
2083    newsize = HOST_PAGE_ALIGN(newsize);
2084
2085    if (block->used_length == newsize) {
2086        return 0;
2087    }
2088
2089    if (!(block->flags & RAM_RESIZEABLE)) {
2090        error_setg_errno(errp, EINVAL,
2091                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
2092                         " in != 0x" RAM_ADDR_FMT, block->idstr,
2093                         newsize, block->used_length);
2094        return -EINVAL;
2095    }
2096
2097    if (block->max_length < newsize) {
2098        error_setg_errno(errp, EINVAL,
2099                         "Length too large: %s: 0x" RAM_ADDR_FMT
2100                         " > 0x" RAM_ADDR_FMT, block->idstr,
2101                         newsize, block->max_length);
2102        return -EINVAL;
2103    }
2104
2105    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2106    block->used_length = newsize;
2107    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2108                                        DIRTY_CLIENTS_ALL);
2109    memory_region_set_size(block->mr, newsize);
2110    if (block->resized) {
2111        block->resized(block->idstr, newsize, block->host);
2112    }
2113    return 0;
2114}
2115
2116/* Called with ram_list.mutex held */
2117static void dirty_memory_extend(ram_addr_t old_ram_size,
2118                                ram_addr_t new_ram_size)
2119{
2120    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2121                                             DIRTY_MEMORY_BLOCK_SIZE);
2122    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2123                                             DIRTY_MEMORY_BLOCK_SIZE);
2124    int i;
2125
2126    /* Only need to extend if block count increased */
2127    if (new_num_blocks <= old_num_blocks) {
2128        return;
2129    }
2130
2131    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2132        DirtyMemoryBlocks *old_blocks;
2133        DirtyMemoryBlocks *new_blocks;
2134        int j;
2135
2136        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2137        new_blocks = g_malloc(sizeof(*new_blocks) +
2138                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
2139
2140        if (old_num_blocks) {
2141            memcpy(new_blocks->blocks, old_blocks->blocks,
2142                   old_num_blocks * sizeof(old_blocks->blocks[0]));
2143        }
2144
2145        for (j = old_num_blocks; j < new_num_blocks; j++) {
2146            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2147        }
2148
2149        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2150
2151        if (old_blocks) {
2152            g_free_rcu(old_blocks, rcu);
2153        }
2154    }
2155}
2156
2157static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2158{
2159    RAMBlock *block;
2160    RAMBlock *last_block = NULL;
2161    ram_addr_t old_ram_size, new_ram_size;
2162    Error *err = NULL;
2163
2164    old_ram_size = last_ram_page();
2165
2166    qemu_mutex_lock_ramlist();
2167    new_block->offset = find_ram_offset(new_block->max_length);
2168
2169    if (!new_block->host) {
2170        if (xen_enabled()) {
2171            xen_ram_alloc(new_block->offset, new_block->max_length,
2172                          new_block->mr, &err);
2173            if (err) {
2174                error_propagate(errp, err);
2175                qemu_mutex_unlock_ramlist();
2176                return;
2177            }
2178        } else {
2179            new_block->host = phys_mem_alloc(new_block->max_length,
2180                                             &new_block->mr->align, shared);
2181            if (!new_block->host) {
2182                error_setg_errno(errp, errno,
2183                                 "cannot set up guest memory '%s'",
2184                                 memory_region_name(new_block->mr));
2185                qemu_mutex_unlock_ramlist();
2186                return;
2187            }
2188            memory_try_enable_merging(new_block->host, new_block->max_length);
2189        }
2190    }
2191
2192    new_ram_size = MAX(old_ram_size,
2193              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2194    if (new_ram_size > old_ram_size) {
2195        dirty_memory_extend(old_ram_size, new_ram_size);
2196    }
2197    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2198     * QLIST (which has an RCU-friendly variant) does not have insertion at
2199     * tail, so save the last element in last_block.
2200     */
2201    RAMBLOCK_FOREACH(block) {
2202        last_block = block;
2203        if (block->max_length < new_block->max_length) {
2204            break;
2205        }
2206    }
2207    if (block) {
2208        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2209    } else if (last_block) {
2210        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2211    } else { /* list is empty */
2212        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2213    }
2214    ram_list.mru_block = NULL;
2215
2216    /* Write list before version */
2217    smp_wmb();
2218    ram_list.version++;
2219    qemu_mutex_unlock_ramlist();
2220
2221    cpu_physical_memory_set_dirty_range(new_block->offset,
2222                                        new_block->used_length,
2223                                        DIRTY_CLIENTS_ALL);
2224
2225    if (new_block->host) {
2226        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2227        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2228        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2229        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2230        ram_block_notify_add(new_block->host, new_block->max_length);
2231    }
2232}
2233
2234#ifdef CONFIG_POSIX
2235RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2236                                 uint32_t ram_flags, int fd,
2237                                 Error **errp)
2238{
2239    RAMBlock *new_block;
2240    Error *local_err = NULL;
2241    int64_t file_size;
2242
2243    /* Just support these ram flags by now. */
2244    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2245
2246    if (xen_enabled()) {
2247        error_setg(errp, "-mem-path not supported with Xen");
2248        return NULL;
2249    }
2250
2251    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2252        error_setg(errp,
2253                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2254        return NULL;
2255    }
2256
2257    if (phys_mem_alloc != qemu_anon_ram_alloc) {
2258        /*
2259         * file_ram_alloc() needs to allocate just like
2260         * phys_mem_alloc, but we haven't bothered to provide
2261         * a hook there.
2262         */
2263        error_setg(errp,
2264                   "-mem-path not supported with this accelerator");
2265        return NULL;
2266    }
2267
2268    size = HOST_PAGE_ALIGN(size);
2269    file_size = get_file_size(fd);
2270    if (file_size > 0 && file_size < size) {
2271        error_setg(errp, "backing store %s size 0x%" PRIx64
2272                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2273                   mem_path, file_size, size);
2274        return NULL;
2275    }
2276
2277    new_block = g_malloc0(sizeof(*new_block));
2278    new_block->mr = mr;
2279    new_block->used_length = size;
2280    new_block->max_length = size;
2281    new_block->flags = ram_flags;
2282    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2283    if (!new_block->host) {
2284        g_free(new_block);
2285        return NULL;
2286    }
2287
2288    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2289    if (local_err) {
2290        g_free(new_block);
2291        error_propagate(errp, local_err);
2292        return NULL;
2293    }
2294    return new_block;
2295
2296}
2297
2298
2299RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2300                                   uint32_t ram_flags, const char *mem_path,
2301                                   Error **errp)
2302{
2303    int fd;
2304    bool created;
2305    RAMBlock *block;
2306
2307    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2308    if (fd < 0) {
2309        return NULL;
2310    }
2311
2312    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2313    if (!block) {
2314        if (created) {
2315            unlink(mem_path);
2316        }
2317        close(fd);
2318        return NULL;
2319    }
2320
2321    return block;
2322}
2323#endif
2324
2325static
2326RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2327                                  void (*resized)(const char*,
2328                                                  uint64_t length,
2329                                                  void *host),
2330                                  void *host, bool resizeable, bool share,
2331                                  MemoryRegion *mr, Error **errp)
2332{
2333    RAMBlock *new_block;
2334    Error *local_err = NULL;
2335
2336    size = HOST_PAGE_ALIGN(size);
2337    max_size = HOST_PAGE_ALIGN(max_size);
2338    new_block = g_malloc0(sizeof(*new_block));
2339    new_block->mr = mr;
2340    new_block->resized = resized;
2341    new_block->used_length = size;
2342    new_block->max_length = max_size;
2343    assert(max_size >= size);
2344    new_block->fd = -1;
2345    new_block->page_size = getpagesize();
2346    new_block->host = host;
2347    if (host) {
2348        new_block->flags |= RAM_PREALLOC;
2349    }
2350    if (resizeable) {
2351        new_block->flags |= RAM_RESIZEABLE;
2352    }
2353    ram_block_add(new_block, &local_err, share);
2354    if (local_err) {
2355        g_free(new_block);
2356        error_propagate(errp, local_err);
2357        return NULL;
2358    }
2359    return new_block;
2360}
2361
2362RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2363                                   MemoryRegion *mr, Error **errp)
2364{
2365    return qemu_ram_alloc_internal(size, size, NULL, host, false,
2366                                   false, mr, errp);
2367}
2368
2369RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2370                         MemoryRegion *mr, Error **errp)
2371{
2372    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2373                                   share, mr, errp);
2374}
2375
2376RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2377                                     void (*resized)(const char*,
2378                                                     uint64_t length,
2379                                                     void *host),
2380                                     MemoryRegion *mr, Error **errp)
2381{
2382    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2383                                   false, mr, errp);
2384}
2385
2386static void reclaim_ramblock(RAMBlock *block)
2387{
2388    if (block->flags & RAM_PREALLOC) {
2389        ;
2390    } else if (xen_enabled()) {
2391        xen_invalidate_map_cache_entry(block->host);
2392#ifndef _WIN32
2393    } else if (block->fd >= 0) {
2394        qemu_ram_munmap(block->host, block->max_length);
2395        close(block->fd);
2396#endif
2397    } else {
2398        qemu_anon_ram_free(block->host, block->max_length);
2399    }
2400    g_free(block);
2401}
2402
2403void qemu_ram_free(RAMBlock *block)
2404{
2405    if (!block) {
2406        return;
2407    }
2408
2409    if (block->host) {
2410        ram_block_notify_remove(block->host, block->max_length);
2411    }
2412
2413    qemu_mutex_lock_ramlist();
2414    QLIST_REMOVE_RCU(block, next);
2415    ram_list.mru_block = NULL;
2416    /* Write list before version */
2417    smp_wmb();
2418    ram_list.version++;
2419    call_rcu(block, reclaim_ramblock, rcu);
2420    qemu_mutex_unlock_ramlist();
2421}
2422
2423#ifndef _WIN32
2424void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2425{
2426    RAMBlock *block;
2427    ram_addr_t offset;
2428    int flags;
2429    void *area, *vaddr;
2430
2431    RAMBLOCK_FOREACH(block) {
2432        offset = addr - block->offset;
2433        if (offset < block->max_length) {
2434            vaddr = ramblock_ptr(block, offset);
2435            if (block->flags & RAM_PREALLOC) {
2436                ;
2437            } else if (xen_enabled()) {
2438                abort();
2439            } else {
2440                flags = MAP_FIXED;
2441                if (block->fd >= 0) {
2442                    flags |= (block->flags & RAM_SHARED ?
2443                              MAP_SHARED : MAP_PRIVATE);
2444                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2445                                flags, block->fd, offset);
2446                } else {
2447                    /*
2448                     * Remap needs to match alloc.  Accelerators that
2449                     * set phys_mem_alloc never remap.  If they did,
2450                     * we'd need a remap hook here.
2451                     */
2452                    assert(phys_mem_alloc == qemu_anon_ram_alloc);
2453
2454                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2455                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2456                                flags, -1, 0);
2457                }
2458                if (area != vaddr) {
2459                    error_report("Could not remap addr: "
2460                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2461                                 length, addr);
2462                    exit(1);
2463                }
2464                memory_try_enable_merging(vaddr, length);
2465                qemu_ram_setup_dump(vaddr, length);
2466            }
2467        }
2468    }
2469}
2470#endif /* !_WIN32 */
2471
2472/* Return a host pointer to ram allocated with qemu_ram_alloc.
2473 * This should not be used for general purpose DMA.  Use address_space_map
2474 * or address_space_rw instead. For local memory (e.g. video ram) that the
2475 * device owns, use memory_region_get_ram_ptr.
2476 *
2477 * Called within RCU critical section.
2478 */
2479void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2480{
2481    RAMBlock *block = ram_block;
2482
2483    if (block == NULL) {
2484        block = qemu_get_ram_block(addr);
2485        addr -= block->offset;
2486    }
2487
2488    if (xen_enabled() && block->host == NULL) {
2489        /* We need to check if the requested address is in the RAM
2490         * because we don't want to map the entire memory in QEMU.
2491         * In that case just map until the end of the page.
2492         */
2493        if (block->offset == 0) {
2494            return xen_map_cache(addr, 0, 0, false);
2495        }
2496
2497        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2498    }
2499    return ramblock_ptr(block, addr);
2500}
2501
2502/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2503 * but takes a size argument.
2504 *
2505 * Called within RCU critical section.
2506 */
2507static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2508                                 hwaddr *size, bool lock)
2509{
2510    RAMBlock *block = ram_block;
2511    if (*size == 0) {
2512        return NULL;
2513    }
2514
2515    if (block == NULL) {
2516        block = qemu_get_ram_block(addr);
2517        addr -= block->offset;
2518    }
2519    *size = MIN(*size, block->max_length - addr);
2520
2521    if (xen_enabled() && block->host == NULL) {
2522        /* We need to check if the requested address is in the RAM
2523         * because we don't want to map the entire memory in QEMU.
2524         * In that case just map the requested area.
2525         */
2526        if (block->offset == 0) {
2527            return xen_map_cache(addr, *size, lock, lock);
2528        }
2529
2530        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2531    }
2532
2533    return ramblock_ptr(block, addr);
2534}
2535
2536/* Return the offset of a hostpointer within a ramblock */
2537ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2538{
2539    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2540    assert((uintptr_t)host >= (uintptr_t)rb->host);
2541    assert(res < rb->max_length);
2542
2543    return res;
2544}
2545
2546/*
2547 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2548 * in that RAMBlock.
2549 *
2550 * ptr: Host pointer to look up
2551 * round_offset: If true round the result offset down to a page boundary
2552 * *ram_addr: set to result ram_addr
2553 * *offset: set to result offset within the RAMBlock
2554 *
2555 * Returns: RAMBlock (or NULL if not found)
2556 *
2557 * By the time this function returns, the returned pointer is not protected
2558 * by RCU anymore.  If the caller is not within an RCU critical section and
2559 * does not hold the iothread lock, it must have other means of protecting the
2560 * pointer, such as a reference to the region that includes the incoming
2561 * ram_addr_t.
2562 */
2563RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2564                                   ram_addr_t *offset)
2565{
2566    RAMBlock *block;
2567    uint8_t *host = ptr;
2568
2569    if (xen_enabled()) {
2570        ram_addr_t ram_addr;
2571        rcu_read_lock();
2572        ram_addr = xen_ram_addr_from_mapcache(ptr);
2573        block = qemu_get_ram_block(ram_addr);
2574        if (block) {
2575            *offset = ram_addr - block->offset;
2576        }
2577        rcu_read_unlock();
2578        return block;
2579    }
2580
2581    rcu_read_lock();
2582    block = atomic_rcu_read(&ram_list.mru_block);
2583    if (block && block->host && host - block->host < block->max_length) {
2584        goto found;
2585    }
2586
2587    RAMBLOCK_FOREACH(block) {
2588        /* This case append when the block is not mapped. */
2589        if (block->host == NULL) {
2590            continue;
2591        }
2592        if (host - block->host < block->max_length) {
2593            goto found;
2594        }
2595    }
2596
2597    rcu_read_unlock();
2598    return NULL;
2599
2600found:
2601    *offset = (host - block->host);
2602    if (round_offset) {
2603        *offset &= TARGET_PAGE_MASK;
2604    }
2605    rcu_read_unlock();
2606    return block;
2607}
2608
2609/*
2610 * Finds the named RAMBlock
2611 *
2612 * name: The name of RAMBlock to find
2613 *
2614 * Returns: RAMBlock (or NULL if not found)
2615 */
2616RAMBlock *qemu_ram_block_by_name(const char *name)
2617{
2618    RAMBlock *block;
2619
2620    RAMBLOCK_FOREACH(block) {
2621        if (!strcmp(name, block->idstr)) {
2622            return block;
2623        }
2624    }
2625
2626    return NULL;
2627}
2628
2629/* Some of the softmmu routines need to translate from a host pointer
2630   (typically a TLB entry) back to a ram offset.  */
2631ram_addr_t qemu_ram_addr_from_host(void *ptr)
2632{
2633    RAMBlock *block;
2634    ram_addr_t offset;
2635
2636    block = qemu_ram_block_from_host(ptr, false, &offset);
2637    if (!block) {
2638        return RAM_ADDR_INVALID;
2639    }
2640
2641    return block->offset + offset;
2642}
2643
2644/* Called within RCU critical section. */
2645void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2646                          CPUState *cpu,
2647                          vaddr mem_vaddr,
2648                          ram_addr_t ram_addr,
2649                          unsigned size)
2650{
2651    ndi->cpu = cpu;
2652    ndi->ram_addr = ram_addr;
2653    ndi->mem_vaddr = mem_vaddr;
2654    ndi->size = size;
2655    ndi->pages = NULL;
2656
2657    assert(tcg_enabled());
2658    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2659        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2660        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2661    }
2662}
2663
2664/* Called within RCU critical section. */
2665void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2666{
2667    if (ndi->pages) {
2668        assert(tcg_enabled());
2669        page_collection_unlock(ndi->pages);
2670        ndi->pages = NULL;
2671    }
2672
2673    /* Set both VGA and migration bits for simplicity and to remove
2674     * the notdirty callback faster.
2675     */
2676    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2677                                        DIRTY_CLIENTS_NOCODE);
2678    /* we remove the notdirty callback only if the code has been
2679       flushed */
2680    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2681        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2682    }
2683}
2684
2685/* Called within RCU critical section.  */
2686static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2687                               uint64_t val, unsigned size)
2688{
2689    NotDirtyInfo ndi;
2690
2691    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2692                         ram_addr, size);
2693
2694    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2695    memory_notdirty_write_complete(&ndi);
2696}
2697
2698static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2699                                 unsigned size, bool is_write,
2700                                 MemTxAttrs attrs)
2701{
2702    return is_write;
2703}
2704
2705static const MemoryRegionOps notdirty_mem_ops = {
2706    .write = notdirty_mem_write,
2707    .valid.accepts = notdirty_mem_accepts,
2708    .endianness = DEVICE_NATIVE_ENDIAN,
2709    .valid = {
2710        .min_access_size = 1,
2711        .max_access_size = 8,
2712        .unaligned = false,
2713    },
2714    .impl = {
2715        .min_access_size = 1,
2716        .max_access_size = 8,
2717        .unaligned = false,
2718    },
2719};
2720
2721/* Generate a debug exception if a watchpoint has been hit.  */
2722static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2723{
2724    CPUState *cpu = current_cpu;
2725    CPUClass *cc = CPU_GET_CLASS(cpu);
2726    target_ulong vaddr;
2727    CPUWatchpoint *wp;
2728
2729    assert(tcg_enabled());
2730    if (cpu->watchpoint_hit) {
2731        /* We re-entered the check after replacing the TB. Now raise
2732         * the debug interrupt so that is will trigger after the
2733         * current instruction. */
2734        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2735        return;
2736    }
2737    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2738    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2739    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2740        if (cpu_watchpoint_address_matches(wp, vaddr, len)
2741            && (wp->flags & flags)) {
2742            if (flags == BP_MEM_READ) {
2743                wp->flags |= BP_WATCHPOINT_HIT_READ;
2744            } else {
2745                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2746            }
2747            wp->hitaddr = vaddr;
2748            wp->hitattrs = attrs;
2749            if (!cpu->watchpoint_hit) {
2750                if (wp->flags & BP_CPU &&
2751                    !cc->debug_check_watchpoint(cpu, wp)) {
2752                    wp->flags &= ~BP_WATCHPOINT_HIT;
2753                    continue;
2754                }
2755                cpu->watchpoint_hit = wp;
2756
2757                mmap_lock();
2758                tb_check_watchpoint(cpu);
2759                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2760                    cpu->exception_index = EXCP_DEBUG;
2761                    mmap_unlock();
2762                    cpu_loop_exit(cpu);
2763                } else {
2764                    /* Force execution of one insn next time.  */
2765                    cpu->cflags_next_tb = 1 | curr_cflags();
2766                    mmap_unlock();
2767                    cpu_loop_exit_noexc(cpu);
2768                }
2769            }
2770        } else {
2771            wp->flags &= ~BP_WATCHPOINT_HIT;
2772        }
2773    }
2774}
2775
2776/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
2777   so these check for a hit then pass through to the normal out-of-line
2778   phys routines.  */
2779static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2780                                  unsigned size, MemTxAttrs attrs)
2781{
2782    MemTxResult res;
2783    uint64_t data;
2784    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2785    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2786
2787    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2788    switch (size) {
2789    case 1:
2790        data = address_space_ldub(as, addr, attrs, &res);
2791        break;
2792    case 2:
2793        data = address_space_lduw(as, addr, attrs, &res);
2794        break;
2795    case 4:
2796        data = address_space_ldl(as, addr, attrs, &res);
2797        break;
2798    case 8:
2799        data = address_space_ldq(as, addr, attrs, &res);
2800        break;
2801    default: abort();
2802    }
2803    *pdata = data;
2804    return res;
2805}
2806
2807static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2808                                   uint64_t val, unsigned size,
2809                                   MemTxAttrs attrs)
2810{
2811    MemTxResult res;
2812    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2813    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2814
2815    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2816    switch (size) {
2817    case 1:
2818        address_space_stb(as, addr, val, attrs, &res);
2819        break;
2820    case 2:
2821        address_space_stw(as, addr, val, attrs, &res);
2822        break;
2823    case 4:
2824        address_space_stl(as, addr, val, attrs, &res);
2825        break;
2826    case 8:
2827        address_space_stq(as, addr, val, attrs, &res);
2828        break;
2829    default: abort();
2830    }
2831    return res;
2832}
2833
2834static const MemoryRegionOps watch_mem_ops = {
2835    .read_with_attrs = watch_mem_read,
2836    .write_with_attrs = watch_mem_write,
2837    .endianness = DEVICE_NATIVE_ENDIAN,
2838    .valid = {
2839        .min_access_size = 1,
2840        .max_access_size = 8,
2841        .unaligned = false,
2842    },
2843    .impl = {
2844        .min_access_size = 1,
2845        .max_access_size = 8,
2846        .unaligned = false,
2847    },
2848};
2849
2850static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2851                                      MemTxAttrs attrs, uint8_t *buf, int len);
2852static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2853                                  const uint8_t *buf, int len);
2854static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2855                                  bool is_write, MemTxAttrs attrs);
2856
2857static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2858                                unsigned len, MemTxAttrs attrs)
2859{
2860    subpage_t *subpage = opaque;
2861    uint8_t buf[8];
2862    MemTxResult res;
2863
2864#if defined(DEBUG_SUBPAGE)
2865    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2866           subpage, len, addr);
2867#endif
2868    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2869    if (res) {
2870        return res;
2871    }
2872    *data = ldn_p(buf, len);
2873    return MEMTX_OK;
2874}
2875
2876static MemTxResult subpage_write(void *opaque, hwaddr addr,
2877                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2878{
2879    subpage_t *subpage = opaque;
2880    uint8_t buf[8];
2881
2882#if defined(DEBUG_SUBPAGE)
2883    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2884           " value %"PRIx64"\n",
2885           __func__, subpage, len, addr, value);
2886#endif
2887    stn_p(buf, len, value);
2888    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2889}
2890
2891static bool subpage_accepts(void *opaque, hwaddr addr,
2892                            unsigned len, bool is_write,
2893                            MemTxAttrs attrs)
2894{
2895    subpage_t *subpage = opaque;
2896#if defined(DEBUG_SUBPAGE)
2897    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2898           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2899#endif
2900
2901    return flatview_access_valid(subpage->fv, addr + subpage->base,
2902                                 len, is_write, attrs);
2903}
2904
2905static const MemoryRegionOps subpage_ops = {
2906    .read_with_attrs = subpage_read,
2907    .write_with_attrs = subpage_write,
2908    .impl.min_access_size = 1,
2909    .impl.max_access_size = 8,
2910    .valid.min_access_size = 1,
2911    .valid.max_access_size = 8,
2912    .valid.accepts = subpage_accepts,
2913    .endianness = DEVICE_NATIVE_ENDIAN,
2914};
2915
2916static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2917                             uint16_t section)
2918{
2919    int idx, eidx;
2920
2921    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2922        return -1;
2923    idx = SUBPAGE_IDX(start);
2924    eidx = SUBPAGE_IDX(end);
2925#if defined(DEBUG_SUBPAGE)
2926    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2927           __func__, mmio, start, end, idx, eidx, section);
2928#endif
2929    for (; idx <= eidx; idx++) {
2930        mmio->sub_section[idx] = section;
2931    }
2932
2933    return 0;
2934}
2935
2936static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2937{
2938    subpage_t *mmio;
2939
2940    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2941    mmio->fv = fv;
2942    mmio->base = base;
2943    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2944                          NULL, TARGET_PAGE_SIZE);
2945    mmio->iomem.subpage = true;
2946#if defined(DEBUG_SUBPAGE)
2947    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2948           mmio, base, TARGET_PAGE_SIZE);
2949#endif
2950    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2951
2952    return mmio;
2953}
2954
2955static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2956{
2957    assert(fv);
2958    MemoryRegionSection section = {
2959        .fv = fv,
2960        .mr = mr,
2961        .offset_within_address_space = 0,
2962        .offset_within_region = 0,
2963        .size = int128_2_64(),
2964    };
2965
2966    return phys_section_add(map, &section);
2967}
2968
2969static void readonly_mem_write(void *opaque, hwaddr addr,
2970                               uint64_t val, unsigned size)
2971{
2972    /* Ignore any write to ROM. */
2973}
2974
2975static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2976                                 unsigned size, bool is_write,
2977                                 MemTxAttrs attrs)
2978{
2979    return is_write;
2980}
2981
2982/* This will only be used for writes, because reads are special cased
2983 * to directly access the underlying host ram.
2984 */
2985static const MemoryRegionOps readonly_mem_ops = {
2986    .write = readonly_mem_write,
2987    .valid.accepts = readonly_mem_accepts,
2988    .endianness = DEVICE_NATIVE_ENDIAN,
2989    .valid = {
2990        .min_access_size = 1,
2991        .max_access_size = 8,
2992        .unaligned = false,
2993    },
2994    .impl = {
2995        .min_access_size = 1,
2996        .max_access_size = 8,
2997        .unaligned = false,
2998    },
2999};
3000
3001MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3002                                      hwaddr index, MemTxAttrs attrs)
3003{
3004    int asidx = cpu_asidx_from_attrs(cpu, attrs);
3005    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3006    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3007    MemoryRegionSection *sections = d->map.sections;
3008
3009    return &sections[index & ~TARGET_PAGE_MASK];
3010}
3011
3012static void io_mem_init(void)
3013{
3014    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3015                          NULL, NULL, UINT64_MAX);
3016    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3017                          NULL, UINT64_MAX);
3018
3019    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3020     * which can be called without the iothread mutex.
3021     */
3022    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3023                          NULL, UINT64_MAX);
3024    memory_region_clear_global_locking(&io_mem_notdirty);
3025
3026    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3027                          NULL, UINT64_MAX);
3028}
3029
3030AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3031{
3032    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3033    uint16_t n;
3034
3035    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3036    assert(n == PHYS_SECTION_UNASSIGNED);
3037    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3038    assert(n == PHYS_SECTION_NOTDIRTY);
3039    n = dummy_section(&d->map, fv, &io_mem_rom);
3040    assert(n == PHYS_SECTION_ROM);
3041    n = dummy_section(&d->map, fv, &io_mem_watch);
3042    assert(n == PHYS_SECTION_WATCH);
3043
3044    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3045
3046    return d;
3047}
3048
3049void address_space_dispatch_free(AddressSpaceDispatch *d)
3050{
3051    phys_sections_free(&d->map);
3052    g_free(d);
3053}
3054
3055static void tcg_commit(MemoryListener *listener)
3056{
3057    CPUAddressSpace *cpuas;
3058    AddressSpaceDispatch *d;
3059
3060    assert(tcg_enabled());
3061    /* since each CPU stores ram addresses in its TLB cache, we must
3062       reset the modified entries */
3063    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3064    cpu_reloading_memory_map();
3065    /* The CPU and TLB are protected by the iothread lock.
3066     * We reload the dispatch pointer now because cpu_reloading_memory_map()
3067     * may have split the RCU critical section.
3068     */
3069    d = address_space_to_dispatch(cpuas->as);
3070    atomic_rcu_set(&cpuas->memory_dispatch, d);
3071    tlb_flush(cpuas->cpu);
3072}
3073
3074static void memory_map_init(void)
3075{
3076    system_memory = g_malloc(sizeof(*system_memory));
3077
3078    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3079    address_space_init(&address_space_memory, system_memory, "memory");
3080
3081    system_io = g_malloc(sizeof(*system_io));
3082    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3083                          65536);
3084    address_space_init(&address_space_io, system_io, "I/O");
3085}
3086
3087MemoryRegion *get_system_memory(void)
3088{
3089    return system_memory;
3090}
3091
3092MemoryRegion *get_system_io(void)
3093{
3094    return system_io;
3095}
3096
3097#endif /* !defined(CONFIG_USER_ONLY) */
3098
3099/* physical memory access (slow version, mainly for debug) */
3100#if defined(CONFIG_USER_ONLY)
3101int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3102                        uint8_t *buf, int len, int is_write)
3103{
3104    int l, flags;
3105    target_ulong page;
3106    void * p;
3107
3108    while (len > 0) {
3109        page = addr & TARGET_PAGE_MASK;
3110        l = (page + TARGET_PAGE_SIZE) - addr;
3111        if (l > len)
3112            l = len;
3113        flags = page_get_flags(page);
3114        if (!(flags & PAGE_VALID))
3115            return -1;
3116        if (is_write) {
3117            if (!(flags & PAGE_WRITE))
3118                return -1;
3119            /* XXX: this code should not depend on lock_user */
3120            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3121                return -1;
3122            memcpy(p, buf, l);
3123            unlock_user(p, addr, l);
3124        } else {
3125            if (!(flags & PAGE_READ))
3126                return -1;
3127            /* XXX: this code should not depend on lock_user */
3128            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3129                return -1;
3130            memcpy(buf, p, l);
3131            unlock_user(p, addr, 0);
3132        }
3133        len -= l;
3134        buf += l;
3135        addr += l;
3136    }
3137    return 0;
3138}
3139
3140#else
3141
3142static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3143                                     hwaddr length)
3144{
3145    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3146    addr += memory_region_get_ram_addr(mr);
3147
3148    /* No early return if dirty_log_mask is or becomes 0, because
3149     * cpu_physical_memory_set_dirty_range will still call
3150     * xen_modified_memory.
3151     */
3152    if (dirty_log_mask) {
3153        dirty_log_mask =
3154            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3155    }
3156    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3157        assert(tcg_enabled());
3158        tb_invalidate_phys_range(addr, addr + length);
3159        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3160    }
3161    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3162}
3163
3164static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3165{
3166    unsigned access_size_max = mr->ops->valid.max_access_size;
3167
3168    /* Regions are assumed to support 1-4 byte accesses unless
3169       otherwise specified.  */
3170    if (access_size_max == 0) {
3171        access_size_max = 4;
3172    }
3173
3174    /* Bound the maximum access by the alignment of the address.  */
3175    if (!mr->ops->impl.unaligned) {
3176        unsigned align_size_max = addr & -addr;
3177        if (align_size_max != 0 && align_size_max < access_size_max) {
3178            access_size_max = align_size_max;
3179        }
3180    }
3181
3182    /* Don't attempt accesses larger than the maximum.  */
3183    if (l > access_size_max) {
3184        l = access_size_max;
3185    }
3186    l = pow2floor(l);
3187
3188    return l;
3189}
3190
3191static bool prepare_mmio_access(MemoryRegion *mr)
3192{
3193    bool unlocked = !qemu_mutex_iothread_locked();
3194    bool release_lock = false;
3195
3196    if (unlocked && mr->global_locking) {
3197        qemu_mutex_lock_iothread();
3198        unlocked = false;
3199        release_lock = true;
3200    }
3201    if (mr->flush_coalesced_mmio) {
3202        if (unlocked) {
3203            qemu_mutex_lock_iothread();
3204        }
3205        qemu_flush_coalesced_mmio_buffer();
3206        if (unlocked) {
3207            qemu_mutex_unlock_iothread();
3208        }
3209    }
3210
3211    return release_lock;
3212}
3213
3214/* Called within RCU critical section.  */
3215static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3216                                           MemTxAttrs attrs,
3217                                           const uint8_t *buf,
3218                                           int len, hwaddr addr1,
3219                                           hwaddr l, MemoryRegion *mr)
3220{
3221    uint8_t *ptr;
3222    uint64_t val;
3223    MemTxResult result = MEMTX_OK;
3224    bool release_lock = false;
3225
3226    for (;;) {
3227        if (!memory_access_is_direct(mr, true)) {
3228            release_lock |= prepare_mmio_access(mr);
3229            l = memory_access_size(mr, l, addr1);
3230            /* XXX: could force current_cpu to NULL to avoid
3231               potential bugs */
3232            val = ldn_p(buf, l);
3233            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3234        } else {
3235            /* RAM case */
3236            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3237            memcpy(ptr, buf, l);
3238            invalidate_and_set_dirty(mr, addr1, l);
3239        }
3240
3241        if (release_lock) {
3242            qemu_mutex_unlock_iothread();
3243            release_lock = false;
3244        }
3245
3246        len -= l;
3247        buf += l;
3248        addr += l;
3249
3250        if (!len) {
3251            break;
3252        }
3253
3254        l = len;
3255        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3256    }
3257
3258    return result;
3259}
3260
3261/* Called from RCU critical section.  */
3262static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3263                                  const uint8_t *buf, int len)
3264{
3265    hwaddr l;
3266    hwaddr addr1;
3267    MemoryRegion *mr;
3268    MemTxResult result = MEMTX_OK;
3269
3270    l = len;
3271    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3272    result = flatview_write_continue(fv, addr, attrs, buf, len,
3273                                     addr1, l, mr);
3274
3275    return result;
3276}
3277
3278/* Called within RCU critical section.  */
3279MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3280                                   MemTxAttrs attrs, uint8_t *buf,
3281                                   int len, hwaddr addr1, hwaddr l,
3282                                   MemoryRegion *mr)
3283{
3284    uint8_t *ptr;
3285    uint64_t val;
3286    MemTxResult result = MEMTX_OK;
3287    bool release_lock = false;
3288
3289    for (;;) {
3290        if (!memory_access_is_direct(mr, false)) {
3291            /* I/O case */
3292            release_lock |= prepare_mmio_access(mr);
3293            l = memory_access_size(mr, l, addr1);
3294            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3295            stn_p(buf, l, val);
3296        } else {
3297            /* RAM case */
3298            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3299            memcpy(buf, ptr, l);
3300        }
3301
3302        if (release_lock) {
3303            qemu_mutex_unlock_iothread();
3304            release_lock = false;
3305        }
3306
3307        len -= l;
3308        buf += l;
3309        addr += l;
3310
3311        if (!len) {
3312            break;
3313        }
3314
3315        l = len;
3316        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3317    }
3318
3319    return result;
3320}
3321
3322/* Called from RCU critical section.  */
3323static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3324                                 MemTxAttrs attrs, uint8_t *buf, int len)
3325{
3326    hwaddr l;
3327    hwaddr addr1;
3328    MemoryRegion *mr;
3329
3330    l = len;
3331    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3332    return flatview_read_continue(fv, addr, attrs, buf, len,
3333                                  addr1, l, mr);
3334}
3335
3336MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3337                                    MemTxAttrs attrs, uint8_t *buf, int len)
3338{
3339    MemTxResult result = MEMTX_OK;
3340    FlatView *fv;
3341
3342    if (len > 0) {
3343        rcu_read_lock();
3344        fv = address_space_to_flatview(as);
3345        result = flatview_read(fv, addr, attrs, buf, len);
3346        rcu_read_unlock();
3347    }
3348
3349    return result;
3350}
3351
3352MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3353                                MemTxAttrs attrs,
3354                                const uint8_t *buf, int len)
3355{
3356    MemTxResult result = MEMTX_OK;
3357    FlatView *fv;
3358
3359    if (len > 0) {
3360        rcu_read_lock();
3361        fv = address_space_to_flatview(as);
3362        result = flatview_write(fv, addr, attrs, buf, len);
3363        rcu_read_unlock();
3364    }
3365
3366    return result;
3367}
3368
3369MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3370                             uint8_t *buf, int len, bool is_write)
3371{
3372    if (is_write) {
3373        return address_space_write(as, addr, attrs, buf, len);
3374    } else {
3375        return address_space_read_full(as, addr, attrs, buf, len);
3376    }
3377}
3378
3379void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3380                            int len, int is_write)
3381{
3382    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3383                     buf, len, is_write);
3384}
3385
3386enum write_rom_type {
3387    WRITE_DATA,
3388    FLUSH_CACHE,
3389};
3390
3391static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3392    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3393{
3394    hwaddr l;
3395    uint8_t *ptr;
3396    hwaddr addr1;
3397    MemoryRegion *mr;
3398
3399    rcu_read_lock();
3400    while (len > 0) {
3401        l = len;
3402        mr = address_space_translate(as, addr, &addr1, &l, true,
3403                                     MEMTXATTRS_UNSPECIFIED);
3404
3405        if (!(memory_region_is_ram(mr) ||
3406              memory_region_is_romd(mr))) {
3407            l = memory_access_size(mr, l, addr1);
3408        } else {
3409            /* ROM/RAM case */
3410            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3411            switch (type) {
3412            case WRITE_DATA:
3413                memcpy(ptr, buf, l);
3414                invalidate_and_set_dirty(mr, addr1, l);
3415                break;
3416            case FLUSH_CACHE:
3417                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3418                break;
3419            }
3420        }
3421        len -= l;
3422        buf += l;
3423        addr += l;
3424    }
3425    rcu_read_unlock();
3426}
3427
3428/* used for ROM loading : can write in RAM and ROM */
3429void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3430                                   const uint8_t *buf, int len)
3431{
3432    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3433}
3434
3435void cpu_flush_icache_range(hwaddr start, int len)
3436{
3437    /*
3438     * This function should do the same thing as an icache flush that was
3439     * triggered from within the guest. For TCG we are always cache coherent,
3440     * so there is no need to flush anything. For KVM / Xen we need to flush
3441     * the host's instruction cache at least.
3442     */
3443    if (tcg_enabled()) {
3444        return;
3445    }
3446
3447    cpu_physical_memory_write_rom_internal(&address_space_memory,
3448                                           start, NULL, len, FLUSH_CACHE);
3449}
3450
3451typedef struct {
3452    MemoryRegion *mr;
3453    void *buffer;
3454    hwaddr addr;
3455    hwaddr len;
3456    bool in_use;
3457} BounceBuffer;
3458
3459static BounceBuffer bounce;
3460
3461typedef struct MapClient {
3462    QEMUBH *bh;
3463    QLIST_ENTRY(MapClient) link;
3464} MapClient;
3465
3466QemuMutex map_client_list_lock;
3467static QLIST_HEAD(map_client_list, MapClient) map_client_list
3468    = QLIST_HEAD_INITIALIZER(map_client_list);
3469
3470static void cpu_unregister_map_client_do(MapClient *client)
3471{
3472    QLIST_REMOVE(client, link);
3473    g_free(client);
3474}
3475
3476static void cpu_notify_map_clients_locked(void)
3477{
3478    MapClient *client;
3479
3480    while (!QLIST_EMPTY(&map_client_list)) {
3481        client = QLIST_FIRST(&map_client_list);
3482        qemu_bh_schedule(client->bh);
3483        cpu_unregister_map_client_do(client);
3484    }
3485}
3486
3487void cpu_register_map_client(QEMUBH *bh)
3488{
3489    MapClient *client = g_malloc(sizeof(*client));
3490
3491    qemu_mutex_lock(&map_client_list_lock);
3492    client->bh = bh;
3493    QLIST_INSERT_HEAD(&map_client_list, client, link);
3494    if (!atomic_read(&bounce.in_use)) {
3495        cpu_notify_map_clients_locked();
3496    }
3497    qemu_mutex_unlock(&map_client_list_lock);
3498}
3499
3500void cpu_exec_init_all(void)
3501{
3502    qemu_mutex_init(&ram_list.mutex);
3503    /* The data structures we set up here depend on knowing the page size,
3504     * so no more changes can be made after this point.
3505     * In an ideal world, nothing we did before we had finished the
3506     * machine setup would care about the target page size, and we could
3507     * do this much later, rather than requiring board models to state
3508     * up front what their requirements are.
3509     */
3510    finalize_target_page_bits();
3511    io_mem_init();
3512    memory_map_init();
3513    qemu_mutex_init(&map_client_list_lock);
3514}
3515
3516void cpu_unregister_map_client(QEMUBH *bh)
3517{
3518    MapClient *client;
3519
3520    qemu_mutex_lock(&map_client_list_lock);
3521    QLIST_FOREACH(client, &map_client_list, link) {
3522        if (client->bh == bh) {
3523            cpu_unregister_map_client_do(client);
3524            break;
3525        }
3526    }
3527    qemu_mutex_unlock(&map_client_list_lock);
3528}
3529
3530static void cpu_notify_map_clients(void)
3531{
3532    qemu_mutex_lock(&map_client_list_lock);
3533    cpu_notify_map_clients_locked();
3534    qemu_mutex_unlock(&map_client_list_lock);
3535}
3536
3537static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3538                                  bool is_write, MemTxAttrs attrs)
3539{
3540    MemoryRegion *mr;
3541    hwaddr l, xlat;
3542
3543    while (len > 0) {
3544        l = len;
3545        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3546        if (!memory_access_is_direct(mr, is_write)) {
3547            l = memory_access_size(mr, l, addr);
3548            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3549                return false;
3550            }
3551        }
3552
3553        len -= l;
3554        addr += l;
3555    }
3556    return true;
3557}
3558
3559bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3560                                int len, bool is_write,
3561                                MemTxAttrs attrs)
3562{
3563    FlatView *fv;
3564    bool result;
3565
3566    rcu_read_lock();
3567    fv = address_space_to_flatview(as);
3568    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3569    rcu_read_unlock();
3570    return result;
3571}
3572
3573static hwaddr
3574flatview_extend_translation(FlatView *fv, hwaddr addr,
3575                            hwaddr target_len,
3576                            MemoryRegion *mr, hwaddr base, hwaddr len,
3577                            bool is_write, MemTxAttrs attrs)
3578{
3579    hwaddr done = 0;
3580    hwaddr xlat;
3581    MemoryRegion *this_mr;
3582
3583    for (;;) {
3584        target_len -= len;
3585        addr += len;
3586        done += len;
3587        if (target_len == 0) {
3588            return done;
3589        }
3590
3591        len = target_len;
3592        this_mr = flatview_translate(fv, addr, &xlat,
3593                                     &len, is_write, attrs);
3594        if (this_mr != mr || xlat != base + done) {
3595            return done;
3596        }
3597    }
3598}
3599
3600/* Map a physical memory region into a host virtual address.
3601 * May map a subset of the requested range, given by and returned in *plen.
3602 * May return NULL if resources needed to perform the mapping are exhausted.
3603 * Use only for reads OR writes - not for read-modify-write operations.
3604 * Use cpu_register_map_client() to know when retrying the map operation is
3605 * likely to succeed.
3606 */
3607void *address_space_map(AddressSpace *as,
3608                        hwaddr addr,
3609                        hwaddr *plen,
3610                        bool is_write,
3611                        MemTxAttrs attrs)
3612{
3613    hwaddr len = *plen;
3614    hwaddr l, xlat;
3615    MemoryRegion *mr;
3616    void *ptr;
3617    FlatView *fv;
3618
3619    if (len == 0) {
3620        return NULL;
3621    }
3622
3623    l = len;
3624    rcu_read_lock();
3625    fv = address_space_to_flatview(as);
3626    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3627
3628    if (!memory_access_is_direct(mr, is_write)) {
3629        if (atomic_xchg(&bounce.in_use, true)) {
3630            rcu_read_unlock();
3631            return NULL;
3632        }
3633        /* Avoid unbounded allocations */
3634        l = MIN(l, TARGET_PAGE_SIZE);
3635        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3636        bounce.addr = addr;
3637        bounce.len = l;
3638
3639        memory_region_ref(mr);
3640        bounce.mr = mr;
3641        if (!is_write) {
3642            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3643                               bounce.buffer, l);
3644        }
3645
3646        rcu_read_unlock();
3647        *plen = l;
3648        return bounce.buffer;
3649    }
3650
3651
3652    memory_region_ref(mr);
3653    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3654                                        l, is_write, attrs);
3655    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3656    rcu_read_unlock();
3657
3658    return ptr;
3659}
3660
3661/* Unmaps a memory region previously mapped by address_space_map().
3662 * Will also mark the memory as dirty if is_write == 1.  access_len gives
3663 * the amount of memory that was actually read or written by the caller.
3664 */
3665void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3666                         int is_write, hwaddr access_len)
3667{
3668    if (buffer != bounce.buffer) {
3669        MemoryRegion *mr;
3670        ram_addr_t addr1;
3671
3672        mr = memory_region_from_host(buffer, &addr1);
3673        assert(mr != NULL);
3674        if (is_write) {
3675            invalidate_and_set_dirty(mr, addr1, access_len);
3676        }
3677        if (xen_enabled()) {
3678            xen_invalidate_map_cache_entry(buffer);
3679        }
3680        memory_region_unref(mr);
3681        return;
3682    }
3683    if (is_write) {
3684        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3685                            bounce.buffer, access_len);
3686    }
3687    qemu_vfree(bounce.buffer);
3688    bounce.buffer = NULL;
3689    memory_region_unref(bounce.mr);
3690    atomic_mb_set(&bounce.in_use, false);
3691    cpu_notify_map_clients();
3692}
3693
3694void *cpu_physical_memory_map(hwaddr addr,
3695                              hwaddr *plen,
3696                              int is_write)
3697{
3698    return address_space_map(&address_space_memory, addr, plen, is_write,
3699                             MEMTXATTRS_UNSPECIFIED);
3700}
3701
3702void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3703                               int is_write, hwaddr access_len)
3704{
3705    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3706}
3707
3708#define ARG1_DECL                AddressSpace *as
3709#define ARG1                     as
3710#define SUFFIX
3711#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3712#define RCU_READ_LOCK(...)       rcu_read_lock()
3713#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3714#include "memory_ldst.inc.c"
3715
3716int64_t address_space_cache_init(MemoryRegionCache *cache,
3717                                 AddressSpace *as,
3718                                 hwaddr addr,
3719                                 hwaddr len,
3720                                 bool is_write)
3721{
3722    AddressSpaceDispatch *d;
3723    hwaddr l;
3724    MemoryRegion *mr;
3725
3726    assert(len > 0);
3727
3728    l = len;
3729    cache->fv = address_space_get_flatview(as);
3730    d = flatview_to_dispatch(cache->fv);
3731    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3732
3733    mr = cache->mrs.mr;
3734    memory_region_ref(mr);
3735    if (memory_access_is_direct(mr, is_write)) {
3736        /* We don't care about the memory attributes here as we're only
3737         * doing this if we found actual RAM, which behaves the same
3738         * regardless of attributes; so UNSPECIFIED is fine.
3739         */
3740        l = flatview_extend_translation(cache->fv, addr, len, mr,
3741                                        cache->xlat, l, is_write,
3742                                        MEMTXATTRS_UNSPECIFIED);
3743        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3744    } else {
3745        cache->ptr = NULL;
3746    }
3747
3748    cache->len = l;
3749    cache->is_write = is_write;
3750    return l;
3751}
3752
3753void address_space_cache_invalidate(MemoryRegionCache *cache,
3754                                    hwaddr addr,
3755                                    hwaddr access_len)
3756{
3757    assert(cache->is_write);
3758    if (likely(cache->ptr)) {
3759        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3760    }
3761}
3762
3763void address_space_cache_destroy(MemoryRegionCache *cache)
3764{
3765    if (!cache->mrs.mr) {
3766        return;
3767    }
3768
3769    if (xen_enabled()) {
3770        xen_invalidate_map_cache_entry(cache->ptr);
3771    }
3772    memory_region_unref(cache->mrs.mr);
3773    flatview_unref(cache->fv);
3774    cache->mrs.mr = NULL;
3775    cache->fv = NULL;
3776}
3777
3778/* Called from RCU critical section.  This function has the same
3779 * semantics as address_space_translate, but it only works on a
3780 * predefined range of a MemoryRegion that was mapped with
3781 * address_space_cache_init.
3782 */
3783static inline MemoryRegion *address_space_translate_cached(
3784    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3785    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3786{
3787    MemoryRegionSection section;
3788    MemoryRegion *mr;
3789    IOMMUMemoryRegion *iommu_mr;
3790    AddressSpace *target_as;
3791
3792    assert(!cache->ptr);
3793    *xlat = addr + cache->xlat;
3794
3795    mr = cache->mrs.mr;
3796    iommu_mr = memory_region_get_iommu(mr);
3797    if (!iommu_mr) {
3798        /* MMIO region.  */
3799        return mr;
3800    }
3801
3802    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3803                                            NULL, is_write, true,
3804                                            &target_as, attrs);
3805    return section.mr;
3806}
3807
3808/* Called from RCU critical section. address_space_read_cached uses this
3809 * out of line function when the target is an MMIO or IOMMU region.
3810 */
3811void
3812address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3813                                   void *buf, int len)
3814{
3815    hwaddr addr1, l;
3816    MemoryRegion *mr;
3817
3818    l = len;
3819    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3820                                        MEMTXATTRS_UNSPECIFIED);
3821    flatview_read_continue(cache->fv,
3822                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3823                           addr1, l, mr);
3824}
3825
3826/* Called from RCU critical section. address_space_write_cached uses this
3827 * out of line function when the target is an MMIO or IOMMU region.
3828 */
3829void
3830address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3831                                    const void *buf, int len)
3832{
3833    hwaddr addr1, l;
3834    MemoryRegion *mr;
3835
3836    l = len;
3837    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3838                                        MEMTXATTRS_UNSPECIFIED);
3839    flatview_write_continue(cache->fv,
3840                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3841                            addr1, l, mr);
3842}
3843
3844#define ARG1_DECL                MemoryRegionCache *cache
3845#define ARG1                     cache
3846#define SUFFIX                   _cached_slow
3847#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3848#define RCU_READ_LOCK()          ((void)0)
3849#define RCU_READ_UNLOCK()        ((void)0)
3850#include "memory_ldst.inc.c"
3851
3852/* virtual memory access for debug (includes writing to ROM) */
3853int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3854                        uint8_t *buf, int len, int is_write)
3855{
3856    int l;
3857    hwaddr phys_addr;
3858    target_ulong page;
3859
3860    cpu_synchronize_state(cpu);
3861    while (len > 0) {
3862        int asidx;
3863        MemTxAttrs attrs;
3864
3865        page = addr & TARGET_PAGE_MASK;
3866        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3867        asidx = cpu_asidx_from_attrs(cpu, attrs);
3868        /* if no physical page mapped, return an error */
3869        if (phys_addr == -1)
3870            return -1;
3871        l = (page + TARGET_PAGE_SIZE) - addr;
3872        if (l > len)
3873            l = len;
3874        phys_addr += (addr & ~TARGET_PAGE_MASK);
3875        if (is_write) {
3876            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3877                                          phys_addr, buf, l);
3878        } else {
3879            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3880                             MEMTXATTRS_UNSPECIFIED,
3881                             buf, l, 0);
3882        }
3883        len -= l;
3884        buf += l;
3885        addr += l;
3886    }
3887    return 0;
3888}
3889
3890/*
3891 * Allows code that needs to deal with migration bitmaps etc to still be built
3892 * target independent.
3893 */
3894size_t qemu_target_page_size(void)
3895{
3896    return TARGET_PAGE_SIZE;
3897}
3898
3899int qemu_target_page_bits(void)
3900{
3901    return TARGET_PAGE_BITS;
3902}
3903
3904int qemu_target_page_bits_min(void)
3905{
3906    return TARGET_PAGE_BITS_MIN;
3907}
3908#endif
3909
3910bool target_words_bigendian(void)
3911{
3912#if defined(TARGET_WORDS_BIGENDIAN)
3913    return true;
3914#else
3915    return false;
3916#endif
3917}
3918
3919#ifndef CONFIG_USER_ONLY
3920bool cpu_physical_memory_is_io(hwaddr phys_addr)
3921{
3922    MemoryRegion*mr;
3923    hwaddr l = 1;
3924    bool res;
3925
3926    rcu_read_lock();
3927    mr = address_space_translate(&address_space_memory,
3928                                 phys_addr, &phys_addr, &l, false,
3929                                 MEMTXATTRS_UNSPECIFIED);
3930
3931    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3932    rcu_read_unlock();
3933    return res;
3934}
3935
3936int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3937{
3938    RAMBlock *block;
3939    int ret = 0;
3940
3941    rcu_read_lock();
3942    RAMBLOCK_FOREACH(block) {
3943        ret = func(block->idstr, block->host, block->offset,
3944                   block->used_length, opaque);
3945        if (ret) {
3946            break;
3947        }
3948    }
3949    rcu_read_unlock();
3950    return ret;
3951}
3952
3953int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3954{
3955    RAMBlock *block;
3956    int ret = 0;
3957
3958    rcu_read_lock();
3959    RAMBLOCK_FOREACH(block) {
3960        if (!qemu_ram_is_migratable(block)) {
3961            continue;
3962        }
3963        ret = func(block->idstr, block->host, block->offset,
3964                   block->used_length, opaque);
3965        if (ret) {
3966            break;
3967        }
3968    }
3969    rcu_read_unlock();
3970    return ret;
3971}
3972
3973/*
3974 * Unmap pages of memory from start to start+length such that
3975 * they a) read as 0, b) Trigger whatever fault mechanism
3976 * the OS provides for postcopy.
3977 * The pages must be unmapped by the end of the function.
3978 * Returns: 0 on success, none-0 on failure
3979 *
3980 */
3981int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3982{
3983    int ret = -1;
3984
3985    uint8_t *host_startaddr = rb->host + start;
3986
3987    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3988        error_report("ram_block_discard_range: Unaligned start address: %p",
3989                     host_startaddr);
3990        goto err;
3991    }
3992
3993    if ((start + length) <= rb->used_length) {
3994        bool need_madvise, need_fallocate;
3995        uint8_t *host_endaddr = host_startaddr + length;
3996        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3997            error_report("ram_block_discard_range: Unaligned end address: %p",
3998                         host_endaddr);
3999            goto err;
4000        }
4001
4002        errno = ENOTSUP; /* If we are missing MADVISE etc */
4003
4004        /* The logic here is messy;
4005         *    madvise DONTNEED fails for hugepages
4006         *    fallocate works on hugepages and shmem
4007         */
4008        need_madvise = (rb->page_size == qemu_host_page_size);
4009        need_fallocate = rb->fd != -1;
4010        if (need_fallocate) {
4011            /* For a file, this causes the area of the file to be zero'd
4012             * if read, and for hugetlbfs also causes it to be unmapped
4013             * so a userfault will trigger.
4014             */
4015#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4016            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4017                            start, length);
4018            if (ret) {
4019                ret = -errno;
4020                error_report("ram_block_discard_range: Failed to fallocate "
4021                             "%s:%" PRIx64 " +%zx (%d)",
4022                             rb->idstr, start, length, ret);
4023                goto err;
4024            }
4025#else
4026            ret = -ENOSYS;
4027            error_report("ram_block_discard_range: fallocate not available/file"
4028                         "%s:%" PRIx64 " +%zx (%d)",
4029                         rb->idstr, start, length, ret);
4030            goto err;
4031#endif
4032        }
4033        if (need_madvise) {
4034            /* For normal RAM this causes it to be unmapped,
4035             * for shared memory it causes the local mapping to disappear
4036             * and to fall back on the file contents (which we just
4037             * fallocate'd away).
4038             */
4039#if defined(CONFIG_MADVISE)
4040            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
4041            if (ret) {
4042                ret = -errno;
4043                error_report("ram_block_discard_range: Failed to discard range "
4044                             "%s:%" PRIx64 " +%zx (%d)",
4045                             rb->idstr, start, length, ret);
4046                goto err;
4047            }
4048#else
4049            ret = -ENOSYS;
4050            error_report("ram_block_discard_range: MADVISE not available"
4051                         "%s:%" PRIx64 " +%zx (%d)",
4052                         rb->idstr, start, length, ret);
4053            goto err;
4054#endif
4055        }
4056        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4057                                      need_madvise, need_fallocate, ret);
4058    } else {
4059        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4060                     "/%zx/" RAM_ADDR_FMT")",
4061                     rb->idstr, start, length, rb->used_length);
4062    }
4063
4064err:
4065    return ret;
4066}
4067
4068bool ramblock_is_pmem(RAMBlock *rb)
4069{
4070    return rb->flags & RAM_PMEM;
4071}
4072
4073#endif
4074
4075void page_size_init(void)
4076{
4077    /* NOTE: we can always suppose that qemu_host_page_size >=
4078       TARGET_PAGE_SIZE */
4079    if (qemu_host_page_size == 0) {
4080        qemu_host_page_size = qemu_real_host_page_size;
4081    }
4082    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4083        qemu_host_page_size = TARGET_PAGE_SIZE;
4084    }
4085    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4086}
4087
4088#if !defined(CONFIG_USER_ONLY)
4089
4090static void mtree_print_phys_entries(fprintf_function mon, void *f,
4091                                     int start, int end, int skip, int ptr)
4092{
4093    if (start == end - 1) {
4094        mon(f, "\t%3d      ", start);
4095    } else {
4096        mon(f, "\t%3d..%-3d ", start, end - 1);
4097    }
4098    mon(f, " skip=%d ", skip);
4099    if (ptr == PHYS_MAP_NODE_NIL) {
4100        mon(f, " ptr=NIL");
4101    } else if (!skip) {
4102        mon(f, " ptr=#%d", ptr);
4103    } else {
4104        mon(f, " ptr=[%d]", ptr);
4105    }
4106    mon(f, "\n");
4107}
4108
4109#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4110                           int128_sub((size), int128_one())) : 0)
4111
4112void mtree_print_dispatch(fprintf_function mon, void *f,
4113                          AddressSpaceDispatch *d, MemoryRegion *root)
4114{
4115    int i;
4116
4117    mon(f, "  Dispatch\n");
4118    mon(f, "    Physical sections\n");
4119
4120    for (i = 0; i < d->map.sections_nb; ++i) {
4121        MemoryRegionSection *s = d->map.sections + i;
4122        const char *names[] = { " [unassigned]", " [not dirty]",
4123                                " [ROM]", " [watch]" };
4124
4125        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4126            i,
4127            s->offset_within_address_space,
4128            s->offset_within_address_space + MR_SIZE(s->mr->size),
4129            s->mr->name ? s->mr->name : "(noname)",
4130            i < ARRAY_SIZE(names) ? names[i] : "",
4131            s->mr == root ? " [ROOT]" : "",
4132            s == d->mru_section ? " [MRU]" : "",
4133            s->mr->is_iommu ? " [iommu]" : "");
4134
4135        if (s->mr->alias) {
4136            mon(f, " alias=%s", s->mr->alias->name ?
4137                    s->mr->alias->name : "noname");
4138        }
4139        mon(f, "\n");
4140    }
4141
4142    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4143               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4144    for (i = 0; i < d->map.nodes_nb; ++i) {
4145        int j, jprev;
4146        PhysPageEntry prev;
4147        Node *n = d->map.nodes + i;
4148
4149        mon(f, "      [%d]\n", i);
4150
4151        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4152            PhysPageEntry *pe = *n + j;
4153
4154            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4155                continue;
4156            }
4157
4158            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4159
4160            jprev = j;
4161            prev = *pe;
4162        }
4163
4164        if (jprev != ARRAY_SIZE(*n)) {
4165            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4166        }
4167    }
4168}
4169
4170#endif
4171