qemu/exec.c
<<
>>
Prefs
   1/*
   2 *  Virtual page mapping
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "qapi/error.h"
  21
  22#include "qemu/cutils.h"
  23#include "cpu.h"
  24#include "exec/exec-all.h"
  25#include "exec/target_page.h"
  26#include "tcg.h"
  27#include "hw/qdev-core.h"
  28#include "hw/qdev-properties.h"
  29#if !defined(CONFIG_USER_ONLY)
  30#include "hw/boards.h"
  31#include "hw/xen/xen.h"
  32#endif
  33#include "sysemu/kvm.h"
  34#include "sysemu/sysemu.h"
  35#include "qemu/timer.h"
  36#include "qemu/config-file.h"
  37#include "qemu/error-report.h"
  38#if defined(CONFIG_USER_ONLY)
  39#include "qemu.h"
  40#else /* !CONFIG_USER_ONLY */
  41#include "hw/hw.h"
  42#include "exec/memory.h"
  43#include "exec/ioport.h"
  44#include "sysemu/dma.h"
  45#include "sysemu/numa.h"
  46#include "sysemu/hw_accel.h"
  47#include "exec/address-spaces.h"
  48#include "sysemu/xen-mapcache.h"
  49#include "trace-root.h"
  50
  51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  52#include <linux/falloc.h>
  53#endif
  54
  55#endif
  56#include "qemu/rcu_queue.h"
  57#include "qemu/main-loop.h"
  58#include "translate-all.h"
  59#include "sysemu/replay.h"
  60
  61#include "exec/memory-internal.h"
  62#include "exec/ram_addr.h"
  63#include "exec/log.h"
  64
  65#include "migration/vmstate.h"
  66
  67#include "qemu/range.h"
  68#ifndef _WIN32
  69#include "qemu/mmap-alloc.h"
  70#endif
  71
  72#include "monitor/monitor.h"
  73
  74//#define DEBUG_SUBPAGE
  75
  76#if !defined(CONFIG_USER_ONLY)
  77/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  78 * are protected by the ramlist lock.
  79 */
  80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  81
  82static MemoryRegion *system_memory;
  83static MemoryRegion *system_io;
  84
  85AddressSpace address_space_io;
  86AddressSpace address_space_memory;
  87
  88MemoryRegion io_mem_rom, io_mem_notdirty;
  89static MemoryRegion io_mem_unassigned;
  90#endif
  91
  92#ifdef TARGET_PAGE_BITS_VARY
  93int target_page_bits;
  94bool target_page_bits_decided;
  95#endif
  96
  97struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
  98/* current CPU in the current thread. It is only valid inside
  99   cpu_exec() */
 100__thread CPUState *current_cpu;
 101/* 0 = Do not count executed instructions.
 102   1 = Precise instruction counting.
 103   2 = Adaptive rate instruction counting.  */
 104int use_icount;
 105
 106uintptr_t qemu_host_page_size;
 107intptr_t qemu_host_page_mask;
 108
 109bool set_preferred_target_page_bits(int bits)
 110{
 111    /* The target page size is the lowest common denominator for all
 112     * the CPUs in the system, so we can only make it smaller, never
 113     * larger. And we can't make it smaller once we've committed to
 114     * a particular size.
 115     */
 116#ifdef TARGET_PAGE_BITS_VARY
 117    assert(bits >= TARGET_PAGE_BITS_MIN);
 118    if (target_page_bits == 0 || target_page_bits > bits) {
 119        if (target_page_bits_decided) {
 120            return false;
 121        }
 122        target_page_bits = bits;
 123    }
 124#endif
 125    return true;
 126}
 127
 128#if !defined(CONFIG_USER_ONLY)
 129
 130static void finalize_target_page_bits(void)
 131{
 132#ifdef TARGET_PAGE_BITS_VARY
 133    if (target_page_bits == 0) {
 134        target_page_bits = TARGET_PAGE_BITS_MIN;
 135    }
 136    target_page_bits_decided = true;
 137#endif
 138}
 139
 140typedef struct PhysPageEntry PhysPageEntry;
 141
 142struct PhysPageEntry {
 143    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 144    uint32_t skip : 6;
 145     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 146    uint32_t ptr : 26;
 147};
 148
 149#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 150
 151/* Size of the L2 (and L3, etc) page tables.  */
 152#define ADDR_SPACE_BITS 64
 153
 154#define P_L2_BITS 9
 155#define P_L2_SIZE (1 << P_L2_BITS)
 156
 157#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 158
 159typedef PhysPageEntry Node[P_L2_SIZE];
 160
 161typedef struct PhysPageMap {
 162    struct rcu_head rcu;
 163
 164    unsigned sections_nb;
 165    unsigned sections_nb_alloc;
 166    unsigned nodes_nb;
 167    unsigned nodes_nb_alloc;
 168    Node *nodes;
 169    MemoryRegionSection *sections;
 170} PhysPageMap;
 171
 172struct AddressSpaceDispatch {
 173    MemoryRegionSection *mru_section;
 174    /* This is a multi-level map on the physical address space.
 175     * The bottom level has pointers to MemoryRegionSections.
 176     */
 177    PhysPageEntry phys_map;
 178    PhysPageMap map;
 179};
 180
 181#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 182typedef struct subpage_t {
 183    MemoryRegion iomem;
 184    FlatView *fv;
 185    hwaddr base;
 186    uint16_t sub_section[];
 187} subpage_t;
 188
 189#define PHYS_SECTION_UNASSIGNED 0
 190#define PHYS_SECTION_NOTDIRTY 1
 191#define PHYS_SECTION_ROM 2
 192#define PHYS_SECTION_WATCH 3
 193
 194static void io_mem_init(void);
 195static void memory_map_init(void);
 196static void tcg_commit(MemoryListener *listener);
 197
 198static MemoryRegion io_mem_watch;
 199
 200/**
 201 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 202 * @cpu: the CPU whose AddressSpace this is
 203 * @as: the AddressSpace itself
 204 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 205 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 206 */
 207struct CPUAddressSpace {
 208    CPUState *cpu;
 209    AddressSpace *as;
 210    struct AddressSpaceDispatch *memory_dispatch;
 211    MemoryListener tcg_as_listener;
 212};
 213
 214struct DirtyBitmapSnapshot {
 215    ram_addr_t start;
 216    ram_addr_t end;
 217    unsigned long dirty[];
 218};
 219
 220#endif
 221
 222#if !defined(CONFIG_USER_ONLY)
 223
 224static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 225{
 226    static unsigned alloc_hint = 16;
 227    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 228        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
 229        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
 230        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 231        alloc_hint = map->nodes_nb_alloc;
 232    }
 233}
 234
 235static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 236{
 237    unsigned i;
 238    uint32_t ret;
 239    PhysPageEntry e;
 240    PhysPageEntry *p;
 241
 242    ret = map->nodes_nb++;
 243    p = map->nodes[ret];
 244    assert(ret != PHYS_MAP_NODE_NIL);
 245    assert(ret != map->nodes_nb_alloc);
 246
 247    e.skip = leaf ? 0 : 1;
 248    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 249    for (i = 0; i < P_L2_SIZE; ++i) {
 250        memcpy(&p[i], &e, sizeof(e));
 251    }
 252    return ret;
 253}
 254
 255static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 256                                hwaddr *index, hwaddr *nb, uint16_t leaf,
 257                                int level)
 258{
 259    PhysPageEntry *p;
 260    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 261
 262    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 263        lp->ptr = phys_map_node_alloc(map, level == 0);
 264    }
 265    p = map->nodes[lp->ptr];
 266    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 267
 268    while (*nb && lp < &p[P_L2_SIZE]) {
 269        if ((*index & (step - 1)) == 0 && *nb >= step) {
 270            lp->skip = 0;
 271            lp->ptr = leaf;
 272            *index += step;
 273            *nb -= step;
 274        } else {
 275            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 276        }
 277        ++lp;
 278    }
 279}
 280
 281static void phys_page_set(AddressSpaceDispatch *d,
 282                          hwaddr index, hwaddr nb,
 283                          uint16_t leaf)
 284{
 285    /* Wildly overreserve - it doesn't matter much. */
 286    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 287
 288    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 289}
 290
 291/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 292 * and update our entry so we can skip it and go directly to the destination.
 293 */
 294static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 295{
 296    unsigned valid_ptr = P_L2_SIZE;
 297    int valid = 0;
 298    PhysPageEntry *p;
 299    int i;
 300
 301    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 302        return;
 303    }
 304
 305    p = nodes[lp->ptr];
 306    for (i = 0; i < P_L2_SIZE; i++) {
 307        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 308            continue;
 309        }
 310
 311        valid_ptr = i;
 312        valid++;
 313        if (p[i].skip) {
 314            phys_page_compact(&p[i], nodes);
 315        }
 316    }
 317
 318    /* We can only compress if there's only one child. */
 319    if (valid != 1) {
 320        return;
 321    }
 322
 323    assert(valid_ptr < P_L2_SIZE);
 324
 325    /* Don't compress if it won't fit in the # of bits we have. */
 326    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
 327        return;
 328    }
 329
 330    lp->ptr = p[valid_ptr].ptr;
 331    if (!p[valid_ptr].skip) {
 332        /* If our only child is a leaf, make this a leaf. */
 333        /* By design, we should have made this node a leaf to begin with so we
 334         * should never reach here.
 335         * But since it's so simple to handle this, let's do it just in case we
 336         * change this rule.
 337         */
 338        lp->skip = 0;
 339    } else {
 340        lp->skip += p[valid_ptr].skip;
 341    }
 342}
 343
 344void address_space_dispatch_compact(AddressSpaceDispatch *d)
 345{
 346    if (d->phys_map.skip) {
 347        phys_page_compact(&d->phys_map, d->map.nodes);
 348    }
 349}
 350
 351static inline bool section_covers_addr(const MemoryRegionSection *section,
 352                                       hwaddr addr)
 353{
 354    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 355     * the section must cover the entire address space.
 356     */
 357    return int128_gethi(section->size) ||
 358           range_covers_byte(section->offset_within_address_space,
 359                             int128_getlo(section->size), addr);
 360}
 361
 362static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 363{
 364    PhysPageEntry lp = d->phys_map, *p;
 365    Node *nodes = d->map.nodes;
 366    MemoryRegionSection *sections = d->map.sections;
 367    hwaddr index = addr >> TARGET_PAGE_BITS;
 368    int i;
 369
 370    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 371        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 372            return &sections[PHYS_SECTION_UNASSIGNED];
 373        }
 374        p = nodes[lp.ptr];
 375        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 376    }
 377
 378    if (section_covers_addr(&sections[lp.ptr], addr)) {
 379        return &sections[lp.ptr];
 380    } else {
 381        return &sections[PHYS_SECTION_UNASSIGNED];
 382    }
 383}
 384
 385/* Called from RCU critical section */
 386static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 387                                                        hwaddr addr,
 388                                                        bool resolve_subpage)
 389{
 390    MemoryRegionSection *section = atomic_read(&d->mru_section);
 391    subpage_t *subpage;
 392
 393    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 394        !section_covers_addr(section, addr)) {
 395        section = phys_page_find(d, addr);
 396        atomic_set(&d->mru_section, section);
 397    }
 398    if (resolve_subpage && section->mr->subpage) {
 399        subpage = container_of(section->mr, subpage_t, iomem);
 400        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 401    }
 402    return section;
 403}
 404
 405/* Called from RCU critical section */
 406static MemoryRegionSection *
 407address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 408                                 hwaddr *plen, bool resolve_subpage)
 409{
 410    MemoryRegionSection *section;
 411    MemoryRegion *mr;
 412    Int128 diff;
 413
 414    section = address_space_lookup_region(d, addr, resolve_subpage);
 415    /* Compute offset within MemoryRegionSection */
 416    addr -= section->offset_within_address_space;
 417
 418    /* Compute offset within MemoryRegion */
 419    *xlat = addr + section->offset_within_region;
 420
 421    mr = section->mr;
 422
 423    /* MMIO registers can be expected to perform full-width accesses based only
 424     * on their address, without considering adjacent registers that could
 425     * decode to completely different MemoryRegions.  When such registers
 426     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 427     * regions overlap wildly.  For this reason we cannot clamp the accesses
 428     * here.
 429     *
 430     * If the length is small (as is the case for address_space_ldl/stl),
 431     * everything works fine.  If the incoming length is large, however,
 432     * the caller really has to do the clamping through memory_access_size.
 433     */
 434    if (memory_region_is_ram(mr)) {
 435        diff = int128_sub(section->size, int128_make64(addr));
 436        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 437    }
 438    return section;
 439}
 440
 441/**
 442 * address_space_translate_iommu - translate an address through an IOMMU
 443 * memory region and then through the target address space.
 444 *
 445 * @iommu_mr: the IOMMU memory region that we start the translation from
 446 * @addr: the address to be translated through the MMU
 447 * @xlat: the translated address offset within the destination memory region.
 448 *        It cannot be %NULL.
 449 * @plen_out: valid read/write length of the translated address. It
 450 *            cannot be %NULL.
 451 * @page_mask_out: page mask for the translated address. This
 452 *            should only be meaningful for IOMMU translated
 453 *            addresses, since there may be huge pages that this bit
 454 *            would tell. It can be %NULL if we don't care about it.
 455 * @is_write: whether the translation operation is for write
 456 * @is_mmio: whether this can be MMIO, set true if it can
 457 * @target_as: the address space targeted by the IOMMU
 458 * @attrs: transaction attributes
 459 *
 460 * This function is called from RCU critical section.  It is the common
 461 * part of flatview_do_translate and address_space_translate_cached.
 462 */
 463static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 464                                                         hwaddr *xlat,
 465                                                         hwaddr *plen_out,
 466                                                         hwaddr *page_mask_out,
 467                                                         bool is_write,
 468                                                         bool is_mmio,
 469                                                         AddressSpace **target_as,
 470                                                         MemTxAttrs attrs)
 471{
 472    MemoryRegionSection *section;
 473    hwaddr page_mask = (hwaddr)-1;
 474
 475    do {
 476        hwaddr addr = *xlat;
 477        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 478        int iommu_idx = 0;
 479        IOMMUTLBEntry iotlb;
 480
 481        if (imrc->attrs_to_index) {
 482            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 483        }
 484
 485        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 486                                IOMMU_WO : IOMMU_RO, iommu_idx);
 487
 488        if (!(iotlb.perm & (1 << is_write))) {
 489            goto unassigned;
 490        }
 491
 492        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 493                | (addr & iotlb.addr_mask));
 494        page_mask &= iotlb.addr_mask;
 495        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 496        *target_as = iotlb.target_as;
 497
 498        section = address_space_translate_internal(
 499                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 500                plen_out, is_mmio);
 501
 502        iommu_mr = memory_region_get_iommu(section->mr);
 503    } while (unlikely(iommu_mr));
 504
 505    if (page_mask_out) {
 506        *page_mask_out = page_mask;
 507    }
 508    return *section;
 509
 510unassigned:
 511    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 512}
 513
 514/**
 515 * flatview_do_translate - translate an address in FlatView
 516 *
 517 * @fv: the flat view that we want to translate on
 518 * @addr: the address to be translated in above address space
 519 * @xlat: the translated address offset within memory region. It
 520 *        cannot be @NULL.
 521 * @plen_out: valid read/write length of the translated address. It
 522 *            can be @NULL when we don't care about it.
 523 * @page_mask_out: page mask for the translated address. This
 524 *            should only be meaningful for IOMMU translated
 525 *            addresses, since there may be huge pages that this bit
 526 *            would tell. It can be @NULL if we don't care about it.
 527 * @is_write: whether the translation operation is for write
 528 * @is_mmio: whether this can be MMIO, set true if it can
 529 * @target_as: the address space targeted by the IOMMU
 530 * @attrs: memory transaction attributes
 531 *
 532 * This function is called from RCU critical section
 533 */
 534static MemoryRegionSection flatview_do_translate(FlatView *fv,
 535                                                 hwaddr addr,
 536                                                 hwaddr *xlat,
 537                                                 hwaddr *plen_out,
 538                                                 hwaddr *page_mask_out,
 539                                                 bool is_write,
 540                                                 bool is_mmio,
 541                                                 AddressSpace **target_as,
 542                                                 MemTxAttrs attrs)
 543{
 544    MemoryRegionSection *section;
 545    IOMMUMemoryRegion *iommu_mr;
 546    hwaddr plen = (hwaddr)(-1);
 547
 548    if (!plen_out) {
 549        plen_out = &plen;
 550    }
 551
 552    section = address_space_translate_internal(
 553            flatview_to_dispatch(fv), addr, xlat,
 554            plen_out, is_mmio);
 555
 556    iommu_mr = memory_region_get_iommu(section->mr);
 557    if (unlikely(iommu_mr)) {
 558        return address_space_translate_iommu(iommu_mr, xlat,
 559                                             plen_out, page_mask_out,
 560                                             is_write, is_mmio,
 561                                             target_as, attrs);
 562    }
 563    if (page_mask_out) {
 564        /* Not behind an IOMMU, use default page size. */
 565        *page_mask_out = ~TARGET_PAGE_MASK;
 566    }
 567
 568    return *section;
 569}
 570
 571/* Called from RCU critical section */
 572IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 573                                            bool is_write, MemTxAttrs attrs)
 574{
 575    MemoryRegionSection section;
 576    hwaddr xlat, page_mask;
 577
 578    /*
 579     * This can never be MMIO, and we don't really care about plen,
 580     * but page mask.
 581     */
 582    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 583                                    NULL, &page_mask, is_write, false, &as,
 584                                    attrs);
 585
 586    /* Illegal translation */
 587    if (section.mr == &io_mem_unassigned) {
 588        goto iotlb_fail;
 589    }
 590
 591    /* Convert memory region offset into address space offset */
 592    xlat += section.offset_within_address_space -
 593        section.offset_within_region;
 594
 595    return (IOMMUTLBEntry) {
 596        .target_as = as,
 597        .iova = addr & ~page_mask,
 598        .translated_addr = xlat & ~page_mask,
 599        .addr_mask = page_mask,
 600        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 601        .perm = IOMMU_RW,
 602    };
 603
 604iotlb_fail:
 605    return (IOMMUTLBEntry) {0};
 606}
 607
 608/* Called from RCU critical section */
 609MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 610                                 hwaddr *plen, bool is_write,
 611                                 MemTxAttrs attrs)
 612{
 613    MemoryRegion *mr;
 614    MemoryRegionSection section;
 615    AddressSpace *as = NULL;
 616
 617    /* This can be MMIO, so setup MMIO bit. */
 618    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 619                                    is_write, true, &as, attrs);
 620    mr = section.mr;
 621
 622    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 623        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 624        *plen = MIN(page, *plen);
 625    }
 626
 627    return mr;
 628}
 629
 630typedef struct TCGIOMMUNotifier {
 631    IOMMUNotifier n;
 632    MemoryRegion *mr;
 633    CPUState *cpu;
 634    int iommu_idx;
 635    bool active;
 636} TCGIOMMUNotifier;
 637
 638static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 639{
 640    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 641
 642    if (!notifier->active) {
 643        return;
 644    }
 645    tlb_flush(notifier->cpu);
 646    notifier->active = false;
 647    /* We leave the notifier struct on the list to avoid reallocating it later.
 648     * Generally the number of IOMMUs a CPU deals with will be small.
 649     * In any case we can't unregister the iommu notifier from a notify
 650     * callback.
 651     */
 652}
 653
 654static void tcg_register_iommu_notifier(CPUState *cpu,
 655                                        IOMMUMemoryRegion *iommu_mr,
 656                                        int iommu_idx)
 657{
 658    /* Make sure this CPU has an IOMMU notifier registered for this
 659     * IOMMU/IOMMU index combination, so that we can flush its TLB
 660     * when the IOMMU tells us the mappings we've cached have changed.
 661     */
 662    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 663    TCGIOMMUNotifier *notifier;
 664    int i;
 665
 666    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 667        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 668        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 669            break;
 670        }
 671    }
 672    if (i == cpu->iommu_notifiers->len) {
 673        /* Not found, add a new entry at the end of the array */
 674        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 675        notifier = g_new0(TCGIOMMUNotifier, 1);
 676        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
 677
 678        notifier->mr = mr;
 679        notifier->iommu_idx = iommu_idx;
 680        notifier->cpu = cpu;
 681        /* Rather than trying to register interest in the specific part
 682         * of the iommu's address space that we've accessed and then
 683         * expand it later as subsequent accesses touch more of it, we
 684         * just register interest in the whole thing, on the assumption
 685         * that iommu reconfiguration will be rare.
 686         */
 687        iommu_notifier_init(&notifier->n,
 688                            tcg_iommu_unmap_notify,
 689                            IOMMU_NOTIFIER_UNMAP,
 690                            0,
 691                            HWADDR_MAX,
 692                            iommu_idx);
 693        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
 694    }
 695
 696    if (!notifier->active) {
 697        notifier->active = true;
 698    }
 699}
 700
 701static void tcg_iommu_free_notifier_list(CPUState *cpu)
 702{
 703    /* Destroy the CPU's notifier list */
 704    int i;
 705    TCGIOMMUNotifier *notifier;
 706
 707    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 708        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 709        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 710        g_free(notifier);
 711    }
 712    g_array_free(cpu->iommu_notifiers, true);
 713}
 714
 715/* Called from RCU critical section */
 716MemoryRegionSection *
 717address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 718                                  hwaddr *xlat, hwaddr *plen,
 719                                  MemTxAttrs attrs, int *prot)
 720{
 721    MemoryRegionSection *section;
 722    IOMMUMemoryRegion *iommu_mr;
 723    IOMMUMemoryRegionClass *imrc;
 724    IOMMUTLBEntry iotlb;
 725    int iommu_idx;
 726    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 727
 728    for (;;) {
 729        section = address_space_translate_internal(d, addr, &addr, plen, false);
 730
 731        iommu_mr = memory_region_get_iommu(section->mr);
 732        if (!iommu_mr) {
 733            break;
 734        }
 735
 736        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 737
 738        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 739        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 740        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 741         * doesn't short-cut its translation table walk.
 742         */
 743        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 744        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 745                | (addr & iotlb.addr_mask));
 746        /* Update the caller's prot bits to remove permissions the IOMMU
 747         * is giving us a failure response for. If we get down to no
 748         * permissions left at all we can give up now.
 749         */
 750        if (!(iotlb.perm & IOMMU_RO)) {
 751            *prot &= ~(PAGE_READ | PAGE_EXEC);
 752        }
 753        if (!(iotlb.perm & IOMMU_WO)) {
 754            *prot &= ~PAGE_WRITE;
 755        }
 756
 757        if (!*prot) {
 758            goto translate_fail;
 759        }
 760
 761        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 762    }
 763
 764    assert(!memory_region_is_iommu(section->mr));
 765    *xlat = addr;
 766    return section;
 767
 768translate_fail:
 769    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 770}
 771#endif
 772
 773#if !defined(CONFIG_USER_ONLY)
 774
 775static int cpu_common_post_load(void *opaque, int version_id)
 776{
 777    CPUState *cpu = opaque;
 778
 779    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 780       version_id is increased. */
 781    cpu->interrupt_request &= ~0x01;
 782    tlb_flush(cpu);
 783
 784    /* loadvm has just updated the content of RAM, bypassing the
 785     * usual mechanisms that ensure we flush TBs for writes to
 786     * memory we've translated code from. So we must flush all TBs,
 787     * which will now be stale.
 788     */
 789    tb_flush(cpu);
 790
 791    return 0;
 792}
 793
 794static int cpu_common_pre_load(void *opaque)
 795{
 796    CPUState *cpu = opaque;
 797
 798    cpu->exception_index = -1;
 799
 800    return 0;
 801}
 802
 803static bool cpu_common_exception_index_needed(void *opaque)
 804{
 805    CPUState *cpu = opaque;
 806
 807    return tcg_enabled() && cpu->exception_index != -1;
 808}
 809
 810static const VMStateDescription vmstate_cpu_common_exception_index = {
 811    .name = "cpu_common/exception_index",
 812    .version_id = 1,
 813    .minimum_version_id = 1,
 814    .needed = cpu_common_exception_index_needed,
 815    .fields = (VMStateField[]) {
 816        VMSTATE_INT32(exception_index, CPUState),
 817        VMSTATE_END_OF_LIST()
 818    }
 819};
 820
 821static bool cpu_common_crash_occurred_needed(void *opaque)
 822{
 823    CPUState *cpu = opaque;
 824
 825    return cpu->crash_occurred;
 826}
 827
 828static const VMStateDescription vmstate_cpu_common_crash_occurred = {
 829    .name = "cpu_common/crash_occurred",
 830    .version_id = 1,
 831    .minimum_version_id = 1,
 832    .needed = cpu_common_crash_occurred_needed,
 833    .fields = (VMStateField[]) {
 834        VMSTATE_BOOL(crash_occurred, CPUState),
 835        VMSTATE_END_OF_LIST()
 836    }
 837};
 838
 839const VMStateDescription vmstate_cpu_common = {
 840    .name = "cpu_common",
 841    .version_id = 1,
 842    .minimum_version_id = 1,
 843    .pre_load = cpu_common_pre_load,
 844    .post_load = cpu_common_post_load,
 845    .fields = (VMStateField[]) {
 846        VMSTATE_UINT32(halted, CPUState),
 847        VMSTATE_UINT32(interrupt_request, CPUState),
 848        VMSTATE_END_OF_LIST()
 849    },
 850    .subsections = (const VMStateDescription*[]) {
 851        &vmstate_cpu_common_exception_index,
 852        &vmstate_cpu_common_crash_occurred,
 853        NULL
 854    }
 855};
 856
 857#endif
 858
 859CPUState *qemu_get_cpu(int index)
 860{
 861    CPUState *cpu;
 862
 863    CPU_FOREACH(cpu) {
 864        if (cpu->cpu_index == index) {
 865            return cpu;
 866        }
 867    }
 868
 869    return NULL;
 870}
 871
 872#if !defined(CONFIG_USER_ONLY)
 873void cpu_address_space_init(CPUState *cpu, int asidx,
 874                            const char *prefix, MemoryRegion *mr)
 875{
 876    CPUAddressSpace *newas;
 877    AddressSpace *as = g_new0(AddressSpace, 1);
 878    char *as_name;
 879
 880    assert(mr);
 881    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 882    address_space_init(as, mr, as_name);
 883    g_free(as_name);
 884
 885    /* Target code should have set num_ases before calling us */
 886    assert(asidx < cpu->num_ases);
 887
 888    if (asidx == 0) {
 889        /* address space 0 gets the convenience alias */
 890        cpu->as = as;
 891    }
 892
 893    /* KVM cannot currently support multiple address spaces. */
 894    assert(asidx == 0 || !kvm_enabled());
 895
 896    if (!cpu->cpu_ases) {
 897        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 898    }
 899
 900    newas = &cpu->cpu_ases[asidx];
 901    newas->cpu = cpu;
 902    newas->as = as;
 903    if (tcg_enabled()) {
 904        newas->tcg_as_listener.commit = tcg_commit;
 905        memory_listener_register(&newas->tcg_as_listener, as);
 906    }
 907}
 908
 909AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 910{
 911    /* Return the AddressSpace corresponding to the specified index */
 912    return cpu->cpu_ases[asidx].as;
 913}
 914#endif
 915
 916void cpu_exec_unrealizefn(CPUState *cpu)
 917{
 918    CPUClass *cc = CPU_GET_CLASS(cpu);
 919
 920    cpu_list_remove(cpu);
 921
 922    if (cc->vmsd != NULL) {
 923        vmstate_unregister(NULL, cc->vmsd, cpu);
 924    }
 925    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 926        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
 927    }
 928#ifndef CONFIG_USER_ONLY
 929    tcg_iommu_free_notifier_list(cpu);
 930#endif
 931}
 932
 933Property cpu_common_props[] = {
 934#ifndef CONFIG_USER_ONLY
 935    /* Create a memory property for softmmu CPU object,
 936     * so users can wire up its memory. (This can't go in qom/cpu.c
 937     * because that file is compiled only once for both user-mode
 938     * and system builds.) The default if no link is set up is to use
 939     * the system address space.
 940     */
 941    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
 942                     MemoryRegion *),
 943#endif
 944    DEFINE_PROP_END_OF_LIST(),
 945};
 946
 947void cpu_exec_initfn(CPUState *cpu)
 948{
 949    cpu->as = NULL;
 950    cpu->num_ases = 0;
 951
 952#ifndef CONFIG_USER_ONLY
 953    cpu->thread_id = qemu_get_thread_id();
 954    cpu->memory = system_memory;
 955    object_ref(OBJECT(cpu->memory));
 956#endif
 957}
 958
 959void cpu_exec_realizefn(CPUState *cpu, Error **errp)
 960{
 961    CPUClass *cc = CPU_GET_CLASS(cpu);
 962    static bool tcg_target_initialized;
 963
 964    cpu_list_add(cpu);
 965
 966    if (tcg_enabled() && !tcg_target_initialized) {
 967        tcg_target_initialized = true;
 968        cc->tcg_initialize();
 969    }
 970    tlb_init(cpu);
 971
 972#ifndef CONFIG_USER_ONLY
 973    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 974        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
 975    }
 976    if (cc->vmsd != NULL) {
 977        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
 978    }
 979
 980    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
 981#endif
 982}
 983
 984const char *parse_cpu_model(const char *cpu_model)
 985{
 986    ObjectClass *oc;
 987    CPUClass *cc;
 988    gchar **model_pieces;
 989    const char *cpu_type;
 990
 991    model_pieces = g_strsplit(cpu_model, ",", 2);
 992
 993    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
 994    if (oc == NULL) {
 995        error_report("unable to find CPU model '%s'", model_pieces[0]);
 996        g_strfreev(model_pieces);
 997        exit(EXIT_FAILURE);
 998    }
 999
1000    cpu_type = object_class_get_name(oc);
1001    cc = CPU_CLASS(oc);
1002    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1003    g_strfreev(model_pieces);
1004    return cpu_type;
1005}
1006
1007#if defined(CONFIG_USER_ONLY)
1008void tb_invalidate_phys_addr(target_ulong addr)
1009{
1010    mmap_lock();
1011    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1012    mmap_unlock();
1013}
1014
1015static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1016{
1017    tb_invalidate_phys_addr(pc);
1018}
1019#else
1020void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1021{
1022    ram_addr_t ram_addr;
1023    MemoryRegion *mr;
1024    hwaddr l = 1;
1025
1026    if (!tcg_enabled()) {
1027        return;
1028    }
1029
1030    rcu_read_lock();
1031    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1032    if (!(memory_region_is_ram(mr)
1033          || memory_region_is_romd(mr))) {
1034        rcu_read_unlock();
1035        return;
1036    }
1037    ram_addr = memory_region_get_ram_addr(mr) + addr;
1038    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1039    rcu_read_unlock();
1040}
1041
1042static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1043{
1044    MemTxAttrs attrs;
1045    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1046    int asidx = cpu_asidx_from_attrs(cpu, attrs);
1047    if (phys != -1) {
1048        /* Locks grabbed by tb_invalidate_phys_addr */
1049        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1050                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1051    }
1052}
1053#endif
1054
1055#if defined(CONFIG_USER_ONLY)
1056void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1057
1058{
1059}
1060
1061int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1062                          int flags)
1063{
1064    return -ENOSYS;
1065}
1066
1067void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1068{
1069}
1070
1071int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1072                          int flags, CPUWatchpoint **watchpoint)
1073{
1074    return -ENOSYS;
1075}
1076#else
1077/* Add a watchpoint.  */
1078int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1079                          int flags, CPUWatchpoint **watchpoint)
1080{
1081    CPUWatchpoint *wp;
1082
1083    /* forbid ranges which are empty or run off the end of the address space */
1084    if (len == 0 || (addr + len - 1) < addr) {
1085        error_report("tried to set invalid watchpoint at %"
1086                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1087        return -EINVAL;
1088    }
1089    wp = g_malloc(sizeof(*wp));
1090
1091    wp->vaddr = addr;
1092    wp->len = len;
1093    wp->flags = flags;
1094
1095    /* keep all GDB-injected watchpoints in front */
1096    if (flags & BP_GDB) {
1097        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1098    } else {
1099        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1100    }
1101
1102    tlb_flush_page(cpu, addr);
1103
1104    if (watchpoint)
1105        *watchpoint = wp;
1106    return 0;
1107}
1108
1109/* Remove a specific watchpoint.  */
1110int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1111                          int flags)
1112{
1113    CPUWatchpoint *wp;
1114
1115    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1116        if (addr == wp->vaddr && len == wp->len
1117                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1118            cpu_watchpoint_remove_by_ref(cpu, wp);
1119            return 0;
1120        }
1121    }
1122    return -ENOENT;
1123}
1124
1125/* Remove a specific watchpoint by reference.  */
1126void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1127{
1128    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1129
1130    tlb_flush_page(cpu, watchpoint->vaddr);
1131
1132    g_free(watchpoint);
1133}
1134
1135/* Remove all matching watchpoints.  */
1136void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1137{
1138    CPUWatchpoint *wp, *next;
1139
1140    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1141        if (wp->flags & mask) {
1142            cpu_watchpoint_remove_by_ref(cpu, wp);
1143        }
1144    }
1145}
1146
1147/* Return true if this watchpoint address matches the specified
1148 * access (ie the address range covered by the watchpoint overlaps
1149 * partially or completely with the address range covered by the
1150 * access).
1151 */
1152static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1153                                                  vaddr addr,
1154                                                  vaddr len)
1155{
1156    /* We know the lengths are non-zero, but a little caution is
1157     * required to avoid errors in the case where the range ends
1158     * exactly at the top of the address space and so addr + len
1159     * wraps round to zero.
1160     */
1161    vaddr wpend = wp->vaddr + wp->len - 1;
1162    vaddr addrend = addr + len - 1;
1163
1164    return !(addr > wpend || wp->vaddr > addrend);
1165}
1166
1167#endif
1168
1169/* Add a breakpoint.  */
1170int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1171                          CPUBreakpoint **breakpoint)
1172{
1173    CPUBreakpoint *bp;
1174
1175    bp = g_malloc(sizeof(*bp));
1176
1177    bp->pc = pc;
1178    bp->flags = flags;
1179
1180    /* keep all GDB-injected breakpoints in front */
1181    if (flags & BP_GDB) {
1182        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1183    } else {
1184        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1185    }
1186
1187    breakpoint_invalidate(cpu, pc);
1188
1189    if (breakpoint) {
1190        *breakpoint = bp;
1191    }
1192    return 0;
1193}
1194
1195/* Remove a specific breakpoint.  */
1196int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1197{
1198    CPUBreakpoint *bp;
1199
1200    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1201        if (bp->pc == pc && bp->flags == flags) {
1202            cpu_breakpoint_remove_by_ref(cpu, bp);
1203            return 0;
1204        }
1205    }
1206    return -ENOENT;
1207}
1208
1209/* Remove a specific breakpoint by reference.  */
1210void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1211{
1212    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1213
1214    breakpoint_invalidate(cpu, breakpoint->pc);
1215
1216    g_free(breakpoint);
1217}
1218
1219/* Remove all matching breakpoints. */
1220void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1221{
1222    CPUBreakpoint *bp, *next;
1223
1224    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1225        if (bp->flags & mask) {
1226            cpu_breakpoint_remove_by_ref(cpu, bp);
1227        }
1228    }
1229}
1230
1231/* enable or disable single step mode. EXCP_DEBUG is returned by the
1232   CPU loop after each instruction */
1233void cpu_single_step(CPUState *cpu, int enabled)
1234{
1235    if (cpu->singlestep_enabled != enabled) {
1236        cpu->singlestep_enabled = enabled;
1237        if (kvm_enabled()) {
1238            kvm_update_guest_debug(cpu, 0);
1239        } else {
1240            /* must flush all the translated code to avoid inconsistencies */
1241            /* XXX: only flush what is necessary */
1242            tb_flush(cpu);
1243        }
1244    }
1245}
1246
1247void cpu_abort(CPUState *cpu, const char *fmt, ...)
1248{
1249    va_list ap;
1250    va_list ap2;
1251
1252    va_start(ap, fmt);
1253    va_copy(ap2, ap);
1254    fprintf(stderr, "qemu: fatal: ");
1255    vfprintf(stderr, fmt, ap);
1256    fprintf(stderr, "\n");
1257    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1258    if (qemu_log_separate()) {
1259        qemu_log_lock();
1260        qemu_log("qemu: fatal: ");
1261        qemu_log_vprintf(fmt, ap2);
1262        qemu_log("\n");
1263        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1264        qemu_log_flush();
1265        qemu_log_unlock();
1266        qemu_log_close();
1267    }
1268    va_end(ap2);
1269    va_end(ap);
1270    replay_finish();
1271#if defined(CONFIG_USER_ONLY)
1272    {
1273        struct sigaction act;
1274        sigfillset(&act.sa_mask);
1275        act.sa_handler = SIG_DFL;
1276        act.sa_flags = 0;
1277        sigaction(SIGABRT, &act, NULL);
1278    }
1279#endif
1280    abort();
1281}
1282
1283#if !defined(CONFIG_USER_ONLY)
1284/* Called from RCU critical section */
1285static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1286{
1287    RAMBlock *block;
1288
1289    block = atomic_rcu_read(&ram_list.mru_block);
1290    if (block && addr - block->offset < block->max_length) {
1291        return block;
1292    }
1293    RAMBLOCK_FOREACH(block) {
1294        if (addr - block->offset < block->max_length) {
1295            goto found;
1296        }
1297    }
1298
1299    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1300    abort();
1301
1302found:
1303    /* It is safe to write mru_block outside the iothread lock.  This
1304     * is what happens:
1305     *
1306     *     mru_block = xxx
1307     *     rcu_read_unlock()
1308     *                                        xxx removed from list
1309     *                  rcu_read_lock()
1310     *                  read mru_block
1311     *                                        mru_block = NULL;
1312     *                                        call_rcu(reclaim_ramblock, xxx);
1313     *                  rcu_read_unlock()
1314     *
1315     * atomic_rcu_set is not needed here.  The block was already published
1316     * when it was placed into the list.  Here we're just making an extra
1317     * copy of the pointer.
1318     */
1319    ram_list.mru_block = block;
1320    return block;
1321}
1322
1323static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1324{
1325    CPUState *cpu;
1326    ram_addr_t start1;
1327    RAMBlock *block;
1328    ram_addr_t end;
1329
1330    assert(tcg_enabled());
1331    end = TARGET_PAGE_ALIGN(start + length);
1332    start &= TARGET_PAGE_MASK;
1333
1334    rcu_read_lock();
1335    block = qemu_get_ram_block(start);
1336    assert(block == qemu_get_ram_block(end - 1));
1337    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1338    CPU_FOREACH(cpu) {
1339        tlb_reset_dirty(cpu, start1, length);
1340    }
1341    rcu_read_unlock();
1342}
1343
1344/* Note: start and end must be within the same ram block.  */
1345bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1346                                              ram_addr_t length,
1347                                              unsigned client)
1348{
1349    DirtyMemoryBlocks *blocks;
1350    unsigned long end, page;
1351    bool dirty = false;
1352
1353    if (length == 0) {
1354        return false;
1355    }
1356
1357    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1358    page = start >> TARGET_PAGE_BITS;
1359
1360    rcu_read_lock();
1361
1362    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1363
1364    while (page < end) {
1365        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1366        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1367        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1368
1369        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1370                                              offset, num);
1371        page += num;
1372    }
1373
1374    rcu_read_unlock();
1375
1376    if (dirty && tcg_enabled()) {
1377        tlb_reset_dirty_range_all(start, length);
1378    }
1379
1380    return dirty;
1381}
1382
1383DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1384     (ram_addr_t start, ram_addr_t length, unsigned client)
1385{
1386    DirtyMemoryBlocks *blocks;
1387    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1388    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1389    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1390    DirtyBitmapSnapshot *snap;
1391    unsigned long page, end, dest;
1392
1393    snap = g_malloc0(sizeof(*snap) +
1394                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1395    snap->start = first;
1396    snap->end   = last;
1397
1398    page = first >> TARGET_PAGE_BITS;
1399    end  = last  >> TARGET_PAGE_BITS;
1400    dest = 0;
1401
1402    rcu_read_lock();
1403
1404    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1405
1406    while (page < end) {
1407        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1408        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1409        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1410
1411        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1412        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1413        offset >>= BITS_PER_LEVEL;
1414
1415        bitmap_copy_and_clear_atomic(snap->dirty + dest,
1416                                     blocks->blocks[idx] + offset,
1417                                     num);
1418        page += num;
1419        dest += num >> BITS_PER_LEVEL;
1420    }
1421
1422    rcu_read_unlock();
1423
1424    if (tcg_enabled()) {
1425        tlb_reset_dirty_range_all(start, length);
1426    }
1427
1428    return snap;
1429}
1430
1431bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1432                                            ram_addr_t start,
1433                                            ram_addr_t length)
1434{
1435    unsigned long page, end;
1436
1437    assert(start >= snap->start);
1438    assert(start + length <= snap->end);
1439
1440    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1441    page = (start - snap->start) >> TARGET_PAGE_BITS;
1442
1443    while (page < end) {
1444        if (test_bit(page, snap->dirty)) {
1445            return true;
1446        }
1447        page++;
1448    }
1449    return false;
1450}
1451
1452/* Called from RCU critical section */
1453hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1454                                       MemoryRegionSection *section,
1455                                       target_ulong vaddr,
1456                                       hwaddr paddr, hwaddr xlat,
1457                                       int prot,
1458                                       target_ulong *address)
1459{
1460    hwaddr iotlb;
1461    CPUWatchpoint *wp;
1462
1463    if (memory_region_is_ram(section->mr)) {
1464        /* Normal RAM.  */
1465        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1466        if (!section->readonly) {
1467            iotlb |= PHYS_SECTION_NOTDIRTY;
1468        } else {
1469            iotlb |= PHYS_SECTION_ROM;
1470        }
1471    } else {
1472        AddressSpaceDispatch *d;
1473
1474        d = flatview_to_dispatch(section->fv);
1475        iotlb = section - d->map.sections;
1476        iotlb += xlat;
1477    }
1478
1479    /* Make accesses to pages with watchpoints go via the
1480       watchpoint trap routines.  */
1481    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1482        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1483            /* Avoid trapping reads of pages with a write breakpoint. */
1484            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1485                iotlb = PHYS_SECTION_WATCH + paddr;
1486                *address |= TLB_MMIO;
1487                break;
1488            }
1489        }
1490    }
1491
1492    return iotlb;
1493}
1494#endif /* defined(CONFIG_USER_ONLY) */
1495
1496#if !defined(CONFIG_USER_ONLY)
1497
1498static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1499                             uint16_t section);
1500static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1501
1502static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1503                               qemu_anon_ram_alloc;
1504
1505/*
1506 * Set a custom physical guest memory alloator.
1507 * Accelerators with unusual needs may need this.  Hopefully, we can
1508 * get rid of it eventually.
1509 */
1510void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1511{
1512    phys_mem_alloc = alloc;
1513}
1514
1515static uint16_t phys_section_add(PhysPageMap *map,
1516                                 MemoryRegionSection *section)
1517{
1518    /* The physical section number is ORed with a page-aligned
1519     * pointer to produce the iotlb entries.  Thus it should
1520     * never overflow into the page-aligned value.
1521     */
1522    assert(map->sections_nb < TARGET_PAGE_SIZE);
1523
1524    if (map->sections_nb == map->sections_nb_alloc) {
1525        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1526        map->sections = g_renew(MemoryRegionSection, map->sections,
1527                                map->sections_nb_alloc);
1528    }
1529    map->sections[map->sections_nb] = *section;
1530    memory_region_ref(section->mr);
1531    return map->sections_nb++;
1532}
1533
1534static void phys_section_destroy(MemoryRegion *mr)
1535{
1536    bool have_sub_page = mr->subpage;
1537
1538    memory_region_unref(mr);
1539
1540    if (have_sub_page) {
1541        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1542        object_unref(OBJECT(&subpage->iomem));
1543        g_free(subpage);
1544    }
1545}
1546
1547static void phys_sections_free(PhysPageMap *map)
1548{
1549    while (map->sections_nb > 0) {
1550        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1551        phys_section_destroy(section->mr);
1552    }
1553    g_free(map->sections);
1554    g_free(map->nodes);
1555}
1556
1557static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1558{
1559    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1560    subpage_t *subpage;
1561    hwaddr base = section->offset_within_address_space
1562        & TARGET_PAGE_MASK;
1563    MemoryRegionSection *existing = phys_page_find(d, base);
1564    MemoryRegionSection subsection = {
1565        .offset_within_address_space = base,
1566        .size = int128_make64(TARGET_PAGE_SIZE),
1567    };
1568    hwaddr start, end;
1569
1570    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1571
1572    if (!(existing->mr->subpage)) {
1573        subpage = subpage_init(fv, base);
1574        subsection.fv = fv;
1575        subsection.mr = &subpage->iomem;
1576        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1577                      phys_section_add(&d->map, &subsection));
1578    } else {
1579        subpage = container_of(existing->mr, subpage_t, iomem);
1580    }
1581    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1582    end = start + int128_get64(section->size) - 1;
1583    subpage_register(subpage, start, end,
1584                     phys_section_add(&d->map, section));
1585}
1586
1587
1588static void register_multipage(FlatView *fv,
1589                               MemoryRegionSection *section)
1590{
1591    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1592    hwaddr start_addr = section->offset_within_address_space;
1593    uint16_t section_index = phys_section_add(&d->map, section);
1594    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1595                                                    TARGET_PAGE_BITS));
1596
1597    assert(num_pages);
1598    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1599}
1600
1601void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1602{
1603    MemoryRegionSection now = *section, remain = *section;
1604    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1605
1606    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1607        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1608                       - now.offset_within_address_space;
1609
1610        now.size = int128_min(int128_make64(left), now.size);
1611        register_subpage(fv, &now);
1612    } else {
1613        now.size = int128_zero();
1614    }
1615    while (int128_ne(remain.size, now.size)) {
1616        remain.size = int128_sub(remain.size, now.size);
1617        remain.offset_within_address_space += int128_get64(now.size);
1618        remain.offset_within_region += int128_get64(now.size);
1619        now = remain;
1620        if (int128_lt(remain.size, page_size)) {
1621            register_subpage(fv, &now);
1622        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1623            now.size = page_size;
1624            register_subpage(fv, &now);
1625        } else {
1626            now.size = int128_and(now.size, int128_neg(page_size));
1627            register_multipage(fv, &now);
1628        }
1629    }
1630}
1631
1632void qemu_flush_coalesced_mmio_buffer(void)
1633{
1634    if (kvm_enabled())
1635        kvm_flush_coalesced_mmio_buffer();
1636}
1637
1638void qemu_mutex_lock_ramlist(void)
1639{
1640    qemu_mutex_lock(&ram_list.mutex);
1641}
1642
1643void qemu_mutex_unlock_ramlist(void)
1644{
1645    qemu_mutex_unlock(&ram_list.mutex);
1646}
1647
1648void ram_block_dump(Monitor *mon)
1649{
1650    RAMBlock *block;
1651    char *psize;
1652
1653    rcu_read_lock();
1654    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
1655                   "Block Name", "PSize", "Offset", "Used", "Total");
1656    RAMBLOCK_FOREACH(block) {
1657        psize = size_to_str(block->page_size);
1658        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1659                       " 0x%016" PRIx64 "\n", block->idstr, psize,
1660                       (uint64_t)block->offset,
1661                       (uint64_t)block->used_length,
1662                       (uint64_t)block->max_length);
1663        g_free(psize);
1664    }
1665    rcu_read_unlock();
1666}
1667
1668#ifdef __linux__
1669/*
1670 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1671 * may or may not name the same files / on the same filesystem now as
1672 * when we actually open and map them.  Iterate over the file
1673 * descriptors instead, and use qemu_fd_getpagesize().
1674 */
1675static int find_max_supported_pagesize(Object *obj, void *opaque)
1676{
1677    long *hpsize_min = opaque;
1678
1679    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1680        long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1681
1682        if (hpsize < *hpsize_min) {
1683            *hpsize_min = hpsize;
1684        }
1685    }
1686
1687    return 0;
1688}
1689
1690long qemu_getrampagesize(void)
1691{
1692    long hpsize = LONG_MAX;
1693    long mainrampagesize;
1694    Object *memdev_root;
1695
1696    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1697
1698    /* it's possible we have memory-backend objects with
1699     * hugepage-backed RAM. these may get mapped into system
1700     * address space via -numa parameters or memory hotplug
1701     * hooks. we want to take these into account, but we
1702     * also want to make sure these supported hugepage
1703     * sizes are applicable across the entire range of memory
1704     * we may boot from, so we take the min across all
1705     * backends, and assume normal pages in cases where a
1706     * backend isn't backed by hugepages.
1707     */
1708    memdev_root = object_resolve_path("/objects", NULL);
1709    if (memdev_root) {
1710        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1711    }
1712    if (hpsize == LONG_MAX) {
1713        /* No additional memory regions found ==> Report main RAM page size */
1714        return mainrampagesize;
1715    }
1716
1717    /* If NUMA is disabled or the NUMA nodes are not backed with a
1718     * memory-backend, then there is at least one node using "normal" RAM,
1719     * so if its page size is smaller we have got to report that size instead.
1720     */
1721    if (hpsize > mainrampagesize &&
1722        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1723        static bool warned;
1724        if (!warned) {
1725            error_report("Huge page support disabled (n/a for main memory).");
1726            warned = true;
1727        }
1728        return mainrampagesize;
1729    }
1730
1731    return hpsize;
1732}
1733#else
1734long qemu_getrampagesize(void)
1735{
1736    return getpagesize();
1737}
1738#endif
1739
1740#ifdef CONFIG_POSIX
1741static int64_t get_file_size(int fd)
1742{
1743    int64_t size = lseek(fd, 0, SEEK_END);
1744    if (size < 0) {
1745        return -errno;
1746    }
1747    return size;
1748}
1749
1750static int file_ram_open(const char *path,
1751                         const char *region_name,
1752                         bool *created,
1753                         Error **errp)
1754{
1755    char *filename;
1756    char *sanitized_name;
1757    char *c;
1758    int fd = -1;
1759
1760    *created = false;
1761    for (;;) {
1762        fd = open(path, O_RDWR);
1763        if (fd >= 0) {
1764            /* @path names an existing file, use it */
1765            break;
1766        }
1767        if (errno == ENOENT) {
1768            /* @path names a file that doesn't exist, create it */
1769            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1770            if (fd >= 0) {
1771                *created = true;
1772                break;
1773            }
1774        } else if (errno == EISDIR) {
1775            /* @path names a directory, create a file there */
1776            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1777            sanitized_name = g_strdup(region_name);
1778            for (c = sanitized_name; *c != '\0'; c++) {
1779                if (*c == '/') {
1780                    *c = '_';
1781                }
1782            }
1783
1784            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1785                                       sanitized_name);
1786            g_free(sanitized_name);
1787
1788            fd = mkstemp(filename);
1789            if (fd >= 0) {
1790                unlink(filename);
1791                g_free(filename);
1792                break;
1793            }
1794            g_free(filename);
1795        }
1796        if (errno != EEXIST && errno != EINTR) {
1797            error_setg_errno(errp, errno,
1798                             "can't open backing store %s for guest RAM",
1799                             path);
1800            return -1;
1801        }
1802        /*
1803         * Try again on EINTR and EEXIST.  The latter happens when
1804         * something else creates the file between our two open().
1805         */
1806    }
1807
1808    return fd;
1809}
1810
1811static void *file_ram_alloc(RAMBlock *block,
1812                            ram_addr_t memory,
1813                            int fd,
1814                            bool truncate,
1815                            Error **errp)
1816{
1817    void *area;
1818
1819    block->page_size = qemu_fd_getpagesize(fd);
1820    if (block->mr->align % block->page_size) {
1821        error_setg(errp, "alignment 0x%" PRIx64
1822                   " must be multiples of page size 0x%zx",
1823                   block->mr->align, block->page_size);
1824        return NULL;
1825    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1826        error_setg(errp, "alignment 0x%" PRIx64
1827                   " must be a power of two", block->mr->align);
1828        return NULL;
1829    }
1830    block->mr->align = MAX(block->page_size, block->mr->align);
1831#if defined(__s390x__)
1832    if (kvm_enabled()) {
1833        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1834    }
1835#endif
1836
1837    if (memory < block->page_size) {
1838        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1839                   "or larger than page size 0x%zx",
1840                   memory, block->page_size);
1841        return NULL;
1842    }
1843
1844    memory = ROUND_UP(memory, block->page_size);
1845
1846    /*
1847     * ftruncate is not supported by hugetlbfs in older
1848     * hosts, so don't bother bailing out on errors.
1849     * If anything goes wrong with it under other filesystems,
1850     * mmap will fail.
1851     *
1852     * Do not truncate the non-empty backend file to avoid corrupting
1853     * the existing data in the file. Disabling shrinking is not
1854     * enough. For example, the current vNVDIMM implementation stores
1855     * the guest NVDIMM labels at the end of the backend file. If the
1856     * backend file is later extended, QEMU will not be able to find
1857     * those labels. Therefore, extending the non-empty backend file
1858     * is disabled as well.
1859     */
1860    if (truncate && ftruncate(fd, memory)) {
1861        perror("ftruncate");
1862    }
1863
1864    area = qemu_ram_mmap(fd, memory, block->mr->align,
1865                         block->flags & RAM_SHARED);
1866    if (area == MAP_FAILED) {
1867        error_setg_errno(errp, errno,
1868                         "unable to map backing store for guest RAM");
1869        return NULL;
1870    }
1871
1872    if (mem_prealloc) {
1873        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1874        if (errp && *errp) {
1875            qemu_ram_munmap(area, memory);
1876            return NULL;
1877        }
1878    }
1879
1880    block->fd = fd;
1881    return area;
1882}
1883#endif
1884
1885/* Allocate space within the ram_addr_t space that governs the
1886 * dirty bitmaps.
1887 * Called with the ramlist lock held.
1888 */
1889static ram_addr_t find_ram_offset(ram_addr_t size)
1890{
1891    RAMBlock *block, *next_block;
1892    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1893
1894    assert(size != 0); /* it would hand out same offset multiple times */
1895
1896    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1897        return 0;
1898    }
1899
1900    RAMBLOCK_FOREACH(block) {
1901        ram_addr_t candidate, next = RAM_ADDR_MAX;
1902
1903        /* Align blocks to start on a 'long' in the bitmap
1904         * which makes the bitmap sync'ing take the fast path.
1905         */
1906        candidate = block->offset + block->max_length;
1907        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1908
1909        /* Search for the closest following block
1910         * and find the gap.
1911         */
1912        RAMBLOCK_FOREACH(next_block) {
1913            if (next_block->offset >= candidate) {
1914                next = MIN(next, next_block->offset);
1915            }
1916        }
1917
1918        /* If it fits remember our place and remember the size
1919         * of gap, but keep going so that we might find a smaller
1920         * gap to fill so avoiding fragmentation.
1921         */
1922        if (next - candidate >= size && next - candidate < mingap) {
1923            offset = candidate;
1924            mingap = next - candidate;
1925        }
1926
1927        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1928    }
1929
1930    if (offset == RAM_ADDR_MAX) {
1931        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1932                (uint64_t)size);
1933        abort();
1934    }
1935
1936    trace_find_ram_offset(size, offset);
1937
1938    return offset;
1939}
1940
1941static unsigned long last_ram_page(void)
1942{
1943    RAMBlock *block;
1944    ram_addr_t last = 0;
1945
1946    rcu_read_lock();
1947    RAMBLOCK_FOREACH(block) {
1948        last = MAX(last, block->offset + block->max_length);
1949    }
1950    rcu_read_unlock();
1951    return last >> TARGET_PAGE_BITS;
1952}
1953
1954static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1955{
1956    int ret;
1957
1958    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1959    if (!machine_dump_guest_core(current_machine)) {
1960        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1961        if (ret) {
1962            perror("qemu_madvise");
1963            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1964                            "but dump_guest_core=off specified\n");
1965        }
1966    }
1967}
1968
1969const char *qemu_ram_get_idstr(RAMBlock *rb)
1970{
1971    return rb->idstr;
1972}
1973
1974bool qemu_ram_is_shared(RAMBlock *rb)
1975{
1976    return rb->flags & RAM_SHARED;
1977}
1978
1979/* Note: Only set at the start of postcopy */
1980bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1981{
1982    return rb->flags & RAM_UF_ZEROPAGE;
1983}
1984
1985void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1986{
1987    rb->flags |= RAM_UF_ZEROPAGE;
1988}
1989
1990bool qemu_ram_is_migratable(RAMBlock *rb)
1991{
1992    return rb->flags & RAM_MIGRATABLE;
1993}
1994
1995void qemu_ram_set_migratable(RAMBlock *rb)
1996{
1997    rb->flags |= RAM_MIGRATABLE;
1998}
1999
2000void qemu_ram_unset_migratable(RAMBlock *rb)
2001{
2002    rb->flags &= ~RAM_MIGRATABLE;
2003}
2004
2005/* Called with iothread lock held.  */
2006void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2007{
2008    RAMBlock *block;
2009
2010    assert(new_block);
2011    assert(!new_block->idstr[0]);
2012
2013    if (dev) {
2014        char *id = qdev_get_dev_path(dev);
2015        if (id) {
2016            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2017            g_free(id);
2018        }
2019    }
2020    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2021
2022    rcu_read_lock();
2023    RAMBLOCK_FOREACH(block) {
2024        if (block != new_block &&
2025            !strcmp(block->idstr, new_block->idstr)) {
2026            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2027                    new_block->idstr);
2028            abort();
2029        }
2030    }
2031    rcu_read_unlock();
2032}
2033
2034/* Called with iothread lock held.  */
2035void qemu_ram_unset_idstr(RAMBlock *block)
2036{
2037    /* FIXME: arch_init.c assumes that this is not called throughout
2038     * migration.  Ignore the problem since hot-unplug during migration
2039     * does not work anyway.
2040     */
2041    if (block) {
2042        memset(block->idstr, 0, sizeof(block->idstr));
2043    }
2044}
2045
2046size_t qemu_ram_pagesize(RAMBlock *rb)
2047{
2048    return rb->page_size;
2049}
2050
2051/* Returns the largest size of page in use */
2052size_t qemu_ram_pagesize_largest(void)
2053{
2054    RAMBlock *block;
2055    size_t largest = 0;
2056
2057    RAMBLOCK_FOREACH(block) {
2058        largest = MAX(largest, qemu_ram_pagesize(block));
2059    }
2060
2061    return largest;
2062}
2063
2064static int memory_try_enable_merging(void *addr, size_t len)
2065{
2066    if (!machine_mem_merge(current_machine)) {
2067        /* disabled by the user */
2068        return 0;
2069    }
2070
2071    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2072}
2073
2074/* Only legal before guest might have detected the memory size: e.g. on
2075 * incoming migration, or right after reset.
2076 *
2077 * As memory core doesn't know how is memory accessed, it is up to
2078 * resize callback to update device state and/or add assertions to detect
2079 * misuse, if necessary.
2080 */
2081int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2082{
2083    assert(block);
2084
2085    newsize = HOST_PAGE_ALIGN(newsize);
2086
2087    if (block->used_length == newsize) {
2088        return 0;
2089    }
2090
2091    if (!(block->flags & RAM_RESIZEABLE)) {
2092        error_setg_errno(errp, EINVAL,
2093                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
2094                         " in != 0x" RAM_ADDR_FMT, block->idstr,
2095                         newsize, block->used_length);
2096        return -EINVAL;
2097    }
2098
2099    if (block->max_length < newsize) {
2100        error_setg_errno(errp, EINVAL,
2101                         "Length too large: %s: 0x" RAM_ADDR_FMT
2102                         " > 0x" RAM_ADDR_FMT, block->idstr,
2103                         newsize, block->max_length);
2104        return -EINVAL;
2105    }
2106
2107    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2108    block->used_length = newsize;
2109    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2110                                        DIRTY_CLIENTS_ALL);
2111    memory_region_set_size(block->mr, newsize);
2112    if (block->resized) {
2113        block->resized(block->idstr, newsize, block->host);
2114    }
2115    return 0;
2116}
2117
2118/* Called with ram_list.mutex held */
2119static void dirty_memory_extend(ram_addr_t old_ram_size,
2120                                ram_addr_t new_ram_size)
2121{
2122    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2123                                             DIRTY_MEMORY_BLOCK_SIZE);
2124    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2125                                             DIRTY_MEMORY_BLOCK_SIZE);
2126    int i;
2127
2128    /* Only need to extend if block count increased */
2129    if (new_num_blocks <= old_num_blocks) {
2130        return;
2131    }
2132
2133    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2134        DirtyMemoryBlocks *old_blocks;
2135        DirtyMemoryBlocks *new_blocks;
2136        int j;
2137
2138        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2139        new_blocks = g_malloc(sizeof(*new_blocks) +
2140                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
2141
2142        if (old_num_blocks) {
2143            memcpy(new_blocks->blocks, old_blocks->blocks,
2144                   old_num_blocks * sizeof(old_blocks->blocks[0]));
2145        }
2146
2147        for (j = old_num_blocks; j < new_num_blocks; j++) {
2148            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2149        }
2150
2151        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2152
2153        if (old_blocks) {
2154            g_free_rcu(old_blocks, rcu);
2155        }
2156    }
2157}
2158
2159static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2160{
2161    RAMBlock *block;
2162    RAMBlock *last_block = NULL;
2163    ram_addr_t old_ram_size, new_ram_size;
2164    Error *err = NULL;
2165
2166    old_ram_size = last_ram_page();
2167
2168    qemu_mutex_lock_ramlist();
2169    new_block->offset = find_ram_offset(new_block->max_length);
2170
2171    if (!new_block->host) {
2172        if (xen_enabled()) {
2173            xen_ram_alloc(new_block->offset, new_block->max_length,
2174                          new_block->mr, &err);
2175            if (err) {
2176                error_propagate(errp, err);
2177                qemu_mutex_unlock_ramlist();
2178                return;
2179            }
2180        } else {
2181            new_block->host = phys_mem_alloc(new_block->max_length,
2182                                             &new_block->mr->align, shared);
2183            if (!new_block->host) {
2184                error_setg_errno(errp, errno,
2185                                 "cannot set up guest memory '%s'",
2186                                 memory_region_name(new_block->mr));
2187                qemu_mutex_unlock_ramlist();
2188                return;
2189            }
2190            memory_try_enable_merging(new_block->host, new_block->max_length);
2191        }
2192    }
2193
2194    new_ram_size = MAX(old_ram_size,
2195              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2196    if (new_ram_size > old_ram_size) {
2197        dirty_memory_extend(old_ram_size, new_ram_size);
2198    }
2199    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2200     * QLIST (which has an RCU-friendly variant) does not have insertion at
2201     * tail, so save the last element in last_block.
2202     */
2203    RAMBLOCK_FOREACH(block) {
2204        last_block = block;
2205        if (block->max_length < new_block->max_length) {
2206            break;
2207        }
2208    }
2209    if (block) {
2210        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2211    } else if (last_block) {
2212        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2213    } else { /* list is empty */
2214        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2215    }
2216    ram_list.mru_block = NULL;
2217
2218    /* Write list before version */
2219    smp_wmb();
2220    ram_list.version++;
2221    qemu_mutex_unlock_ramlist();
2222
2223    cpu_physical_memory_set_dirty_range(new_block->offset,
2224                                        new_block->used_length,
2225                                        DIRTY_CLIENTS_ALL);
2226
2227    if (new_block->host) {
2228        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2229        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2230        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2231        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2232        ram_block_notify_add(new_block->host, new_block->max_length);
2233    }
2234}
2235
2236#ifdef CONFIG_POSIX
2237RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2238                                 uint32_t ram_flags, int fd,
2239                                 Error **errp)
2240{
2241    RAMBlock *new_block;
2242    Error *local_err = NULL;
2243    int64_t file_size;
2244
2245    /* Just support these ram flags by now. */
2246    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2247
2248    if (xen_enabled()) {
2249        error_setg(errp, "-mem-path not supported with Xen");
2250        return NULL;
2251    }
2252
2253    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2254        error_setg(errp,
2255                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2256        return NULL;
2257    }
2258
2259    if (phys_mem_alloc != qemu_anon_ram_alloc) {
2260        /*
2261         * file_ram_alloc() needs to allocate just like
2262         * phys_mem_alloc, but we haven't bothered to provide
2263         * a hook there.
2264         */
2265        error_setg(errp,
2266                   "-mem-path not supported with this accelerator");
2267        return NULL;
2268    }
2269
2270    size = HOST_PAGE_ALIGN(size);
2271    file_size = get_file_size(fd);
2272    if (file_size > 0 && file_size < size) {
2273        error_setg(errp, "backing store %s size 0x%" PRIx64
2274                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2275                   mem_path, file_size, size);
2276        return NULL;
2277    }
2278
2279    new_block = g_malloc0(sizeof(*new_block));
2280    new_block->mr = mr;
2281    new_block->used_length = size;
2282    new_block->max_length = size;
2283    new_block->flags = ram_flags;
2284    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2285    if (!new_block->host) {
2286        g_free(new_block);
2287        return NULL;
2288    }
2289
2290    ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2291    if (local_err) {
2292        g_free(new_block);
2293        error_propagate(errp, local_err);
2294        return NULL;
2295    }
2296    return new_block;
2297
2298}
2299
2300
2301RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2302                                   uint32_t ram_flags, const char *mem_path,
2303                                   Error **errp)
2304{
2305    int fd;
2306    bool created;
2307    RAMBlock *block;
2308
2309    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2310    if (fd < 0) {
2311        return NULL;
2312    }
2313
2314    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2315    if (!block) {
2316        if (created) {
2317            unlink(mem_path);
2318        }
2319        close(fd);
2320        return NULL;
2321    }
2322
2323    return block;
2324}
2325#endif
2326
2327static
2328RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2329                                  void (*resized)(const char*,
2330                                                  uint64_t length,
2331                                                  void *host),
2332                                  void *host, bool resizeable, bool share,
2333                                  MemoryRegion *mr, Error **errp)
2334{
2335    RAMBlock *new_block;
2336    Error *local_err = NULL;
2337
2338    size = HOST_PAGE_ALIGN(size);
2339    max_size = HOST_PAGE_ALIGN(max_size);
2340    new_block = g_malloc0(sizeof(*new_block));
2341    new_block->mr = mr;
2342    new_block->resized = resized;
2343    new_block->used_length = size;
2344    new_block->max_length = max_size;
2345    assert(max_size >= size);
2346    new_block->fd = -1;
2347    new_block->page_size = getpagesize();
2348    new_block->host = host;
2349    if (host) {
2350        new_block->flags |= RAM_PREALLOC;
2351    }
2352    if (resizeable) {
2353        new_block->flags |= RAM_RESIZEABLE;
2354    }
2355    ram_block_add(new_block, &local_err, share);
2356    if (local_err) {
2357        g_free(new_block);
2358        error_propagate(errp, local_err);
2359        return NULL;
2360    }
2361    return new_block;
2362}
2363
2364RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2365                                   MemoryRegion *mr, Error **errp)
2366{
2367    return qemu_ram_alloc_internal(size, size, NULL, host, false,
2368                                   false, mr, errp);
2369}
2370
2371RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2372                         MemoryRegion *mr, Error **errp)
2373{
2374    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2375                                   share, mr, errp);
2376}
2377
2378RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2379                                     void (*resized)(const char*,
2380                                                     uint64_t length,
2381                                                     void *host),
2382                                     MemoryRegion *mr, Error **errp)
2383{
2384    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2385                                   false, mr, errp);
2386}
2387
2388static void reclaim_ramblock(RAMBlock *block)
2389{
2390    if (block->flags & RAM_PREALLOC) {
2391        ;
2392    } else if (xen_enabled()) {
2393        xen_invalidate_map_cache_entry(block->host);
2394#ifndef _WIN32
2395    } else if (block->fd >= 0) {
2396        qemu_ram_munmap(block->host, block->max_length);
2397        close(block->fd);
2398#endif
2399    } else {
2400        qemu_anon_ram_free(block->host, block->max_length);
2401    }
2402    g_free(block);
2403}
2404
2405void qemu_ram_free(RAMBlock *block)
2406{
2407    if (!block) {
2408        return;
2409    }
2410
2411    if (block->host) {
2412        ram_block_notify_remove(block->host, block->max_length);
2413    }
2414
2415    qemu_mutex_lock_ramlist();
2416    QLIST_REMOVE_RCU(block, next);
2417    ram_list.mru_block = NULL;
2418    /* Write list before version */
2419    smp_wmb();
2420    ram_list.version++;
2421    call_rcu(block, reclaim_ramblock, rcu);
2422    qemu_mutex_unlock_ramlist();
2423}
2424
2425#ifndef _WIN32
2426void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2427{
2428    RAMBlock *block;
2429    ram_addr_t offset;
2430    int flags;
2431    void *area, *vaddr;
2432
2433    RAMBLOCK_FOREACH(block) {
2434        offset = addr - block->offset;
2435        if (offset < block->max_length) {
2436            vaddr = ramblock_ptr(block, offset);
2437            if (block->flags & RAM_PREALLOC) {
2438                ;
2439            } else if (xen_enabled()) {
2440                abort();
2441            } else {
2442                flags = MAP_FIXED;
2443                if (block->fd >= 0) {
2444                    flags |= (block->flags & RAM_SHARED ?
2445                              MAP_SHARED : MAP_PRIVATE);
2446                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2447                                flags, block->fd, offset);
2448                } else {
2449                    /*
2450                     * Remap needs to match alloc.  Accelerators that
2451                     * set phys_mem_alloc never remap.  If they did,
2452                     * we'd need a remap hook here.
2453                     */
2454                    assert(phys_mem_alloc == qemu_anon_ram_alloc);
2455
2456                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2457                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2458                                flags, -1, 0);
2459                }
2460                if (area != vaddr) {
2461                    error_report("Could not remap addr: "
2462                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2463                                 length, addr);
2464                    exit(1);
2465                }
2466                memory_try_enable_merging(vaddr, length);
2467                qemu_ram_setup_dump(vaddr, length);
2468            }
2469        }
2470    }
2471}
2472#endif /* !_WIN32 */
2473
2474/* Return a host pointer to ram allocated with qemu_ram_alloc.
2475 * This should not be used for general purpose DMA.  Use address_space_map
2476 * or address_space_rw instead. For local memory (e.g. video ram) that the
2477 * device owns, use memory_region_get_ram_ptr.
2478 *
2479 * Called within RCU critical section.
2480 */
2481void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2482{
2483    RAMBlock *block = ram_block;
2484
2485    if (block == NULL) {
2486        block = qemu_get_ram_block(addr);
2487        addr -= block->offset;
2488    }
2489
2490    if (xen_enabled() && block->host == NULL) {
2491        /* We need to check if the requested address is in the RAM
2492         * because we don't want to map the entire memory in QEMU.
2493         * In that case just map until the end of the page.
2494         */
2495        if (block->offset == 0) {
2496            return xen_map_cache(addr, 0, 0, false);
2497        }
2498
2499        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2500    }
2501    return ramblock_ptr(block, addr);
2502}
2503
2504/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2505 * but takes a size argument.
2506 *
2507 * Called within RCU critical section.
2508 */
2509static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2510                                 hwaddr *size, bool lock)
2511{
2512    RAMBlock *block = ram_block;
2513    if (*size == 0) {
2514        return NULL;
2515    }
2516
2517    if (block == NULL) {
2518        block = qemu_get_ram_block(addr);
2519        addr -= block->offset;
2520    }
2521    *size = MIN(*size, block->max_length - addr);
2522
2523    if (xen_enabled() && block->host == NULL) {
2524        /* We need to check if the requested address is in the RAM
2525         * because we don't want to map the entire memory in QEMU.
2526         * In that case just map the requested area.
2527         */
2528        if (block->offset == 0) {
2529            return xen_map_cache(addr, *size, lock, lock);
2530        }
2531
2532        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2533    }
2534
2535    return ramblock_ptr(block, addr);
2536}
2537
2538/* Return the offset of a hostpointer within a ramblock */
2539ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2540{
2541    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2542    assert((uintptr_t)host >= (uintptr_t)rb->host);
2543    assert(res < rb->max_length);
2544
2545    return res;
2546}
2547
2548/*
2549 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2550 * in that RAMBlock.
2551 *
2552 * ptr: Host pointer to look up
2553 * round_offset: If true round the result offset down to a page boundary
2554 * *ram_addr: set to result ram_addr
2555 * *offset: set to result offset within the RAMBlock
2556 *
2557 * Returns: RAMBlock (or NULL if not found)
2558 *
2559 * By the time this function returns, the returned pointer is not protected
2560 * by RCU anymore.  If the caller is not within an RCU critical section and
2561 * does not hold the iothread lock, it must have other means of protecting the
2562 * pointer, such as a reference to the region that includes the incoming
2563 * ram_addr_t.
2564 */
2565RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2566                                   ram_addr_t *offset)
2567{
2568    RAMBlock *block;
2569    uint8_t *host = ptr;
2570
2571    if (xen_enabled()) {
2572        ram_addr_t ram_addr;
2573        rcu_read_lock();
2574        ram_addr = xen_ram_addr_from_mapcache(ptr);
2575        block = qemu_get_ram_block(ram_addr);
2576        if (block) {
2577            *offset = ram_addr - block->offset;
2578        }
2579        rcu_read_unlock();
2580        return block;
2581    }
2582
2583    rcu_read_lock();
2584    block = atomic_rcu_read(&ram_list.mru_block);
2585    if (block && block->host && host - block->host < block->max_length) {
2586        goto found;
2587    }
2588
2589    RAMBLOCK_FOREACH(block) {
2590        /* This case append when the block is not mapped. */
2591        if (block->host == NULL) {
2592            continue;
2593        }
2594        if (host - block->host < block->max_length) {
2595            goto found;
2596        }
2597    }
2598
2599    rcu_read_unlock();
2600    return NULL;
2601
2602found:
2603    *offset = (host - block->host);
2604    if (round_offset) {
2605        *offset &= TARGET_PAGE_MASK;
2606    }
2607    rcu_read_unlock();
2608    return block;
2609}
2610
2611/*
2612 * Finds the named RAMBlock
2613 *
2614 * name: The name of RAMBlock to find
2615 *
2616 * Returns: RAMBlock (or NULL if not found)
2617 */
2618RAMBlock *qemu_ram_block_by_name(const char *name)
2619{
2620    RAMBlock *block;
2621
2622    RAMBLOCK_FOREACH(block) {
2623        if (!strcmp(name, block->idstr)) {
2624            return block;
2625        }
2626    }
2627
2628    return NULL;
2629}
2630
2631/* Some of the softmmu routines need to translate from a host pointer
2632   (typically a TLB entry) back to a ram offset.  */
2633ram_addr_t qemu_ram_addr_from_host(void *ptr)
2634{
2635    RAMBlock *block;
2636    ram_addr_t offset;
2637
2638    block = qemu_ram_block_from_host(ptr, false, &offset);
2639    if (!block) {
2640        return RAM_ADDR_INVALID;
2641    }
2642
2643    return block->offset + offset;
2644}
2645
2646/* Called within RCU critical section. */
2647void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2648                          CPUState *cpu,
2649                          vaddr mem_vaddr,
2650                          ram_addr_t ram_addr,
2651                          unsigned size)
2652{
2653    ndi->cpu = cpu;
2654    ndi->ram_addr = ram_addr;
2655    ndi->mem_vaddr = mem_vaddr;
2656    ndi->size = size;
2657    ndi->pages = NULL;
2658
2659    assert(tcg_enabled());
2660    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2661        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2662        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2663    }
2664}
2665
2666/* Called within RCU critical section. */
2667void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2668{
2669    if (ndi->pages) {
2670        assert(tcg_enabled());
2671        page_collection_unlock(ndi->pages);
2672        ndi->pages = NULL;
2673    }
2674
2675    /* Set both VGA and migration bits for simplicity and to remove
2676     * the notdirty callback faster.
2677     */
2678    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2679                                        DIRTY_CLIENTS_NOCODE);
2680    /* we remove the notdirty callback only if the code has been
2681       flushed */
2682    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2683        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2684    }
2685}
2686
2687/* Called within RCU critical section.  */
2688static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2689                               uint64_t val, unsigned size)
2690{
2691    NotDirtyInfo ndi;
2692
2693    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2694                         ram_addr, size);
2695
2696    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2697    memory_notdirty_write_complete(&ndi);
2698}
2699
2700static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2701                                 unsigned size, bool is_write,
2702                                 MemTxAttrs attrs)
2703{
2704    return is_write;
2705}
2706
2707static const MemoryRegionOps notdirty_mem_ops = {
2708    .write = notdirty_mem_write,
2709    .valid.accepts = notdirty_mem_accepts,
2710    .endianness = DEVICE_NATIVE_ENDIAN,
2711    .valid = {
2712        .min_access_size = 1,
2713        .max_access_size = 8,
2714        .unaligned = false,
2715    },
2716    .impl = {
2717        .min_access_size = 1,
2718        .max_access_size = 8,
2719        .unaligned = false,
2720    },
2721};
2722
2723/* Generate a debug exception if a watchpoint has been hit.  */
2724static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2725{
2726    CPUState *cpu = current_cpu;
2727    CPUClass *cc = CPU_GET_CLASS(cpu);
2728    target_ulong vaddr;
2729    CPUWatchpoint *wp;
2730
2731    assert(tcg_enabled());
2732    if (cpu->watchpoint_hit) {
2733        /* We re-entered the check after replacing the TB. Now raise
2734         * the debug interrupt so that is will trigger after the
2735         * current instruction. */
2736        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2737        return;
2738    }
2739    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2740    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2741    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2742        if (cpu_watchpoint_address_matches(wp, vaddr, len)
2743            && (wp->flags & flags)) {
2744            if (flags == BP_MEM_READ) {
2745                wp->flags |= BP_WATCHPOINT_HIT_READ;
2746            } else {
2747                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2748            }
2749            wp->hitaddr = vaddr;
2750            wp->hitattrs = attrs;
2751            if (!cpu->watchpoint_hit) {
2752                if (wp->flags & BP_CPU &&
2753                    !cc->debug_check_watchpoint(cpu, wp)) {
2754                    wp->flags &= ~BP_WATCHPOINT_HIT;
2755                    continue;
2756                }
2757                cpu->watchpoint_hit = wp;
2758
2759                mmap_lock();
2760                tb_check_watchpoint(cpu);
2761                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2762                    cpu->exception_index = EXCP_DEBUG;
2763                    mmap_unlock();
2764                    cpu_loop_exit(cpu);
2765                } else {
2766                    /* Force execution of one insn next time.  */
2767                    cpu->cflags_next_tb = 1 | curr_cflags();
2768                    mmap_unlock();
2769                    cpu_loop_exit_noexc(cpu);
2770                }
2771            }
2772        } else {
2773            wp->flags &= ~BP_WATCHPOINT_HIT;
2774        }
2775    }
2776}
2777
2778/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
2779   so these check for a hit then pass through to the normal out-of-line
2780   phys routines.  */
2781static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2782                                  unsigned size, MemTxAttrs attrs)
2783{
2784    MemTxResult res;
2785    uint64_t data;
2786    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2787    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2788
2789    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2790    switch (size) {
2791    case 1:
2792        data = address_space_ldub(as, addr, attrs, &res);
2793        break;
2794    case 2:
2795        data = address_space_lduw(as, addr, attrs, &res);
2796        break;
2797    case 4:
2798        data = address_space_ldl(as, addr, attrs, &res);
2799        break;
2800    case 8:
2801        data = address_space_ldq(as, addr, attrs, &res);
2802        break;
2803    default: abort();
2804    }
2805    *pdata = data;
2806    return res;
2807}
2808
2809static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2810                                   uint64_t val, unsigned size,
2811                                   MemTxAttrs attrs)
2812{
2813    MemTxResult res;
2814    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2815    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2816
2817    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2818    switch (size) {
2819    case 1:
2820        address_space_stb(as, addr, val, attrs, &res);
2821        break;
2822    case 2:
2823        address_space_stw(as, addr, val, attrs, &res);
2824        break;
2825    case 4:
2826        address_space_stl(as, addr, val, attrs, &res);
2827        break;
2828    case 8:
2829        address_space_stq(as, addr, val, attrs, &res);
2830        break;
2831    default: abort();
2832    }
2833    return res;
2834}
2835
2836static const MemoryRegionOps watch_mem_ops = {
2837    .read_with_attrs = watch_mem_read,
2838    .write_with_attrs = watch_mem_write,
2839    .endianness = DEVICE_NATIVE_ENDIAN,
2840    .valid = {
2841        .min_access_size = 1,
2842        .max_access_size = 8,
2843        .unaligned = false,
2844    },
2845    .impl = {
2846        .min_access_size = 1,
2847        .max_access_size = 8,
2848        .unaligned = false,
2849    },
2850};
2851
2852static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2853                                      MemTxAttrs attrs, uint8_t *buf, int len);
2854static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2855                                  const uint8_t *buf, int len);
2856static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2857                                  bool is_write, MemTxAttrs attrs);
2858
2859static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2860                                unsigned len, MemTxAttrs attrs)
2861{
2862    subpage_t *subpage = opaque;
2863    uint8_t buf[8];
2864    MemTxResult res;
2865
2866#if defined(DEBUG_SUBPAGE)
2867    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2868           subpage, len, addr);
2869#endif
2870    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2871    if (res) {
2872        return res;
2873    }
2874    *data = ldn_p(buf, len);
2875    return MEMTX_OK;
2876}
2877
2878static MemTxResult subpage_write(void *opaque, hwaddr addr,
2879                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2880{
2881    subpage_t *subpage = opaque;
2882    uint8_t buf[8];
2883
2884#if defined(DEBUG_SUBPAGE)
2885    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2886           " value %"PRIx64"\n",
2887           __func__, subpage, len, addr, value);
2888#endif
2889    stn_p(buf, len, value);
2890    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2891}
2892
2893static bool subpage_accepts(void *opaque, hwaddr addr,
2894                            unsigned len, bool is_write,
2895                            MemTxAttrs attrs)
2896{
2897    subpage_t *subpage = opaque;
2898#if defined(DEBUG_SUBPAGE)
2899    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2900           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2901#endif
2902
2903    return flatview_access_valid(subpage->fv, addr + subpage->base,
2904                                 len, is_write, attrs);
2905}
2906
2907static const MemoryRegionOps subpage_ops = {
2908    .read_with_attrs = subpage_read,
2909    .write_with_attrs = subpage_write,
2910    .impl.min_access_size = 1,
2911    .impl.max_access_size = 8,
2912    .valid.min_access_size = 1,
2913    .valid.max_access_size = 8,
2914    .valid.accepts = subpage_accepts,
2915    .endianness = DEVICE_NATIVE_ENDIAN,
2916};
2917
2918static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2919                             uint16_t section)
2920{
2921    int idx, eidx;
2922
2923    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2924        return -1;
2925    idx = SUBPAGE_IDX(start);
2926    eidx = SUBPAGE_IDX(end);
2927#if defined(DEBUG_SUBPAGE)
2928    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2929           __func__, mmio, start, end, idx, eidx, section);
2930#endif
2931    for (; idx <= eidx; idx++) {
2932        mmio->sub_section[idx] = section;
2933    }
2934
2935    return 0;
2936}
2937
2938static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2939{
2940    subpage_t *mmio;
2941
2942    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2943    mmio->fv = fv;
2944    mmio->base = base;
2945    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2946                          NULL, TARGET_PAGE_SIZE);
2947    mmio->iomem.subpage = true;
2948#if defined(DEBUG_SUBPAGE)
2949    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2950           mmio, base, TARGET_PAGE_SIZE);
2951#endif
2952    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2953
2954    return mmio;
2955}
2956
2957static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2958{
2959    assert(fv);
2960    MemoryRegionSection section = {
2961        .fv = fv,
2962        .mr = mr,
2963        .offset_within_address_space = 0,
2964        .offset_within_region = 0,
2965        .size = int128_2_64(),
2966    };
2967
2968    return phys_section_add(map, &section);
2969}
2970
2971static void readonly_mem_write(void *opaque, hwaddr addr,
2972                               uint64_t val, unsigned size)
2973{
2974    /* Ignore any write to ROM. */
2975}
2976
2977static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2978                                 unsigned size, bool is_write,
2979                                 MemTxAttrs attrs)
2980{
2981    return is_write;
2982}
2983
2984/* This will only be used for writes, because reads are special cased
2985 * to directly access the underlying host ram.
2986 */
2987static const MemoryRegionOps readonly_mem_ops = {
2988    .write = readonly_mem_write,
2989    .valid.accepts = readonly_mem_accepts,
2990    .endianness = DEVICE_NATIVE_ENDIAN,
2991    .valid = {
2992        .min_access_size = 1,
2993        .max_access_size = 8,
2994        .unaligned = false,
2995    },
2996    .impl = {
2997        .min_access_size = 1,
2998        .max_access_size = 8,
2999        .unaligned = false,
3000    },
3001};
3002
3003MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3004                                      hwaddr index, MemTxAttrs attrs)
3005{
3006    int asidx = cpu_asidx_from_attrs(cpu, attrs);
3007    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3008    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3009    MemoryRegionSection *sections = d->map.sections;
3010
3011    return &sections[index & ~TARGET_PAGE_MASK];
3012}
3013
3014static void io_mem_init(void)
3015{
3016    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3017                          NULL, NULL, UINT64_MAX);
3018    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3019                          NULL, UINT64_MAX);
3020
3021    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3022     * which can be called without the iothread mutex.
3023     */
3024    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3025                          NULL, UINT64_MAX);
3026    memory_region_clear_global_locking(&io_mem_notdirty);
3027
3028    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3029                          NULL, UINT64_MAX);
3030}
3031
3032AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3033{
3034    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3035    uint16_t n;
3036
3037    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3038    assert(n == PHYS_SECTION_UNASSIGNED);
3039    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3040    assert(n == PHYS_SECTION_NOTDIRTY);
3041    n = dummy_section(&d->map, fv, &io_mem_rom);
3042    assert(n == PHYS_SECTION_ROM);
3043    n = dummy_section(&d->map, fv, &io_mem_watch);
3044    assert(n == PHYS_SECTION_WATCH);
3045
3046    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3047
3048    return d;
3049}
3050
3051void address_space_dispatch_free(AddressSpaceDispatch *d)
3052{
3053    phys_sections_free(&d->map);
3054    g_free(d);
3055}
3056
3057static void tcg_commit(MemoryListener *listener)
3058{
3059    CPUAddressSpace *cpuas;
3060    AddressSpaceDispatch *d;
3061
3062    assert(tcg_enabled());
3063    /* since each CPU stores ram addresses in its TLB cache, we must
3064       reset the modified entries */
3065    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3066    cpu_reloading_memory_map();
3067    /* The CPU and TLB are protected by the iothread lock.
3068     * We reload the dispatch pointer now because cpu_reloading_memory_map()
3069     * may have split the RCU critical section.
3070     */
3071    d = address_space_to_dispatch(cpuas->as);
3072    atomic_rcu_set(&cpuas->memory_dispatch, d);
3073    tlb_flush(cpuas->cpu);
3074}
3075
3076static void memory_map_init(void)
3077{
3078    system_memory = g_malloc(sizeof(*system_memory));
3079
3080    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3081    address_space_init(&address_space_memory, system_memory, "memory");
3082
3083    system_io = g_malloc(sizeof(*system_io));
3084    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3085                          65536);
3086    address_space_init(&address_space_io, system_io, "I/O");
3087}
3088
3089MemoryRegion *get_system_memory(void)
3090{
3091    return system_memory;
3092}
3093
3094MemoryRegion *get_system_io(void)
3095{
3096    return system_io;
3097}
3098
3099#endif /* !defined(CONFIG_USER_ONLY) */
3100
3101/* physical memory access (slow version, mainly for debug) */
3102#if defined(CONFIG_USER_ONLY)
3103int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3104                        uint8_t *buf, int len, int is_write)
3105{
3106    int l, flags;
3107    target_ulong page;
3108    void * p;
3109
3110    while (len > 0) {
3111        page = addr & TARGET_PAGE_MASK;
3112        l = (page + TARGET_PAGE_SIZE) - addr;
3113        if (l > len)
3114            l = len;
3115        flags = page_get_flags(page);
3116        if (!(flags & PAGE_VALID))
3117            return -1;
3118        if (is_write) {
3119            if (!(flags & PAGE_WRITE))
3120                return -1;
3121            /* XXX: this code should not depend on lock_user */
3122            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3123                return -1;
3124            memcpy(p, buf, l);
3125            unlock_user(p, addr, l);
3126        } else {
3127            if (!(flags & PAGE_READ))
3128                return -1;
3129            /* XXX: this code should not depend on lock_user */
3130            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3131                return -1;
3132            memcpy(buf, p, l);
3133            unlock_user(p, addr, 0);
3134        }
3135        len -= l;
3136        buf += l;
3137        addr += l;
3138    }
3139    return 0;
3140}
3141
3142#else
3143
3144static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3145                                     hwaddr length)
3146{
3147    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3148    addr += memory_region_get_ram_addr(mr);
3149
3150    /* No early return if dirty_log_mask is or becomes 0, because
3151     * cpu_physical_memory_set_dirty_range will still call
3152     * xen_modified_memory.
3153     */
3154    if (dirty_log_mask) {
3155        dirty_log_mask =
3156            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3157    }
3158    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3159        assert(tcg_enabled());
3160        tb_invalidate_phys_range(addr, addr + length);
3161        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3162    }
3163    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3164}
3165
3166static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3167{
3168    unsigned access_size_max = mr->ops->valid.max_access_size;
3169
3170    /* Regions are assumed to support 1-4 byte accesses unless
3171       otherwise specified.  */
3172    if (access_size_max == 0) {
3173        access_size_max = 4;
3174    }
3175
3176    /* Bound the maximum access by the alignment of the address.  */
3177    if (!mr->ops->impl.unaligned) {
3178        unsigned align_size_max = addr & -addr;
3179        if (align_size_max != 0 && align_size_max < access_size_max) {
3180            access_size_max = align_size_max;
3181        }
3182    }
3183
3184    /* Don't attempt accesses larger than the maximum.  */
3185    if (l > access_size_max) {
3186        l = access_size_max;
3187    }
3188    l = pow2floor(l);
3189
3190    return l;
3191}
3192
3193static bool prepare_mmio_access(MemoryRegion *mr)
3194{
3195    bool unlocked = !qemu_mutex_iothread_locked();
3196    bool release_lock = false;
3197
3198    if (unlocked && mr->global_locking) {
3199        qemu_mutex_lock_iothread();
3200        unlocked = false;
3201        release_lock = true;
3202    }
3203    if (mr->flush_coalesced_mmio) {
3204        if (unlocked) {
3205            qemu_mutex_lock_iothread();
3206        }
3207        qemu_flush_coalesced_mmio_buffer();
3208        if (unlocked) {
3209            qemu_mutex_unlock_iothread();
3210        }
3211    }
3212
3213    return release_lock;
3214}
3215
3216/* Called within RCU critical section.  */
3217static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3218                                           MemTxAttrs attrs,
3219                                           const uint8_t *buf,
3220                                           int len, hwaddr addr1,
3221                                           hwaddr l, MemoryRegion *mr)
3222{
3223    uint8_t *ptr;
3224    uint64_t val;
3225    MemTxResult result = MEMTX_OK;
3226    bool release_lock = false;
3227
3228    for (;;) {
3229        if (!memory_access_is_direct(mr, true)) {
3230            release_lock |= prepare_mmio_access(mr);
3231            l = memory_access_size(mr, l, addr1);
3232            /* XXX: could force current_cpu to NULL to avoid
3233               potential bugs */
3234            val = ldn_p(buf, l);
3235            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3236        } else {
3237            /* RAM case */
3238            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3239            memcpy(ptr, buf, l);
3240            invalidate_and_set_dirty(mr, addr1, l);
3241        }
3242
3243        if (release_lock) {
3244            qemu_mutex_unlock_iothread();
3245            release_lock = false;
3246        }
3247
3248        len -= l;
3249        buf += l;
3250        addr += l;
3251
3252        if (!len) {
3253            break;
3254        }
3255
3256        l = len;
3257        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3258    }
3259
3260    return result;
3261}
3262
3263/* Called from RCU critical section.  */
3264static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3265                                  const uint8_t *buf, int len)
3266{
3267    hwaddr l;
3268    hwaddr addr1;
3269    MemoryRegion *mr;
3270    MemTxResult result = MEMTX_OK;
3271
3272    l = len;
3273    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3274    result = flatview_write_continue(fv, addr, attrs, buf, len,
3275                                     addr1, l, mr);
3276
3277    return result;
3278}
3279
3280/* Called within RCU critical section.  */
3281MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3282                                   MemTxAttrs attrs, uint8_t *buf,
3283                                   int len, hwaddr addr1, hwaddr l,
3284                                   MemoryRegion *mr)
3285{
3286    uint8_t *ptr;
3287    uint64_t val;
3288    MemTxResult result = MEMTX_OK;
3289    bool release_lock = false;
3290
3291    for (;;) {
3292        if (!memory_access_is_direct(mr, false)) {
3293            /* I/O case */
3294            release_lock |= prepare_mmio_access(mr);
3295            l = memory_access_size(mr, l, addr1);
3296            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3297            stn_p(buf, l, val);
3298        } else {
3299            /* RAM case */
3300            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3301            memcpy(buf, ptr, l);
3302        }
3303
3304        if (release_lock) {
3305            qemu_mutex_unlock_iothread();
3306            release_lock = false;
3307        }
3308
3309        len -= l;
3310        buf += l;
3311        addr += l;
3312
3313        if (!len) {
3314            break;
3315        }
3316
3317        l = len;
3318        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3319    }
3320
3321    return result;
3322}
3323
3324/* Called from RCU critical section.  */
3325static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3326                                 MemTxAttrs attrs, uint8_t *buf, int len)
3327{
3328    hwaddr l;
3329    hwaddr addr1;
3330    MemoryRegion *mr;
3331
3332    l = len;
3333    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3334    return flatview_read_continue(fv, addr, attrs, buf, len,
3335                                  addr1, l, mr);
3336}
3337
3338MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3339                                    MemTxAttrs attrs, uint8_t *buf, int len)
3340{
3341    MemTxResult result = MEMTX_OK;
3342    FlatView *fv;
3343
3344    if (len > 0) {
3345        rcu_read_lock();
3346        fv = address_space_to_flatview(as);
3347        result = flatview_read(fv, addr, attrs, buf, len);
3348        rcu_read_unlock();
3349    }
3350
3351    return result;
3352}
3353
3354MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3355                                MemTxAttrs attrs,
3356                                const uint8_t *buf, int len)
3357{
3358    MemTxResult result = MEMTX_OK;
3359    FlatView *fv;
3360
3361    if (len > 0) {
3362        rcu_read_lock();
3363        fv = address_space_to_flatview(as);
3364        result = flatview_write(fv, addr, attrs, buf, len);
3365        rcu_read_unlock();
3366    }
3367
3368    return result;
3369}
3370
3371MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3372                             uint8_t *buf, int len, bool is_write)
3373{
3374    if (is_write) {
3375        return address_space_write(as, addr, attrs, buf, len);
3376    } else {
3377        return address_space_read_full(as, addr, attrs, buf, len);
3378    }
3379}
3380
3381void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3382                            int len, int is_write)
3383{
3384    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3385                     buf, len, is_write);
3386}
3387
3388enum write_rom_type {
3389    WRITE_DATA,
3390    FLUSH_CACHE,
3391};
3392
3393static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3394    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3395{
3396    hwaddr l;
3397    uint8_t *ptr;
3398    hwaddr addr1;
3399    MemoryRegion *mr;
3400
3401    rcu_read_lock();
3402    while (len > 0) {
3403        l = len;
3404        mr = address_space_translate(as, addr, &addr1, &l, true,
3405                                     MEMTXATTRS_UNSPECIFIED);
3406
3407        if (!(memory_region_is_ram(mr) ||
3408              memory_region_is_romd(mr))) {
3409            l = memory_access_size(mr, l, addr1);
3410        } else {
3411            /* ROM/RAM case */
3412            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3413            switch (type) {
3414            case WRITE_DATA:
3415                memcpy(ptr, buf, l);
3416                invalidate_and_set_dirty(mr, addr1, l);
3417                break;
3418            case FLUSH_CACHE:
3419                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3420                break;
3421            }
3422        }
3423        len -= l;
3424        buf += l;
3425        addr += l;
3426    }
3427    rcu_read_unlock();
3428}
3429
3430/* used for ROM loading : can write in RAM and ROM */
3431void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3432                                   const uint8_t *buf, int len)
3433{
3434    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3435}
3436
3437void cpu_flush_icache_range(hwaddr start, int len)
3438{
3439    /*
3440     * This function should do the same thing as an icache flush that was
3441     * triggered from within the guest. For TCG we are always cache coherent,
3442     * so there is no need to flush anything. For KVM / Xen we need to flush
3443     * the host's instruction cache at least.
3444     */
3445    if (tcg_enabled()) {
3446        return;
3447    }
3448
3449    cpu_physical_memory_write_rom_internal(&address_space_memory,
3450                                           start, NULL, len, FLUSH_CACHE);
3451}
3452
3453typedef struct {
3454    MemoryRegion *mr;
3455    void *buffer;
3456    hwaddr addr;
3457    hwaddr len;
3458    bool in_use;
3459} BounceBuffer;
3460
3461static BounceBuffer bounce;
3462
3463typedef struct MapClient {
3464    QEMUBH *bh;
3465    QLIST_ENTRY(MapClient) link;
3466} MapClient;
3467
3468QemuMutex map_client_list_lock;
3469static QLIST_HEAD(map_client_list, MapClient) map_client_list
3470    = QLIST_HEAD_INITIALIZER(map_client_list);
3471
3472static void cpu_unregister_map_client_do(MapClient *client)
3473{
3474    QLIST_REMOVE(client, link);
3475    g_free(client);
3476}
3477
3478static void cpu_notify_map_clients_locked(void)
3479{
3480    MapClient *client;
3481
3482    while (!QLIST_EMPTY(&map_client_list)) {
3483        client = QLIST_FIRST(&map_client_list);
3484        qemu_bh_schedule(client->bh);
3485        cpu_unregister_map_client_do(client);
3486    }
3487}
3488
3489void cpu_register_map_client(QEMUBH *bh)
3490{
3491    MapClient *client = g_malloc(sizeof(*client));
3492
3493    qemu_mutex_lock(&map_client_list_lock);
3494    client->bh = bh;
3495    QLIST_INSERT_HEAD(&map_client_list, client, link);
3496    if (!atomic_read(&bounce.in_use)) {
3497        cpu_notify_map_clients_locked();
3498    }
3499    qemu_mutex_unlock(&map_client_list_lock);
3500}
3501
3502void cpu_exec_init_all(void)
3503{
3504    qemu_mutex_init(&ram_list.mutex);
3505    /* The data structures we set up here depend on knowing the page size,
3506     * so no more changes can be made after this point.
3507     * In an ideal world, nothing we did before we had finished the
3508     * machine setup would care about the target page size, and we could
3509     * do this much later, rather than requiring board models to state
3510     * up front what their requirements are.
3511     */
3512    finalize_target_page_bits();
3513    io_mem_init();
3514    memory_map_init();
3515    qemu_mutex_init(&map_client_list_lock);
3516}
3517
3518void cpu_unregister_map_client(QEMUBH *bh)
3519{
3520    MapClient *client;
3521
3522    qemu_mutex_lock(&map_client_list_lock);
3523    QLIST_FOREACH(client, &map_client_list, link) {
3524        if (client->bh == bh) {
3525            cpu_unregister_map_client_do(client);
3526            break;
3527        }
3528    }
3529    qemu_mutex_unlock(&map_client_list_lock);
3530}
3531
3532static void cpu_notify_map_clients(void)
3533{
3534    qemu_mutex_lock(&map_client_list_lock);
3535    cpu_notify_map_clients_locked();
3536    qemu_mutex_unlock(&map_client_list_lock);
3537}
3538
3539static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3540                                  bool is_write, MemTxAttrs attrs)
3541{
3542    MemoryRegion *mr;
3543    hwaddr l, xlat;
3544
3545    while (len > 0) {
3546        l = len;
3547        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3548        if (!memory_access_is_direct(mr, is_write)) {
3549            l = memory_access_size(mr, l, addr);
3550            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3551                return false;
3552            }
3553        }
3554
3555        len -= l;
3556        addr += l;
3557    }
3558    return true;
3559}
3560
3561bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3562                                int len, bool is_write,
3563                                MemTxAttrs attrs)
3564{
3565    FlatView *fv;
3566    bool result;
3567
3568    rcu_read_lock();
3569    fv = address_space_to_flatview(as);
3570    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3571    rcu_read_unlock();
3572    return result;
3573}
3574
3575static hwaddr
3576flatview_extend_translation(FlatView *fv, hwaddr addr,
3577                            hwaddr target_len,
3578                            MemoryRegion *mr, hwaddr base, hwaddr len,
3579                            bool is_write, MemTxAttrs attrs)
3580{
3581    hwaddr done = 0;
3582    hwaddr xlat;
3583    MemoryRegion *this_mr;
3584
3585    for (;;) {
3586        target_len -= len;
3587        addr += len;
3588        done += len;
3589        if (target_len == 0) {
3590            return done;
3591        }
3592
3593        len = target_len;
3594        this_mr = flatview_translate(fv, addr, &xlat,
3595                                     &len, is_write, attrs);
3596        if (this_mr != mr || xlat != base + done) {
3597            return done;
3598        }
3599    }
3600}
3601
3602/* Map a physical memory region into a host virtual address.
3603 * May map a subset of the requested range, given by and returned in *plen.
3604 * May return NULL if resources needed to perform the mapping are exhausted.
3605 * Use only for reads OR writes - not for read-modify-write operations.
3606 * Use cpu_register_map_client() to know when retrying the map operation is
3607 * likely to succeed.
3608 */
3609void *address_space_map(AddressSpace *as,
3610                        hwaddr addr,
3611                        hwaddr *plen,
3612                        bool is_write,
3613                        MemTxAttrs attrs)
3614{
3615    hwaddr len = *plen;
3616    hwaddr l, xlat;
3617    MemoryRegion *mr;
3618    void *ptr;
3619    FlatView *fv;
3620
3621    if (len == 0) {
3622        return NULL;
3623    }
3624
3625    l = len;
3626    rcu_read_lock();
3627    fv = address_space_to_flatview(as);
3628    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3629
3630    if (!memory_access_is_direct(mr, is_write)) {
3631        if (atomic_xchg(&bounce.in_use, true)) {
3632            rcu_read_unlock();
3633            return NULL;
3634        }
3635        /* Avoid unbounded allocations */
3636        l = MIN(l, TARGET_PAGE_SIZE);
3637        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3638        bounce.addr = addr;
3639        bounce.len = l;
3640
3641        memory_region_ref(mr);
3642        bounce.mr = mr;
3643        if (!is_write) {
3644            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3645                               bounce.buffer, l);
3646        }
3647
3648        rcu_read_unlock();
3649        *plen = l;
3650        return bounce.buffer;
3651    }
3652
3653
3654    memory_region_ref(mr);
3655    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3656                                        l, is_write, attrs);
3657    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3658    rcu_read_unlock();
3659
3660    return ptr;
3661}
3662
3663/* Unmaps a memory region previously mapped by address_space_map().
3664 * Will also mark the memory as dirty if is_write == 1.  access_len gives
3665 * the amount of memory that was actually read or written by the caller.
3666 */
3667void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3668                         int is_write, hwaddr access_len)
3669{
3670    if (buffer != bounce.buffer) {
3671        MemoryRegion *mr;
3672        ram_addr_t addr1;
3673
3674        mr = memory_region_from_host(buffer, &addr1);
3675        assert(mr != NULL);
3676        if (is_write) {
3677            invalidate_and_set_dirty(mr, addr1, access_len);
3678        }
3679        if (xen_enabled()) {
3680            xen_invalidate_map_cache_entry(buffer);
3681        }
3682        memory_region_unref(mr);
3683        return;
3684    }
3685    if (is_write) {
3686        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3687                            bounce.buffer, access_len);
3688    }
3689    qemu_vfree(bounce.buffer);
3690    bounce.buffer = NULL;
3691    memory_region_unref(bounce.mr);
3692    atomic_mb_set(&bounce.in_use, false);
3693    cpu_notify_map_clients();
3694}
3695
3696void *cpu_physical_memory_map(hwaddr addr,
3697                              hwaddr *plen,
3698                              int is_write)
3699{
3700    return address_space_map(&address_space_memory, addr, plen, is_write,
3701                             MEMTXATTRS_UNSPECIFIED);
3702}
3703
3704void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3705                               int is_write, hwaddr access_len)
3706{
3707    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3708}
3709
3710#define ARG1_DECL                AddressSpace *as
3711#define ARG1                     as
3712#define SUFFIX
3713#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3714#define RCU_READ_LOCK(...)       rcu_read_lock()
3715#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3716#include "memory_ldst.inc.c"
3717
3718int64_t address_space_cache_init(MemoryRegionCache *cache,
3719                                 AddressSpace *as,
3720                                 hwaddr addr,
3721                                 hwaddr len,
3722                                 bool is_write)
3723{
3724    AddressSpaceDispatch *d;
3725    hwaddr l;
3726    MemoryRegion *mr;
3727
3728    assert(len > 0);
3729
3730    l = len;
3731    cache->fv = address_space_get_flatview(as);
3732    d = flatview_to_dispatch(cache->fv);
3733    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3734
3735    mr = cache->mrs.mr;
3736    memory_region_ref(mr);
3737    if (memory_access_is_direct(mr, is_write)) {
3738        /* We don't care about the memory attributes here as we're only
3739         * doing this if we found actual RAM, which behaves the same
3740         * regardless of attributes; so UNSPECIFIED is fine.
3741         */
3742        l = flatview_extend_translation(cache->fv, addr, len, mr,
3743                                        cache->xlat, l, is_write,
3744                                        MEMTXATTRS_UNSPECIFIED);
3745        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3746    } else {
3747        cache->ptr = NULL;
3748    }
3749
3750    cache->len = l;
3751    cache->is_write = is_write;
3752    return l;
3753}
3754
3755void address_space_cache_invalidate(MemoryRegionCache *cache,
3756                                    hwaddr addr,
3757                                    hwaddr access_len)
3758{
3759    assert(cache->is_write);
3760    if (likely(cache->ptr)) {
3761        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3762    }
3763}
3764
3765void address_space_cache_destroy(MemoryRegionCache *cache)
3766{
3767    if (!cache->mrs.mr) {
3768        return;
3769    }
3770
3771    if (xen_enabled()) {
3772        xen_invalidate_map_cache_entry(cache->ptr);
3773    }
3774    memory_region_unref(cache->mrs.mr);
3775    flatview_unref(cache->fv);
3776    cache->mrs.mr = NULL;
3777    cache->fv = NULL;
3778}
3779
3780/* Called from RCU critical section.  This function has the same
3781 * semantics as address_space_translate, but it only works on a
3782 * predefined range of a MemoryRegion that was mapped with
3783 * address_space_cache_init.
3784 */
3785static inline MemoryRegion *address_space_translate_cached(
3786    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3787    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3788{
3789    MemoryRegionSection section;
3790    MemoryRegion *mr;
3791    IOMMUMemoryRegion *iommu_mr;
3792    AddressSpace *target_as;
3793
3794    assert(!cache->ptr);
3795    *xlat = addr + cache->xlat;
3796
3797    mr = cache->mrs.mr;
3798    iommu_mr = memory_region_get_iommu(mr);
3799    if (!iommu_mr) {
3800        /* MMIO region.  */
3801        return mr;
3802    }
3803
3804    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3805                                            NULL, is_write, true,
3806                                            &target_as, attrs);
3807    return section.mr;
3808}
3809
3810/* Called from RCU critical section. address_space_read_cached uses this
3811 * out of line function when the target is an MMIO or IOMMU region.
3812 */
3813void
3814address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3815                                   void *buf, int len)
3816{
3817    hwaddr addr1, l;
3818    MemoryRegion *mr;
3819
3820    l = len;
3821    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3822                                        MEMTXATTRS_UNSPECIFIED);
3823    flatview_read_continue(cache->fv,
3824                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3825                           addr1, l, mr);
3826}
3827
3828/* Called from RCU critical section. address_space_write_cached uses this
3829 * out of line function when the target is an MMIO or IOMMU region.
3830 */
3831void
3832address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3833                                    const void *buf, int len)
3834{
3835    hwaddr addr1, l;
3836    MemoryRegion *mr;
3837
3838    l = len;
3839    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3840                                        MEMTXATTRS_UNSPECIFIED);
3841    flatview_write_continue(cache->fv,
3842                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3843                            addr1, l, mr);
3844}
3845
3846#define ARG1_DECL                MemoryRegionCache *cache
3847#define ARG1                     cache
3848#define SUFFIX                   _cached_slow
3849#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3850#define RCU_READ_LOCK()          ((void)0)
3851#define RCU_READ_UNLOCK()        ((void)0)
3852#include "memory_ldst.inc.c"
3853
3854/* virtual memory access for debug (includes writing to ROM) */
3855int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3856                        uint8_t *buf, int len, int is_write)
3857{
3858    int l;
3859    hwaddr phys_addr;
3860    target_ulong page;
3861
3862    cpu_synchronize_state(cpu);
3863    while (len > 0) {
3864        int asidx;
3865        MemTxAttrs attrs;
3866
3867        page = addr & TARGET_PAGE_MASK;
3868        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3869        asidx = cpu_asidx_from_attrs(cpu, attrs);
3870        /* if no physical page mapped, return an error */
3871        if (phys_addr == -1)
3872            return -1;
3873        l = (page + TARGET_PAGE_SIZE) - addr;
3874        if (l > len)
3875            l = len;
3876        phys_addr += (addr & ~TARGET_PAGE_MASK);
3877        if (is_write) {
3878            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3879                                          phys_addr, buf, l);
3880        } else {
3881            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3882                             MEMTXATTRS_UNSPECIFIED,
3883                             buf, l, 0);
3884        }
3885        len -= l;
3886        buf += l;
3887        addr += l;
3888    }
3889    return 0;
3890}
3891
3892/*
3893 * Allows code that needs to deal with migration bitmaps etc to still be built
3894 * target independent.
3895 */
3896size_t qemu_target_page_size(void)
3897{
3898    return TARGET_PAGE_SIZE;
3899}
3900
3901int qemu_target_page_bits(void)
3902{
3903    return TARGET_PAGE_BITS;
3904}
3905
3906int qemu_target_page_bits_min(void)
3907{
3908    return TARGET_PAGE_BITS_MIN;
3909}
3910#endif
3911
3912bool target_words_bigendian(void)
3913{
3914#if defined(TARGET_WORDS_BIGENDIAN)
3915    return true;
3916#else
3917    return false;
3918#endif
3919}
3920
3921#ifndef CONFIG_USER_ONLY
3922bool cpu_physical_memory_is_io(hwaddr phys_addr)
3923{
3924    MemoryRegion*mr;
3925    hwaddr l = 1;
3926    bool res;
3927
3928    rcu_read_lock();
3929    mr = address_space_translate(&address_space_memory,
3930                                 phys_addr, &phys_addr, &l, false,
3931                                 MEMTXATTRS_UNSPECIFIED);
3932
3933    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3934    rcu_read_unlock();
3935    return res;
3936}
3937
3938int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3939{
3940    RAMBlock *block;
3941    int ret = 0;
3942
3943    rcu_read_lock();
3944    RAMBLOCK_FOREACH(block) {
3945        ret = func(block->idstr, block->host, block->offset,
3946                   block->used_length, opaque);
3947        if (ret) {
3948            break;
3949        }
3950    }
3951    rcu_read_unlock();
3952    return ret;
3953}
3954
3955int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3956{
3957    RAMBlock *block;
3958    int ret = 0;
3959
3960    rcu_read_lock();
3961    RAMBLOCK_FOREACH(block) {
3962        if (!qemu_ram_is_migratable(block)) {
3963            continue;
3964        }
3965        ret = func(block->idstr, block->host, block->offset,
3966                   block->used_length, opaque);
3967        if (ret) {
3968            break;
3969        }
3970    }
3971    rcu_read_unlock();
3972    return ret;
3973}
3974
3975/*
3976 * Unmap pages of memory from start to start+length such that
3977 * they a) read as 0, b) Trigger whatever fault mechanism
3978 * the OS provides for postcopy.
3979 * The pages must be unmapped by the end of the function.
3980 * Returns: 0 on success, none-0 on failure
3981 *
3982 */
3983int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3984{
3985    int ret = -1;
3986
3987    uint8_t *host_startaddr = rb->host + start;
3988
3989    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3990        error_report("ram_block_discard_range: Unaligned start address: %p",
3991                     host_startaddr);
3992        goto err;
3993    }
3994
3995    if ((start + length) <= rb->used_length) {
3996        bool need_madvise, need_fallocate;
3997        uint8_t *host_endaddr = host_startaddr + length;
3998        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3999            error_report("ram_block_discard_range: Unaligned end address: %p",
4000                         host_endaddr);
4001            goto err;
4002        }
4003
4004        errno = ENOTSUP; /* If we are missing MADVISE etc */
4005
4006        /* The logic here is messy;
4007         *    madvise DONTNEED fails for hugepages
4008         *    fallocate works on hugepages and shmem
4009         */
4010        need_madvise = (rb->page_size == qemu_host_page_size);
4011        need_fallocate = rb->fd != -1;
4012        if (need_fallocate) {
4013            /* For a file, this causes the area of the file to be zero'd
4014             * if read, and for hugetlbfs also causes it to be unmapped
4015             * so a userfault will trigger.
4016             */
4017#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4018            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4019                            start, length);
4020            if (ret) {
4021                ret = -errno;
4022                error_report("ram_block_discard_range: Failed to fallocate "
4023                             "%s:%" PRIx64 " +%zx (%d)",
4024                             rb->idstr, start, length, ret);
4025                goto err;
4026            }
4027#else
4028            ret = -ENOSYS;
4029            error_report("ram_block_discard_range: fallocate not available/file"
4030                         "%s:%" PRIx64 " +%zx (%d)",
4031                         rb->idstr, start, length, ret);
4032            goto err;
4033#endif
4034        }
4035        if (need_madvise) {
4036            /* For normal RAM this causes it to be unmapped,
4037             * for shared memory it causes the local mapping to disappear
4038             * and to fall back on the file contents (which we just
4039             * fallocate'd away).
4040             */
4041#if defined(CONFIG_MADVISE)
4042            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
4043            if (ret) {
4044                ret = -errno;
4045                error_report("ram_block_discard_range: Failed to discard range "
4046                             "%s:%" PRIx64 " +%zx (%d)",
4047                             rb->idstr, start, length, ret);
4048                goto err;
4049            }
4050#else
4051            ret = -ENOSYS;
4052            error_report("ram_block_discard_range: MADVISE not available"
4053                         "%s:%" PRIx64 " +%zx (%d)",
4054                         rb->idstr, start, length, ret);
4055            goto err;
4056#endif
4057        }
4058        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4059                                      need_madvise, need_fallocate, ret);
4060    } else {
4061        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4062                     "/%zx/" RAM_ADDR_FMT")",
4063                     rb->idstr, start, length, rb->used_length);
4064    }
4065
4066err:
4067    return ret;
4068}
4069
4070bool ramblock_is_pmem(RAMBlock *rb)
4071{
4072    return rb->flags & RAM_PMEM;
4073}
4074
4075#endif
4076
4077void page_size_init(void)
4078{
4079    /* NOTE: we can always suppose that qemu_host_page_size >=
4080       TARGET_PAGE_SIZE */
4081    if (qemu_host_page_size == 0) {
4082        qemu_host_page_size = qemu_real_host_page_size;
4083    }
4084    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4085        qemu_host_page_size = TARGET_PAGE_SIZE;
4086    }
4087    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4088}
4089
4090#if !defined(CONFIG_USER_ONLY)
4091
4092static void mtree_print_phys_entries(fprintf_function mon, void *f,
4093                                     int start, int end, int skip, int ptr)
4094{
4095    if (start == end - 1) {
4096        mon(f, "\t%3d      ", start);
4097    } else {
4098        mon(f, "\t%3d..%-3d ", start, end - 1);
4099    }
4100    mon(f, " skip=%d ", skip);
4101    if (ptr == PHYS_MAP_NODE_NIL) {
4102        mon(f, " ptr=NIL");
4103    } else if (!skip) {
4104        mon(f, " ptr=#%d", ptr);
4105    } else {
4106        mon(f, " ptr=[%d]", ptr);
4107    }
4108    mon(f, "\n");
4109}
4110
4111#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4112                           int128_sub((size), int128_one())) : 0)
4113
4114void mtree_print_dispatch(fprintf_function mon, void *f,
4115                          AddressSpaceDispatch *d, MemoryRegion *root)
4116{
4117    int i;
4118
4119    mon(f, "  Dispatch\n");
4120    mon(f, "    Physical sections\n");
4121
4122    for (i = 0; i < d->map.sections_nb; ++i) {
4123        MemoryRegionSection *s = d->map.sections + i;
4124        const char *names[] = { " [unassigned]", " [not dirty]",
4125                                " [ROM]", " [watch]" };
4126
4127        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4128            i,
4129            s->offset_within_address_space,
4130            s->offset_within_address_space + MR_SIZE(s->mr->size),
4131            s->mr->name ? s->mr->name : "(noname)",
4132            i < ARRAY_SIZE(names) ? names[i] : "",
4133            s->mr == root ? " [ROOT]" : "",
4134            s == d->mru_section ? " [MRU]" : "",
4135            s->mr->is_iommu ? " [iommu]" : "");
4136
4137        if (s->mr->alias) {
4138            mon(f, " alias=%s", s->mr->alias->name ?
4139                    s->mr->alias->name : "noname");
4140        }
4141        mon(f, "\n");
4142    }
4143
4144    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4145               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4146    for (i = 0; i < d->map.nodes_nb; ++i) {
4147        int j, jprev;
4148        PhysPageEntry prev;
4149        Node *n = d->map.nodes + i;
4150
4151        mon(f, "      [%d]\n", i);
4152
4153        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4154            PhysPageEntry *pe = *n + j;
4155
4156            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4157                continue;
4158            }
4159
4160            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4161
4162            jprev = j;
4163            prev = *pe;
4164        }
4165
4166        if (jprev != ARRAY_SIZE(*n)) {
4167            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4168        }
4169    }
4170}
4171
4172#endif
4173